# การผลิตและพัฒนาคุณสมบัติของเอนไซม์อัลฟา-อะไมเลส ด้วยเทคโนโลยีการสลับสับเปลี่ยนดีเอ็นเอ 

## นางสาวศิริมา สุขเกษม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฏีบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ

มหาวิทยาลัยเทคโนโลยีสุรนารี
ปีการศึกษา 2550

# PRODUCTION AND IMPROVEMENT OF ALPHA-AMYLASE BY DNA SHUFFLING 

Sirima Sukasem

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy of Science in Biotechnology Suranaree University of Technology

# PRODUCTION AND IMPROVEMENT OF ALPHA-AMYLASE BY DNA SHUFFLING 

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Thesis Examining Committee<br>(Asst. Prof. Dr. Chokchai Wanapu)<br>Chairperson

(Asst. Prof. Dr. Montarop Yamabhai)
Member (Thesis Advisor)
(Assoc. Prof. Dr. Neung Teaumroong)
Member
(Asst. Prof. Dr. Phimchanok Jaturapiree)
Member
(Dr. Chomphunuch Songsiriritthigul)
Member
(Prof. Dr. Pairote Sattayatham)
Vice Rector for Academic Affairs
(Asst. Prof. Dr. Suwayd Ningsanond)
Dean of Institute of Agricultural Technology

ศิริมา สุขเกษม : การผลิตและพัฒนาคุณสมบัติของเอนไซม์อัลฟา-อะไมเลสด้วย เทคโนโลยีการสลับสับเปลี่ยนดีเอ็นเอ (PRODUCTION AND IMPROVEMENT OF ALPHA-AMYLASE BY DNA SHUFFLING) อาจารย์ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ ดร.มณฑารพ ยมาภัย, 139 หน้า

เทคโนโลยีการสลับสับเปลี่ยนดีเอ็นเอ เป็นวิธีที่มีประสิทธิภาพในการกำกับวิวัฒนาการ เพื่อปรับปรุงคุณสมบัติของเอนไซม์ในระดับของยีน นอกจากนี้ การกำกับวิวัฒนาการต้องการวิธี การที่มีศักยภาพ เพื่อคัดเลือกคุณสมบัติใหม่ของเอนไซม์ เทคโนโลยีการสลับสับเปลี่ยนดีเอ็นเอได้ ประสบผลสำเร็จในการจัดตั้งในงานวิจัยนี้ โดยใช้เอนไซม์อัลฟา-อะไมเลสจากแบคทีเรียสองสาย พันธุ์ ได้แก่ Bacillus licheniformis สายพันธุ์ DSM13 และสายพันธุ์ DSM8785 เป็นเอนไซม์ ต้นแบบ การแสดงออกและการปลดปล่อยเอนไซม์อัลฟา-อะไมเลสประสบผลสำเร็จภายใต้การชัก นำของ IPTG ในระบบการแสดงออกของยีนด้วยแบคทีเรีย การวิเคราะห์คุณลักษณะเอนไซม์ อัลฟา-อะไมเลสทั้ง 2 ชนิด จากโคลน $\mathrm{rpFL13-10xHis}$ and rpFL8785-10xHis พบว่า แคลเซียมไอออนชักนำความเสถียรของโครงสร้างของเอนไซม์ และพัฒนากิจกรรมของเอนไซม์ให้ สูงขึ้น สภาวะที่เหมาะสมต่อกิจกรรมของเอนไซม์อัลฟา-อะไมเลสทั้ง 2 ชนิด คือ ที่อุณหภูมิ 70 องศาเซลเซียส ที่ความเป็นกรด-ด่าง เท่ากับ 7 และพบว่า ทั้ง 2 เอนไซม์มีค่าครึ่งชีวิต เป็นระยะเวลา 30 นาที ที่อุณหภูมิ 60 องศาเซลเซียส ที่สภาวะความเป็นกรด-ด่างเท่ากับ 7 การวิเคราะห์ จลนศาสตร์ พบว่า คุณสมบัติของเอนไซม์อัลฟา-อะไมเลสจากโคลน rpFL8785-10xHis ดีกว่า เอนไซม์อัลฟา-อะไมเลสจากโคลน rpFL13-10xHis ยิ่งไปกว่านี้ เอนไซม์ทั้ง 2 ชนิดมีความ สามารถในการย่อยสลายแป้งมันสำปะหลังได้ดีกว่าการย่อยสลายแป้งที่ละลายน้ำ การสร้างห้อง สมุดของยีนอัลฟา-อะไมเลสสร้างขึ้นด้วยเทคนิค error prone PCR และเทคนิคการสลับสับเปลี่ยน ดีเอ็นเอ ได้ทำการคัดเลือกโคลนทั้งหมด 5,000 โคลน ด้วยวิธีการแสดงผลในปริมาณมากจาก ทั้งหมด 6 สภาวะ ได้เอนไซม์ 3 ชนิดที่ได้รับการสลับสับเปลี่ยนดีเอ็นเอ คือ เอนไซม์ 2a11h, $2 \mathrm{~b} 8 \mathrm{~b}, 4 \mathrm{~d} 2 \mathrm{~d}$ การกลายพันธุ์แบบจุดของเอนไซม์ที่ได้รับการเปลี่ยนแปลง คือ เอนไซม์ 1 b 9 a เกิดขึ้น ที่บริเวณอนุรักษ์และที่ตำแหน่งการจับของแคลเซียมซึ่งสำคัญต่อกิจกรรมของเอนไซม์

สาขาวิชาเทคโนโลยีชีวภาพ ปีการศึกษา 2550

ลายมือชื่อนักศึกษา ลายมือชื่ออาจารย์ที่ปรึกษา $\qquad$

SIRIMA SUKASEM : PRODUCTION AND IMPROVEMENT OF ALPHA-AMYLASE BY DNA SHUFFLING. THESIS ADVISOR :

ASST. PROF. MONTAROP YAMABHAI, Ph. D., 139 PP.

## DIRECTED EVOLUTION/ DNA SHUFFLING/ ALPHA-AMYLASE/ HIGH THROUGHPUT SCREENING/ Bacillus licheniformis

DNA shuffling technology is a powerful method of directed evolution to improve the property of enzymes at a gene level. Moreover, directed evolution requires an efficient method for screening new properties of enzymes. DNA shuffling technology was successfully established in this thesis by using two alpha-amylases from Bacillus licheniformis DSM13 and DSM8785 as a model. The expression and secretion of alpha-amylases were done under IPTG induction in a bacterial expression system. The characteristics of recombinant alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis were analyzed. The results showed that calcium ion enhanced the stability of enzyme structure and increased the activity of both recombinant alphaamylases from rpFL13-10xHis and rpFL8785-10xHis. The optimal conditions of both alpha-amylases activity were at the temperature of $70{ }^{\circ} \mathrm{C}$, at pH 7 and their half life $\left(\mathrm{t}_{1 / 2}\right)$ lasted 30 mins, at $60^{\circ} \mathrm{C}$, at pH 7 . The kinetic analysis suggested that the property of rpFL8785-10xHis alpha-amylase was better than rpFL13-10xHis alpha-amylase and both enzymes could hydrolyze cassava starch better than soluble starch. The library construction of mutant alpha-amylase was created by the recombination of error prone PCR, followed by DNA shuffling. The screening by high throughput method was done under six different conditions from 5,000 clones. Three shuffled
alpha-amylases no. 2a11h, no. 2b8b, and no. 4d2d contained shuffled amino acids between two alpha-amylases from B. licheniformis DSM13 and DSM 8785. The single point mutation of variant enzyme no. 1b9a occurred in the conserved regions and the calcium binding sites, which were important for the activity and stability of the enzyme.

## ACKNOWLEDGMENTS

The completion of this thesis was made possible through the support and inspiration of several individuals all of whom have my gratitude.

National Center for Genetic Engineering Biotechnology for the financial support.

Special thanks to Assist. Prof. Dr. Montarop Yamabhai and Prof. Dr. Dietmar Haltrich, my thesis advisors, for their years of networks, and support in completing this thesis that has been a long time in the coming.

To F3 members for making our institute such a pleasant and inspiring place to work, for sharing not only their scientific and technical knowledge, but also spirited prodding has kept me going for many more years than it took to complete this work.

To Jantima Teeka and Kaewta Sootsuwan for encouragement, soul support and thoughtfulness.

My biggest thank goes to my family - for biggest encouragement, love, soul support and thoughtfulness, and support I would never have come this far.

## CHAPTER I

## INTRODUCTION

One of the most abundant of natural polysaccharide is starch, which is the major product of agricultural crops. Plants synthesize starch as a result of photosynthesis in leave and keep starch as storage compound for respiration during dark period. Starch is also kept as long-term storage in roots and seeds. It has been harvested and used as raw materials or source of energy for chemical or enzymatical processes of variety products in manufactories such as alcohol production, paper industry, textiles, starch hydrolysate, glucose syrup, fructose syrup, etc. In the past decades, process of starch hydrolysis has been changed from acid hydrolysis to starchconverting enzymes. Nowadays, these enzymes comprise about $30 \%$ of the world's production and they have been used in a large number of industrial applications such as laundry, detergents, food industry, etc. The alpha-amylase family, which shares common structure of $\left(\alpha_{8} / \beta_{8}\right)$ barrel, has been widely used in various industries. The characterizations of starch-converting enzymes have been developed or created novel properties to increase their efficiency for industrial utilisations. Development of these enzymes can be done by screening microorganisms from various environmental sources or by modiftying at genetic level using molecular biology techniques. The genetic modification; e.g. directed evolution, is an efficient method to create new specific properties or to select the best property by potentially selection process. Directed evolution methods such as site mutation, saturated mutation, error prone

PCR, or DNA shuffling, are applied for modification in genetic level. Alpha-amylase has widely applications not only in food industry or alcohol production but also in laundry, textiles and detergents industries. The Bacillus species is good bacterial sources for alpha-amylases since they can produce alpha-amylase having many specific properties such as tolerance to high temperature or work well under acidic or alkaline condition. Moreover, Bacillus species is easy to be cultured under normal condition. The alpha-amylase from Bacillus lichenisformis has various properties for many industrial applications because its alpha-amylase works well under alkaline condition and at high temperature. Moreover, alpha-amylase from B. licheniformis is stable under high temperature. Most alpha-amylases require calcium ions for enhancement of structure stabilization and increase the activity. These are good principle properties to improve alpha-amylase for laundry or detergent. This applications require the thermostable alpha-amylase which has high activity under alkaline condition or tolerance to chelating agent such as EDTA. Because the chelating agent is always found in the detergent and it is indispensable ingredient in detergent formulation. The chelating agent removes calcium ions from structure of alpha-amylase resulting in unstable in the structure and also reduce the activity of enzyme. Therefore, the high activity of alpha-amylase under low concentration of calcium or without addition of calcium is required for laundry and detergent.

The aim of this study was to improve property of alpha-amylase by using DNA shuffling as potential method of directed evolution in order to increase the activity under alkaline condition or more thermostable at high temperature or more stable under presence of EDTA as chelating agent. Moreover, the improvement of property without addition of calcium ions was also expected. Two genes of alpha-
amylases from B. licheniformis DSM13 and DSM 8785 were cloned and over expressed as recombinant alpha-amylase in Escherichia coli expression system. Moreover, further improvement of alpha-amylase property by directed evolution using DNA shuffling technique was also investigated.

## CHAPTER II

## REVIEW AND LITERATURE

### 2.1 Starch

Starch, which is one of the most aboundantly distributed polysaccharides in natural, is the main substrate of alpha-amylase. Starch consists of two main compounds; amylose and amylopectin. Amylose is a linear chain of glucose residuces linked together by alpha-1,4-glycosidic linkage. Amylopectin is branched polymer which contains two main structures; linear and branched structure. The linear structure of amylopectin has amylose as backbone. The branched part is a short alpha-1,4glucose residuces, which link to its backbone with alpha-1,6-glycosidic linkage (Kuriki and Imanaka, 1999).

Hydrolysis of starch can be done by exo-enzymes (i.e. beta-amylase, glucoamylase and $\alpha$-glucosidase) or by endo-enzyme (alpha-amylase). The action of exo-enzyme from nonreducing end produces low molecular weight products while randomly digestion of endo-enzyme in interior chain generates linear and branched saccharides with various lengths (Kuriki and Imanaka, 1999; Richardson T.H. et al., 2002).


Figure 1. Structure of starch.
(http://www1.eere.energy.gov/biomass/images/graph_polymeric_structure_glucose.gif )

### 2.2 Alpha-amylase

The main natural substrate of alpha-amylase is starch. Alpha-amylase or alpha-1,4-glucan-glucanohydrolase (E.C.3.2.1.1) is an endo-hydrolyzing enzyme which hydrolyzes starch, amylose, amylopectin, and various maltodextrin by randomly cleaved alpha-1,4-glycosidic linkage, resulting in production of shorter polysaccharides and dextrin. The great number of alpha-amylases have been produced from variety of eukaryotic and prokaryote organisms such as B. amyloliquefaciens (Machius et al., 1998a), B. licheniformis (Machius et al., 1995), B. stearothermophilus (Lutz et al., 2001; Nielsen and Borchert, 2000), Myceliophthora thermophilia, Staphylothermus marinus (Ostermeier et al., 1999), Aspergillus oryzae, A.niger (Ryu and Nam, 2000), Pyrococcus furiosus, P. woesei, Thermococcus profundus (Vallee et al., 1959), and etc. Generally, structure of alpha-amylase contains three domains; A, B
and C (Figure 2). The primary structure of alpha-amylase is TIM barrel or parallel $(\alpha / \beta)_{8}$, which is in Domain A. It consists of $8 \alpha$-sheets and $8 \beta$-sheets in parallel direction. The central domain (domain A ) forms the core of the structure and contains the active site. In the order of the structure, domain B and C are located at the opposite site of TIM barrel structure. Domain B is formed between $3^{\text {rd }}$ strand and $3^{\text {rd }}$ helix of TIM-barrel and it forms a large part of the substrate binding cleft. Domain B is a protrusion between the $3^{\text {rd }}$ beta sheet and $3^{\text {rd }}$ alpha-helix of Tim barrel and forms an irregular beta-rich structure. The size and structure of domain $B$ varies among the various number of the alpha-amylase structure. This domain is probably responsible for the differences in substrate specificity and stability among alpha-amylase family (Nielsen et al., 1999). Domain C is C-terminal part of sequence which contains Greek key motif, beta-sandwich structure (Nielsen and Borchert, 2000). In general, the structure of alpha-amylase has four highly conserved regions (region I, II, III and IV) among alpha-amylase family (Kuriki and Imanaka, 1999; Nielsen et al., 1999). This regions are related to the catalytic and substrate-binding site of enzyme. The crystallization of alpha-amylase (pdb code; 1BLI) from B. licheniformis suggested that alpha-amylase consists of 512 amino acids. The first 29 amino acids are belong to Bacillus alpha-amylase signal peptide and 483 amino acids are in mature enzyme, which consists of domain A, B and C (Machius et al., 1998b). The amino acids in domain A are 32-140 and 236-413. Domain B and C comprise with amino acids in range of 141-235 and 414-512, respectively. Four highly conserved regions of alphaamylase are in domain A. The region I is amimo acid at 131-136 (131-DVVINH-136). The region II, III and IV are sequences in range of 255-QLDGFRLDAV KHIK-264, 285-KEMFTVAEYWQN-296 and 354-FVDNHDTQP-362, respectively. Three acidic amino
acid residues responding for activity of alpha-amylase, are in region I, II and III. These are Asp262, Glu286 and Asp359. Alpha-amylase requires several ions, such as calcium ion or sodium ion for its stability or enhanced catalytic efficiency. One or more additional calcium ions have been found in several structures (Kuriki and Imanaka, 1999). Calcium ion is essential for stabitlization of enzyme structure. This ion is located between domain A and B, and it bound tightly to structure. Several alpha-amylase contain chloride ion in structure and it can be found at the active site of alpha-amylase (Kuriki and Imanaka, 1999; Nielsen and Borchert, 2000). This ion enhances catalytic efficiency. Moreover, in some alpha-amylase, sodium ion is also found.


Figure 2. The domain organization of the alpha-amylases from B. licheniformis.
(Nielsen and Borchert, 2000).

### 2.3 Application of alpha-amylase

Alpha-amylases have been isolated from variety organisms such as bacteria, fungi, plants and mammalian cells. Its applications are powerful for industry since starch modification by alpha-amylase is one of the most of important steps in food processing. Moreover, alpha-amylase has application in production of maltodextrin and also in the modification of starch for resizing paper and textiles. They are of interested in clinical analysis of some diseases, such as pancreatitis.

Table 1. Application of alpha-amylase in variety of industries.

| Application | Information | References |
| :--- | :--- | :--- |
| Bread and | Alpha-amylase not only enhances fermentation | (Nielsen and |
| baking | rate and reduces the viscosity of dough (resulting | Borchert, |
|  | in improvement of the volumn and texture), but | 2000) |
|  | also generates sugar in dough, which improves the |  |
| taste, crust color and toasting qualities of the |  |  |
|  | bread. | Process requires alpha-amylase which more active |
|  | (Nielsen and |  |
| at high temperature and also need other amylolytic | Borchert, |  |
| liquefaction | enzyme to hydrolyze short polysaccharide into | 2000) |
| and | Remove starch on textile by hydrolysis resulting | (Maarel et |
| saccharification | monomer. | al., 2002) |
| Textile <br> desizing | in dextrins, which is water-soluble compound | (Tolan, 1996) |
| Paper industry | Alpha-amylase digests starch protecting paper |  |
| against mechanical force during finishing process |  |  |
|  | Application requires alpha-amylase which actives | (Maarel et |
|  | and more stability under strong alkaline condition | al., 2002) |
|  | at high temperature. Moreover, alpha-amylase |  |
|  | should not be sensitive to oxidizing agents which |  |
|  | are components of detergent formulation |  |

### 2.4 Directed evolution and DNA shuffling

Directed evolution is a powerful tool for improvement or modification of protein properties. This evolution experiments are created in vitro by mimic the selection of natural process. This method does not require long time for evolution when compares with natural selection, which generates only small mutation points (Arnold and Volkov, 1999; Kurtzman et al., 2001). The natural evolution has selected the most suiTrial enzyme that ensures the survival of its original organism in its environments. On the other hand, directed evolution can be advanced in gene level in the test tube, and expression of modified gene in suitable microorganism host can be achieved under mild condition of microbial growth. This method leads to avoid the consideration of survival of microorganism by directly modification of cell metabolism for protein development under extreme environment. Directed evolution involves generation of diversity of library by DNA recombination of various sets of parent nucleotide sequences and/or random mutagenesis. Nowadays, the most exiting procedures of directed evolution precess are based on PCR technique (error prone PCR) and DNA shuffling. Because directed evolution advances in creation of diversity of genetic or diversity of protein properties, this technique, therefore, offers a way to improve protein properties rapidly for unknown structure. Functionally improved variants are first isolated by high-throughput selection, and then used as parents for other rounds of recombination or mutagenesis. Successfully, evolution experiments require three considerations. First is the suitable microorganism host for expression of improvement functional enzymes. Second is the avaibility of selection or screening sensitive to desire properties of protein, and the last is the identification of workable evolution strategy (Kuchner and Arnold, 1997). Selection and screening
are major challenges of directed evolution. Normally, selection involves intracellular enzymes which required for cell survival. Activity of desired protein is easy to detect, and it does not interfere with cellular metabolism (Arnold and Volkov, 1999). Moreover, target activity can be distinced from background of other cellular activities. Screening is required when desired proteins cannot be linked easily to cell survival. High throughput, generally, is not high sensitivity to the desired properties. A quantitative method such as colorimetric assay is one of methods that were improved for screening to get rid off this limitation. The potential of selection or screening technology should reduce the times and cost of experiments and they also should increase the possibility of difficult problems involving in multiple enzymes, multicomponent enzymes and creation of new novol functional molecules.

Principle steps of directed evolution of proteins and example keys in which multiple generations of mutagenenis and screening or selection have been described in Figure 3 and Table 2, respectively.


Figure 3. The improvement of gene properties by directed evolution.
(Whalen et al., 2001).

Table 2. Summary of key directed-enzyme-evolution experiments utilizing sequential generations of random mutagenesis and recombination with selection or screening.

| Enzyme | Altered property | Mutagenesis <br> method | Screened <br> or <br> selected | References |
| :--- | :--- | :--- | :--- | :--- |
| Subtilin E | Activity in organic | Error-prone <br> solvents | Screened | (Chen and |
|  | PCR |  | Arnold, 1993) |  |
| $\beta$-Lactamase | Total activity and <br> substrate specificity | DNA shuffling | Selected | (Stemmer, 1994) |
| Paranitrobenzyl <br> esterase | Substrate specificity <br> and activity in <br> organic solvents | Error-PCR and | Screened | (J. C. Moore and |
| Subtilin BPN | Stability | Cassette | Screened | (Strausberg et |
|  |  |  |  | al., 1995) |
| $\beta$-galactosidase | Substrate specificity | DNA shuffling | Screened | (Zhang et al., |
| Arsenate <br> detoxification <br> pathway | Arsenic resistance | DNA shuffling | Screened | (Crameri et al., |
| Paranitrobenzyl | Substrate specificity | Error-PCR and | Screened | (J. C. Moore et |
| esterase | and activity in | DNA shuffling |  | al., 1997) |

In the recent years the possibility of creation the diversity of genetic has been expanded enormously by application of PCR technique such as error prone PCR, and DNA shuffling (Crameri et al., 1997; Zhao et al., 1998). DNA shuffling which was recently developed by Stemmer, is one of directed evolution to accelerate the genetic diversity in vitro (Stemmer, 1994). The key advantage of DNA shuffling is not
only recombine DNA fragments, but also introduce point mutation at very low rate (Zhao and Arnold, 1997) or create multiple crossover in reassembled sequences (G. L. Moore et al., 2001). The sources of parental genes not only from a set of related genes, but also generate the related sequnces by error prone PCR, which random mutagenesis occurs. Error prone PCR is achieved by Taq DNA polymerase under low concentration of DNA template and various concentration of dNTP. Taq DNA polymerase lacks proofreading activity as found in pfu DNA polymerase. This property leads to amplification of PCR under low fedility. Nevertheless, increment of concentration of $\mathrm{Mn}^{2+}$ enhances intensity of mutation points. The recombination of random fragmentation of a pool of parental genes which performed by DNaseI is most important for DNA shuffling. The hybridization of homologous sequences prime each others, after denaturation of different parent templates, resulting in crossovers are locked in by polymerase extension. Multiple cycles of PCR resulting in an enhancement of increase of multiple crossover and resulting in a library of full length sequences. After construction of library into an expression vector and transfer into microorganism host for expression, potential selection and/or screening indentify the best combination clones and, then, used as parent genes in the next round.


Figure 4. The molecular breeding of directed molecular evolution process. (Powell et al., 2001).

Nowadays, numerous alpha-amylases which have been developed to desire properties by directed evolution or other methods, have been established in many applications as described in Table 3.

Table 3. Summary of properties development of alpha-amylases by directed evolution and other methods.

| Microorganism | Applications | Mutagenesis methods | Altered properties | References |
| :---: | :---: | :---: | :---: | :---: |
| B. licheniformis | Detergent | Error prone <br> PCR and gene shuffling | Opimun pH of BAA42 mutant shifed from pH 6 to pH 7 , and 5 folds of activity increase at pH 10 | (Bessler et al., 2003) |
| Bacillus sp. strain TS-23 alpha-amylase (BLA) | Understand mechanism of starch binding domain | Site directed mutagenesis | Single mutant (Thr-527, Trp-545, Trp561, or Lys-576) reduced binding activity, while combinational mutations did not lead to a complete loss of the activity | (H. F. Lo et al., 2004) |
| Barley alpha-amylase | Protein secretion | degenerate oligonucleotide gene shuffling (DOGS) | -Mutants ( 8 clones from 843 clones) showed large halo ratio on starch agar. <br> -Mutants (F21M/Q44H, A42P/A47S and A42P rAMY2) showd the better secretion of enzyme outside the cells. | (Fukuda et al., 2005) |
| B.licheniformis |  | site-directed mutagenesis | Enhancement of thermostability by deletion of Arg78 and Gly177 in region I, and by substitutions of aspartic acid for Asn" in region I1 | (Suzuki et al., 1989) |

Table 3. (Continued).

| Microorganism | Applications | Mutagenesis methods | Altered properties | References |
| :---: | :---: | :---: | :---: | :---: |
| B. licheniformis MTCC $6598$ | Starch <br> hydrlysis for food industry | Site directed mutagenesis | -Mutant (N104D) improved specific activity at pH 5 and $70^{\circ} \mathrm{C}$ <br> - Mutant (D161N) retained activity at $30^{\circ} \mathrm{C}$ degrees C but had significantly less activity at $70^{\circ} \mathrm{C}$ <br> -Mutant (D430N) was not changed at 30 degrees C but had an improved activity at $70^{\circ} \mathrm{C}$ | (Priyadharshini and Gunasekaran, 2007) |
| Thermus sp. strain IM6501 (maltogenic alphaanylase) | Starch hydrolysis | DNA <br> shuffling | The optimal temperature of recombinant enzyme was $75^{\circ} \mathrm{C}$, which was $15^{\circ} \mathrm{C}$ higher than wild-type, and the melting temperature was increased by $10.9^{\circ} \mathrm{C}$. The half-life of ThMA-DM was 172 min at $80^{\circ} \mathrm{C}$, a temperature at which wild-type ThMA was completely inactivated in less than 1 min | $\begin{aligned} & \text { (Y. W. Kim et al., } \\ & 2003 \text { ) } \end{aligned}$ |

Table 3. (Continued).

| Microorganism | Applications | Mutagenesis methods | Altered properties | References |
| :---: | :---: | :---: | :---: | :---: |
| B. licheniformis | Acidic resistance for starch liquefaction | DNA <br> shuffling | Mutants showed improvement of starch binding under low pH values and showed higher activity of starch hydrolysis at pH 4.5 by using phage display | (Verhaert et al., 2002) |
| Barley alpha-amylase | Starch hydrolysis | Error prone <br> PCR and <br> DNA <br> shuffling | Mutant (Mu322) showed 1000 times the total activity and 20 times the specific activity thad wild type | (Wong et al., 2004) |
| B. licheniformis | Acidic resistance | Site-directed mutagenesis | Mutant was more acidic resistance than native enzyme. The optimum pH and stable range of pH with the mutagenised protein was 4.5 and 4.0 to 6.5 , respectively, compared with pH 6.5 and 5.5 to 7.0 as the favorite pH and pH stability range of the native protein | (Liu et al., 2008) |

Table 3. (Continued).

| Microorganism | Applications | Mutagenesis methods | Altered properties | References |
| :---: | :---: | :---: | :---: | :---: |
| Isolation of a group of thermostable alpha-amylase (2000 genes) from different geographical deep sea enrichments and acid soil | Starch <br> liquefaction | Gene reassembly | The 34 clones showed higer activity of liquefaction and improved thermostability at pH 4.5 | (Richardson. T.H. et al., 2002) |
| B. substilis | Cyclodextrin production | Error prone <br> PCR and saturation mutagenesis | Conversion of our model enzyme, cyclodextrin glucanotransferase (CGTase), into an alphaamylase like hydrolytic enzyme by saturation mutagenesis close to the catalytic core yielded a triple mutant (A231V/F260W/F184Q) with the highest hydrolytic rate ever recorded for a CGTase, similar to that of a highly active alphaamylase, while cyclodextrin production was virtually abolished. | $\begin{aligned} & \hline \text { (Kelly et al., } \\ & 2007 \text { ) } \end{aligned}$ |

## CHAPTER III

## RESEARCH OBJTCTIVES

The goal was to establish and apply DNA shuffling technology for improvement of properties of industrial enzyme by using alpha-amylase as a model.

The objectives of this research were summarized as belowed

1. To establish DNA shuffling technology for improvement of alphaamylase property.
2. To analyze characteristics of alpha-amylase such as optimum pH and temperature, pH and temperature stability and kinetics.

## CHAPTER IV

## MATERIALS AND METHODS

### 4.1 Bacterial strains and cultivation conditions

Two bacterial strains used in this experiment, were B. licheniformis DSM 8785 and DSM 13. Both strains were supplied from Division of Food Biotechnology, Department of Food Sciences and Technology, University of Natural Resources and Applied Life Science, Vienna, Austria. These bacteria were cultured on M1 medium at $30^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ for B. licheniformis DSM 8785 and DSM 13, respectively. E. coli DH5 F ' was used as host for cloning. E. coli BL21 (DE3) and E. coli TOP10 were used to express alpha-amylase expression vector. Three bacteria were grown in LuriaBertani (LB) medium at $37^{\circ} \mathrm{C}$.

### 4.2 Construction of alpha-amylase expression vector

The genomic DNA of each Bacillus strain was used as DNA template. Genomic DNA was extracted directly from each single colony by boiling in ultra pure water at $95^{\circ} \mathrm{C}$ for 5 min , and then, put on ice to cool down immediately. Two primer sets, flanked with two appropriated restriction sites were designed based on DNA sequence from Genbank no. X03236 to create 1.5 kb of alpha-amylase gene with/without Bacillus signal peptide. First set of primers (3'-BspHI site (5'-ggA ggA TCA TgA AAC AAC AAA AAC ggC TTT ACg-3') and $5^{\prime}$ - XhoI site ( $5^{\prime}$-gCA CAg CTC gAg TCT TTg AAC ATA AAT TgA AAC CgA CCC-3')) generated alphaamylase with Bacillus signal peptide. This gene was inserted into pET21d (+)
expression vector (named rpET8785 and rpET13). Other set of primer was used for amplification of alpha-amylase without signal peptide containing 3'-EcoRI site (5'CTg TgC gAA TTC gCA AAT CTT AAT ggg ACg CTg ATg C-3') and 5'-XhoI site ( $5^{\prime}-\mathrm{gCA}$ CAg CTC gAg TCT TTg AAC ATA AAT TgA AAC CgA CCC-3'), then the amplified gene was inserted into pFLAG-CTS (or pFLAG-CTS plus 10xHis) expression vector to construct rpFL8785 (or rpFL8785-10xHis) and rpFL13 (or rpFL13-10xHis) expression vector. Mature alpha-amylase gene was fused to OmpA signal peptide of E. coli on pFLAG-CTS vector after construction. The PCR amplifications of two primer sets were done under same condition. PCR reaction consisted of 1x pfu DNA polymerase buffer, $2.9 \mathrm{mM} \mathrm{MgCl} 2,0.25 \mathrm{mM}$ of each dNTP, $0.25 \mu \mathrm{M}$ of primer, and 3 unitof pfu DNA polymerase (Promega). Fist denaturation was done at $96^{\circ} \mathrm{C}$ for 2 min . Thirty cycles of PCR were performed by following step of denature temperature at $95^{\circ} \mathrm{C}$ for 45 second, annealing temperature at $55^{\circ} \mathrm{C}$ for 1 min, and extension temperature at $72^{\circ} \mathrm{C}$ for 4 min . Last extension was done to complete gene amplification at $72^{\circ} \mathrm{C}$ for 10 min . The PCR products were cloned into pET21d $(+)$ or in pFLAG-GTS (or pFLAG-CTS plus 10xHis), then, resultant plasmids were transformed to E. coli strain BL21 (DE3) or TOP10, respectively, for gene expression.

### 4.3 Sequence analysis

Nucleotide sequences were analyzed by DNA sequencing service unit of Macrogen Inc (World Meridian Venture Center, Seoul, Korea).

Multiple alignment of nucleotide sequences were analyzed by using vector NTI program whereas the percentage of similarity was determined by ClustalW2 from EMBL-EBI software on-line. The secondary structure of alpha-amylases were done by

Espript2.2 program. The phylogenic tree was analyzed from amino acid equences by using vector NTI program.

### 4.4 Expression and production of recombinant alpha-amylase

### 4.4.1 Expression on LB agar containing soluble starch

Sigle colony of E. coli BL21 (DE3) and/or E. coli TOP10 harboring recombinant alpha-amylase expression vector were grown on screening media consisting of LB agar containing $1 \%(\mathrm{w} / \mathrm{v})$ soluble starch (Sigma-Aldrich), $100 \mu \mathrm{~g} / \mathrm{ml}$ amplicillin and 1 mM isopropyl $\beta$-D-thiogalactopyranoside (IPTG) for $16-18 \mathrm{hr}$ at $37^{\circ} \mathrm{C}$ (optional). The starch hydrolysis was shown as clear zone around colony after overlaid starch plate with $\mathrm{I}_{2}$ solution. Negative controls were done by growing each single E. coli carring original pET21d (+) or pFLAG-CTS (or pFLAG-CTS-10xHis) expression vector under same condition.

### 4.4.2 Production and purification of alpha-amylase

Overnight cultivatuion of each single colony of E. coli carrying recombinant alpha-amylase expression vector was done in 5 ml LB broth plus $100 \mu \mathrm{~g} / \mathrm{ml}$ amplicillin at $37^{\circ} \mathrm{C}$ and, then, transferred into 250 ml LB broth. Induction of IPTG at final concentration of 1 mM was performed when the optical density (at 600 nm ) of the culture medium reached 1.2 to 1.4 and further cultivation at $25^{\circ} \mathrm{C}$, shaking speed of 150 rpm for 18 hr . Cells were harvested by centrifugation at $4^{\circ} \mathrm{C}$ for 20 min , then followed by cell lysis and use as crude enzyme. Alpha-amylase from recombinant alpha-amylase in pET21d $(+$ ) or in pFLAG-CTS-10xHis were purified by Nickel column. To remove imidazole, purified alpha-amylase was washed 3 times with 50 mM potassium phosphate ( pH 7.0 ) by ultra-centrifugation with molecular weight cut off 30,000 Da. Molecular weight was determined by SDS-PAGE analysis.

### 4.4.3 SDS-PAGE and zymogram analysis

Molecular weight analysis of purified alpha-amylases and in-gel assay were done by SDS-PAGE analysis. Purified alpha-amylase band was separated by $12 \%$ (w/v) polyacrylamide gel for SDS-PAGE or by $8 \%$ (w/v) polyacrylamide gel containing $0.22 \%(\mathrm{w} / \mathrm{v})$ of soluble starch as final concentration. For SDS-PAGE analysis, purified alpha-amylase was mixed with protein sample buffer $(0.0625 \mathrm{M}$ Tris-HCl (pH 6.8), $0.01 \%$ (w/v) bromophenol blue, 2\% (w/v) SDS, 20\% (w/v) glycerol) containing 0.1 M dithiothreitol (DTT) and then, boiled at $100^{\circ} \mathrm{C}$ for 3 min . Electrophoresis was performed at 100 volt for 2 hr by usig BioRad Mini Protein II Cell (BioRad). The gel, after electrophoresis, was washed with DI and then, stained with Coomassie brilliant blue-G250. Molecular weight was determined with $R f$ value by comparing with standard protein marker. In gel assay by zymogram was done at the same time with SDS-PAGE analysis. Mixture of purified enzyme and protein sample buffer without DTT was heated at $100^{\circ} \mathrm{C}$ for 3 min before applying into soluble starch-polyacrylamide gel. Electrophoresis at $4^{\circ} \mathrm{C}$ was done as condition as SDS-PAGE analysis. In gel assay was achieved by following steps of (1) washed starch-polyacrylamide gel with distrilled water, (2) soaked gel with $2.5 \%$ (w/v) Triton X-100 at $4^{\circ} \mathrm{C}$ for 1 hr for SDS removal, (3) incubated gel in 50 mM potassium phosphate buffer $(\mathrm{pH} 7)$ at $45^{\circ} \mathrm{C}$ for 3 hr with slowly rotation, (4) soaked gel with 0.1 $M$ acetic acid to terminate activity, and (5) stained gel with $I_{2}$ solution. The activity of alpha-amylase on gel was distinctly shown as clearing band from brown background.

### 4.5 Library construction of shuffled alpha-amylase

Shuffeld protocol was performed by following published protocol with some modifications (Zhao and Arnold, 1997). Two libraries were generated in pET21d (+) and pFLAG-CTS expression system.

### 4.5.1 Error prone PCR

Random mutagenesis was created by error prone PCR. Four amplifications were done directly from four expression vectors. Expression vectors rpET13 and rpET8785 were used as template for amplification by primers 3 '-BspHI and $5^{\prime}$ '-XhoI. PCR products were name ep13 and ep8785. Vectors rpFL13 and rpFL8785 were used for PCR amplification by primers 3'-EcoRI and 5'-XhoI, and products were defined as epF13 and epF8785, respectively. All reactions of error prone PCR consisted of 6.24 ng of DNA template, 1xTaq DNA polymerase buffer, 0.2 mM each of dATP and dGTP, 1.0 mM each of dCTP and dTTP, $2.9 \mathrm{mM} \mathrm{MgCl}_{2}, 0.5 \mathrm{mM} \mathrm{MnCl}_{2}, 5 \mathrm{U}$ of Taq DNA polymerase (New England Lab) and $0.3 \mu \mathrm{M}$ of primer. Thermocycle was achieved by following step of initial denaturation at $95^{\circ} \mathrm{C}$ for 2 min , and 45 cycles of $95^{\circ} \mathrm{C}$, 45 second, $55^{\circ} \mathrm{C} 1 \mathrm{~min}$ and $72^{\circ} \mathrm{C}$ for 2 min , and $72^{\circ} \mathrm{C}$ for 10 min as last extension. Molecular size of error prone products were verified on agarose gel and purified by QIA PCR purification kit (Quiagen).

### 4.5.2 DNaseI digestion

Digestion by DNaseI was prepared for all error prone products under same condition. Products ep13 and ep8785 were mixed together (or epF13 and epF8785) Creation of random fragments DNA was performed at $15^{\circ} \mathrm{C}$ for 7 min by reaction consisted of DNaseI (Fermentas) at 0.1 to $1 \mathrm{U} / \mu \mathrm{g}$ DNA (error prone PCR), 50 mM Tris- HCl pH 7.4 and 10 mM MnCl 2 . Fragments size from 50 bp to 250 bp were cut
from $15 \%(\mathrm{w} / \mathrm{v})$ polyacrylamide gel and sliced into small pieces by steriled pipette tip. Fragments were removed out from gel by incubating gel in 3 M ammonium acetate at $37^{\circ} \mathrm{C}$ for overnight, and then, filtrated with glass wool. The phenol:choloform extraction and ethanol precipitation were done in order to purified DNA fragments. The pellet was dissolved in $30 \mu \mathrm{l}$ of ultra pure water. The purified product from mixture of ep13 and ep8785 was named DpETM, whereas mixture of epF13 and epF8785 was named DpFLM.

### 4.5.3 Reassembled PCR into full length

To reassemble small fragments into full length of alpha-amylase gene, PCR amplification without primers was undertaken. DpETM and DpFLM were reassembled by same condition and designated PCR product as ReETM and RpFLM, respectively. Fifty microliters of reassembled reaction consisting of $30 \mu \mathrm{l}$ of purified short fragements (from previous step), 1x pfu DNA polymerase, 25 mM of each dNTP and 2.5 U of pfu DNA polymerase. Amplification was applied by intinital temperature at $96^{\circ} \mathrm{C}$ for 2 min and followed by 30 cycles of $95^{\circ} \mathrm{C}, 45$ second of denaturation step, $55^{\circ} \mathrm{C}$ for 1.30 min of annealing step and $72^{\circ} \mathrm{C}$ for $2 \mathrm{~min}+5 \mathrm{sec} /$ cycle of extention step, and by $72^{\circ} \mathrm{C}$ for 10 min as last extension.

### 4.5.4 Amplification of shuffled alpha-amylase

Two amplificaitons of shuffled alpha-amylase were performed by using two different primer sets, (1) $3^{\prime}-\mathrm{BspHI}$ and $5^{\prime}$ 'XhoI and (2) $3^{\prime}-E c o R I$ and $5^{\prime}$ 'XhoI, by applied ReETM and RpFLM as template under same condition of amplification. $50 \mu \mathrm{l}$ of PCR amplification consisting of $1 \mu \mathrm{l}$ of DNA template (ReETM or RpFLM), 1x pfu DNA polymerase buffer (promega), 0.25 mM each of dNTP, $2.9 \mathrm{mM} \mathrm{MgCl}_{2}, 3 \mathrm{U}$ of pfu DNA polymerase and 2.5 U of Taq DNA polymerase (New England Lab) and
$0.25 \mu \mathrm{M}$ of primers. The amplification was performed by initial denaturation at $96^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of $95^{\circ} \mathrm{C}$ for 45 second, $55^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 4 min . Last extension was done to complete gene amplification at $72^{\circ} \mathrm{C}$ for 10 min . To verify the correct size of shuffle alpha-amylase, molecular size of shuffled gene was determined by $1 \%(\mathrm{w} / \mathrm{v})$ agarose gel. Two constructions of shuffled amylase (named as rpET-SH and rpFL-SH) were achieved by insertion of SHeTM (primer 3'-BspHI and $5^{\prime}-$ XhoI) and SHeFM ( $3^{\prime}$ '-EcoRI and $5^{\prime}$ '-XhoI) into pET21d (+) and pFLAG-CTS, respectively.

### 4.6 Screening of library of shuffled alpha-amylases

The screening of shuffled alpha-amylase genes was done into two steps First step was primary screening. It was performed by selecting clones that produced clear zone around colony. Alpha-amylase activity analysis in microtiter plate was then performed in a secondary screening.

### 4.6.1 Primary screening

This step was required for the selection of shuffled clone from recombinant rpET-SH library by tooth pick method. Single clone of E. coli harboring shuffled alpha-amylase was grown on screening medium consisting of LB agar containing $1 \%$ (w/v) soluble starch (Sigma), 1 mM IPTG and $100 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin at $37^{\circ} \mathrm{C}$ for overnight. E. coli carrying original pET21d (+) was used as negative control. Positive control was E. coli harboring native alpha-amylase expression vector (rpET8785). The clear zone was observed by $\mathrm{I}_{2}$ staining. Clones which showed clearing zone (positive clones) were selected for secondary screening. The shuffled clones from library of rpFL-SH could show clear zone after electroporation without induction of IPTG on screening medium. Recombinant rpET13 and rpET8785 or rpFL13 and rpFL8785
were used as positive control whereas pET21d (+) and pFLAG-CTS were used as negative control.

### 4.6.2 Secondary screening by activity assay of alpha-amylase

The condition for secondary screening of library of rpET-SH and rpFL-SH was different from each others. The expression of shuffle alpha-amylase was performed in 96 wells plate (for rpET-SH library) or in 96 deep wells plate (for rpFLSH library). The single colony of positive clones were cultured separately in $120 \mu \mathrm{l}$ or $500 \mu \mathrm{l}$ of LB in each well for rpET-SH library and rpFL-SH library, respectively, for overnight at $37^{\circ} \mathrm{C}$, and shaking at 200 rpm . The induction of 1 mM IPTG of rpET-SH library was done at $25^{\circ} \mathrm{C}$, at 200 rpm for 4 hr . Induction of ITPG was not necessary for library of rpFL-SH. Single colony from rpFL-SH library was grown in $500 \mu \mathrm{LB}$ broth containing $100 \mu \mathrm{~g} / \mathrm{ml}$ amplicillin for $22 \mathrm{hr}, 200 \mathrm{rpm}$ at $37^{\circ} \mathrm{C}$. To recover culture broth (enzyme sample), centrifugation was done for 20 min , at $4000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$.

### 4.6.2.1 Screening condition of rpET-SH library

Screening analysis under high temperature was performed on 96 wells microtiter plate at two different pH coditions; pH 3.5 by using 50 mM sodium acetate buffer and pH 9.5 by using 50 mM potassium phosphate buffer. Control experiment of screening was performed by detection of activity of shuffled alpha-amylase at pH 6.5 by using 50 mM potassium phosphate buffer. Reaction ( $200 \mu \mathrm{l}$ ) consisting of $20 \mu \mathrm{l}$ enzyme sample and $180 \mu \mathrm{l}$ of $0.025 \%$ (w/v) cassava starch in each pH buffer. Activity assay was started by incubating the reaction at $90^{\circ} \mathrm{C}$ for 10 min , and then, stopped reaction immediately by adding $20 \mu \mathrm{l}$ of 0.5 M glacial acetic acid. Remaining cassava starch in reaction after starch hydrolysis was determined by observing an absorbance values at 595 nm after development of color in reaction by adding $\mathrm{I}_{2}$ solution $(20 \mu \mathrm{l})$.

### 4.6.2.1 Screening condition of rpFL-SH library

The conditions of screening analysis were devided into 6 sub-experiments by using $0.025 \%(\mathrm{w} / \mathrm{v})$ or $0.5 \%(\mathrm{w} / \mathrm{v})$ cassava starch and $20 \mu \mathrm{l}$ of enzyme samples. Two first sub-screening analyses was done at $37^{\circ} \mathrm{C}$ for 30 min by using $0.025 \%$ (w/v) cassava starch in 50 mM sodium acetate $(\mathrm{pH} 3)$ and $0.5 \%(\mathrm{w} / \mathrm{v})$ cassava starch in 50 mM glycine- NaOH ( pH 11 ). The third assay was done at $37^{\circ} \mathrm{C}$ for 30 min by using $0.5 \%(\mathrm{w} / \mathrm{v})$ cassava starch in 50 mM potassium phosphate ( pH 7 ). Stability of alphaamylase $(\mathrm{pH} 7)$ at $60^{\circ} \mathrm{C}$ for 1 hr under presence of 10 mM EDTA was performed for forth experiment. The remained activity was determined by using $0.025 \%$ (w/v) cassava starch in 50 mM potassium phosphate $(\mathrm{pH} 7)$ at $37^{\circ} \mathrm{C}$ for 30 min . The fifth screening performed in 50 mM potassium phosphate $(\mathrm{pH} 7)$ at $75^{\circ} \mathrm{C}$ for 2 hr before determination of the remaining activity. The activity at $0.025 \%(\mathrm{w} / \mathrm{v})$ cassava starch in 50 mM potassium phosphate $(\mathrm{pH} 7)$ was done as positive control for all subexperiments. Remaining cassava starch was determined by optical density at 595 nm after hydrolysis of starch at each condition, and development of color by adding $\mathrm{I}_{2}$ solution.

### 4.7 Activity analysis of alpha-amylase

Determination of activity of alpha-amylase was performed by colorimetric method using 3,5-dinitrosalisylic acid. The assay reaction consisting of $20 \mu 1$ of purified alpha-amylase in 1 ml of $1 \%(\mathrm{w} / \mathrm{v})$ soluble starch in 50 mM potassium phosphate ( pH 7 ) containing 2 mM CaCl 2 . Hydrolysis was done at $37^{\circ} \mathrm{C}$ for 20 min controlling temperature by thermomixer (Eppendrof AG, Hamburg, Germany) with 1000 rpm shaking speed. Activity of alpha-amylase was terminated by addition of 3,5dinitrosalisylic acid, then, heated at $100^{\circ} \mathrm{C}$ for 20 min , and observed optical density at

540 nm . One unit of alpha-amylase activity was defined as $1 \mu \mathrm{~mol}$ reducing sugar (glucose) produced per min under assay condition.

### 4.8 Enzyme characterization

The purified alpha-amylases rpFL13-10xHis and rpFL8785-10xHis were used for analysis of enzyme characterizations and kinetics. The analysis was besed on equal amount of proteins in the assays.

### 4.8.1 Optimal $\mathbf{p H}$ determination

The effects of pH on the activity of alpha-amylase were analyzed as described on step 4.7 by varying pH values from pH 2 to 12 . The pH conditions were controlled by 50 mM sodium acetate for pH 2 to $6,50 \mathrm{mM}$ potassium phosphate for pH 6 to 9 , and 50 mM glycine- NaOH for pH 9 to 12.

### 4.8.2 Optimal temperature determination

The effect of temperature on the activity of alpha-amylase was assayed as described on step 4.7 by increasing temperature from 30 to $100^{\circ} \mathrm{C}$, with increment of $10^{\circ} \mathrm{C}$.

### 4.8.3 Analysis of temperature stability of alpha-amylase

Purified alpha-amylase was incubated in 50 mM potassium phosphate buffer ( pH 7 ) with/without $2 \mathrm{mM} \mathrm{CaCl}_{2}$ for 30 min at 30 to $100^{\circ} \mathrm{C}$, with increment of $10^{\circ} \mathrm{C}$. Critical temperature was observed from relationship of temperature and (\%) relative activity. Two or three points of temperature over/under critical temperature were taken for stability assay for a period of 4 hr , by sampling the sample at $5,15,30,60$, and 240 min . The remaining activity was assayed as described in step 4.7.

### 4.8.4. Analysis of $\mathbf{p H}$ stability of alpha-amylase

Purified alpha-amylase was incubated at $37^{\circ} \mathrm{C}$ for 30 hr under 7 different pH values. There were pH at $3,4,6,7,8,9$, and 10 . The pH conditions were controlled by 50 mM sodium acetate for pH 2 to $\mathrm{pH} 6,50 \mathrm{mM}$ potassium phosphate for pH 6 to pH 9, and 50 mM glycine- NaOH for pH 9 to pH 12. Critical pH value was observed from relationship of pH and (\%) relative activity. Two or three points of pH value over/under critical point of each temperature were selected for pH stability assay for a period of 4 hr , by sampling reaction every 30 min . The remaining activity was assayed as described on step 4.7.

### 4.8.5 Kinetic analysis

Concentrations of soluble starch ( pH 7 ) ranging from 0 to $2.5 \%(\mathrm{w} / \mathrm{v})$ were prepared and incubated with equal amount of protein of purified alpha-amylase at $37^{\circ} \mathrm{C}$ for 20 min in order to obtain steady-state kinetic constant. The values of the kinetic constant were calculated from the Michaelis-Menten plot using a non-linear curve fitting method (SigmaPlot 2000), and turnover number ( $k_{c a t}$ ) and catalytic efficiency values ( $k_{c a t} / \mathrm{K}_{m}$ ) were further calculated.

## CHAPTER V

## RESULTS AND DISCUSSIONS

### 5.1 Construction of recombinant expression vector of alpha-amylase

Recombinant expression vectors of alpha-amylases from two strains of B. licheniformis DSM 13 and DSM8785 were created as shown in Figure 5. All recombinant vectors were named rpET13, rpET8785, rpFL8785, rpFL13, rpFL878510xHis, and rpFL13-10xHis. Expression of recombinant rpET13 and rpET8785 vectors were controlled by T 7 promoter on $\mathrm{pET} 21 \mathrm{~d}(+)$ and promoter on DE3 domain of host E. coli BL21 (DE3), resulting in production of alpha-amlylase. Both genes carrying Bacillus signal peptide, resulting in the secretion of alpha-amylase outside host cell as it could be observed as clearing zone on LB agar containing 1\% (w/v) soluble starch after staining with $\mathrm{I}_{2}$ solution as shown in Figure 6. The expression of other recombinant vectors were controlled by tac promoter on pFLAG-CTS or pFLAG-CTS-10xHis vector. The native signal peptide of these enzymes were replaced by E. coli OmpA signal peptide. Fusion of OmpA signal pepetide of E. coli with mature alpha-amylase gene led to secretion of alpha-amylase into environment as shown in Figure 6. Because pFLAG-CTS vector is a leaky plasmid, hydrolysis of starch by alpha-amylase from four recombinant vectors, rpFL13, rpFL8785, rpFL1310xHis, and rpFL8785-10xHis, could be observed as cleare zone around E. coli TOP 10 without IPTG induction on LB agar containing $1 \%(\mathrm{w} / \mathrm{v})$ of soluble starch (Figure 6) after transformation. Expression of alpha-amylase of single colony showed nearly
halo ratio value after observation of clear zone by tooth pick with/without IPTG induction (Figure 7). The constructions in pET21d (+) vector or pFLAG-CTS-10xHis vector resulted in the fusion of $6 x$ His or 10 xHis at C -terminal of alpha-amylase, respectively. Because hydrolysis of starch on soluble starch agar plate could be detected (Figure 6 and 7), it confirmed that fusion of multiple histidine sequences did not inhibit activity of alpha-amylase. The result was correlated to fusion of thermostable alpha-amylase to 6 histidine sequence at C-terminus. The alpha-amylase could be observed (Hmidet et al., 2008). In case of fusion of 10 histidine to kinase, the enzyme was also active (Belin et al., 2006).


Figure 5. Maps of recombinant expression vectors of alpha-amylases.


Figure 6. Expression of alpha-amylases from four recombinant vectors on soluble starch plate after transformation without IPTG induction.


Figure 7. Expression of alpha-amylases from six recombinant vectors on soluble starch plate by tooth pick with or without IPTG induction.

A: empty vector; B: alpha-amylase DSM13; C: alpha-amylase DSM8785.

Multiple alignment of nucleotide sequences were done by using vector NTI software from invitrogen where as amino acid sequences analysis was done by ESpript 2.2 software (http://npsa-pbil.ibcp.fr/cgi-bin/npsa automat.pl?page=/NPSA). The analysis of secondary structure of alpha-amylase was based on well known secondary structure of alpha-amylase from B. licheniformis (pdb code; 1BLI.pdb) (Machius et al., 1998b). Nucleotide and amino acid sequences of recombinant alphaamylase vectors from rpET13, rpET8785, rpFL13-10xHis, and rpFL8785-10xHis were analyzed and compared with native alpha-amylase sequence from $B$. licheniformis DSM 13 complete genome (Figure 8 and 9). The nucleotide sequences of recombinant alpha-amylase genes showed $100 \%$ and $99 \%$ of similarity to native alpha-amylase B. licheniformis DSM13 (Rey et al., 2004). Blastn analysis of both recombinant alpha-amylases showed similarity to B. licheniformis alpha-amylase strain ATCC 14580 and B. licheniformis alpha-amylase 584 (appendix). Alignment results showed that recombinants rpET13 and rpET8785 vector were fused with 6 histidine sequence at C-terminus as same as rpFL13-10xHis and rpFL8785-10xHis, which fuse with 10 histidine sequence. Histidine sequences were shown in green box. Bacillus signal peptide was also shown in blue box. The biggest part of sequence was mature enzyme for alpha-amylase. The amino acid sequence of both recombinant alpha-amylases rpET13 and rpET8785 contained 512 amino acids including Bacillus signal peptide of 29 amino acids whereas 483 of amino acids of all recombinant alphaamylase are belong to mature alpha-amylase. The overall structures of all recombinant alpha-amylases appear to be similar to structure of thermostable B. licheniformis NH1 alpha-amylase (Hmidet et al., 2008) and well known structure of alpha-amylase (pdb code; 1BLI.pdb) (Machius et al., 1998b). The summarized in overall structure of both
recombinant alpha-amylase rpFL13 and rpFL8785 without additional Bacillus signal peptide was shown in Table 5. The structure contained three domains: domain A (amino acid 30-138 and 234-411), domain B (amino acid 139-233), and domain C (amino acid 412-512). Four highly conserved regions were also found in structure. The multiple alignment of amino acid suggested that these recombinant alphaamylases rpET8785, rpFL8785 and rpFL8785-10xHis differ by 5 amino acids when compared to native sequence of alpha-amylase from B. licheniformis DSM13 or to three recombinant alpha-amylases rpET13, rpFL13 and rpFL13-10xHis (Figure 9). First different point of amino acid was in Bacillus signal peptide (amino acid 13). Four different points were in mature enzymes of alpha-amylase.

|  |  | 1 60 |
| :---: | :---: | :---: |
| DSM13 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGCCGCTGTTATTTGCGCTCATCTTC |
| rpET13 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGCCGCTGTTATTTGCGCTCATCTTC |
| rpET8785 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGACGCTGTTATTTGCGCTCATCTTC |
| rpFL8785 | (1) |  |
| rpFL8785-10xHis | (1) |  |
| rpFL13 | (1) |  |
| rpFL13-10xHis | (1) |  |
|  |  | 61 120 |
| DSM13 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAAAGGGACGCTGATGCAGTATTTT |
| rpET13 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAAAGGGACGCTGATGCAGTATTTT |
| rpET8785 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| rpFL8785 | (1) | GCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| rpFL8785-10xHis | (1) | AATCTTAATGGGACGCTGATGCAGTATTTT |
| rpFL13 | (1) | CAAATCTTAAAGGGACGCTGATGCAGTATTTT |
| rpFL13-10xHis | (1) | GCAAATCTTAAAGGGACGCTGATGCAGTATTTT |
|  |  | 121 |
| DSM13 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| rpET13 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| rpET8785 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| rpFL8785 | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| rpFL8785-10xHis | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| rpFL13 | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| rpFL13-10xHis | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
|  |  | 181 |
| SM13 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpET13 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpET8785 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpFL8785 | (94) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpFL8785-10xHis | (94) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpFL13 | (94) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpFL13-10xHis | (94) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
|  |  | 241 |
| DSM13 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpET13 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpET8785 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpFL8785 | (154) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpFL8785-10xHis | (154) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpFL13 | (154) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpFL13-10xHis | (154) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
|  |  | 301 |
| DSM13 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpET13 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpET8785 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpFL8785 | (214) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpFL8785-10xHis | (214) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpFL13 | (214) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpFL13-10xHis | (214) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |

Figure 8. Multiple alignment of nucleotide sequences of alpha-amylase.
DSM13; Native alpha-amylase from B. licheniformis DSM13, rpET and
rpET8785; Recombinant alpha-amylase from B. licheniformis DSM 13 and
DSM8785, repectively, by using pET21d (+) system, rpFL13 and
rpFL8785; Recombinant alpha-amylase from B. licheniformis DSM 13 and
DSM8785, repectively, by using pFLAG-CTS system, blue color; Bacillus signal peptide, green color; histidine sequence, yellow color; different nucleotide sequence.

|  |  | 361420 |
| :---: | :---: | :---: |
| DSM13 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpET13 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpET8785 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpFL8785 | (274) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpFL8785-10xHis | (274) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpFL13 | (274) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpFL13-10xHis | (274) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
|  |  | 421480 |
| DSM13 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpET13 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpET8785 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpFL8785 | (334) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| L8785-10xHis | (334) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpFL13 | (334) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpFL13-10xHis | (334) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
|  |  | 481 |
| DSM13 | (481) | GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpET13 | (481) | GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpET8785 | (481) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpFL8785 | (394) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpFL8785-10xHis | (394) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpFL13 | (394) | GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpFL13-10xHis | (394) | GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
|  |  | 541 |
| DSM13 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpET13 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpET8785 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpFL8785 | (454) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpFL8785-10xHis | (454) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpFL13 | (454) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpFL13-10xHis | (454) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
|  |  | 601660 |
| DSM13 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpET13 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpET8785 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpFL8785 | (514) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpFL8785-10xHis | (514) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpFL13 | (514) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpFL13-10xHis | (514) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
|  |  | 661 |
| DSM13 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpET13 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpET8785 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpFL8785 | (574) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpFL8785-10xHis | (574) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpFL13 | (574) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpFL13-10xHis | (574) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
|  |  | 721780 |
| DSM13 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpET13 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpET8785 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpFL8785 | (634) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpFL8785-10xHis | (634) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpFL13 | (634) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpFL13-10xHis | (634) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
|  |  | 781840 |
| DSM13 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpET13 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpET8785 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpFL8785 | (694) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpFL8785-10xHis | (694) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpFL13 | (694) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpFL13-10xHis | (694) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |

DSM13 (361) TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG
peT13
rpFL8785
(361) TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG
(274) TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG
(274) TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG
(274) TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG 421

480
DSM13 (421) ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA
peT13
rpFL8785
rpFL8785-10xHis
(334) ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA
(334) ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA 481

540
DSM13 (481) GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC
rpein
(481) GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC
(394) GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC
(394) GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC
(394) GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC 541

600
DSM13 (541) GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG
rpeT13
(541) GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG
(454) GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG
(454) GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG
(454) GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG 601

660
DSM13
rpET13
rpET8785
55 10xHis
pFL8785-10xHis
-10xHis
DSM13
rpET13
rpET8785
rpFL8785
rpFL8785-10xHis
rpFL13

DSM13
pET13
rpET8785
rpFL8785
pFL8785-10xHis
rpFL13

DSM13
pET13
rpET8785
55
rpFL13-10xHis


Figure 8. (Continued).

```
                                    1 3 2 1
                                    1 3 8 0
            DSM13 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
        rpET13 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
        ppET8785 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
        rpFL8785 (1234) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
rpFL8785-10xHis (1234) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
        rpFL13 (1234) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
    rpFL13-10xHis (1234) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA 1381 1440
            DSM13 (1381) CCCGGTGGGGCAAAGCGAATGTATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGAC
            rpET13 (1381) CCCGGTGGGGCAAAGCGAATGTATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGAC
            rpET8785 (1381) CCCGGTGGGGCAAAGCGAATGTATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGAC
            rpFL8785 (1294) CCCGGTGGGGCAAAGCGAATGTATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGAC
rpFL8785-10xHis (1294) CCCGGTGGGGCAAAGCGAATGTATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGAC
    rpFL13 (1294) CCCGGTGGGGCAAAGCGAATGTATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGAC
    rpFL13-10xHis (1294) CCCGGTGGGGCAAAGCGAATGTATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGAC
                                    1441
                                    1500
                                    DSM13 (1441) ATTACCGGAAACCGTTCGGAGCCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCAC
            rpET13 (1441) ATTACCGGAAACCGTTCGGAGCCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCAC
            rpET8785 (1441) ATTACCGGAAACCGTTCGGAGCCGGTTGTCATCAATTCGGAAGGCTGGGGGAGAGTTTCAC
            rpFL8785 (1354) ATTACCGGAAACCGTTCGGAGCCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCAC
rpFL8785-10xHis (1354) ATTACCGGAAACCGTTCGGAGCCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCAC
            rpFL13 (1354) ATTACCGGAAACCGTTCGGAGCCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCAC
    rpFL13-10xHis (1354) ATTACCGGAAACCGTTCGGAGCCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCAC
                                    1501
                                    1 5 6 0
                                    DSM13 (1501) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGA------------------------
            rpET13 (1501) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAGCACCACCACCACCACCA
            rpET8785 (1501) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAGCACCACCACCACCACCA-
            rpFL8785 (1414) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAC------------------
rpFL8785-10xHis (1414) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGACCACCATCACCATCACCAT
            rpFL13 (1414) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAC-------------------
    rpFL13-10xHis (1414) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGACCACCATCACCATCACCAT
                                    1561 1572
            DSM13 (1537) -----------
            rpET13 (1560) -----------
            rpET8785 (1560)
            rpFL8785 (1456)
rpFL8785-10xHis (1474) CACCATCATCAC
            rpFL13 (1456)
    rpFL13-10xHis (1474) CACCATCATCAC
```

Figure 8. (Continued).


Figure 9. The secondary structure of alpha-amylases.
DSM13; Native alpha-amylase from B. licheniformis DSM13, rpET and rpET8785; Recombinant alpha-amylase from B. licheniformis DSM 13 and DSM8785, repectively, by using pET21d (+) system, rpFL13 and rpFL8785; Recombinant alpha-amylase from B. licheniformis DSM 13 and DSM8785, repectively, by using pFLAG-CTS system. Symbols $\alpha$ or $\ell \ell \ell$; Alpha-helix, $\beta$; Beta-sheet, TT; Turn helix, Red color; Same sequences,

Yellow color; Different sequences. The overall structure was shown in
Table 5.

DSM13


DSM13 FIITRESGYPQVFYGDMYGTKGDSQREIPALKEKIEPITKARKQYAYGAQEDYFDHEDIVGWT IPET13 FITTRESGYPQVFYGDMYGTKGDSQREIPALKEKIEPILKARKQYAYGAQHDYFDHPDIVGWT rpET8785 FILTRESGYPQVFYGDMYGTKGDSQREIPALKHKIEPIMKARKQYAYGAQEDYFDHHDIVGWI rpFL13 FIITRESGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQHDYFDHHDIVGWT rpFL13 FILTRESGYPQVFYGDMYGTKGDSQREIPALKEKIEPILKARKQYAYGAQHDYFDHHDIVGWT
FIITRESGYPQVFYGDMYGTKGDSQREIPAIRHKIEPILKARKQYAYGAQHDYFDHHDIVGWT
rpFL8785
rpFL13 10His
rpFL8785_10His FIITRESGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQHDYFDHHDIVGWT consensus $>50$

DSM13 FILTRESGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQHDYFDHHDIVGWT

$\xrightarrow[480]{\beta 20}$ TT


DSM13
rpET13
REGDSSVANSGIAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGG
rpET8785
REGDSSVANSGIAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGG
rpFL13
rpFL8785
rpFL13 10His
rpFL8785_10His REGDSSVANSGIAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGG REGDSSVANSGIAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGG REGDSSVANSGIAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGC REGDSSVANSGLAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGNGEFHVNGG consensus $>50$ REGDSSVANSGLAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGG

DSM13
$\xrightarrow[510]{\beta 23}$
DSM13
rpET13
SVSIYVQR. . . . . . . . . .
rpET8785
svsirvQRLEHHHHHH.
SVSIYVQRLEHHHHHH.
rpFL13
rpFL8785
rpFL13 10His rpFL8785_10His SVSIYVQRLDHHHHHHHHHH consensus $>50$ SVSIYVQRIdhhhhhh...

Figure 9. (Continued).

### 5.2 SDS-PAGE and zymogram analysis of recombinant alpha-

## amylases

The expression of alpha-amylases from two expression vectors; rpFL1310xHis and rpFL8785-10xHis were optimaized under induction of 1 mM IPTG as final concentration at $25^{\circ} \mathrm{C}$ for 18 hr (Figure 10). The cell lystate of E. coli was used as crude enzyme. The crude enzyme showed big band of alpha-amylase on SDS-PAGE analysis. At 0 hr of induction, the small band of recombinant alpha-amylase rpFL1310xHis and rpFL8785-10xHis (red arrow, Land 2 and 3) could be found. The biggest band of recombinant alpha-amylases amylase rpFL13-10xHis and rpFL8785-10xHis (red arrow, Land 4 and 5) were observed after 18 hr of induction. The effective purification by 10 histidine sequence at C-terminal of alpha-amylase on nickel column
showed 2 clear bands of purified alpha-amylase on gel (land 6 and 7). However, unexpected large complex of alpha-amylase was also found. Confirmation of activity of purified alpha-amylase was done by zymogram and two clear bands (white arrow) as results of starch hydrolysis on starch gel. However, the brighter-white bands of both recombinant alpha-amylases were observed. It was possible that recombinant alphaamylase was bind to starch molecule on the gel and it was accumutated in that position, resulting in observation of starch hydrolysis as brighter-white clearing band. Therefore, the fusion of recombinant alpha-amylases with multiple 10 histidine sequences led to effective purification by nickel. Moreover, 10 histidine sequences did not inhibit the activity of alpha-amylase, which the observation of hydrolysis of starch could be found in polyacrylamide gel containing $0.2 \%(\mathrm{w} / \mathrm{v})$ soluble starch. The efficience of purification by using 6 or 10 histidine sequences were observed in order to purify alpha-amylase and kinase, respectively (Belin et al., 2006; Hmidet et al., 2008). Molecular weight of recombinant alpha-amylases rpFL13-10xHis and rpFL8785-10xHis were estimated by $R f$ value on SDS-PAGE gel. The approximately MW was 56 kDa . The molecular weight was same as other alpha-amylase from thermophilic counterpart B. licheniformis (Khajeh et al., 2006). However, the MW of recombinant alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis were calculated by using equation (http://www.scripps.edu/~cdputnam/protcalc.html). Approximately MW was about 58 kDa . This value was close to molecular weight, which was calculated by using relation between $R_{f}$ value and molecular weight of protein marker. Moreover, thermostable alpha-amylase from newly isolated B. licheniformis NH1 was purified by Sephadex G-100 gel filtration and Q anion exchange chromatography. Results showed 58 kDa of purified alpha-amylase on SDS-

PAGE (Hmidet et al., 2008). However, the previous report showed the 65 kDa of alpha-amylase from other B. licheniformis. (I. C. Kim et al., 1992; Richardson T.H. et al., 2002). Moreover, molecular masses of 28, 22.5 amd 23.5 kDa , were also reported from B. licheniformis CUMU 305 (Krishnan and Chandra, 1983), B. licheniformis 584 (Saito, 1973), and B. licheniformis BLM 1777 (Chiang et al., 1979), respectively.


Figure 10. SDS-PAGE and zymogram analysis of purified alpha-amylase.
Land 1: molecular weight protein marker.
Land 2: rpFL13-10xHis at 0 hr of induction ( $9 \mu \mathrm{~g}$ ).
Land 3: rpFL8785-10xHis at 0 hr of induction ( $9 \mu \mathrm{~g}$ ).

Land 4: rpFL13-10xHis at 18 hr of induction $(41 \mu \mathrm{~g})$.
Land 5: rpFL8785-10xHis at 18 hr of induction $(41 \mu \mathrm{~g})$.
Land 6: purified alph-amylase from rpFL13-10xHis (28 $\mu \mathrm{g})$.
Land 7: purified alpha-amylase from rpFL8785-10xHis ( $28 \mu \mathrm{~g}$ ).
Land 8: activity of purified alpha-amylase from rpFL13-10xHis ( $6 \mu \mathrm{~g}$ ).
Land 9: activity of purified alpha-amylase from rpFL8785-10xHis ( $6 \mu \mathrm{~g}$ ).

### 5.3 Characterization of alpha-amylase and kinetic analysis

The effects of pH and temperature against activities and stabilization of purified alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis were analyzed under presence or absence of $2 \mathrm{mM} \mathrm{CaCl} l_{2}$ by using soluble starch as substrate. The pH -activity profile and temperature activity profile were shown in Figure 11 and 13, respectively. Moreover, the effects of pH and temperature on activity of both recombinant alpha-amylases were studied and the profiles were shown in Figure 12, 14 and 15.


Figure 11. The pH profiles of two recombinant wild type alpha-amylases.
The Y axis was the (\%) relative activity while X axis was pH values.
Symboles $\square$ : relative activity of rpFL8785-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$, $\square$ : relative activity of $\operatorname{rpFL} 8785, \downarrow$ : relative activity of $\mathrm{rpFL} 13-10 \mathrm{xHis}$ plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$, and
 relative activity of $\mathrm{rpFL} 13-10 \mathrm{xHis}$.

The optimal pH of both purified recombinant alpha-amylases from rpFL1310xHis and rpFL8785-10xHis were determined with/without addition of $2 \mathrm{mM} \mathrm{CaCl} \mathrm{Cl}_{2}$ (Figure 11). All percentages of relative activities were calculated by based on activity of purified recombinant alpha-amylase rpFL13-10xHis under non-addtion of 2 mM $\mathrm{CaCl}_{2}$. The purified alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis were highly active under addition of calcium ions. However, the activity of both recombinant alpha-amylases were active without calcium ions in the assay. The results suggested that calcium ions enhanced the activity of both alpha-amylase rpFL1310 xHis and rpFL8785-10xHis at all conditions of pH assay. (Violet and Meunier, 1989). The optimal pH of both recombinant alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis were at pH 7 as shown in Figure 11. The previous reports were studied the effect of pH on activity of B. licheniformis alpha-amylase. The optimal pH of this alpha-amylase was at pH 6 (Richardson T.H. et al., 2002) whereas the commercial alpha-amylase from B. licheniformis (Termamyl 300 L Type DX) had optimal pH at pH 7.5 in starch hydrolysis by using soluble starch as substrate (Bravo Rodriguez et al., 2006). The activities of two alpha-amylases rpFL13-10xHis and rpFL8785-10xHis increased when pH conditions of analysis were increased from pH 2 to 7. On another hand, the activity of both recombinant alpha-amylases rpFL1310xHis and rpFL8785-10xHis were dramatically decreased when pH condition of assay were increased from pH 8 to 11 . However, the activity was not detected when the pH condition of assay was lower or higher than pH 4 and pH 10 , respectively.

The effect of pH on stability of two recombinant alpha-amylase was studied at three different ranges of pH values by incubating enzymes at $37^{\circ} \mathrm{C}$, for 30 min with or without calcium ions in the stability assay (Figure 12). The $85 \%$ and $75 \%$ of
relative activity of alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis were remained after incubation at pH 7 at $37^{\circ} \mathrm{C}$ for 30 min , without addition of $\mathrm{CaCl}_{2}$. However, the remained activity of alpha-amylases rpFL13-10xHis and rpFL878510 His were not detected under strong acidic or alkaline condition, even in the addition of calcium ions. The other research suggested that activity of thermostable B. licheniformis NH1 alpha-amylase was not stimulated by the presence of calcium ion (Hmidet et al., 2008). This alpha-amylase was highly active over a wide range of pH from 5.0 to 10.0. The relative activities at $\mathrm{pH} 5.0,9.0$ and 10.0 were about $89,96.6$ and $90 \%$, of that at pH 6.5 , respectively


Figure 12. The effect of pH on stability of two recombinanat alpha-amylases rpFL13-10xHis and rpFL8785-10xHis at $37^{\circ} \mathrm{C}$ for 30 min . The Y axis was the (\%) relative activity while X axis was stability condition at different pH values. Symboles $\square$ : relative activity of rpFL8785-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$, $\square$ : relative activity of rpFL8785,
$\nabla$ : relative activity of rpFL13-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$, and
$\nabla$ : relative activity of rpFL13-10xHis.


Figure 13. Temperature profiles of recombinant wild type alpha-amylases. The Y axis was the (\%) relative activity while X axis was temperature conditions. Symboles $\square$ : relative activity of rpFL8785-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}, \square$ : relative activity of $\mathrm{rpFL} 8785, \nabla_{\text {: }}$ relative activity of rpFL13-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$, and $\rangle$ : relative activity of rpFL1310xHis.

The efftects of temperature on activity and stabilization of alpha-amylases were observed as shown in Figure 13 and 14, respectively. The purified alphaamylases rpFL13-10xHis and rpFL-10xHis were highly active at temperature of assay at $70^{\circ} \mathrm{C}$ (Figure 13), especially in the addition of 2 mM CaCl 2 . The activity was dramatically increased. The temperature-activity profile of two recombinant alphaamylases showed an optimum temperature at $70^{\circ} \mathrm{C}$. The optimal condition was nearly to condition of themal alpha-amylase, which was $80^{\circ} \mathrm{C}$ (Violet and Meunier, 1989).

The newly isolated alpha-amylase from B. licheniformis had optimum temperature of the purified enzyme at $90^{\circ} \mathrm{C}$ (Hmidet et al., 2008). Moreover, optimal temperature of alpha-amylase from B. licheniformis CUMC305 was $91^{\circ} \mathrm{C}$ under alkaline condition ( pH 9 9) (Kindle, 1983) The alpha-amylase from rpFL13-10xHis showed higher percentage of relative activity than alpha-amylase from rpFL8785-10xHis at all temperatures. The addition of $\mathrm{CaCl}_{2}$ in activity assays showed the same relationship to effects of pH on activity of alpha-amylase. The enhancement of activity was occurred under presence of calcium ions.


Figure 14. The effect of temperature on stability of two recombinanat alpha-amylases rpFL13-10xHis and rpFL8785-10xHis for 30 min .

The Y axis was the (\%) relative activity while X axis was temperature conditions. Symboles $\square$ : relative activity of rpFL8785-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}, \square$ : relative activity of rpFL8785, $\diamond$ : relative activity of rpFL13-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$, and $\diamond$ : relative activity of $\mathrm{rpFL} 13-$ 10xHis.

The stability of wild type alpha-amylases were observed at temperature from $30^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for 30 min with or without addition of $\mathrm{CaCl}_{2}$ (Figure14). Stability analysis at temperature over $80^{\circ} \mathrm{C}$ showed (\%) of remained activity less than $20 \%$ for all purified recombinant alpha-amylases. The fifty percentage of remained activity was detected at temperature $60^{\circ} \mathrm{C}$. This point was shown as half life of reconmbinant alpha-amylases from rpFL13-10xHis and rpF18785-10xHis. The inactivation of alphaamylase by temperature was studied from B. licheniformis alpha-amylase (Kilic and Ozbek, 2004). The results showed that $50 \%$ of residual alpha-amylase activity on stability analysis were detected for 35 and 25 min at temperature $50^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, respectively. It seemed that the relative activity decreased as the temperature increased due to inhibitory effects of temperature. The previous report showed that alphaamylase from hyperthermostable $B$. licheniformis had half life at $85^{\circ} \mathrm{C}$ for 5 min .

The effects of temperature on thermal stability of recombinant alphaamylsaes from rpFL13-10xHis and rpFL8785-10xHis were determined by incubating recombinant alpha-amylases under four different conditions for 2 hr . The result showed over $70 \%$ of remained activity after incubation at $37^{\circ} \mathrm{C}$ for 2 hr under presence or absence of calcium ions. The $40 \%$ of its orginal activity was remained under incucbation at $60^{\circ} \mathrm{C}$ for 2 hr . Nevertheless, the activities of two alpha-amylases from $\mathrm{rpFL13}-10 \mathrm{xHis}$ and $\mathrm{rpFl} 8785-10 \mathrm{xHis}$ were dramatically decreased after incubation at $75^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ for 15 min . It seemed that two recombinant alphaamylases were not stable under high temperature, even under addition of $\mathrm{CaCl}_{2}$ (Figure 15).


Figure 15. The effects of temperature on stability of two recombinanat alphaamylases rpFL13-10xHis and rpFL8785-10xHis for 120 min with different sampling time.

The Y axis was the (\%) relative activity while X axis was temperature conditions. Symboles $\square$ : relative activity of rpFL8785-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}, \square$ : relative activity of rpFL8785, $\diamond$ : relative activity of rpFL13-10xHis plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$, and $\diamond$ : relative activity of rpFL13 10xHis.

The effect of calcium concentration on stability of alpha-amylase was determined under high temperature. The results suggested that the presence of 5 mM calcium ions was the best concentration to stabilize the structure of alpha-amylase under high temperature $\left(90^{\circ} \mathrm{C}\right)$ (Hmidet et al., 2008). Moreover, the increase of concentration of calcium ions over 5 mM did not had effects on thermostability of alpha-amylase ( 75 to $95^{\circ} \mathrm{C}$ ) (Violet and Meunier, 1989). However, the properties of alpha-amylases from B. licheniformis were various. Most alpha-amylase showed the
optimal temperature over $70^{\circ} \mathrm{C}$ whereas some alpha-amylases had optimal pH at 7 under presence of 4 mM CaCl 2 . The thermostability at $60^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ were analyzed. The results showed that enzyme had resistance at these conditions for 5 min . On the other hand, other alpha-amylase had $55 \%$ of remained activity after incubation at $80^{\circ} \mathrm{C}$ for 5 min (Kindle, 1983).

The kinetic parameters of purified alpha-amylases from both recombinants from rpFL13-10xHis and rpFL8785-10xHis were calculated by using Michaelismenten, Lineweaver-burk and Edie-hofstee equations. GraphPad Prism program was used for drowing graph. However, Km values were calculated by Michaelis-menten and Lineweaver-burk equation resulting in variation in kinetic values (see appendix). Therefore, Eadie-Hofetee equation was used to evaluate all kineteic paremeters from two different substrates, which were commercial soluble starch and cassava starch from market. The parameters were summarized as shown in Table 4.

Table 4. Kinetic parameters of recombinant alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis.

| Substrate | Kinetic <br> parameters |  | Recombinant alpha-amylases |  |
| :--- | :--- | :---: | :---: | :---: |
|  | rpFL13-10xHis | rpFL8785-10xHis |  |  |
| Soluble starch | $\mathrm{K}_{\mathrm{m}}(\mathrm{mg})$ | 13.72 | 11.48 |  |
|  | $V_{\max }(\mu \mathrm{mol} / \mathrm{min})$ | 15.41 | 14.10 |  |
|  | $k_{\mathrm{cat}}\left(\mathrm{s}^{-1}\right)$ | 96.99 | 89.78 |  |
|  | $k_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}\left(\mathrm{s}^{-1} / \mathrm{mg}\right)$ | 7.07 | 7.82 |  |
| Cassava starch | $\mathrm{K}_{\mathrm{m}}(\mathrm{mg})$ | 9.25 | 8.85 |  |
|  | $V_{\max }(\mu \mathrm{mol} / \mathrm{min})$ | 12.79 | 12.88 |  |
|  | $k_{\mathrm{cat}}\left(\mathrm{s}^{-1}\right)$ | 80.50 | 82.01 |  |
|  | $k_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}\left(\mathrm{s}^{-1} / \mathrm{mg}\right)$ | 8.70 | 9.27 |  |
|  |  |  |  |  |

The alpha-amylase rpFL13-10xHis showed higher reaction velocity than alpha-amylase $\mathrm{rpF} 8785-10 \mathrm{xHis}$ by hydrolyzing soluble starch as substrate. This was inversely relation by hydrolyzing cassava starch. The better reaction velocity was found in hydrolization of soluble starch. They were $15.41 \mu \mathrm{~mol} . \mathrm{min}^{-1}$ and 14.10 $\mu$ mol. $\mathrm{min}^{-1}$ by recombinant rpFL13-10xHis and rpFL8785-10xHis, respectively. The comparison of Michaelis-menten constants suggested that alpha-amylase rpFL878510xHis was better specific binding to substrate than alpha-amylase rpFL13-10xHis same as the comparison of specific catalytic constants ( $k_{\text {cat }} / \mathrm{K}_{\mathrm{m}}$ ) when using both cassava starch and soluble starch as substrate. The kinetic showed that both recombinant alpha-amylases were the best hydrolyzing enzyme by using cassava starch as substrate. The specific catalytic constants in the hydrolysis of cassava starch were higher than hydrolysis of soluble starch, which were 1.23 and 1.18 fold by using two recombinant alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis, respectively. However, these results were inversely related to component of starch. Natural starch consist of 2 main components in different ratios; amylose (10-20\%) and amylopectic (80-90\%) (Maarel et al., 2002). In case of cassava starch, $17 \%$ of amylose is found in the structure whereas $28 \%$ of amyloase is found in soluble starch (http://www.starch.dk/isi/starch/starch.htm). Because the main linkage in amylose is alpha-1,4-glycosidic bond (Maarel et al., 2002), it mean that the hydrolysis of soluble starch should be better than cassava starch by using alpha-amylase.

### 5.4 Library construction of shuffled alpha-amylases

The construction of two libraries of shuffled alpha-amylase genes for two expression vectors, $\mathrm{pET21d}(+)$ and pFLAG-CTS, were done under a similar condition. The DNA shuffling protocol was modified in order to optimize condition for alpha-amylases (Zhao and Arnold, 1997). Construction of shuffled alpha-amylases in pET21d (+) used rpET13 and rpET8785 as template, whereas rpFL13 and rpFL8785 were used as template for the $2^{\text {nd }}$ library using pFLAG-CTS expression system. The secondary library of shuffled alpha-amylase was constructed after screening of the $1^{\text {st }}$ library of shuffled alpha-amylase in pET21d (+) system was not successful. Since DNA sequence of B. licheniformis DSM13 and DSM8785 were highly similar. Thus, the diversity in nucleotide sequence was introduced by random mutagenesis of alpha-amylase gene by error prone PCR. (Figure 16-1 and 17-1). The addition of $\mathrm{MnCl}_{2}$ into PCR amplification of alpha-amylase gene led to increase rate of mutation by using Taq DNA polymerase. The digestion of DNaseI (0.1-1.0 U/ hg DNA) generated the poll of DNA fragment in randomly size (Figure 16-2 and 17-2). The previous research suggested that preparation of diversity of gene templates by plasmid digestion and addition of $\mathrm{MnCl}_{2}$ in DNaseI digestion generated $95 \%$ of active clones (Zhao and Arnold, 1997). However, creation of diversity of genes was successful by error prone PCR under presence of $\mathrm{MgCl}_{2}$ (Aubrey et al., 2008) or both $\mathrm{MgCl}_{2}$ and $\mathrm{MnCl}_{2}$ (Parikh and Matsumura, 2005). After DNaseI digestion, the fragments size in the range of $50-250 \mathrm{bp}$ were purified by $15 \%(\mathrm{w} / \mathrm{v})$ polyacrylamide gel and then, reassembled by PCR amplification without primers. The fragment size in rang from 50 to 300 bp was efficient to create full lengh of gene (Parikh and Matsumura, 2005) (Aubrey et al., 2008). On another hand, small fragment ( $<50 \mathrm{bp}$ )
was purified (Arnold and Moore, 1997). Recombination of short DNA fragments was occurred by crossover recombination. Moreover, shorter fragments size also acted as primers for PCR amplification by using longer fragments size as template. Reassembly reaction required pfu DNA polymerase to avoide additional A at 3'end, which could be generated by Taq DNA polymerase. The reassemble PCR by pfu DNA polymerase was better than reassemble reaction by using only Taq DNA polymerase (Arnold and Moore, 1997). The smear bands of reassembled products were observed on $1 \%(\mathrm{w} / \mathrm{v})$ agarose gel (Figure $16-3$ and $17-3$ ). The addition of specific primers (3'BspHI and 5'-XhoI or 3'-EcoRI and 5'-XhoI) into PCR amplification of shuffled alpha-amylase were performed to create corrected size of shuffled alpha-amylases. Approximately size of 1.5 kb of shuffled alpha-amylases that related to wild type alpha-amylase gene, was observed by $1 \%(w / v)$ agarose gel as showed in Figure 16-4 and 17-4. The shuffled products creating by primer set of 3 '-BspHI and 5'-XhoI were cloned into pET21d $(+)$ to construct the rpET-SH library same as the shuffled PCR products from amplification by primer set of $3^{\prime}-$ EcoRI and $5^{\prime}$-XhoI, were inserted into pFLAG-CTS vector to create the rpFL-SH library for expression of shuffled alphaamylases for further screening.


Figure 16. Construction of rpET-SH library of shuffled alpha-amylase.


Figure 17. Construction of rpFL-SH library of shuffled alpha-amylase.

### 5.5 Library screening of shuffled alpha-amylases

### 5.5.1 Primary screening of library of shuffled alpha-amylase

### 5.5.1.1 Primary screening system of rpET-SH library

The expression of rpET-SH library of shuffled alpha-amylase gene in pET21d (+) vector system required the IPTG induction. The observation of starch hydrolysis on screening plate with KI was done for prescreening of other shuffled alpha-amylase. This methos was easy to do and kept the cost too low (Bessler et al., 2003). The colonies on transformation plate were replicated onto 2 plates. One plate was grown on LB agar and used as master plate, whereas another one was grown on LB agar containing $1 \%(\mathrm{w} / \mathrm{v})$ of soluble starch and used as screening plate. Secretion of shuffled alpha-amylase outside the host cell using Bacillus signal peptide resulted in starch hydrolysis represented by clear zone around E. coli (Figure 18). The fusion of 6 histidine sequences to shuffled alpha-amylase gene was not inhibit the secretion system and activity of shuffled alpha-amylase (Khajeh et al., 2006). However, the bigger dimension of clearing zone on screening plate could not confirm the improvement of activity since the expression level of each host cell was not the same level. The 230 shuffled clones showing clear zone as the hydrolysis of soluble starch around E. coli host cells, were found from 5,000 transformants on screening plates. Thus, approximaltly $5 \%$ of positive clones were obtained from primary screening. Only shuffled alpha-amylase clones showing clear zone were selected for secondary screening.


Figure 18. Primary screening of rpET-SH library of shuffled alpha-amylase on screening plate under IPTG induction.

Red arrow head: rpET8785, yellow arrow head: empty pET21d (+).

### 5.5.1.2 Primary screening system of rpFL-SH library

Because pFLAG-CTS is a leakly vector, an expression of shuffled alphaamylase was performed without IPTG induction after electroporation. This led to secretion of shuffled alpha-amylase by using E. coli OmpA signal peptide into its environment, resulting in an observation of digestion of soluble starch around E. coli host cells as clearing zone on screening plate after electroporation (Figure 19).


Figure 19. Primary screening of rpFL-SH library of shuffled alpha-amylase on soluble starch plate without IPTG induction.

### 5.5.2 Secondary screening of library of shuffled alpha-amylase

Principle theory of secondary screening was based on colorimetric method by measuring absorbance of development color of reaction after hydrolysis of starch by alpha-amylase. The remaining starch in the reaction turned into black-blue color after addition of iodine solution whereas bright-yellow color showed complete conversion of starch to sugar monomers. Since the screening procedure is the most critical point in every directed evolution (Krammer et al., 2007), the screening of
E. coli mutant library by high throughput was undertaken for all secondary screening. The high throughput procedure was developed for many libraries such as library of beta-fucosidase (Parikh and Matsumura, 2005), alpha-amylase (Bessler et al., 2003), multogenic alpha-amylase (Aubrey et al., 2008), Hydroxynitrile lyases (Hnls) (Krammer et al., 2007), and etc.

### 5.5.2.1 Secondary screening system of rpET-SH library

The selected 230 clones from primary screening were obtained in secondary screening to select shuffled alpha-amylases, which showed higher activity than wild type alpha-amylase under high temperature at $90^{\circ} \mathrm{C}$ for 10 min at 2 different pH values; pH 3.5 and pH 9.5 . The screening condition at pH 6.5 was performed for control experiment. The reaction of starch hydrolysis was observed by developing color of reaction by iodine solution. The bright-yellow color of reaction showed better activity than brown color in hydrolysis. The results showed that some shuffled alphaamylases had activity at pH 3.5 and 9.5 whereas the activity of rpET 8785 was not detected under these conditions (Figure 20).


Figure 20. The starch hydrolysis under high temperature of shuffled alpha-amylase after development color by iodine.

The specific activity of all shuffled alpha-amylases and recombinant alphaamylase rpET8785 were determined in all experiments. The base lines of activity of alpha-amylase rpET8785 were labled in green, blue and red color for activity at pH 3.5 and 9.5 , respectively. Some of shuffled alpha-amylase showed the higher specific activity than specific activity of rpET8785 alpha-amylase under screening at pH 3.5 and 9.5. the results showed the improvement of actitity of shuffled alpha-amylase under acidic or alkaline condition. Although, the most of shuffled clones showed the lower specific activity than activity of recombinant rpET8785 at pH 6.5 (Figure 21).

To confirm these positive results, the second experiment was conducted in all conditions of screening (Figure 22). The subcultured of all shuffled alpha-amylasae
clones had performed by tooth picking from master plate. The subculture clones of shuffled alpha-amylases were grown on screening media and on normal LB agar for new master plate.


Figure 21. Specific activity of shuffled alpha-amylase in first experiment of secondary screening.

Y axis was specific activity ( $\mathrm{U} / \mu \mathrm{g}$ protein) whereas X axis was colonly no. Symbols.$~$ : specific activity at pH 3.5 : specific activity at pH $6.5, \triangle:$ specific activity at $\mathrm{pH} 6.5,----,----,----$ : activity level at pH 6.5 , 3.5 and 9.5 of alpha-amylase from rpET8785, respectively.


Figure 22. Specific activity of shuffled alpha-amylase in second experiment of secondary screening.

Y axis was specific activity ( $\mathrm{U} / \mu \mathrm{g}$ protein) whereas X axis was colonly no. Symbols.$\diamond$ : specific activity at $\mathrm{pH} 3.5, \square$ : specific activity at pH $6.5, \Delta$ : specific activity at $\mathrm{pH} 6.5,----,----,----$ : activity level at pH 6.5, 3.5 and 9.5 of alpha-amylase from rpET8785, respectively.

On the second experiment, the specific activity of shuffled alpha-amylase (Figure 22) were decreased when compared values from $1^{\text {st }}$ experiment of secondary screening (Figure 21). Nevertheless, these values were lower than that of rpET8785 alpha-amylase. One possibility explaination was the expression level of host E. coli BL21 (DE3). It seemed that expression level was decreased after re-cultivation on new agar plate. Another reason was the reduction of plasmid stability that it was possible gone if host cell was grown and kept on agar for a few weeks. However, activity of some shuffled alpha-amylase clones could be observed at pH 3.5 and 9.5 . These
clones were collected and named SHM43, SHM154, SHM197 and SHM199. The expression vectors of four shuffled clones were collected for analysis of nucleotide and amino acid sequences.

The third experiment was performed in test tube ( 10 ml ). The observation of starch hydrolysis was deteced by using 3, 5-dinitrosalisylic acid. The reaction was done by using $1 \%(\mathrm{w} / \mathrm{v})$ of cassava starch in 50 mM potassium phosphate at pH 7 . The analysis of four shuffled alpha-amylases (SHM43, SHM154, SHM197 and SHM199) were proformed at $90^{\circ} \mathrm{C}$ for 10 min . The experiment suggested that properties of shuffled alpha-amylase were not improved even at pH 6.5 (Figure 23).


Figure 23. Specific activity of shuffled alpha-amylase in third experiment of secondary screening.

Y axis was specific activity ( $\mathrm{U} / \mu \mathrm{g}$ protein) whereas X axis was colonly no. Symbols : specific activity at pH 3.5 , : specific activity at pH
$6.5, \Delta:$ specific activity at pH 6.5 .

Because the secondary screening of rpET-SH library was not successful, the new construction of shuffled alpha-amylase was done by using pFLAG-CTS as new expression vector. The pFLAG-CTS vector was more comfortable than rpET21d (+) vector because it could be used as cloning and expression vector.

### 5.5.2.2 Secondary screening system of rpFL-SH library

Primary experiments were analyzed to optimize conditions of secondary screening by using recombinant alpha-amylases from rpFL13 and rpFL8785 as positive control. The activity of clones carring original rpFLAG-CTS vector was used as negative control. Starch hydrolysis of recombinant alpha-amylases was determined under acidic conditions from pH 3 to 5 . The thermostability analysis was done under high temperature $\left(75^{\circ} \mathrm{C}\right)$ at different sampling times $(0,30,60$, and 120 min$)$ whereas the analysis of thermostability of recombinant alpha-amylases rpFL13 and rpFL8785 under presence of EDTA $(0 \mathrm{mM}, 0.25,5$ and 10 mM$)$ was taken at $60^{\circ} \mathrm{C}$ for 1 hr . The optimized conditions were summarized as shown in Figure 24. The acivities of both rpFL 13 and rpFL 8785 were not detected at under acidic condition ( pH 3 ), under thermostability at $75^{\circ} \mathrm{C}$ for 2 hr , and under thermostability at $60^{\circ} \mathrm{C}$ under presence of EDTA (10mM).


Figure 24. The starch hydrolysis of recombinant alpha-amylases under different optimized conditions for primary experiment.

Shuffled clones (1,100 clones) showing clear zone around colony on screening medium from primary screening, were conducted for secondary screening under 6 different conditions on 96 wells microtiter plate (Figure 25). All shuffled clones did not show the improve activity or thermostability from all screening assays. Only control experiment of screening (activity assay at $\mathrm{pH} 7,37^{\circ} \mathrm{C}$, for 30 min by using $0.025 \%(\mathrm{w} / \mathrm{v})$ cassava starch as substrate), the activities of most shuffled clones were detected (Figure 26). Some shuffled clones showed the lower activity than wild type recombinant alpha-amylases from rpFL13 and rpFL8785, whereas the activity of most shuffled alpha-amylase clones were detected at the same level as activity of two wild types rpFL13 and rpFL8785 alpha-amylase.


Figure 25. The starch hydrolysis of shuffled alpha-amylase under 6 different condtions after development color with iodine.


Figure 26. The starch hydrolysis of shiuffled alpha-amylase under control
expereiment at $\mathrm{pH} 7,37^{\circ} \mathrm{C}$ for 30 min by using $0.025 \%(\mathrm{w} / \mathrm{v})$ cassava
starch as substrate.
The two-dimensional plot according to enzyme activity was used in order to observe improvement of properties (Aubrey et al., 2008; Bessler et al., 2003). The activity ( $\mathrm{U} / \mathrm{ml}$ ) of wild type clones and clones carring orginal vector were plotted and compared to activities of shuffled alpha-amylases. Mostly, activities of both wild type clones were separated distinctly from original vector. The activities of shuffled alphaamylases were plotted and shown in blue color whereas activities of recombinant rpFL13 and rpFL8785 were shown in red color. The green color was the activity of original vector (pFLAG-CTS). The wild type-like clones or inactive shuffled clones were lied in the same position of wild types. The shuffled clone showing the better properties than wild types were lied separately from groups. The activity of shuffled alpha-amylases were determined and compared with activities of both recombinant alpha-amylases rpFL13 and rpFL8785 under all screening conditions. Two dimension plot of activity between 2 different conditions: activity at pH 4 and at pH 7 . The activities of shuffled clons at neutral condition (at pH 7 ) were separated into 2 groups. The first group had activities in range of 0.012 to $0.018 \mathrm{U} / \mathrm{ml}$, approximately. These activity values were near to activity of both wild type rpFL13 and rpFL8785 as shown in red color. Most the activities of shuffled enzymes were accumulated in second group, which activities were lower than $0.010 \mathrm{U} / \mathrm{ml}$. The improvement of activity of shuffled alpha-amylase under acidic condition was not detected from all shuffled enzymes (Figure 27). Nevertheless, the recombinant alpha-amylases from rpFL13 and rpFl8785 had higher activity than the activity of shuffled alpha-amylases under acidic condition. However, it was hard to concern that activities of shuffled alpha-amylases were better or lower activity than recombinants rpFL13 and rpFL8785 since specific
activity was not reported. By plotting the activity values under alkaline and neutral condition (Figure 28), it was shown the different pattern from Figure 27. All activity patterns were not accumulated and distinctly separated between the active shuffled alpha-amylase clones and the wild type-like clones, even the pattern of activity of rpFL13 and rpFL8785 alpha-amylases. However, the separately group between acitivity of wild type clones and clones carrying empty vector was cleary. The activities of shuffled alpha-amylases were higher than activity of recombinant rpFL13 and rpFL8785 alpha-amylase from both conditions. However, it could be not confirm the improvement of activity because specific acitivity was not reported. Because the expression level of host cell was not the same expression level in each host cell, resulting in the non equal amount of enzyme in the reaction. However, the condition of screening under alkaline condition for shuffled alpha-amylases was also compared to screening condition from previous report (Bessler et al., 2003). It was slightly higher than previous study. The previous report suggested that the screening under alkaline condition ( pH 10 ) was performed to screen mutant alpha-amylases creating by error prone PCR and DNA shuffling. The shuffled alpha-amylase showed 5 folds higher activity than its wild type at pH 10 , even optimal pH was at pH 6 . The many reasons should be recommended for screening under different pH conditions. The low buffer capacity of enzyme should be recommened for screening at different pH values. The host $E$. coli should not have mechanisms for the active secreation of other expressed proteins into media. These reasons avoid the alteration of pH values and interference of heterologous proteins during the secreening (Bessler et al., 2003).


Figure 27. Relationship of shuffled alpha-amylase activity between condition at pH 3 and pH 7 .

Y axis was activity ( $\mathrm{U} / \mathrm{ml}$ ) by using $0.025 \%(\mathrm{w} / \mathrm{v})$ of cassava starch as substrate at $\mathrm{pH} 3,37^{\circ} \mathrm{C}$ for 30 min .

X axis was activity ( $\mathrm{U} / \mathrm{ml}$ by using $0.025 \%(\mathrm{w} / \mathrm{v})$ of cassava starch as substrate at $\mathrm{pH} 7,37^{\circ} \mathrm{C}$ for 30 min .

Symbols
$\gamma$ activities of shuffled alpha-amylases.
$\rangle$ : activities of both wild types and empty pFLAG-CTS.
: activities of both recombinant alpha-amylase rpEF13 and rpFL8785.


Figure 28. Relationship of shuffled alpha-amylase activity between condition at pH 7 and pH 11.

Y axis was activity $(\mathrm{U} / \mathrm{ml})$ by using $0.5 \%(\mathrm{w} / \mathrm{v})$ of cassava starch as substrate at $\mathrm{pH} 7,37^{\circ} \mathrm{C}$ for 30 min .

X axis was activity ( $\mathrm{U} / \mathrm{ml}$ ) by using $0.5 \%(\mathrm{w} / \mathrm{v})$ of cassava starch as substrate at $\mathrm{pH} 11,37^{\circ} \mathrm{C}$ for 30 min .

Symbols activities of shuffled alpha-amylases.
$\downarrow$ : activities of both wild types and empty pFLAG-CTS.
: activities of both recombinant alpha-amylase rpEF13 and rpFL8785.


Figure 29. Relationship of shuffled alpha-amylase between stability condition under high temperature or under presence of EDTA.

Y axis was activity ( $\mathrm{U} / \mathrm{ml}$ ) after stability analysis at $60^{\circ} \mathrm{C}$, for 1 hr under presence of 10 mM EDTA. The activity was determined by using $0.025 \%(\mathrm{w} / \mathrm{v})$ cassava starch as substrate at $\mathrm{pH} 7,37^{\circ} \mathrm{C}$ for 30 min .

X axis was activity $(\mathrm{U} / \mathrm{ml})$ after stability analysis at $75^{\circ} \mathrm{C}$, for 2 hr . The activity was determined by using $0.5 \%(\mathrm{w} / \mathrm{v})$ cassava starch as substrate at $\mathrm{pH} 7,37^{\circ} \mathrm{C}$ for 30 min .

Symbols $\diamond$ : activities of shuffled alpha-amylases.
$\diamond$ : activities of both wild types and empty pFLAG-CTS.
$\diamond$ : activities of both recombinant alpha-amylase rpEF13 and rpFL8785.

The analysis of thermostability was done to screen expected property of shuffled alpha-amylase under high temperature $\left(75^{\circ} \mathrm{C}\right)$ or under presence of 10 mM EDTA (Figure 29). The screening was done without addition of calcium ions into the reaction. To prevent the inhibition of activity by thermal denaturation, all enzymes were kept on ice immediately to cool down temperature for 15 min . The cooling on ice allowed the reversibly unfolded form to fold into native form of enzyme (Violet and Meunier, 1989). Two-dimension plot between both stability assay was not shown better property of shuffle alpha-amylases than property of wild types. Some previous reports suggested that inhibition of activity was detected by incubating alpha-amylase under different conditions. The incubation of alpha-amylase from B. licheniformis at $45^{\circ} \mathrm{C}$, for 1 hr under presence of 1 mM EDTA resulting in the decrease of remained activity to $50 \%$ of original activity (Hagihara et al., 2001). The result was same as the incubation of alpha-amylase with 10 mM EDTA, resulting in completely inhibition of activity (H.-F. Lo et al., 2001). Moreover, the stability of enzyme under presence of EDTA upto 15 mM at $20^{\circ} \mathrm{C}$, for 30 min was studied. The $15 \%$ of remained activity was determined (Hmidet et al., 2008). The activity of alpha-amylase was completely inhibited by EDTA, indicating the involvement of calcium ions in the enzyme function as shown in Figure 24 and 25. Other reports showed the success of thermostable screening. The thermostable screening of Bacillus library variants were done to screen thermostable of alpha-amylase by incubating at $80^{\circ} \mathrm{C}$ of 25 min with addition of calcium into media. The 34 of variant clones were collected from 50,000 transformant clones in first round of DNA shuffling (Aubrey et al., 2008). The possibly reason was the absence of calcium in reaction, resulting in the unstable structure of alpha-amylase, which led to decrease in activity. Moreover, the presence
of calcium ion caused in decrease in activation entropy during thermal denaturation of thermophilic alpha-amylase, led to enhance stability (H.-F. Lo et al., 2001).

The improvement of properties of shuffled alpha-amylase was not successful with some possible reasons. The first was that the condition was probably too strong led to non-detection of small improved activity. Second reason was position of mutation in gene regions. If mutation was in conserved regions, it was possible to decrease or increase in activity and stability. However, some shuffled alpha-amylase genes were collected and analyzed the nucleotide and amino acid sequences. The collection of shuffled gene was based on activity under control experiment at pH 7 , $37^{\circ} \mathrm{C}$, for 30 min . The shuffled clones showing non activity or lower activity than their recombinant wild type enzyme were collected.

### 5.6 Multiple sequence alignment of shuffled alpha-amylase

Multiple alignment and analysis of secondary structure of shuffled alphaamylase from two libraries, rpET-SH and rpFL-SH, were analyzed by Espript 2.2 program (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA) and vector NTI software, respectively. The similarity of amino acid sequences was determined by ClustalW 2 from EMBL-EBI software on-line. The multiple alignment of complete and non-complete nucleotide sequences were analyzed as shown in Figure 30 and 31. The 4 and 10 of nucleotide sequences of shuffled alpha-amylase from rpET-SH and rpFL-SH library, respectively, were analyzed by based on sequences of recombinant alpha-amylases from rpET13, rpET8785, rpFL13 and rpFL8785. The 4 shuffled alphaamylases from rpET-SH library appeared to be $100 \%$ and $99 \%$ of similarity to alphaamylases from rpET8785 and rpET13, respectively. These were not precisely results to confirm that the construction of rpET-SH library was successful since the four
sequences of rpET-SH library were small population of samples. Shuffled no. 2b8b, 2a11h, and 4d2d from library of shuffled alpha-amylase (rpFL-SH) showed successfully nucleotide base shuffling between recombinant alpha-amylase genes from B. licheniformis DSM13 and DSM8785. The positions of shuffled nucleotide sequence were at 154,488 , and 1045 whereas positions of amino acid were at 6,136 , 240 and 322 of amino acid sequence. Moreover, the point mutations of nucleotide base by error prone PCR were found on ten nucleotide sequences of shuffled alphaamylase from rpFL-SH library. These results suggested the creation of gene diversity by error prone PCR was successful in early step of DNA shuffling. The fidelity of error prone PCR could be controlled by altering the concentration of $\mathrm{MnCl}_{2}$ coupled with an unbalanced mixture of nucleotides (Aubrey et al., 2008). Moreover, the shuffled points in nucleotides sequneces (Figure 30, 31) and amino acid sequences (Figure 32, and 33) could be confirmed the successful of library construction by DNA shuffling. However, the rate of mutation was not high because the percentage of similarity was 98 to $99 \%$ of similarity to all recombinant alpha-amylases rpET13, rpFT8785, rpFL13 and rpFL8785. DNA shuffling technique created one to six points of amino acid mutation of shuffled alpha-amylases. One point mutation of rpFL-SH library was found on shuffled no. 1b8b, 2d11h, 7 c 12 h , and 7 c 4 h . Five mutation points were occurred on 2 e 2 a and 9 g 7 d . The shuffled no. 2 a 11 h had the highest mutation points on nucleotide sequence. Moreover, the termination codon (TAA) was occurred. Alteration of nucleotide sequences were occurred by changing between each purine or purimidine base, or by replacing of pyrimidine into purine base or vice versa.

|  |  | 1 60 60 |
| :---: | :---: | :---: |
| 1b8b | (1) |  |
| rpET13 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGCCGCTGTTATTTGCGCTCATCTTC |
| rpFL13 | (1) |  |
| 2b8b | (1) |  |
| rpET8785 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGACGCTGTTATTTGCGCTCATCTTC |
| SHM154 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGACGCTGTTATTTGCGCTCATCTTC |
| SHM199 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGACGCTGTTATTTGCGCTCATCTTC |
| SHM43 | (1) | ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGACGCTGTTATTTGCGCTCATCTTC |
| SHM197 | (1) | ATGAAACAACAAAAACGGCTTTACGTCCGATTGCTGACGCTGTTATTTGCGCTCATCTTC |
| rpFL8785 | (1) |  |
| 1b9a | (1) |  |
| 1c5b | (1) |  |
| 2b7g | (1) |  |
| 2e2a | (1) |  |
| 2d11h | (1) |  |
| 7b3a | (1) |  |
| 7c12c | (1) |  |
| 7c4h | (1) |  |
| 9G7D | (1) |  |
|  |  | 61 120 |
| 1b8b | (1) | GAATTCGCAAATCTTAAAGGGACGCTGATGCAGTATTTT |
| rpET13 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAAAGGGACGCTGATGCAGTATTTT |
| rpFL13 | (1) | -------------GCAAATCTTAAAGGGACGCTGATGCAGTATTTT |
| 2b8b | (1) | -GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| rpET8785 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| SHM154 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| SHM199 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| SHM43 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| SHM197 | (61) | TTGCTGCCTCATTCTGCAGCAGCGGCGGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| rpFL8785 | (1) | -------------GCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 1b9a | (1) | -----GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 1c5b | (1) | --------GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 2b7g | (1) | -------GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 2e2a | (1) | -------GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 2d11h | (1) | -------GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 7b3a | (1) | --GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 7c12c | (1) | --GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 7c4h | (1) | - GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTT |
| 9G7D | (1) | -----GAATTCGAAAATATTAATGGGACGCTGATGCAGTATTTT |

Figure 30. Multiple alignment of complete nucleotide sequences of shuffled alphaamylase from rpFL-SH and rpET-SH library.

Sample SHM43, SHM154, SHM197, and SHM199 was shuffled alphaamylase from rpET-SH library. The rest of samples were shuffled alphaamylase from rpFL-SH library, rpFL13 and rpET13; recombinant B. licheniformis alpha-amylase DSM13, rpET8785 and rpFL8785; recombinant B. licheniformis alpha-amylase DSM8785. Blue color; conservative sequence, yellow color; different sequences.

|  |  | 12 |
| :---: | :---: | :---: |
| 1b8b | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| rpET13 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| rpFL13 | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| 2b8b | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| rpET8785 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM154 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM199 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM43 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM197 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| rpFL8785 | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 1b9a | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 1c5b | (40) | GAATGGTACATGCCCAATGACGGCCGACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 2b7g | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 2e2a | (40) | GAATGGTATATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 2d11h | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 7b3a | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 7c12c | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 7c4h | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 9G7D | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
|  | 121 | 180 |
| b | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| rpET13 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| rpFL13 | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT |
| 2b8b | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| rpET8785 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM154 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM199 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM43 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| SHM197 | (121) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| rpFL8785 | (34) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 1b9a | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 1c5b | (40) | GAATGGTACATGCCCAATGACGGCCGACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 2b7g | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 2e2a | (40) | GAATGGTATATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 2d11h | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 7b3a | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 7c12c | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 7c4h | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
| 9G7D | (40) | GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT |
|  |  | 181 |
| 1b8 | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpET13 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpFL13 | (94) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 2b8b | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpET8785 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| SHM154 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| SHM199 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| SHM43 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| SHM197 | (181) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| rpFL8785 | (94) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 1b9a | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 1c5b | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 2b7g | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 2e2a | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 2d11h | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 7b3a | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 7c12c | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 7c4h | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |
| 9G7D | (100) | TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA |

peT13 pFL13 2b8b

ET8785 SH19

SHM43 FL8785 1b9a 1c5b 2e2a 2d11h 7b3a 7c4h 9G7D
(40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT 121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT (34) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT ) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGITTGCAAAACGACTCGGCATAT (121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT 121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT
(121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (34) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCGACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGITIGCAAAACGACTCGGCATAT 40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCAT
(40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT
(121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT (34) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (121) (121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (121) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCGACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGITTGCAAAACGACTCGGCATAT ) GAATGGTATATGCCCAATGACGGCCAACATTGGAAGCGITTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT (40) GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT GAATGGTACATGCCCAATGACGGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATAT 240
(100) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (181) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (94) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA 100) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (181) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (181) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (181) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (94) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (100) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (100) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA (100) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA ThG信 (100) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA ) $1 T G G C T G A C A C G G T A T A C T G C C G T C T G G A T$ )
(100) TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAA

Figure 30. (Continued).

|  |  | 24 |
| :---: | :---: | :---: |
| 1b8b | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpET13 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCĀTCAAAAAGGG |
| rpFL13 | (154) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| 2b8b | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATTCAAAAAGGG |
| rpET8785 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| SHM154 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATTCAAAAAAGGG |
| SHM199 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| SHM43 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| SHM197 | (241) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| rpFL8785 | (154) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| 1b9a | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| 1c5b | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| 2b7g | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCGTCAAAAAGGG |
| 2e2a | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAACAAGGG |
| 2d11h | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| 7b3a | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| 7c12c | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCĀTCAAAAAAGGG |
| 7c4h | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
| 9G7D | (160) | GCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGG |
|  |  | 301360 |
| 1b8b |  | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpET13 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpFL13 | (214) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 2b8b | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| pET8785 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| SHM154 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| SHM199 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| SHM43 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| SHM197 | (301) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| rpFL8785 |  | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 1b9a | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 1c5b | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 2b7g | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 2e2a | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 2d11h | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 7b3a | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 7c12c | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 7c4h | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
| 9G7D | (220) | ACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCAT |
|  |  | 361 |
| 1b8b | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpET13 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpFL13 | (274) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 2b8b | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpET8785 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| SHM154 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| SHM199 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| SHM43 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| SHM197 | (361) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| rpFL8785 | (274) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 1b9a | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 1c5b | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 2b7g | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 2e2a | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 2d11h | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 7 b 3 a | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 7c12c | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 7c4h | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |
| 9G7D | (280) | TCCCGCGACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCG |

Figure 30. (Continued).

|  |  | 421 |
| :---: | :---: | :---: |
| 1b8b | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpET13 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpFL13 | (334) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 2b8b | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpET8785 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| SHM154 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| SHM199 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| SHM43 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| SHM197 | (421) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| rpFL8785 | (334) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 1b9a | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 1c5b | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 2b7g | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 2e2a | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 2d11h | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 7b3a | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 7c12c | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 7c4h | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
| 9G7D | (340) | ACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGA |
|  |  | 481 |
| 1b8b | (400) | GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpET13 | (481) | GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpFL13 | (394) | GAACACCGAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 2b8b | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAACACATACAGC |
| rpET8785 | (481) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| SHM154 | (481) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| SHM199 | (481) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| SHM43 | (481) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| SHM197 | (481) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| rpFL8785 | (394) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 1b9a | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 1c5b | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 2b7g | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 2e2a | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 2d11h | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 7b3a | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 7c12c | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 7c4h | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
| 9G7D | (400) | GAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGC |
|  |  | 541 |
| 1b8b | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpET13 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpFL13 | (454) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 2b8b | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpET8785 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| SHM154 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| SHM199 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| SHM43 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| SHM197 | (541) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| rpFL8785 | (454) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 1b9a | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 1c5b | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 2b7g | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 2e2a | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGGCGAGTCCCGAAAGCTG |
| 2d11h | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 7 b 3 a | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 7c12c | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 7c4h | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |
| 9G7D | (460) | GATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTG |

Figure 30. (Continued).

|  |  | 601 |
| :---: | :---: | :---: |
| 1b8b | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpET13 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpFL13 | (514) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 2b8b | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATTGAAAACGGC |
| rpET8785 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| SHM154 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| SHM199 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| SHM43 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| SHM197 | (601) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| rpFL8785 | (514) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 1b9a | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 1c5b | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCATTGAAAACGGC |
| 2b7g | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 2e2a |  | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 2d11h | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATTGAAAACGGC |
| 7b3a | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 7c12c | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 7c4h | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGC |
| 9G7D | (520) | AACCGCATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATTGAAAACGGC |
|  |  | 661 |
| 1b8b | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpET13 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpFL13 | (574) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 2b8b | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpET8785 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| SHM154 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| SHM199 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| SHM43 | (661) | ACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| SHM197 | (661) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| rpFL8785 | (574) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 1b9a | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 1c5b | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 2b7g | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 2e2a | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 2d11h | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 7b3a | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 7c12c | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 7c4h | (580) | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 9G7D | (580) 721 | AACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAA |
| 1b8b | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpET13 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpFL13 | (634) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 2b8b | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpET8785 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| SHM154 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| SHM199 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| SHM43 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| SHM197 | (721) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| rpFL8785 | (634) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 1b9a | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 1c5b | (640) | ATTAAAAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 2b7g | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 2e2a | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 2d11h | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 7 b 3 a | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 7c12c | (640) | ATTAAGAAATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 7c4h | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |
| 9G7D | (640) | ATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGAT |

Figure 30. (Continued).

|  |  | 78 |
| :---: | :---: | :---: |
| 1b8b | (700) | GCTGTCAAACACATTAAATTGTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpET13 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpFL13 | (694) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 2b8b | (700) | GCTGTCAAACACATTAAATTGTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpET8785 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| SHM154 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| SHM199 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| SHM43 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| SHM197 | (781) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| rpFL8785 | (694) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 1b9a | (700) | GCTGTCAAACCCATTAAATTTTCTTTTTTGCGGGATTGGGTTAAACATGTCAGGGAAAAA |
| 1c5b | (700) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 2b7g | (700) | GCTGTCAAACACATTAAATTTTTCTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 2e2a | (700) | GCTGTCAAACACATTAAATTTTTTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 2d11h | (700) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 7b3a | (700) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 7c12c | (700) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 7c4h | (700) | GCTGTCAAACACATTAAATCTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAA |
| 9G7D | (700) | GCTGTCAAACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAGAA |
|  |  | 841 |
| 1b8b | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| rpET13 | (841) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| rpFL13 | (754) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 2b8b | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| rpET8785 | (841) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| SHM154 |  | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| SHM199 | (841) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| SHM43 | (841) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| SHM197 | (841) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| rpFL8785 | (754) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 1b9a | (760) | ACGGGGAAGGAAAATGTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 1c5b | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 2b7g | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 2e2a | (760) | ATGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 2d11h | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 7b3a | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 7c12c | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 7c4h | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
| 9G7D | (760) | ACGGGGAAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAA |
|  |  | 901960 |
| 1b8 | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| rpET13 | (901) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| rpFL13 | (814) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 2b8b | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| rpET8785 | (901) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| SHM154 | (901) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| SHM199 | (901) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| SHM43 | (901) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| SHM197 | (901) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| rpFL8785 | (814) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 1b9a | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 1c5b | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 2b7g | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 2e2a | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 2d11h | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 7b3a | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 7c12c | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 7c4h | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |
| 9G7D | (820) | AACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAG |

Figure 30. (Continued).
961
1020

1b8b rpET13 rpFL13 2b8b rpET8785 SHM154 SHM199 SHM43 SHM197 rpFL8785 1b9a 1c5b 2b7g 2e2a 2d11h 7b3a 7c12c 7c4h 9G7D

1b8b
rpET13
rpFL13
2b8b
rpET8785
SHM154
SHM199
SHM43
SHM197
rpFL8785 1b9a 1c5b 2b7g 2e2a

2d11h 7b3a 7c12c 7c4h 9G7D
(880) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG
(961) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (874) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG
(880) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (961) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (961) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (961) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (961) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (961) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (874) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG (880) TTCCATGCTGCATCGACACAGGGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACG 1021

1080
(940) GTCGTTTCCAAGCATCCGTTGAAAGCGGTTACATTTGTCGATAACCATGATACACAGCCG (1021) GTCGTTTCCAAGCATCCGTTGAAAGCGGTTACATTTGTCGATAACCATGATACACAGCCG (934) GTCGTTTCCAAGCATCCGTTGAAAGCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAAGCGGTTACATTTGTCGATAACCATGATACACAGCCG (1021) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (1021) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (1021) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (1021) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (1021) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (934) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAGTCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG (940) GTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCG 1081 1140
(1000) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1081) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (994) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1000) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1081) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1081) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1081) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1081) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1081) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (994) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT (1000) GGGCAATCGCTTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATT

Figure 30. (Continued).

1b8b rpET13 rpFL13 2b8b rpET8785 SHM154 SHM199 SHM43 SHM197
rpFL8785
1b9a
1c5b
2b7g
2e2a
2d11h
7b3a
7c12c
7c4h
9G7D

1b8b
rpET13
rpFL13
2b8b
rpET8785
SHM154
SHM199
SHM43
SHM197
rpFL8785
1b9a
1c5b
2b7g
2e2a
2d11h
7b3a
7c12c
7c4h 9G7D

1b8b
rpET13
rpFL13
2b8b
rpET8785
SHM154
SHM199
SHM43
SHM197
rpFL8785
1b9a
1c5b
2b7g
2e2a
2d11h
7b3a
7c12c
7c4h 9G7D

1141
1200
1060) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA
(1141) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA
(1054) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA
(1060) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA (1141) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA (1141) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA (1141) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA (1141) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA (1141) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA (1054) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA (1060) CTCACAAGGGAATCTGGATACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGA 1201

1260
(1120) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1201) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1114) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1120) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1201) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1201) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1201) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1201) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1201) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1114) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA (1120) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA
(1120) GACTCCCAGCGCGAAATTCCTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGA 1261

1320
(1180) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG
(1261) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1174) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1180) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1261) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1261) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1261) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1261) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1261) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1174) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG (1180) AAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGG

Figure 30. (Continued).
(1240) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTITGGCGGCATTAATAACAGACGGA
(1234) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA (1240) ACAAGGGAAGGCGACAGCTCAGTI rpET8785 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA SHM154 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGG
SHM199 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
SHM43 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
SHM197 (1321) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
rpFL8785 (1234) ACAAGGGAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGA
1b9a
1c5b
2b7g
2e2a
d11
7 b 3 a
7c12c
7c4h 9G7D
rpFL13
2b8b

7c12c (1420) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAC
7c4h (1420) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAC-
9G7D (1420) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAC
(1420) GTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGACTCGAC-

Figure 30. (Continued).

|  |  |  |
| :---: | :---: | :---: |
| 1c12b | (1) | GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAATGAC |
| 2a11h | (1) | GAATTCGCAAATCTTAAAGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAATGAC |
| 2 e e | (1) | GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAA |
| 2a2b-full | (1) | GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAATGAC |
| 2d11d | (1) | GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAATGAC |
| 4b2d | (1) | GAATTCGCAAATCTTAATGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAATGAC |
| rpFL13 | (1) | ------GCAAATCTTAAAGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAATGAC |
| rpFL8785 | (1) | GCAAATCTTAATGGGACGCTGATGCAGTATTTTGAATGGTACATGCCCAATGAC |
|  |  | 61 |
| 1c12b | (61) | GGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATATTTGGCTGAACACGGTATTACT |
| 2a11h | (61) | GGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATATTTGGCTGAACACGGTATTACT |
| 2e5e | (61) | GGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATATTTGGCTGAACACGGTATTACT |
| 2a2b-full | (61) | GGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATATTTGGCTGAACACGGTATTACT |
| 2d11d | (61) | GGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATATTTGGCTGAACACGGTATTACT |
| 4b2d | (61) | GGCCAACATTGGAAGCGCTTGCAAAACGACGCGGCATATTTGGCTGAACACGGTA |
| rpFL13 | (55) | GGCCAACATTGGAAGCGCTTGCAAAACGACTCGGCATATTTGGCTGAACACGGTATTACT |
| rpFL8785 | (55) | GGCCAACATTGGAAGCGTTTGCAAAACGACTCGGCATATTTGGCTGAACACGGTATTACT |
|  |  | 121 |
| 1c12b | (121) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGGGCTACGGTGCT |
| 2a11h | (121) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGGGCTACGGTGCT |
| 2e5e | (121) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGG |
| 2a2b-full | (121) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGGGGATGTGGGCTACGGTGCT |
| 2d11d | (121) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGGGCTACGGTGCT |
| 4b2d | (121) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGGGC |
| rpFL13 | (115) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGGGCTACGGTGCT |
| rpFL8785 | (115) | GCCGTCTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGGGCTACGGTGCT |
|  |  | 181 |
| 1c12b | (181) | TACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
| 2a11h | (181) | TACGACCTTTATGATTTAGGGGAGTCTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
| 2 e e | (181) | TACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
| 2a2b-full | (181) | TACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
| 2d11d | (181) | TACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
| 4b2d | (181) | TACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
| rpFL13 | (175) | TACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
| rpFL8785 | (175) | TACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAGGGACGGTTCGGACAAAGTACGGC |
|  |  | 241300 |
| 1c12b | (241) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
| 2a11h | (241) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
| 2 e e | (241) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
| 2a2b-full | (241) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
| 2d11d | (241) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
| 4b2d | (241) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
| rpFL13 | (235) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
| rpFL8785 | (235) | ACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTCATTCCCGCGACATTAACGTTTAC |
|  |  | 301 |
| 1c12b | (301) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGCGGTT |
| 2a11h | (301) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGCGGTT |
| 2 e e | (301) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGGGGTT |
| 2a2b-full | (301) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGCGGTT |
| 2d11d | (301) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGCGGTT |
| 4b2d | (301) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGCGGTT |
| rpFL13 | (295) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGCGGTT |
| rpFL8785 | (295) | GGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAGATGTAACCGC |

Figure 31. Multiple alignment of non-complete nucleotide sequences of shuffled

## alpha-amylase from rpFL-SH library.

The rpFL13 and rpET13; recombinant B. licheniformis alpha-amylase DSM13 in pFLAG-CTS system and pET21d (+) system, the rpET8785 and rpFL8785;
recombinant $B$. licheniformis alpha-amylase DSM8785 in pFLAG-CTS system
and pET21d $(+)$ system. Blue color; conservative sequences, green color;
block of similar sequences, yellow color; non-similar sequences.

|  |  | 361 |
| :---: | :---: | :---: |
| 1c12b | (361) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCTAATTAAAGCCTGG |
| 2a11h | (361) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCCAATTAAAGCCTGG |
| 2e5e | (361) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCTAATTAAAGCCTGG |
| 2a2b-full | (361) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCTAATTAAAGCCTGG |
| 2d11d | (361) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCTAATTAAAGCCTGG |
| 4b2d | (361) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCGAATTAAAGCCTGG |
| rpFL13 | (355) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCGAATTAAAGCCTGG |
| rpFL8785 | (355) | GAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCTAATTAAAGCCTGG |
|  |  | 421480 |
| 1c12b | (421) | ACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGCGATTTTAAATGGCATTGGTAC |
| 2a11h | (421) | ACACATTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2e5e | (421) | ACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGCGATTTTAAATGGCATTGGTAC |
| 2a2b-full | (421) | ACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGCGATTTTAAATGGCATTGGTAC |
| 2d11d | (421) | ACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGCGATTTTAAATGGCATTGGTAC |
| 4b2d | (421) | ACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGCGATTTTAAATGGCATTGGTAC |
| rpFL13 | (415) | ACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGCGATTTTAAATGGCATTGGTAC |
| rpFL8785 | (415) | ACACATTTTCATTTTCCGGGGCGCGGCAGCACATACAGCGATTTTAAATGGCATTGGTAC |
|  |  | 481540 |
| 1c12b | (481) | CATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCTATAAGTTTCAA |
| 2a11h | (481) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2e5e | (481) | CATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCTATAAGTTTTCA |
| 2a2b-full | (481) | CATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCTATAAGTTTCAA |
| 2d11d | (481) | CATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCCATAAGTTTCAA |
| 4b2d | (481) | CATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCTATAAGTTTCAA |
| rpFL13 | (475) | CATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCTATAAGTTTCAA |
| rpFL8785 | (475) | CATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCTATAAGTTTCAA |
|  |  | 541 |
| 1c12b | (541) | GGAAAGGCTTGGGATTGGGAAGTTTCCCATGAAAACCGCAACTATGATTATTTGATGTAT |
| 2a11h | (541) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2e5e | (541) | GGAAAGGCTTGGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2a2b-full | (541) | GGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGCAACTATGATTATTTGATGTAT |
| 2d11d | (541) | GGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGCAACTATGATTATTTGATGTAT |
| 4b2d | (541) | GGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGCAACTATGATTATTTGATGTAT |
| rpFL13 | (535) | GGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGCAACTATGATTATTTGATGTAT |
| rpFL8785 | (535) | GGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGCAACTATGATTATTTGATGTAT |
|  |  | 601660 |
| 1c12b | (601) | GCCGACATCGATTANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2a11h | (601) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2 e 5 e | (601) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2a2b-full | (601) | GCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAAATTAAGAGATGGGGCACTTGG |
| 2d11d | (601) | GCCGANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 4b2d | (601) | GCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAAATTAAGANNNNNNNNNNNNNN |
| rpFL13 | (595) | GCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAAATTAAGAGATGGGGCACTTGG |
| rpFL8785 | (595) | GCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAAATTAAGAGATGGGGCACTTGG |
|  |  | 661720 |
| 1c12b | (661) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAATTT |
| 2a11h | (661) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2e5e | (661) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2a2b-full | (661) | TATGCCAATGAACTGCAATTGGACGGTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2d11d | (661) | TATGCCAATGAACTGCAATTGGGCGGTTTCCGTCTTAATGCTGTCAAACACATTAAATTT |
| 4b2d | (661) | TATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGATGCTGTCAAACACATTAAATTT |
| rpFL13 | (655) | TATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGATGCTGTCAAACACATTAAATTT |
| rpFL8785 | (655) | TATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGATGCTGTCAAACACATTAAATTT |
|  |  | 721780 |
| 1c12b | (721) | TCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAAACGGGGAAGGAAATGTTTACG |
| 2a11h | (721) | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAAAAAACGGGGAAGGAAATGTTTACG |
| 2e5e | (721) | NNNNNNNNNNNNNNNNGGGTTAATCATGTCAGGGAAAAAACGGGGAAAGAAATGTTTACG |
| 2a2b-full | (721) | NNNNNNNNNNGGGATTGGGGTAATCATGTCAGGGAAAAAACGGGGAAGGAAATGTTTACG |
| 2d11d | (721) | TCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAAACGGGGAAGGAAATGTTTACG |
| 4b2d | (721) | TCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAAACGGGGAAGGAAATGTTTACG |
| rpFL13 | (715) | TCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAAACGGGGAAGGAAATGTTTACG |
| rpFL8785 | (715) | TCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGAAAAAACGGGGAAGGAAATGTTTACG |

Figure 31. (Continued).

## 781

840

1c12b
2a11h 2e5e
2a2b-full
2d11d 4b2d
rpFL13
rpFL8785

1c12b
2a11h
2e5e
2a2b-full
2d11d
4b2d
rpFL13
rpFL8785

1c12b
2a11h 2e5e

2a2b-ful1 2d11 4b2d
rpFL13 rpFL8785

1c12b
2a11h 2e5e
2a2b-ful
2d11 4b2d
rpFL13
rpFL8785
781) GTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAACCTATTTGAACAAAACAAAT (781) GTAGCTGAATATGGGCAGAATGACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAAT (781) GTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAAT (781) GTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAAT (781) GTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAAT (781) GTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAAT (775) GTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAAT (775) GTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAAT 841

900
(841) TTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAG (841) TTTAATCTTTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGTCACAG (841) TTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAG (841) TTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAG (841) TTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAG (841) TTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAG (835) TTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAG (835) TTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAG 901

960
(901) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTG (901) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTG (901) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTG (901) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTG (901) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTG (901) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGATTCCAAGCATCCGTTG (895) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTG (895) GGAGGCGGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTG 961 1020
(961) AAATCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT (961) AAATCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT (961) AAATCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT (961) AAATCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT (961) AAATCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT (961) AAAGCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT (955) AAAGCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT (955) AAATCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGACT 1021 1080
1c12b (1021) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGATAC 2a11h (1021) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGATAC 2e5e

2d11d
4b2d
rpFL13
rpFL8785

1c12b
2a11h 2e5e
2a2b-full
2d11d 4b2d
rpFL13 rpFL8785

2a11h 2e5e
2a2b-full
2d11d
4b2d
rpFL13
rpFL8785
(1021) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGATAC (1021) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGGTAC (1021) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGATAC (1021) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCGGGATAC (1015) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGATAC (1015) GTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGATAC 1081

1140
(1081) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT (1081) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT (1081) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT (1081) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT (1081) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT (1081) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT (1075) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT (1075) CCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCT 1141 1200
(1141) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA (1141) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA (1141) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA (1141) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA (1141) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA (1141) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA (1135) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA (1135) GCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCA

Figure 31. (Continued).

|  |  | 12011260 |
| :---: | :---: | :---: |
| 1c12b | (1201) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG |
| 2a11h | (1201) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGTAAGGCGACAGCTCG |
| 2e5e | (1201) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG |
| 2a2b-full | (1201) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG |
| 2d11d | (1201) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG |
| 4b2d | (1201) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG |
| rpFL13 | (1195) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG |
| rpFL8785 | (1195) | CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG |
|  |  | 1261 |
| 1c12b | (1261) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
| 2a11h | (1261) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
| 2e5e | (1261) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
| 2a2b-full | (1261) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
| 2d11d | (1261) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
| 4b2d | (1261) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
| rpFL13 | (1255) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
| rpFL8785 | (1255) | GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG |
|  |  | 1321 |
| 1c12b | (1321) | TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG |
| 2a11h | (1321) | TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG |
| 2e5e | (1321) | TATGTCGGCCGGCAAAACGCCGGTGAGAAATGGCATGACATTACCGGAAACCGTTCGGAG |
| 2a2b-full | (1321) | TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG |
| 2d11d | (1321) | TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG |
| 4b2d | (1321) | TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG |
| rpFL13 | (1315) | TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG |
| rpFL8785 | (1315) | TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG |
|  |  | 1381 |
| 1c12b | (1381) | CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCANNNNNNNNNNNNNNNNNNNNNN |
| 2a11h | (1381) | CCGGTTGTCATCAATTCGGAAGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| 2e5e | (1381) | CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCA |
| 2a2b-full | (1381) | CCGGTTGTCATCAATTCGGAAGGTTGGGGAGAGTTTCACNNNNNNNNNNNNNNNNNNNN |
| 2d11d | (1381) | CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCA |
| 4b2d | (1381) | CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCA |
| rpFL13 | (1375) | CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCA |
| rpFL8785 | (1375) | CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCA |
|  |  | 14411462 |
| 1c12b | (1441) | NNNNNNNNNNNNNNNNNNNNN- |
| 2a11h | (1441) | NNNNNNNNNNNNNNNNNNNNNC |
| 2e5e | (1441) | ATTTATGTTCAAAGACNNNNN- |
| 2a2b-full | (1441) | NNNNNNNNNNNNNNNNNNNNNN |
| 2d11d | (1441) | ATTTATGTTCAAAGACTCGAC- |
| 4b2d | (1441) | ATTTATGTTCAAAGACTCGAC- |
| rpFL13 | (1435) | ATTTATGTTCAAAGACTCGAC- |
| rpFL8785 | (1435) | ATTTATGTTCAAAGACTCGAC- |

260
1c12b (1201) CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG
(1201) CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGTAAGGCGACAGCTCG
-full (1201) CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG
2d11d (1201) CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG
4b2d (1201) CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG
rpFL13 (1195) CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG
(1195) CAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCTCG GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG
2a11h (1261) GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG
(1261) GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG

2d11d (1261) GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG
4b2d (1261) GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG
rpFL13 (1255) GTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG
(1255) GTIGCAAATTCAGGTTFGGCGGCATTAATAACAGACGGACCCGGTGGGGCAAAGCGAATG

1c12b (1321) TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG
(1321) TATGTGGCGGCAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG
a2b-full (1321) TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG
2d11d (1321) TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG
4b2d (1321) TATGTCGGCCGGCAAAACGCCGGTGAGACATGGCATGACATTACCGGAAACCGTTCGGAG
(1315) ) 13811440
1c12b (1381) CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCANNNNNNNNNNNNNNNNNNNNN
2a11h (1381) CCGGTTGTCATCAATTCGGAAGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
-full (1381) CCGGTTGTCATCAATTCGGAAGGTTGGGGAGAGTTTCACNNNNNNNNNNNNNNNNNNNN
2d11d (1381) CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCA
rpFL8785 (1375) CCGGTTGTCATCAATTCGGAAGGCTGGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCA 1441
1c12b (1441) NNNNNNNNNNNNNNNNNNNNN -
2a11h (1441) NNNNNNNNNNNNNNNNNNNNNC
(1441) ATTTATGTTCAAAGACNNNNN-
(1441) NNNNNNNNNNNNNNNNNNNNNN
1441)
(1435) ATTTATGTTCAAAGACTCGAC-
rpFL8785 (1435) ATTTATGTTCAAAGACTCGAC-

Figure 31. (Continued).

The analysis of secondary structure and multiple alignment of amino acid sequences of shuffled alpha-amylases and sequences of recomnbinant alpha-amylases rpFL13 and rpFL8785 were analyzed by based on well known alpha-amylase structure (Machius et al., 1998b). The overall structure of recombinant alpha-amylase was summarized as shown in Table 5. The order sequence was based on sequences from

Figure 32. The structure comprised of 3 domains (A, B and C), which belong to
catalytic domain of enzyme (amino acid 9-379). The domain A was amino acid sequence in range of 3-111 and 207-384. The positions of amino acid at 112-206 and 385-482 were in domain B and C, respectively. Four highly conserved regions among all alpha-amylases were homology to other B. licheniformis alpha-amylase and they were designated as I, II, III, and IV (Aubrey et al., 2008; Bessler et al., 2003; Hmidet et al., 2008; Kuriki and Imanaka, 1999; Nielsen et al., 1999). Three conserved amino acid of active sites were in region II, III and IV, respectively. The residual sequences involved in the active sites (Asp233, Glu257, and Asp330), the $1^{\text {st }}$ calcium binding sites (Asn106, Asp196, Asp202, and His237), the $2^{\text {nd }}$ calcium binding sites (Asp163, Ala183, Asp185, Asp294, and Asp206), the $3^{\text {rd }}$ calcium binding sites (Gly302, Try304, His408, Asp409, and Arp423), and sodium binding sites (Asp163, Asp185, Asp196, Asp202, and Ile203) were conserved sequences for most shuffled alphaamylases, except shuffled 1b9a, which mutations were occured in conserved regions (H237P, M258N, and F259V) and at $1^{\text {st }}$ calcium binding site (H237P) (Table 5 and 6, Figure 34). These conserved regions were same as other B. licheniformis alphaamylase (Machius et al., 1998b). The calcium ions is important for stability of alphaamylase, thus mutation in calcium binding site of shuffled alpha-amylase no. 1b9a may be decreased or increased the stability. The alteration of amino acids (shuffled no. 1b9a and no. 2a11h) in conserved regions could be changed in catalytic and substrate binding site of alpha-amylase (Kuriki and Imanaka, 1999). The nearly mutation points to conserved regions could be reduced the activity of alpha-amylase by changing in hydrogen bond network of amino acid complex at active site (Nielsen et al., 1999). These reasons confirmed the reduction of activity in shuffled alpha-amylase no. 9 d 7 g (K251E) and no. 2e2a (T252M), which were $30 \%$ and $67 \%$ relative activity,
respectively. Moreover, the previous report suggested that the mutation in domain B made substrate specificity and stability changed in among the alpha-amylase (Svensson, 1994). The mutation in this region was found in shuffled alpha-amylase no. 2a11h, 2e2a, 2d11d, and 2e5e (Table 6).

Phylogenic tree of complete amino acid sequences of shuffled alphaamylases was analyzed by vector NTI software as shown in Figure 32. The analysis was based on mature amino acid sequence of alpha-amylases. The Bacillus signal peptide and multiple histidine sequences were deleted to avoid the mistake of relation on phylogenic tree analysis. The results showed that the sequences of shuffled alphaamylase no. 1 b 8 b was similar to rpFL13 or rpFL13. The 4 shuffled alpha-amylases from rpET-SH library (SHM43, SHM154, SHM197, and SHM197) had sequences same as rpFL8785 or rpET8785 since the diversity was not detected among these shuffled alpha-amylases. This was one possible reason that made unsuccessful screening of rpET-SH library. The sequences of shuffled alpha-amylases (no. 1b9a, $2 \mathrm{e} 2 \mathrm{a}, 9 \mathrm{~g} 7 \mathrm{~d}, 2 \mathrm{~b} 7 \mathrm{~g}, 1 \mathrm{c} 5 \mathrm{~b}$, and 7 c 12 h ) were not closely related to rpFL 13 or rpFL8785 recombinant alpha-amylase, especially shuffled no. 1b9a, 2e2a, 9 g 7 d and 2 b 7 g . They had high evolution of amino acid seqences from others. Sequences no. 2d11h, 7b3a had closely related to rpFL8785.

Table 5. The overall structure of recombinant alpha-amylases by based on well
known alpha-amylase.

| Characterization | Position of amino acid | Details |
| :---: | :---: | :---: |
| Alpha-amylase | 4-485 |  |
| Catalytic domain | 9-379 |  |
| Domain A | 3-111, 207-384 |  |
| Domain B | 112-206 |  |
| Domain C | 385-482 |  |
| $1{ }^{\text {st }}$ conserved region | 102-107 | (102-DVVINH-107) |
| $2^{\text {nd }}$ conserved region | 226-239 | (226-QLDGFRLDAVKHIK-239) |
| $3{ }^{\text {rd }}$ conserved region | 256-267 | (256-KEMFTVAEYWQN-267) |
| $4^{\text {th }}$ conserved region | 325-333 | (325-FVDNHDTQP-333) |
| $1{ }^{\text {st }}$ active site | 233 | D, in $2^{\text {nd }}$ conserved region |
| $2^{\text {nd }}$ active site | 257 | E , in $3{ }^{\text {rd }}$ conserved region |
| $3{ }^{\text {rd }}$ active site | 330 | D, in $4^{\text {th }}$ conserved region |
| Beta sheet 1 | 9-11 | 9-LMQ-11 |
| Alpha helix 1 | 23-35 | 23-HWKRLQNDSAYLA-35 |
| Beta sheet 2 | 41-43 | 41-AVW-43 |
| Alpha helix 2 | 83-95 | 83-GELQSAIKSLHSR-95 |
| Beta sheet 3 | 98-103 | 98-NVYGDV-103 |
| Alpha helix 3 | 208-225 | 208-PDVAAEIKRWGTWYANEL- |
|  |  | 225 |
| - Beta sheet 4 | 229-232 | 229-GFRL-232 |
| Ën Alpha helix 4 | 240-252 | 240-SFLRDWVNHVRE-252 |
| - Beta sheet 5 | 259-262 | 259-FTVAEYWQN-262 |
| Alpha helix 5 | 269-279 | 269-LGALENYLNKT-279 |
| Beta sheet 6 | 284-286 | 284-SVF-286 |
| Alpha helix 6 | 288-299 | 288-VPLHYQFHAAST-299 |
| Beta sheet 7 | 322-325 | 322-AVT-325 |
| Alpha helix 7 | 346-357 | 346-KLPAYAFILTRE-357 |
| Beta sheet 8 | 360-364 | 360-YPQVF-364 |
| . | 385-395 | 385-KIEPILKARKQ-395 |
| $1^{\text {st }}$ calcium binding site $2^{\text {nd }}$ calcium binding site $3^{\text {rd }}$ calcium binding site sodium binding site | $\begin{aligned} & 106,196,202,237 \\ & 163,183,185,294,206 \\ & 302,304,408,409,432 \\ & 163,185,196,202,203 \end{aligned}$ | $\begin{aligned} & \mathrm{N}, \mathrm{D}, \mathrm{D}, \mathrm{H} \\ & \mathrm{D}, \mathrm{~A}, \mathrm{D}, \mathrm{D}, \mathrm{D} \\ & \mathrm{G}, \mathrm{Y}, \mathrm{H}, \mathrm{D}, \mathrm{D} \\ & \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{I} \end{aligned}$ |



Figure 32. Phylogenic tree of shuffled alpha-amylases.

The evolution of amino acid sequences were created by DNA shuffling and error prone PCR in gene level. Alteration of new amino acid sequences were occurred by replacing with nonpolar to polar, neutral to acidic, basic to strong basic, strong basic to weaker basic, acidic to neutral, or by changing from basic to acidic amino acid. One possibility of evolution level was very high in shuffled alpha-amylase no. $1 \mathrm{~b} 9 \mathrm{a}, 2 \mathrm{e} 2 \mathrm{a}$, and 9 g 7 d because of mutation in conserved region. Alpha-amylase family, mostly, has four conserved regions that spontaneous mutation is not often occurred by natural evolution. These regions have similar amino acid sequence among each species of microorganism sourece. Three conserved regions contain conserved amino acid involved in the active site of alpha-amylase that possibly changed in properties if mutation occurred. Shuffled no.1b9a showed three mutation points in two conserved
regions at position 237, 258, and 259 (Figure 33). Moreover, the position at 237 was the binding site of $1^{\text {st }}$ calcium. The replacement of histidine with proline likely changed the bonding between protein and ions. Shuffled alpha-amylase no.2e2a and no. 9 d 7 g showed one mutation point in conserved region at postion 252 and 251, respectively. The basic amino acid (K) was replaced by acidic amino acid (E) in shuffled alpha-amylase no. 9 g 7 d , showing high evolution in genetic level as same as replacement of theronin (polar and neutral amino acid) with metionine (non polar and neutral amino acid). Shuffled no. 2a11h had 6 mutation points in amino acid sequence. The mutation at site 263 was occurred in conserved region. Moreover, DNA shuffling created terminated codon that made this shuffled enzyme was not active (Figure 34). Shuffled alpha-amylase no. 2a11h, 2b8b, and 4d2d showed successfully evolution by DNA shuffling. These enzymes contained shuffled amino acids between alphaamylase rpFL13 and rpFL8785. Shuffled alpha-amylase no. 2 b 8 b showed two amino acids (Asparagine (N) and leucine (L)) from recombinat alpha-amylase DSM 8785 at position 6 and 136 whereas two amino aicds at position 240 (leucine (L)) and 320 (alanine (A)) showed sequences from recombinant alpha-amylase DSM13. The mutation outside the acitive site was studied by previous report. The mutation at N106D, L272D, L272H, and Y292K changed in stability. It was difficult to know whether the changes were due to increase or decrease stability (Nielsen et al., 1999). The summarized informations of evolution of amino acid sequence by DNA shuffling technology was showen in Table 5 and 6.

The directed evolution of recombinant alpha-amylases from B. licheniformis DSM13 and DSM8785 created diversity in nucleotide and amino acid sequences by error prone PCR and by DNA shuffling technique. However, the high throughput
sceening could not detected the expected property of shuffled enzymes. The effects of each mutation point on sequences should take more attention on the alteration of property of shuffled alpha-amylase in further. This study will be the principle knowledges for development of alpha-amylase property by other methods or by DNA shuffling. Moreover, the method of DNA shuffling should be developed or modified to create the large diveristity of gene sequnences, resulting in the higher chance to observe improvement of properties. Many reports required the screening of variants enzymes, which were created by error prone PCR. Then, the selected gene was act as gene template for second delelopment of gene by DNA shuffling (Bessler et al., 2003; Parikh and Matsumura, 2005; Verhaert et al., 2002).

The disadvantage of whole gene mutagenesis is the requirement of screening method, which are more sensitive, precise, broder in range, and more round of evolution (Parikh and Matsumura, 2005). The development of enzymes properties is not required only one method but, some time, the recombination of various methods should be taken. Moreover, the desired activity should be able to screen by high throughput. The enzyme is over-expressed in E. coli, and substrates are available (Parikh and Matsumura, 2005). Therefore, the development of mutagenesis methods and high throughput screening are recommended to create new property of proteins.

Table 6. Summary of amino acid sequences from two libraries.

| Mutants | Summarized details | Mutation or shuffled amino acid | \%Relative activity |
| :---: | :---: | :---: | :---: |
| rpET-SH library | All alpha-amylases in this library had Bacillus signal peptide at N -terminal and 6 -histidine sequence at C -terminus. The expression for screening was done by using E.coli BL21 (DE3) as host cell under IPTG induction |  |  |
| SHM43 | Completely sequences were same as rpET8785. | None | $100 \%$ <br> relative <br> activity to |
| SHM154 |  | None |  |
| SHM199 |  | None |  |
| SHM197 | One mutation was in $\quad$ A--> VBacillus signal peptide.Completely sequences weresame as rpET8785 |  | rpET8785 <br> activity |
| rpFL-SH library | All alpha-amylases were fuse with E.coli signal peptid at Nterminus. Sequence did not have histidine sequence. The expression for screening was done by using E.coli TOP10 as host cell without IPTG induction. |  |  |
| 1b8b <br> (complete sequence) | Sequence was same as rpFL13 |  | $\begin{aligned} & 100 \% \text { to } \\ & \text { rpFL13 } \end{aligned}$ |
| 1b9a | 4 mutation points | N6 (rpFL8785) | 70\% to |
| (complete sequence) | 4 shuffled amino acids from | L136 (rpFL8785) | rpFL8785 |
|  | rpFL8785 | H237P |  |
|  |  | F240 (rpFL8785) |  |
|  |  | N248K |  |
|  |  | M258N |  |
|  |  | F254V |  |
|  |  | S322 (rpFL8785) |  |

Table 6. (Continued).

| Mutants | Summarized details | Mutation or shuffled amino acid | \%Relative activity |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1 \mathrm{c} 5 \mathrm{~b} \\ & \text { (complete sequence) } \end{aligned}$ | 2 mutation points Sequence was same as rpFL8785 | $\begin{aligned} & \text { N6 (rpFL8785) } \\ & \text { Q20R } \\ & \text { L136 (rpFL8785) } \\ & \text { N190I } \\ & \text { F240 (rpFL8785) } \\ & \text { S322 (rpFL8785) } \end{aligned}$ | $65 \%$ to rpFL8785 |
| $2 \mathrm{~b} 7 \mathrm{~g}$ <br> (complete sequence) | 3 mutation points Sequence was same as rpFL8785 | N6 (rpFL8785) H70R L136 (rpFL8785) F240 (rpFL8785) S241F S322 (rpFL8785) H473R | $\begin{aligned} & 100 \% \text { to } \\ & 8785 \end{aligned}$ |
| 2b8b <br> (complete sequence) | 1 mutation point Sequence had shuffled amino acids between rpFL13 (2 points) and rpFL8785 (2 points) | $\begin{aligned} & \text { N6 (rpFL8785) } \\ & \text { L136 (rpFL8785) } \\ & \text { S150N } \\ & \text { L240 (rpFL3) } \\ & \text { A322 (rpFL13) } \end{aligned}$ | $95 \%$ to 8785 |
| 2d11h <br> (complete sequence) | Sequences was same as rpFL8785 | None | $100 \%$ to rpFL8785 |
| $2 \mathrm{e} 2 \mathrm{a}$ <br> (complete sequence) | 3 mutation points Sequence was same as rpFL8785 | N6 (rpFL8785) L136 (rpFL8785) D168G F240 (rpFL8785) S241F T254M S322 (rpFL8785) | $\begin{aligned} & 67 \% \text { to } \\ & \text { rpFL8785 } \end{aligned}$ |

Table 6. (Continued).

| Mutants | Summarized details | Mutation or shuffled amino acid | \%Relative activity |
| :---: | :---: | :---: | :---: |
| 7b3a <br> (complete sequence) | Sequences was same as rpFL8785 |  | $\begin{aligned} & 100 \% \text { to } \\ & \text { rpFL8785 } \end{aligned}$ |
| 7c4h <br> (complete sequence) | Sequences was same as rpFL8785 1 mutation point | $\begin{aligned} & \text { N6 (rpFL8785) } \\ & \text { L136 (rpFL8785) } \\ & \text { F or L240S } \\ & \text { S322 (rpFL8785) } \end{aligned}$ | $\begin{aligned} & 90 \% \text { to } \\ & \text { rpFL8785 } \end{aligned}$ |
| $\begin{aligned} & \text { 7c12h } \\ & \text { (complete sequence) } \end{aligned}$ | 1 mutation point Sequence was same as rpFL8785 | $\begin{aligned} & \text { N6 (rpFL8785) } \\ & \text { L136 (rpFL8785) } \\ & \text { R216K } \\ & \text { F240 (rpFL8785) } \\ & \text { S(322) (rpFL8785) } \end{aligned}$ | $75 \%$ to rpFL8785 |
| $\begin{aligned} & 9 \mathrm{~g} 7 \mathrm{~d} \\ & \text { (complete sequence) } \end{aligned}$ | 4 mutation points <br> Sequence was same as rpFL8785 | A3E L5I N6 (rpFL8785) L136 (rpFL8785) F240 (rpFL8785) K253E S322 (rpFL8785) N457I | 30\% activtity |
| 2a11h (none complete sequence) | Partial sequence had shuffled amino acids between rpFL13 (one point) and rpFL8785 (one point) 6 mutation points | K6 (rpFL13) S31A F69S Lor R136P W265G H283L T299S S322 (rpFL8785) Stop codon (416) | 0\% activity |

Table 6. (Continued).

| Mutants | Summarized details | Mutation or shuffled amino acid | \%Relative activity |
| :---: | :---: | :---: | :---: |
| 4d2d (none complete sequence) | Partial sequence had shuffled amino acids between rpFL13 (two points) and rpFL8785 (two points) | $\begin{aligned} & \text { N6 (rpFL8785) } \\ & \text { R136 (rpFL13) } \\ & \text { F240 (rpFL8785) } \\ & \text { A322 (rpFL13) } \end{aligned}$ | $80 \%$ to <br> rpFL8785 |
| 2e5e (none complete sequence) | Partial sequence was same as rpFL8785 | $\begin{aligned} & \text { N6 (rpFL8785) } \\ & \text { L136 (rpFL8785) } \end{aligned}$ | $\begin{aligned} & 89 \% \text { to } \\ & \text { rpFL8785 } \end{aligned}$ |
| 2d11d (none complete sequence) | Sequence was same as rpFL8785. <br> Two mutation points | N6 (rpFL8785) L136 (rpFL8785) Y177H D228G F240 (rpFL8785) S322 (rpFL8785) | $75 \%$ to rpFL8785 |
| 2a2b <br> (none complete sequence) | Partial sequence was same as rpFL8785 <br> One mutation point | $\begin{aligned} & \hline \text { N6 (rpFL8785) } \\ & \text { L136 (rpFL8785) } \\ & \text { V247G } \\ & \text { S322 (rpFL8785) } \end{aligned}$ | $55 \%$ to rpFL8785 |
| 1c12b <br> (none complete sequence) | Partial sequence was same as rpFL8785 Two mutation points | N6 (rpFL8785) L136 (rpFL8785) N190H G192F F240 (rpFL8785) S322 (rpFL8785) | 66\% to <br> rpFL8785 |

Table 7. Summary of alteration of amino acids creating by DNA shuffling.

| Site | Amino acid alteration | Evolution details | Shuffled no. | $\%$ <br> Relative activity |
| :---: | :---: | :---: | :---: | :---: |
| 3 | A1E | Mutation was in domain A. Replaced by polar and acidic amino acid (E) | 9g7d | 30 |
| 5 | L3I | Mutation was in domain A. Replaced by same property of amino acid | 9g7d | 30 |
| 6 | $\begin{aligned} & \mathrm{K}(\text { (DSM13) } \\ & \mathrm{N}(\text { (DSM8785) } \end{aligned}$ | Shuffled amino acid between recombinant alpha-amylase $B$. licheniformis DSM13 and DSM 8785. This shuffled site was in domainA | $\begin{aligned} & \text { rpFL13 } \\ & \text { 1b8b } \\ & 2 \mathrm{a} 11 \mathrm{~h} \\ & \text { rpET13 } \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 0 \\ & 100 \end{aligned}$ |
| 22 | Q22R | Mutation was near ${ }^{\text {st }}$ alpha sheet in domain A <br> Replaced by polar and strong amino acid | 1c5b | 65 |
| 31 | S31A | Mutation was in $1^{\text {st }}$ alpha sheet in damain A. <br> Replaced by nonpolar and neutral amino acid | 4d2d | 80 |
| 69 | F69S | Mutation was in domain A. Replaced by polar and neutral amino acid | 2a11h | 0 |
| 70 | H70R | Mutation was in domain A. Replaced by polar and stronger basic amino acid (R) | 2b7g | 100 |
| 72 | K72Q | Mutation was in domain A. Replaced by polar and neutral amino acid | 2e2a | 67 |
| 136 | R (DSM13) | Shuffled amino acid between recombinant alpha-amylase $B$. | $\begin{aligned} & \text { rpFL13, } \\ & \text { 1b8b, } \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |
|  | L (DSM 8785) |  | 4d2d, | 80 |
|  | L or R 134P | 8785. This shuffled site was in domain B. <br> Replaced by nonpolar and neutral amino acid (P) | rpET13 <br> 2a11h (134P) | $\begin{aligned} & 100 \\ & 0 \end{aligned}$ |

Table 7. (Continued).

| Site | Amino acid alteration | Evolution details | Shuffled no. | $\%$ <br> Relative activity |
| :---: | :---: | :---: | :---: | :---: |
| 150 | S150N | Mutation was in domain B Replaced by bigger size of amino acid | 2b8b | 95 |
| 168 | D168G | Mutation was in domain B Replaced by nonpolar and neutral amino acid | 2e2a | 67 |
| 177 | Y177H | Mutaiton was in domain B <br> Replaced by polar and weakly basic amino acid | 2d11d | 100 |
| 180 | Q180S | Mutation was in domain B <br> Replaced by polar and neutral amino acid | 2 e e | 89 |
| 190 | N190I | Mutation was in domain B Replaced by nonpolar and neutral amino acid | 1c5b | 65 |
| 216 | R216K | Mutation was in $3^{\text {rd }}$ alpha sheet of domain A. Replaced by polar and weaker basic amino acid | 7c12h | 75 |
| 237 | H237P | Mutation was occurred in conserved region (226-QLDFRVDAVKHIK239). This conserved region is in between $3^{\text {rd }}$ and $4^{\text {th }}$ alpha sheet and it contain $1^{\text {st }}$ amino acid ( $D$; aspartic acid) of active site (at site 232). This site involved in $1^{\text {st }} \mathrm{Ca}$ binding site. Replaced by nonpolar amino acid | 1b9a | 70 |

Table 7. (Continued).

| Site | Amino acid alteration | Evolution details | Shuffled no. | $\%$ <br> Relative activity |
| :---: | :---: | :---: | :---: | :---: |
| 240 | L (DSM13) | Shuffled amino acid between | L (rpFL13, | 100 |
|  | F (DSM | recombinant alpha-amylase $B$. | 1b8b, | 100 |
|  | 8785) | licheniformis DSM13 and DSM | $2 \mathrm{~b} 8 \mathrm{~b}$ | 95 |
|  | L or | 8785. This shuffled site was in $4^{\text {th }}$ | rpET13) | 100 |
|  | F(240) S | alpha sheet.One mutation was in this site ( 7 c 4 h ) | 7c4h | 90 |
| 241 | S239F | Mutaion was in $4^{\text {th }}$ alpha sheet in | $2 \mathrm{~b} 7 \mathrm{~g}$ | 100 |
|  |  | domain A . | 2e2a |  |
|  |  | Replaced by nonpolar, neutral and bigger size of amino acid |  |  |
| 247 | V245G | Mutaion was in $4^{\text {th }}$ alpha sheet in domain A . | 2a2b | 55 |
|  |  | Replaced by nonpolar and neutral amino acid |  |  |
| 248 | N246K | Mutation was in $4^{\text {th }}$ alpha sheet in domain A . | 1b9a | 70 |
|  |  | Replaced by polar and basic amino acid |  |  |
| 253-255 | K253E | Mutations were in $4^{\text {th }}$ alpha sheet of | 9d7g (K251E) | 30 |
|  | T255M | domain A , and sites were nearly to conserved region. | 2e2a (T252M) | 67 |
|  |  | Basicamino acid (K) was replaced by acidic amino acid (E). Replaced by neutral and non polar amino acid (M) at site 254 |  |  |

Table 7. (Continued).

| Site | Amino acid alteration | Evolution details | Shuffled no. | \% <br> Relative activity |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 258 \\ & 259 \end{aligned}$ | $\begin{aligned} & \text { M258N } \\ & \text { F259V } \end{aligned}$ | These points were in conserved region (256-KEMFTVAEY-267). This conserved region was closely to $3^{\text {rd }}$ alpha sheet containing $2^{\text {nd }}$ amino acid(E; glutamic acid) of active site (at site 257). Replaced by polar and neutral amino acid ( N ) and replaced with smaller size of amino acid (V) | 1b9a | 70 |
| 265 | W265G | Mutation was in conserved region (256KEMFTVAE Y-267). Replaced by nonpolar and neutral amino acid | 2a11h | 0 |
| 274 | N274T | Mutation was in domain A. Replaced by polar and neutral amino acid | 2a11h | 0 |
| 299 | T299S | Mutation was in $6^{\text {th }}$ of alpha sheet of domain A. Replaced by polar and neutral amino acid | 2a11h | 0 |
| 315 | V315D | Mutation was in $7^{\text {th }}$ of alpha sheet of domain A. Replaced by polar and acidic amino acid | 4d2d | 80 |
| 322 | $\begin{aligned} & \hline \text { A (DSM13) } \\ & \text { S (DSM8785) } \end{aligned}$ | Nucleotide base shuffling between recombinant alpha-amylase B. licheniformis DSM13 and DSM 8785. This site was in $7^{\text {th }}$ beta sheet of domain A | $\begin{aligned} & \text { rpFL13, } \\ & 1 \mathrm{~b} 8 \mathrm{~b}, \\ & 2 \mathrm{~b} 8 \mathrm{~b}, \\ & 4 \mathrm{~d} 2 \mathrm{~d}, \\ & \text { rpET13 } \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 95 \\ & 80 \\ & 100 \end{aligned}$ |
| 416 | E to stop codon | Mutation was in domain C. <br> Stop codon (TAA) was created by mutation. | 2a11h | 0 |
| 457 | N457I | Mutation was in domain C <br> Replaced by neutral and nonpolar amino acid | 9g7d | 30 |
| 473 | H473R | Mutation was in domain C <br> Replaced by polar and stronger basic amino acid | 2b7g | 100 |



Figure 33. Secondary structure of shuffled alpha-amylases.
SHM43, SHM154, SHM197, and SHM199 were samples from rpET-SH library.
The rest were samples from rpFL-SH library. The rpFL13 and rpET13 were recombinant alpha-amylase DSM13 in pFLAG-CTS and pET21d (+) system, respectively. The rpET8785 and rpFL8785 were recombinant alpha-amylase DSM8785 in pFLAG-CTS and pET21d (+) system, respectively. Symbols $\alpha$ or C \& ; alpha-helix, $\beta$; beta-sheet, TT; turn helix. Red color; same sequences, Yellow color; different sequences. The overall structure was shown in Table 5.

| rpFL13 | 170 | $\beta 5$ |  | $\beta 7$ |  | 220 | $\underset{\sim 1}{\eta 1} \xrightarrow{\beta 8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 180 | 190 | 200 | 210 |  | Cel |  |

rpFL13 DWDESRKINRIYKFQGKAWDWEVSNENGNYDYIMYADIDYDHPDVAAEIRRWGIWYANEIQIDG
rpFL8785
1b8b
1b9a
1c5b
2 b 7 g
2b8b
2e2a Protein
2d11h
7 b 3 a
7c4h
7 c 12 h
9g7d
rpET13
rpET8785
SHM4 3
SHM154
SHM197
SHM199
consensus>50

| DWD | Es | ENGNYDYLMYADIDYDHPDVAAEIRR | WGTWYANELQIDG |
| :---: | :---: | :---: | :---: |
| D | ESRKINRIYKFQGKA WDWEVS | E1 | NGTWYANEIQIDC |
| D | ESRKINRIYKFQGKAWDWEVS | E | TGTWYANELQI |
| DW | ESRKINRIYKFQGKAWDWEVS | ENGNYDYLMYADIDYDHPD | NGTWYANEIQID |
| DWD | ESRKINRIYKFQGKAWDWEVS | E | NGTWYANEI¢ |
| D | ESRKINRIYKFQGKA WDWEVS | ENGNYDYLMYADIDYDHPDVA | GGTWYANELQL |
| DK | ESRKINRIYKFQGKAWDWEVS | ENGNYDYLMYADIDYDHPDVAAEI | WGTWYANELQLD |
| D | ESRKINRIYKFQGKAWDWEVS | ENGNYDYLMYADIDYD | GTWYANELQ |
| D | ESRKINRIYKFQGKA WDWEV | ENGNYDYLMYADIDYDH | WGTWY ANELQLD |
| DK | ESRKINRIYKFQGKAWDWEVS | ENGNYDYLMYADIDYDHPDVAAEI | WGTWY ANELQLD |
| D | ESRKINRIYKFQGKAWDWEVS | ENGNYDYIMYADIDYD | TWYANELQ |
| DV | ESRKINRIYKFQGKAWDWEVS | ENGNYDYLMYADIDYDHPDVAAEI | WGTWYANELQID |
| D | ESRKINRIYKFQGKA WDWEV | ENGNYD | WGTWYANELQI |
| DV | ESRKINRIYKFQGKAWDWEVS | ENGNYDYLMYADIDYDHPDVAAEI | WGTWYANELQLD |
| DW | ESRKINRIYKFQGKA WDWEVS | ENGNYDYIMYADIDYDHPDVAAEI | WGTWYANELQIDG |
|  | ESRKINRIYKFQGKAWDWEVS | EN | WGTWY ANELQLDC |
| D | ESRKINRIYKFQGKA WDWEVS | ENGNYDYLMYADIDYDHPDVAAEI | WGTWYANELQLDG |
| D1 | ESRKINRIYKFQGKAWDWE | SNGNYDYLMYADIDYDHPDVAAET | GTWYANELQIDG |
|  |  |  |  |


 rpFL8785
1b8b
1b9a
1c5b
2 b 7 g
2b8b
2e2a Protein
2d11 $\bar{h}$
7b3a
7 c 4 h
7c12h
9g7d
rpET13
rpET8785
SHM43
SHM154
SHM197
SHM199
consensus $>50$


Figure 33. (Continued).
rpFL13
rpFL13
rpFL8785
1 b 8 b
1b9a
1c5b
2b7g
2 e 2 a Protein
2d11h
7b3a
7 c 4 h
7 c 12 h
9g7d
rpET13
SHM4 3
SHM4 3
SHM1 54
SHM154
SHM197
SHM199
consensus>50


SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKOYAYGAOFDYFDFEDVGWTREGDGB
SGYPQVFYGDMYGIKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDEHDIVGWTREGDSSV
SGYPQVFYGDNYGIKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQHDYFDFHDIVGWTREGDSS SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDNYGIKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHFDIVGWTREGDSSV SGYPQVFYGDNYGTKGDSQREIPALKAKIEPILKARKQYAYGAQHDYFDEHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGYKGDSQREIPALKHKIEPILKARKQYAYGAQHDYFDEHDIVGWTREGDSSV SGYPQVFYGDMYGIKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDNYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPIIKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSV SGYPQVFYGDMYGTKGDSQREIPAIKHKIEPILKARKQYAYGAQHDYFDHEDIVGWTREGDSSV

ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITG RSEPVVINSEGWGEEH ANSGLAAIITDGPGGAKRMYVGRQNAGETWHDITG RSEPVVINSEGWGEFH VNGGSVSIYVQR
VNGGSVSIYVOR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQF ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEERVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQ1 ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQ ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITG ANSGLAAIITDGPGGAKRMYVGRQNAGETWHDITG GRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQE ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQR ANSGHAAIITDGPGGAKRMYVGRQNAGETWHDITG
ANSGIAAIITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIYVQE ANSGLAALITDGPGGAKRMYVGRQNAGETWHDITGZRSEPVVINSEGWGEFhVNGGSVSIYVQR

| rpFL13 | ID |
| :---: | :---: |
| rpFL8785 | $\underline{1}$ |
| 1b8b | $\underline{\square}$ |
| 1b9a | $\underline{1}$ |
| 1c5b | LD |
| 2 b 7 g | ID |
| 2b8b | ID |
| 2e2a_Protein | ID |
| 2d11/ | ID |
| 7 b 3 a | ID |
| 7c4h | ID |
| 7c12h | ID |
| $9 \mathrm{g7d}$ | $\underline{1}$ |
| rpET13 | TEHHHH |
| rpET8785 | IEHHHH |
| SHM43 | IEHHHHHH |
| SHM154 | T EHHHHH |
| SHM197 | IEHHHHH |
| SHM199 | IEHHHH |
| consensus>50 | L\# |

Figure 33. (Continued).
rpFL13
rpFL13
rpFL8785
4 d 2 d
2 a 11 h
2 e 5 e
2 d 11 d
2 a 2 b
1 c 12 b
consensus $>50$


rpFL13
rpFL13 rpFL8785
4 d 2 d
$2 e 5 e$
2d11d
2 a 2 b
1c12b

rpFL13
rpFL13
rpFL8785
4 d 2 d
2a11h
2d11d
2a2b
consensus>50


Figure 34. Secondary structure of non complete sequences of all shuffled alphaamylases from rpFL-SH library.

The rpFL13 and rpET13 were recombinant alpha-amylase DSM13 in pFLAGCTS and pET21d (+) system, respectively. The rpET8785 and rpFL8785 were recombinant alpha-amylase DSM8785 in pFLAG-CTS and pET21d (+) system, respectively. Symbols $\alpha$ or $\ell \ell \ell$; alpha-helix, $\beta$; beta-sheet, TT; turn helix. Red color; same sequences, Yellow color; different sequences.The overall structure was shown in Table 5.

rpFLI 3
rpFL13
rpFL8785
4 d 2 d
2a11h
2e5e
2d11d
2a2b
1c12b
consensus>50


KHKIEPILKARKQYAYEAQHDYEDHHDIVGWIREGDSSVANSGLAAIITDGPGGAKRMYVGRQN KHKIEPI LKARKQYAYGAQHDYDDHHDIVGWTREGDSSVANSGMAAIITDGPGGAKRMYVGRQN KHKIEPILKAREQYAYGAQHDYEDHHDIVGWTREGDSSVANSGLAAIITDGPGGAKRMYVGRQN KHKIEPILKARKQYAYGAQHDYEDHHDIVGWTR. GDSSVANSGMAAIITDGPGGAKRMYVGRQN KHKIEPILKAREQYAYGAQHDYEDHHDIVGWTREGDSSVAN SGLAAIITDGPGGAKRMYVGRQN KHKIEPILKARKQYAYGAQHDYEDHEDIVGWTPEGDSSVANSGLAAIITDGPGGAKRMYVGRQN KHKIEPILKAREQYAYGAQHDYEDHHDIVGWTREGDSSVANSGLAAIITDGPGGAKRMYVGRQN KHKIEPI LKARKQYAYGAQHDYFDHHDIVGWTREGDSSVANSGLAAIITDGPGGAKRMYVGRQE
KHKIEPILKARKQYAYGAQHDYFDHHDIVGWTREGDSSVANSGLAALITDGPGGAKRMYVGRQN
rpFL13
rpFL13
rpFL8785
4 d 2 d
2a11h
2e5e
2d11d
2a2b
1c12b
consensus $>50$


AGETWHDITGNRSEPVVINSECWGEFHVNGGSVS IYVQRLD AGETWHDITGNRSEPVVINSEEWGEFHVNGGSVS IYVQRLD AGETWHDITGNRSEPVVINSEEWGEFHVNGGSVS IYVQRLD AGETWHDITGNRSEPVVINSEGWGEFHVNGGSVS IYVQRLD AGETWHDITGNRSEPVVINSEGXXXXXXXXXXXXXXXXXXX
AGEKWHDITGNRSEPVVINSEGWGEFHVNGGSVS IYVQRXX AGETWHDITGNRSEPVVINSEEWGEFHVNGGSVS IYVQRLD AGETWHDITGNRSEPVVINSEGWGEFHXXXXXXXXXXXXXX AGETWIDITGNRSEPVVINSEGWGEFXXXXXXXXXXXXXXX AGEtWHDITGNRSEPVVINSEGWgefhvnggsvsiyvqrid

Figure 34. (Continued).

## CHAPTER VI

## CONCLUSIONS

1. Two recomninat alpha-amylases from B. licheniformis DSM13 and DSM8785 were over-expressed in bacterial expression system by using pET21d (+) or pFLAG-CTS expression vector, resulting in the secretion of alpha-amylases by unsign Bacillus signal peptide or E. coli OmpA signal peptide. Moreover, the efficiency of purification was achieved by using multiple histidine sequences.
2. The optimal temperature and optimal pH of alpha-amylases rpFL13-10xHis and rpFL8785-10xHis were $70^{\circ} \mathrm{C}$ and pH at 7 , repectively. The half life $\left(\mathrm{t}_{1 / 2}\right)$ of both recombinant alpha-amylase were 30 min at $60^{\circ} \mathrm{C}$ at pH 7 .
3. Both recombinant alpha-amylases rpFL13-10xHis and rpFL8785-10xHis were not calcium-dependent enzyme. However, the addition of calcium ions enhanced the activity and stability of enzymes.
4. Both recombinant alpha-amylases were good hydrolyzing enzymes by using cassava starch as substrate. The specific catalytic constants in the hydrolysis of cassava starch were higher than hydrolysis of soluble starch, which were 1.23 and 1.18 folds by using two recombinant alpha-amylases from rpFL13-10xHis and rpFL8785-10xHis, respectively.
5. The construction of shuffled alpha-amylase genes by DNA shuffling was successful to create the diversity of alpha-amylase genes. The shuffled no. 2 b 8 b , 2 a 11 h , and 4 d 2 d contained shuffled amino acid sequences between both
B. licheniformis alpha-amylase DSM13 and DSM 8785. The mutagenesis of shuffled no. 1b9a was occurred in conserved regions and calcium binding site, which involed in catalytic activity of alpha-amylase.
6. The screening under six different conditions were done by high throughput. However, the expected property of shuffled alpha-amylase was not detected.

## REFERENCES

Arnold, F. H. and Moore, J. C. (1997). Optimizing industrial enzymes by directed evolution. Adv Biochem Eng Biotechnol. 58: 1-14.

Arnold, F. H. and Volkov, A. A. (1999). Directed evolution of biocatalysts. Curr Opin Chem Biol. 3(1): 54-59.

Aubrey, J., Michael, L., Torben, P. F., Tina, S., Paul, H., Alan, S., Feng, X., Jack, B. N. and R.C., J. (2008). Directed evolution of a maltogenic -amylase from Bacillus sp. TS-25. J Biotechnol. 30: 325-333.

Belin, C., Franco, P.-O. d., Bourbousse, C., Chaignepain, S., Schmitter, J.-M., Vavasseur, A., Giraudat, J., Barbier-Brygoo, H. and Thomine, S. (2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells1. Plant Physiol. 141: 1316-1327.

Bessler, C., Schmitt, J., Maurer, K. H. and Schmid, R. D. (2003). Directed evolution of a bacterial alpha-amylase: toward enhanced pH -performance and higher specific activity. Protein Sci. 12(10): 2141-2149.

Bravo Rodriguez, V., Jurado Alameda, E., Martinez Gallegos, J. F., Reyes Requena, A. and Garcia Lopez, A. I. (2006). Enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis. Biotechnol Prog. . 22: 718-722.

Chen, K. and Arnold, F. H. (1993). Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA. 90(12): 5618-5622.

Chiang, J., Alter, J. and Sternberg-Elkhart, M. (1979). Purification and characterization of a thermostable a-amylase from Bacillus licheniformis. Die Starke. 31: 86-92.

Crameri, A., Dawes, G., Rodriguez, E., Jr., Silver, S. and Stemmer, W. P. (1997). Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol. 15(5): 436-438.

Fukuda, K., Jensen, M. H., Haser, R., Aghajari, N. and Svensson, B. (2005). Biased mutagenesis in the N -terminal region by degenerate oligonucleotide gene shuffling enhances secretory expression of barley \{alpha\}-amylase 2 in yeast. Protein Engineering, Design and Selection. 18(11): 515-526.

Hmidet, N., Bayoudh, A., Berrin, J. G., Kanoun, S., Juge, N. and Nasri, M. (2008). Purification and biochemical characterization of a novel alpha-amylase from Bacillus licheniformis NH1: cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochemistry. 43: 499-510.
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA.
http://www1.eere.energy.gov/biomass/images/graph polymeric structure_glucose.gif.
http://www.scripps.edu/~cdputnam/protcalc.html.
http://www.starch.dk/isi/starch/starch.htm.
Kelly, R. M., Leemhuis, H. and Dijkhuizen, L. (2007). Conversion of a cyclodextrin glucanotransferase into an alpha-amylase: assessment of directed evolution strategies. Biochemistry. 39: 11216-11222.

Khajeh, k., Shokri, M. M., Asghari, S. M. and Moradian, F. (2006). Acidic and proteolytic digestion of alpha-amylase from Bacillus licheniformis and Bacillus amyloliquefaciens: Stability and flexibility analysis. Enzyme Microb Technol. 38: 422-428.

Kilic, D. and Ozbek, B. (2004). Alpha-amylase inactivation by temperature during starch hydrolysis. Process Biochemistry. 39: 1137-1144.

Kim, I. C., Cha, J. H., Kim, J. R., Jang, S. Y., Seo, B. C., Cheong, T. K., Lee, D. S., Choi, Y. D. and Park, K. H. (1992). Catalytic properties of the cloned amylase from Bacillus licheniformis. J Biol Chem. 267(31): 22108-22114.

Kim, Y. W., Choi, J. H., Kim, J. W., Park, C., Kim, J. W., Cha, H., Lee, S. B., Oh, B. H., Moon, T. W. and Park, K. H. (2003). Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl Environ Microbiol. 69(8): 4866-4874.

Kindle, K. L. (1983). Characterization and production of thermostable alpha-amylase. Appl Biochem Biotechnol. 8: 153-170.

Krammer, B., Rumbold, K., Tschemmernegg, M., Pochlauer, P. and Schwab, H. (2007). A novel screening assay for hydroxynitrile lyases suitable for highthroughput screening. J Biotechnol. 129(1): 151-161.

Krishnan, T. and Chandra, A. (1983). Purification and characterization of a-amylase from Bacillus licheniformis CUMC305. Appl Environ Microbiol. 46: 430437.

Kuchner, O. and Arnold, F. H. (1997). Directed evolution of enzyme catalysts. Trends Biotechnol. 15(12): 523-530.

Kuriki, T. and Imanaka, T. (1999). The concept of the alpha-amylase family: structure similarity and common catalytic mechanism. J Biosci Bioeng. 87: 557-565.

Kurtzman, A. L., Govindarajan, S., Vahle, K., Jones, J. T., Heinrichs, V. and Patten, P. A. (2001). Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr Opin Biotechnol. 12(4): 361-370.

Liu, Y.-h., Lu, H.-p., Li, Y., Yin, x.-b., wang, Y. and Gao, C. (2008). Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis. Appl Microbiol Biotechnol. 78: 85-94.

Lo, H.-F., Lin, L.-L., Chen, H.-L., Hsu, W.-H. and Chang, C.-T. (2001). Enzymic properties of a SDS-resistant Bacillus sp. TS-23 alpha-amylase produced by recombinant Escherichia coli. Process Biochemistry. 36: 743-750.

Lo, H. F., Chiang, W. Y., Chi, M. C., Hu, H. Y. and Lin, L. L. (2004). Site-directed mutagenesis of the conserved threonine, tryptophan, and lysine residues in the starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase. Curr Microbiol. 48: 280-284.

Lutz, S., Ostermeier, M. and Benkovic, S. J. (2001). Rapid generation of incremental truncation libraries for protein engineering using alpha-phosphothioate nucleotides. Nucleic Acids Res. 29(4): E16.

Maarel, v. M., J.E.C., Veen, v. B., Uitdehaag, J. C., Leemhuis, H. and dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol. 94: 137-155.

Machius, M., Declerck, N., Huber, R. and Wiegand, G. (1998a). Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of
the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure. 6(3): 281-292.

Machius, M., Declerck, N., Huber, R. and Wiegand, G. (1998b). Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure. 6: 281-292.

Machius, M., Wiegand, G. and Huber, R. (1995). Crystal structure of calciumdepleted Bacillus licheniformis alpha-amylase at 2.2 A resolution. J Mol Biol. 246(4): 545-559.

Moore, G. L., Maranas, C. D., Lutz, S. and Benkovic, S. J. (2001). Predicting crossover generation in DNA shuffling. Proc Natl Acad Sci USA. 98(6): 3226-3231.

Moore, J. C. and Arnold, F. H. (1996). Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol. 14(4): 458-467.

Moore, J. C., Jin, H. M., Kuchner, O. and Arnold, F. H. (1997). Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J Mol Biol. 272(3): 336-347.

Nielsen, J. E., Beier, L., Otzen, D., Borchert, T. V., Frantzen, H. B., Andersen, K. V. and Svendsen, A. (1999). Electrostatics in the active site of an alphaamylase. Eur J Biochem. 264(3): 816-824.

Nielsen, J. E. and Borchert, T. V. (2000). Protein engineering of bacterial alphaamylases. Biochim Biophys Acta. 1543(2): 253-274.

Ostermeier, M., Shim, J. H. and Benkovic, S. J. (1999). A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. 17(12): 1205-1209.

Parikh, M. R. and Matsumura, I. (2005). Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from betagalactosidase. J Mol Biol. 352(3): 621-628.

Powell, K. A., Ramer, S. W., Cardayre, S. B. d., Stemmer, W. P. C., Tobin, M. B., Longchamp, P. F. and Huisman, G. W. (2001). Directed evolution and biocatalysis. Angew Chem Int Ed Engl. 40: 3984-3959.

Priyadharshini, R. and Gunasekaran, P. (2007). site-deirect mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis. Biotechnology letters. 29: 1493-1499.

Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., de Leon, A. L., Xiang, H., Gusti, V., Clausen, I. G., Olsen, P. B., Rasmussen, M. D., Andersen, J. T., Jorgensen, P. L., Larsen, T. S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, S. D. and Berka, R. M. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 10: 134-152.

Ryu, D. D. and Nam, D. H. (2000). Recent progress in biomolecular engineering. Biotechnol Prog. 16(1): 2-16.

Saito, N. (1973). Thermophilic extracellular a-amylase from Bacillus licheniformis.
Arch Biochem Biophys. 155: 290-298.

Stemmer, W. P. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature. 370(6488): 389-391.

Strausberg, S. L., Alexander, P. A., Gallagher, D. T., Gilliland, G. L., Barnett, B. L. and Bryan, P. N. (1995). Directed evolution of a subtilisin with calciumindependent stability. Biotechnology (NY). 13(7): 669-673.

Suzuki, Y., Ito, N., Yuuki, T., Yamagata, H. and Udaka, S. (1989). Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 264(32): 18933-18938.

Svensson, B. (1994). protein engineering in the alpha-amylase famility: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol. 25: 141-157.
T.H., R., Tan, X., Frey, G., Callen, W., Cabell, M. and Lam, D. (2002). A Novel, high performance enzyme for starch liquefaction:discovery and optimization of a low pH, thermostable alpha-amylase J Biol Chem. 277: 26501-26507.
T.H., R., Tan, X., Frey, G., Callen, W., Cabell, M., Lam, D., Macomber, J., Short, J. M., Robertson, D. E. and Miller, C. (2002). A novel, high performance enzyme for starch liquefaction:discovery and optimization of a low pH , thermostable alpha-amylase. J Biol Chem. 277(29): 26501-26507.

Tolan, J. S. (1996). Industrial enzymology. : 327-338.
Vallee, B. L., Stein, E. A., Sumerwell, W. N. and Fischer, E. H. (1959). Metal content of alpha-amylases of various origins. J Biol Chem. 234: 2901-2905.

Verhaert, R. M., Beekwilder, J., Olsthoorn, R., van Duin, J. and Quax, W. J. (2002). Phage display selects for amylases with improved low pH starch-binding. $\mathbf{J}$ Biotechnol. 96: 103-112.

Violet, M. and Meunier, J. C. (1989). Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem J. 263(3): 665-670.

Whalen, R. G., Kaiwar, R., Soong, N. W. and Punnonen, J. (2001). DNA shuffling and vaccines. Curr Opin Mol Ther. 3(1): 31-36.

Wong, D. W., Balt, S. B., Lee, C. C. and Roberston, G. H. (2004). High-activity barley alpha-amylase by directed evolution. Protein journal. 23: 453-460.

Zhang, J. H., Dawes, G. and Stemmer, W. P. (1997). Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci USA. 94(9): 4504-4509.

Zhao, H. and Arnold, F. H. (1997). Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25(6): 1307-1308.

Zhao, H., Giver, L., Shao, Z., Affholter, J. A. and Arnold, F. H. (1998). Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol. 16(3): 258-261.

APPENDICS

## APPENDIX I <br> REAGENTS AND EQUPMENTSREAGENT

### 1.1 REAGENT

All chemicals were molecular grade or analytic grade.

1. Reagent for PCR amplification.

- 25 mM dNTP mix (New England BioLabs)
- 10X Pfu buffer (New England BioLabs)

2. Reagent for agarose gel electrophoresis

- Agarose low EEO. Molecular biology grade (Research organics)
- 25 bp DNA ladder (Invitrogen)
- 1X TAE Buffer
- $\quad 1 \mathrm{~Kb}$ Ladder marker DNA (Bio Lab)
- 6X Loading dye
- Staining solution; $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide in distilled water

3. Reagent for transformation

- Chemical competent cells
- Electrocompetent cells
- LB agar plate
- LB agar plus $1 \%(\mathrm{w} / \mathrm{v})$ soluble starch

4. Reagent for SDS-PAGE and Zymogram

- Protein sample buffer (see Appendix I)
- 30\% polyacylamide (BioRAD)
- $\quad 1.5$ M Tris-HCl pH 8.8
- $\quad 0.5 \mathrm{M}$ Tris-HCl pH 6.0.8
- $\quad 10 \%(\mathrm{w} / \mathrm{v})$ Amonium persulfate
- $\quad 10 \%(\mathrm{w} / \mathrm{v})$ Sodium dodecylsulfate
- $\quad 1 \%(\mathrm{w} / \mathrm{v})$ soluble starch


## 5.Enzymes

- $\quad$ Taq DNA polymerase (New England BioLabs)
- $\quad$ Pfu DNA polymerase (New England BioLabs)
- $\quad$ T4 ligase (New England BioLabs)
- $\quad$ HindIII (New England BioLabs)
- EcoRI (New England BioLabs)
- XhoI (New England BioLabs)
- $\quad$ NcoI (New England BioLabs)
- DNaseI (Fermentas)
6.Reagent for SDS-PAGE and Zymogram
- Protein sample buffer
- $30 \%$ polyacylamide (BioRAD)
- $\quad 1.5$ M Tris-HCl pH 8.8
- $\quad 0.5$ M Tris-HCl pH 6.8
- $10 \%$ Amonium persulfate
- $10 \%$ Sodium dodecylsulfate
7.Reagent for enzymes purification
- Ni-NTA resins (QIAGEN)
- Lysis buffer ( $50 \mathrm{mM} \mathrm{NaH} \mathrm{PO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}$ and 10 mM imidazole. pH 8.0)
- Wash buffer ( $50 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}$ and 40 mM imidazole. pH 8.0)
- Elution buffer ( $50 \mathrm{mM} \mathrm{NaH} \mathbf{N O}_{4}, 300 \mathrm{mM} \mathrm{NaCl}$ and 250 mM imidazole. pH 8.0 )
8.Reagent for analysis of enzyme activity
- 3,5-dinitrosalisylic acid (Sigma)
- 1 N NaOH (Sigma)
- $1 \%(\mathrm{w} / \mathrm{v})$ soluble starch
- $1 \%(\mathrm{w} / \mathrm{v})$ cassava starch


### 1.2 EQUIPMENTS

1. Thermomixer (Eppendorf)
2. BioRad Mini Protean II Cell (BioRAD)
3. Microtiter plate reader (Sunrise)
4. Electrotoporater (Eppendorf)
5. BioRAD Mini Protein II Cell (BioRAD)
6. pH meter (Hanna instrument)

## APPENDIX II STANDARD AND DATA

### 2.1 STANDARD CURVE FOR COLORIMETRIC METHOD



Figure 1A. Standard curve of glucose concentration analysis using 3,5dinitrosalisylic acid.


Figure 2A. Standard curve of soluble starch concentration analysis using iodine method.


Figure 3A. Standard curve of bovine serum albumin concentration analysis using Bradfords solution.

### 2.2 DATA

Table 1A. Activity of recombinant alpha-amylases on difference pH values by using $1 \%(\mathrm{w} / \mathrm{v})$ soluble starch as substrate (based on equal amount of protein).

| Buffer | $\begin{gathered} \mathrm{pH} \\ \text { values } \end{gathered}$ | Activity (U/ml) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Without $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ |  | With $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ |  |
|  |  | rpFL13 | rpFL8785 | rpFL13 | rpFL8785 |
| 50 mM Sodium acetate | 2 | 9.97 | 9.38 | 21.53 | 10.26 |
|  | 3 | 12.53 | 11.71 | 32.29 | 18.90 |
|  | 4 | 17.34 | 14.54 | 51.49 | 25.39 |
|  | 5 | 38.66 | 23.77 | 92.12 | 28.43 |
|  | 6 | 68.38 | 38.60 | 132.73 | 47.36 |
| 50 mM Potassium phosphate | 6 | 59.48 | 33.73 | 127.15 | 39.34 |
|  | 7 | 95.48 | 46.44 | 171.06 | 65.85 |
|  | 8 | 66.02 | 29.46 | 95.28 | 49.01 |
|  | 9 | 43.91 | 17.60 | 62.31 | 36.39 |
| 50 mM Glycine NaOH | 9 | 37.77 | 16.63 | 52.22 | 35.42 |
|  | 10 | 19.31 | 13.06 | 26.80 | 15.39 |
|  | 11 | 8.35 | 10.03 | 23.00 | 10.11 |
| Buffer | $\begin{gathered} \mathrm{pH} \\ \text { values } \end{gathered}$ | (\%) Relative activity |  |  |  |
|  |  | Without $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ |  | Without 2mM CaCl ${ }_{2}$ |  |
|  |  | rpFL13 | rpFL8785 | rpFL13 | rpFL8785 |
| 50 mM Sodium acetate | 2 | 10.44 | 9.82 | 22.55 | 10.75 |
|  | 3 | 13.13 | 12.26 | 33.82 | 19.80 |
|  | 4 | 18.16 | 15.23 | 53.92 | 26.59 |
|  | 5 | 40.49 | 24.89 | 96.48 | 29.77 |
|  | 6 | 71.62 | 40.43 | 139.01 | 49.60 |
| 50 mM Potassium | 6 | 62.29 | 35.33 | 133.17 | 41.20 |
| phosphate | 7 | 100.00 | 48.64 | 179.16 | 68.96 |
|  | 8 | 69.15 | 30.85 | 99.79 | 51.33 |
|  | 9 | 45.99 | 18.44 | 65.26 | 38.11 |
| 50 mM Glycine NaOH | 9 | 39.56 | 17.42 | 54.70 | 37.09 |
|  | 10 | 20.23 | 13.68 | 28.07 | 16.12 |
|  | 11 | 8.74 | 10.50 | 24.09 | 10.59 |

Table 2A. Percentage of remained activity of alpha-amylases on pH stability analysis for 30 min (based on equal amount of protein).

| Activity (U/ml) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enzymes | Initial | pH condition |  |  |  |  |  |  |
|  |  | 3 | 4 | 6 | 7 | 8 | 10 | 11 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis | 172.51 | 13.36 | 13.15 | 120.16 | 128.80 | 121.20 | 16.37 | 12.71 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| 2 mM CaCl 2 | 172.51 | 12.86 | 14.01 | 141.13 | 149.62 | 139.36 | 18.87 | 14.51 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis | 196.83 | 14.63 | 13.83 | 152.51 | 163.42 | 155.79 | 15.22 | 14.86 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| 2 mM CaCl 2 | 196.83 | 14.10 | 23.00 | 174.39 | 187.60 | 166.49 | 13.48 | 13.80 |
| (\%) Remained activity |  |  |  |  |  |  |  |  |
| Enzymes |  | pH condition |  |  |  |  |  |  |
|  | Initial | 3 | 4 | 6 | 7 | 8 | 10 | 11 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis | 100.0 | 7.7 | 7.6 | 69.7 | 74.7 | 70.3 | 9.5 | 7.4 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mM} \mathrm{CaCl2}$ | 100.0 | 7.5 | 8.1 | 81.8 | 86.7 | 80.8 | 10.9 | 8.4 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis | 100.0 | 7.4 | 7.0 | 77.5 | 83.0 | 79.1 | 7.7 | 7.6 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| 2 mM CaCl 2 | 100.0 | 7.2 | 11.7 | 88.6 | 95.3 | 84.6 | 6.8 | 7.0 |

Table 3A. Activity of recombinant alpha-amylases on different temperatures by using $1 \%(\mathrm{w} / \mathrm{v})$ soluble starch as substrate for 20 min with different sampling time (based on equal amount of protein).

| Activity (U/ml) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left({ }^{0} \mathrm{C}\right)$ | 30 |  |  |  | 40 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 20 | 0 | 5 | 10 | 20 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis | 0.6 | 19.5 | 19.8 | 39.6 | 0.6 | 13.3 | 21.2 | 48.4 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 18.1 | 37.1 | 66.4 | 0.6 | 20.0 | 49.5 | 64.5 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis | 0.6 | 30.4 | 68.8 | 105.3 | 0.6 | 41.3 | 69.8 | 129.5 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 52.1 | 74.2 | 146.9 | 0.6 | 48.3 | 107.6 | 174.6 |
| $\left({ }^{0} \mathrm{C}\right)$ |  |  |  |  |  |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 20 | 0 | 5 | 10 | 20 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis | 0.6 | 16.2 | 26.3 | 55.9 | 0.6 | 19.2 | 39.2 | 69.9 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 22.2 | 47.0 | 87.7 | 0.6 | 28.9 | 77.1 | 104.6 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis | 0.6 | 35.2 | 59.3 | 134.2 | 0.6 | 67.6 | 101.9 | 121.8 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 58.3 | 119.1 | 187.9 | 0.6 | 81.3 | 139.0 | 172.9 |

Table 3A. (Continued).

| Activity (U/ml) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left({ }^{0} \mathrm{C}\right)$ | 70 |  |  |  | 80 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 20 | 0 | 5 | 10 | 20 |
| rpFL8785- <br> 10xHis | 0.6 | 63.5 | 76.2 | 78.8 | 0.6 | 40.3 | 63.7 | 69.1 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis <br> plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 94.6 | 108.0 | 109.5 | 0.6 | 47.3 | 66.0 | 84.0 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis | 0.6 | 118.5 | 128.7 | 132.2 | 0.6 | 87.4 | 88.1 | 86.5 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis <br> plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 163.5 | 181.8 | 186.4 | 0.6 | 85.0 | 86.8 | 89.8 |
| $\left({ }^{0} \mathrm{C}\right)$ | 90 |  |  |  | 100 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 20 | 0 | 5 | 10 | 20 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis | 0.6 | 30.2 | 36.6 | 61.7 | 0.6 | 19.6 | 22.8 | 20.1 |
| rpFL8785- |  |  |  |  |  |  |  |  |
| 10xHis |  |  |  |  |  |  |  |  |
| plus |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 39.7 | 56.1 | 80.2 | 0.6 | 34.1 | 54.6 | 48.1 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis | 0.6 | 66.5 | 76.0 | 82.0 | 0.6 | 37.4 | 45.6 | 41.2 |
| rpFL13- |  |  |  |  |  |  |  |  |
| 10xHis |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| $2 \mathrm{mMCaCl}_{2}$ | 0.6 | 66.5 | 67.2 | 82.0 | 0.6 | 44.4 | 48.0 | 48.4 |

Table 4A. Activity of recombinant alpha-amylases on different temperatures by using
$1 \%(\mathrm{w} / \mathrm{v})$ soluble starch as substrate at selected sampling time (based on equal amount of protein).

$2 \mathrm{mMCaCl}_{2}$

Table 5A. Percentage of remained activity of recombinant alpha-amylases on Analysis of temperature stability for 30 min at pH 7 (based on equal amount of protein).

| Activity (U/ml) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enzymes | Initial | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| rpFL8785- |  |  |  |  |  |  |  |  |  |
| 10xHis | 138.9 | 134.7 | 115.9 | 85.4 | 67.6 | 17.6 | 13.7 | 16.2 | 14.0 |
| rpFL8785- |  |  |  |  |  |  |  |  |  |
| 10xHis |  |  |  |  |  |  |  |  |  |
| plus 2 mM |  |  |  |  |  |  |  |  |  |
| $\mathrm{CaCl}_{2}$ | 138.9 | 135.7 | 126.8 | 96.2 | 76.6 | 37.7 | 20.6 | 19.6 | 17.4 |
| rpFL13- |  |  |  |  |  |  |  |  |  |
| 10xHis | 187.5 | 168.9 | 162.2 | 108.9 | 100.6 | 25.7 | 13.4 | 13.8 | 14.5 |
| rpFL13- |  |  |  |  |  |  |  |  |  |
| 10xHis |  |  |  |  |  |  |  |  |  |
| plus 2 mM |  |  |  |  |  |  |  |  |  |
| $\mathrm{CaCl}_{2}$ | 187.5 | 173.3 | 171.1 | 149.1 | 140.7 | 64.4 | 30.0 | 18.3 | 13.9 |
| (\%) Remained activity |  |  |  |  |  |  |  |  |  |
| Enzymes | Initial | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| rpFL8785- |  |  |  |  |  |  |  |  |  |
| 10xHis | 100.00 | 96.94 | 83.40 | 61.47 | 48.67 | 12.69 | 9.83 | 11.70 | 10.08 |
| rpFL8785- |  |  |  |  |  |  |  |  |  |
| 10xHis |  |  |  |  |  |  |  |  |  |
| plus 2 mM |  |  |  |  |  |  |  |  |  |
| $\mathrm{CaCl}_{2}$ | 100.00 | 97.67 | 91.30 | 69.26 | 55.11 | 27.15 | 14.80 | 14.09 | 12.55 |
| rpFL13- |  |  |  |  |  |  |  |  |  |
| 10xHis | 100.00 | 90.06 | 86.46 | 58.05 | 53.65 | 13.71 | 7.14 | 7.37 | 7.75 |
| rpFL13- |  |  |  |  |  |  |  |  |  |
| 10xHis | 100.00 | 92.39 | 91.21 | 79.50 | 75.05 | 34.32 | 15.99 | 9.73 | 7.41 |

plus 2 mM
$\mathrm{CaCl}_{2}$
Table 6A. Activity of recombinant alpha-amylases on analysis of temperature stability at four different temperatures at pH 7 with different sampling times (based on equal amount of protein).

| Temperature( ${ }^{0} \mathrm{C}$ ) | 37 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sampling time (min) | 0 | 5 | 10 | 15 | 30 | 60 | 120 |
| rpFL8785-10xHis | 138.9 | 139.0 | 135.9 | 135.0 | 134.7 | 129.0 | 114.9 |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ | 138.9 | 139.6 | 136.3 | 135.0 | 135.7 | 125.3 | 116.1 |
| rpFL13-10xHis | 187.5 | 184.9 | 175.6 | 172.3 | 168.9 | 154.6 | 137.2 |
| rpFL13-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ | 187.5 | 185.4 | 174.2 | 172.8 | 173.3 | 158.6 | 153.2 |
| Temperature( ${ }^{\circ} \mathrm{C}$ ) |  |  |  | 60 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 15 | 30 | 60 | 120 |
| rpFL8785-10xHis | 138.9 | 129.0 | 86.5 | 76.9 | 67.6 | 61.2 | 39.0 |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus 2 mM CaCl 2 | 138.9 | 134.7 | 120.5 | 101.4 | 76.6 | 63.6 | 58.4 |
| rpFL13-10xHis | 187.5 | 134.2 | 123.7 | 113.8 | 100.6 | 82.2 | 58.9 |
| rpFL13-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ | 187.5 | 171.9 | 157.1 | 145.9 | 140.7 | 105.0 | 79.4 |
| Temperature( ${ }^{0} \mathrm{C}$ ) |  |  |  | 75 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 15 | 30 | 60 | 120 |
| rpFL8785-10xHis | 138.9 | 65.8 | 50.0 | 25.4 | 18.0 |  |  |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ | 138.9 | 82.8 | 55.7 | 32.2 | 20.1 |  |  |
| rpFL13-10xHis | 187.5 | 120.1 | 81.4 | 29.5 | 20.8 |  |  |
| rpFL13-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ | 187.5 | 129.5 | 65.4 | 48.8 | 22.1 |  |  |
| Temperature( ${ }^{0} \mathrm{C}$ ) |  |  |  | 100 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 15 | 30 | 60 | 120 |
| rpFL8785-10xHis | 138.9 | 32.9 | 21.4 | 16.2 | 14.0 |  |  |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ | 138.9 | 38.2 | 20.4 | 11.5 | 12.3 |  |  |
| rpFL13-10xHis | 187.5 | 45.4 | 23.0 | 14.1 | 14.5 |  |  |
| rpFL13-10xHis | 1875 | 697 | 51.8 | 13.9 | 13.9 |  |  |

Table 7A. Percentage of remained activity of recombinant alpha-amylases on analysis of temperature stability at four different temperature, at pH 7 with different sampling times (based on equal amount of protein).

| Sampling time (min) | 37 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 5 | 10 | 15 | 30 | 60 | 120 |
| rpFL8785-10xHis | 100.0 | 100.0 | 97.8 | 97.2 | 96.9 | 92.9 | 82.7 |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus 2 mM CaCl 2 | 100.0 | 100.5 | 98.1 | 97.2 | 97.7 | 90.2 | 83.6 |
| rpFL13-10xHis | 100.0 | 98.6 | 93.6 | 91.9 | 90.1 | 82.5 | 73.1 |
| rpFL13-10xHis |  |  |  |  |  |  |  |
| plus 2 mM CaCl 2 | 100.0 | 98.9 | 92.9 | 92.2 | 92.4 | 84.6 | 81.7 |
| Temperature( ${ }^{\circ} \mathrm{C}$ ) |  |  |  | 60 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 15 | 30 | 60 | 120 |
| rpFL8785-10xHis | 100.0 | 92.9 | 62.3 | 55.4 | 48.7 | 44.0 | 28.1 |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus 2 mM CaCl 2 | 100.0 | 97.0 | 86.8 | 73.0 | 55.1 | 45.8 | 42.0 |
| rpFL13-10xHis | 100.0 | 71.6 | 66.0 | 60.7 | 53.6 | 43.8 | 31.4 |
| rpFL13-10xHis |  |  |  |  |  |  |  |
| plus 2 mM CaCl 2 | 100.0 | 91.6 | 83.8 | 77.8 | 75.0 | 56.0 | 42.3 |
| Temperature( ${ }^{0} \mathrm{C}$ ) |  |  |  | 75 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 15 | 30 |  |  |
| rpFL8785-10xHis | 100 | 47.36 | 36 | 18.3 | 12.97 |  |  |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus 2 mM CaCl 2 | 100 | 59.58 | 40.1 | 23.2 | 14.434 |  |  |
| rpFL13-10xHis | 100 | 64.03 | 43.4 | 15.8 | 11.116 |  |  |
| rpFL13-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$ | 100 | 69.03 | 34.9 | 26 | 11.808 |  |  |
| Temperature( ${ }^{0} \mathrm{C}$ ) |  |  |  | 100 |  |  |  |
| Sampling time (min) | 0 | 5 | 10 | 15 | 30 |  |  |
| rpFL8785-10xHis | 100.0 | 23.7 | 15.4 | 11.7 | 10.1 |  |  |
| rpFL8785-10xHis |  |  |  |  |  |  |  |
| plus 2 mM CaCl 2 | 100.0 | 27.5 | 14.7 | 8.3 | 8.8 |  |  |
| rpFL13-10xHis | 100.0 | 24.2 | 12.3 | 7.5 | 7.8 |  |  |
| rpFL13-10xHis |  |  |  |  |  |  |  |
| plus $2 \mathrm{mM} \mathrm{CaCl}_{2}$ | 100.0 | 37.2 | 27.6 | 7.4 | 7.4 |  |  |

Table 8A. Products formation (reducing sugar) of recombinant alpha-amylases by using 2 substrates at various concentrations.

| Product formation ( $\boldsymbol{\mu m o l}$ ) from $\mathbf{2}$ substrates at each sampling time (min) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Substrate ( $\mathbf{m g} / \mathbf{m l}$ ) | Soluble starch as substrate |  | Cassava starch as substrate |  |  |  |  |
|  |  | $\mathbf{0}$ | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{0}$ | $\mathbf{1 0}$ | $\mathbf{2 0}$ |
| rpFL13- | 0 | 0.02 | 4.16 | 8.54 | 0.02 | 4.07 | 4.75 |
| 10xHis | 5 | 0.02 | 4.81 | 9.28 | 0.02 | 4.54 | 5.47 |
|  | 10 | 0.02 | 5.46 | 10.01 | 0.02 | 5.01 | 6.19 |
|  | 15 | 0.02 | 6.11 | 10.51 | 0.02 | 5.48 | 6.91 |
|  | 20 | 0.02 | 6.81 | 10.63 | 0.02 | 6.80 | 6.97 |
|  | 25 | 0.02 | 4.16 | 8.54 | 0.02 | 4.07 | 4.75 |
| rpFL87 | 0 | 0.02 | 4.61 | 6.78 | 0.02 | 4.73 | 9.52 |
| $85-$ | 5 | 0.02 | 5.03 | 7.46 | 0.02 | 5.25 | 9.81 |
| 10xHis | 10 | 0.02 | 5.45 | 8.15 | 0.02 | 5.76 | 10.12 |
|  | 15 | 0.02 | 5.87 | 8.79 | 0.02 | 6.27 | 10.40 |
|  | 20 | 0.02 | 6.60 | 9.15 | 0.02 | 7.00 | 10.52 |
|  | 25 | 0.02 | 4.61 | 6.78 | 0.02 | 4.73 | 9.52 |

Table 9A. Activity and velocity of recombinant alpha-amylases by using 2 substrates at various concentrations (based on equal amount of protein).

| Substrate <br> concentration ( $\mathbf{m g} / \mathbf{m l}$ ) | Velocity ( $\mathbf{\mu m o l} / \mathbf{m i n}$ ) <br> at $\mathbf{1 0 ~ m i n ~}$ |  | Activity (U/ml) at 10 min |  |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table 10A. Kinetic parameters of recombinant alpha-amylases by using 2 substrates from 3 kinetic equations.

| Equations | Parameters | rpFL13-10xHis |  | rpFL8785-10xHis |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | Soluble <br> starch | Cassava <br> starch | Soluble <br> starch | Cassava <br> starch |
| Michaelis- | $\mathrm{K}_{\mathrm{m}}(\mathrm{mg})$ | 15.87 | 9.695 | 16.12 | 13.42 |
| Menten | $V_{\max }(\mu \mathrm{mole} / \mathrm{min})$ | 14.54 | 1.109 | 14.85 | 9.814 |
|  | $k_{\text {cat }}=(\mathrm{Vmax} /[\mathrm{E}] \mathrm{in}$ |  |  |  |  |
|  | reaction $)(\mathrm{s}-1)$ | 91.51 | 6.98 | 94.56 | 62.49 |
|  | $k_{\text {cat }} / \mathrm{K}_{\mathrm{m}}=(\mathrm{s}-1 / \mathrm{mg})$ | 5.77 | 0.72 | 5.87 | 4.66 |
| Lineweaver- | $\mathrm{K}_{\mathrm{m}}(\mathrm{mg})$ | 13.53 | 9.01 | 15.04 | 8.68 |
| burk | $V_{\max }(\mu \mathrm{mole} / \mathrm{min})$ | 15.26 | 12.56 | 15.93 | 12.74 |
|  | $k_{\text {cat }}=(\mathrm{Vmax} /[\mathrm{E}] \mathrm{in}$ |  |  |  |  |
|  | reaction $)(\mathrm{s}-1)$ | 96.03 | 79.04 | 101.42 | 81.09 |
|  | $k_{\text {cat }} / \mathrm{K}_{\mathrm{m}}=(\mathrm{s}-1 / \mathrm{mg})$ | 7.10 | 8.77 | 6.74 | 9.34 |
| Edie- | $\mathrm{K}_{\mathrm{m}}(\mathrm{mg})$ | 13.72 | 9.25 | 11.48 | 8.85 |
| Hofstee | $V_{\max }(\mu \mathrm{mole} / \mathrm{min})$ | 15.41 | 12.79 | 14.1 | 12.88 |
|  | $k_{\text {cat }}=(\mathrm{Vmax} /[\mathrm{E}] \mathrm{in}$ |  |  |  |  |
|  | reaction $)(\mathrm{s}-1)$ | 96.99 | 80.50 | 89.78 | 82.01 |
|  | $k_{\text {cat }} / \mathrm{K}_{\mathrm{m}}=(\mathrm{s}-1 / \mathrm{mg})$ | 7.07 | 8.70 | 7.82 | 9.27 |

### 2.3 KINETIC PARAMETER PLOTS

A

[S] (mg)
B

C


Figure 4A. Kinetic equation plots for soluble starch hydrolysis by rpFL13-10xHis
(A) Michaelis-Menten plot, (B) Lineweaver-burk plot, and
(C) Edie-Hofstee plot.

A

[S] (mg)

B


C


Figure 5A. Kinetic equation plots for cassava hydrolysis by rpFL13-10xHis
(A) Michaelis-Menten plot, (B) Lineweaver-burk plot, and
(C) Edie-Hofstee plot.


Figure 6A. Kinetic equation plots for soluble starch hydrolysis by rpFL8785-10xHis
(A) Michaelis-Menten plot, (B) Lineweaver-burk plot, and
(C) Edie-Hofstee plot.


A
[S] ( $\mathrm{mol} / \mathrm{L}$ )
B


1/[S] (1/mg)
C


Figure 7A. Kinetic equation plots for cassava starch hydrolysis by rpFL13-10xHis
(A) Michaelis-Menten plot, (B) Lineweaver-burk plot, and
(C) Edie-Hofstee plot.

### 2.4 MOLECULAR WEIGHT DETERMINATION



Figure 8A. Molecular weight determination of two recombinant alpha-amylases.
Land 1: molecular weight protein marker.
Land 2: rpFL13-10xHis at 0 hr of induction.
Land 3: rpFL8785-10xHis at 0 hr of induction.
Land 4: rpFL13-10xHis at 18 hr of induction.
Land 5: rpFL8785-10xHis at 18 hr of induction.
Land 6: purified alph-amylase from rpFL13-10xHis.
Land 7: purified alpha-amylase from rpFL8785-10xHis.
Land 8: activity of purified alpha-amylase from rpFL13-10xHis.
Land 9:activity of purified alpha-amylase from rpFL8785-10xHis.

Table 11A. The $R_{f}$ of mobile phase (sample dry) and protein samples.


### 2.5 SEQUENCE ANALYSIS




Figure 9A. Blastn analysis of alpha-amylase from B. licheniformis DSM 8785.


Figure 10A. Blastn analysis of alpha-amylase from B. licheniformis DSM 13.

## BIOGRAPHY

Miss Sirima Sukasem was born on January 2, 1976 in Ratchaburee, Thailand. She graduated with a Bachelor degree from Department of Biotechnology, Faculty of Technology, Khon Kaen University, in 1998. In 1999, she continued her Master degree at same faculty and then, she graduated in 2003. She had an experience at Scienctific Promotion Limited in position of sale perspon and product specialist for one year. She had opportunity to study Doctor of Philosophy in School of Biotechnology, Institute of Agricultural Technology at Suranaree University of Technology. During her study, she had experience on her research for one year and had opportunity to study for doctoral program for 6 courses (11 credits) at Division of Food Biotechnology, Department of Food Sciences and Technology, University of Natural Resources and Applied Life Science, Vienna, Austria. She had experience on oral and poster presentation. The oral presentation was in the title of "Cloning and expression of Thermostable Bacillus licheniformis alpha-amylase in Escherichia coli." On 23-25 March, 2004 at Fermentation Research Center for Value Added Agricultureal Prodeuct, Khon Kaen, Thailand. Her poster presentation was at the $10^{\text {th }}$ International congress: Genetic of Industrial Microorganism. Prague, Czeck, 24-28 June, 2006. The title was "Secretion of Bacillus hydrolytic enzymes in Escherichia coli expression system." She conducted to research in the topic of production and improvement of alpha-amylase by DNA shuffling.

## ระดับปริญญาเอก

| ชื่อ - นามสกุล | นางสาวสศิริมา สุขเกษม |
| :---: | :---: |
| เลขประจำตัว | D4630067 |
| หลักสูตรสาขาวิชา | เทคโนโลยีชีวภาพ |
| สำนักวิชา | เทคโนโลยีการเกษตร |
| ทุนการศึกษาที่ได้รับ |  |
| ชื่อวิทยานิพนธ์ : |  |
| ภาษาอังกฤ | PRODUCTION AND IMPROVEMENT OF ALPHA-AMYLASE |
|  | BY DNA SHUFFLING |
| ภาษาไทย | การผลิตและพัฒนาคุณสมบัติของเอนไซม์อัลฟา-อะไมเลสด้วย |
|  | เทคโนโลยีการสลับสับเปลี่ยนดีเอ็นเอ |
| สอบวัดคุณสมบัติ | 900002 : QUALIFYING EXAMINATION |
|  | ผ่านเมื่อภาคการศึกษาที่ 1 ปีการศึกษา 2547 |
| สอบภาษาต่างประเทศ | 900003 : FOREIGN LANGUAGE EXAMINATION (ENGLISH) |
|  | ผ่านเมื่อภาคการศึกษาที่ 3 ปีการศึกษา 2547 |

## รายชื่อผลงานวิจัยที่ได้รับการตีพิมพ์เผยแพร่:

- รายชื่อบทความวิจัยที่ได้รับการตีพิมพ์ในวารสารวิชาการระดับชาติ/นานาชาติ

Yamabhai, M., Emrat, S., Sukasem, S., Pesatcha, P., Jaruseranee, N., Buranabanyat, B. (2007) Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. J. Biotechnology. 133 (1), 50-57

- รายชื่อบทความวิจัยที่ได้รับการตีพิมพ์ในการประชุมวิชาการระดับชาติ/นานาชาติ

Yamabhai, M., Sukasem, S, Pesatcha, P., Jaruseranee, N., Buranabanyat, B. and Emrat, S. (2006) Secretion of Bacillus hydrolytic enzymes in Escherichia coli expression system. The $10^{\text {th }}$ International congress: Genetic of Industrial Microorganism. Prague, Czeck. 24-28 June, 20, 2006

Sukasem, S. and Yamabhai, M. Cloning and expression of Thermostable Bacillus licheniformis alpha-amylase in Escherichia coli. The $1^{\text {st }}$ International Conference on Fermentation Technology for Value Added Agricultural Products

- รายชื่อบทความวิจัยอยู่ในขั้นตอนรอดำเนินการตรวจจากอาจารย์ที่ปรึกษา เพื่อที่จะทำการ ตีพิมพ์ในวารสารวิชาการระดับชาติ/นานาชาติ

Sukasem, S. and Yamabhai, M.(2007) The Property improvement of Bacillus licheniformis alpha-amylase by DNA shuffling.

## Presentation

## Oral presentation

Sukasem, S. and Yamabhai, M. Cloning and expression of Thermostable Bacillus licheniformis alpha-amylase in Escherichia coli. The $1^{\text {st }}$ International Conference on Fermentation Technology for Value Added Agricultural Products

## Poster presentation

Yamabhai, M., Sukasem, S, Pesatcha, P., Jaruseranee, N., Buranabanyat, B. and Emrat, S. (2006) Secretion of Bacillus hydrolytic enzymes in Escherichia coli expression system. The $10^{\text {th }}$ International congress: Genetic of Industrial Microorganism. Prague, Czeck. 24-28 June, 20, 2006

## ตำแหน่งงาน ไม่มี

สถานที่ติดต่อ 47 หมู่ 5 ต. ประสาทสิทธิ์ อ. ดำเนินสะดวก จ. ราชบุรี 70210 หมายเลขโทรศัพท์

## Curriculum Vitae

## Chomphunuch Songsiriritthigul

# Researcher, National Synchrotron Research Center, Nakhon Ratchasima 30000, Thailand 

Tel: (+66-44) 217-040 ext 413; Fax: (+66-44) 217-047
E-mail: pook@nsrc.or.th

|  | Education |  |  |
| :--- | :--- | :--- | :---: |
| 2007 | Ph.D. (Biochemistry) | Suranaree University of Technology, Nakhon <br> Ratchasima, Thailand |  |
|  |  | Mahidol University, Bangkok, Thailand |  |
| 1997 | M.Sc. (Chemistry) | Kasetsart University, Bangkok, Thailand |  |

## Research Grant

1996-1997 Financial Assistance for Thesis from Faculty of Graduate Studies, Mahidol University
1994-1996 Postgraduate Scholarship for M.Sc. Degree from the National Science and Technology Development Agency (NSTDA) : Funding via Institutional Strengthening Program (ISP)

## Appointments

2007-Present Researcher, National Synchrotron Research Center, Nakhon Ratchasima, Thailand
2000-2007 Scientist, National Synchrotron Research Center, Nakhon Ratchasima, Thailand (on leave for Ph.D. study during 2002-2007)
1998-2000 Lecturer, Mahidol University, Bangkok, Thailand
1997-1998 Lecturer, Ubon Ratchathani University, Ubon Ratchathani, Thailand

## International Publications

Suginta, W., Vongsuwan, A., Songsiriritthigul, C., Prinz, H., Estibeiro, P., Duncan, R. R., Svasti, J. \& Fothergill-Gilmore, L. A. (2004). An endochitinase A from Vibrio carchariae: cloning, expression, mass and sequence analyses, and chitin hydrolysis. Arch. Biochem. Biophys. 424, 171-180.
Suginta, W., Vongsuwan, A., Songsiriritthigul, C., Svasti, J. \& Prinz, H. (2005). Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS. FEBS J. 272, 3376-3386.
Songsiriritthigul, C., Yuvaniyama, J., Robinson, R. C., Vongsuwan, A., Prinz, H. \& Suginta, W. (2005). Expression, purification, crystallization and preliminary crystallographic analysis of chitinase A from Vibrio carchariae. Acta Cryst. F61, 895-898.
Suginta, W., Songsiriritthigul, C., Kobdej, A., Opassiri R., \& Svasti , J. Mutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase A (2007). BBA-General Subjects. 1770, 1151-1160.

Pantoom S., Songsiriritthigul, C., Suginta W. (2008). The effects of the surfacedexposed residues on the binding and hydrolytic activies of Vibrio carchariae chitinase A. BMC Biochemistry. 9:2.
Songsiriritthigul, C., Aguda, A., Robinson, R. C. \& Suginta W. (2008). Crystal structures of Vibrio harveyi chitinase A complexed with chitooligosaccharides: Implications for the catalytic mechanism. Accepted to Journal of Structural Biology.

## Poster and Oral Presentations

Songsiriritthigul, C., Yuvaniyama, J., Robinson, R. C., Vongsuwan, A., Prinz, H. \& Suginta, W. Primary X-ray crystal structure of chitinase A from Vibrio carchariae. $15^{\text {th }}$ Annual Meeting of the Thai Society for Biotechnology, Chiang Mai, Thailand, 2-6 February, 2004.
Songsiriritthigul, C., Vongsuwan A., Krittanai C. \& Suginta W. Active-site mutation alters substrate specificity of chitinase A from Vibrio carchariae. $2^{\text {nd }}$ Protein Symposium Network, Bangkok, Thailand, 23-24 September, 2005.
Suginta, W., Vongsuwan, A., Krittanai, C. \& Songsiriritthigul, C. A study of substrate specificity of chitinase A from Vibrio carchariae. $31^{\text {st }}$ Congress on Science and technology of Thailand, Nakhon Ratchasima, Thailand, 18-20 October, 2005.
Songsiriritthigul, C., Yuvaniyama, J., Robinson, R. C., Vongsuwan, A., Prinz, H. \& Suginta, W. Expression, purification, crystallization and preliminary crystallographic analysis of Chitinase A from Vibrio carchariae. $31^{\text {st }}$ Congress on Science and technology of Thailand, Nakhon Ratchasima, Thailand, 18-20 October, 2005.
Songsiriritthigul, C., Aguda, A., Robinson, R. C. \& Suginta W. Structural of Chitinase A from Vibrio carchariae. Workshop on Synchrotron Protein Crystallography (Diffraction Data and Phase Analyses) and its Application. National Synchrotron Research Center, Nakhon Ratchasima, Thailand, 20-23 July, 2006.
Songsiriritthigul, C., Aguda, A., Robinson, R.C. \& Suginta W. Structural analysis of Vibrio carchariae Chitinase A reveals conformational changes during substrate hydrolysis. First Annual Symposium of the Protein Society of Thialand. Bangkok, Thailand, 24-25 October, 2006.
Pantoom S., Songsiriritthigul, C. \& Suginta W. The effect of the $N$-terminal residues on the enzymatic properties of Vibrio carchariae chitinase A. First Annual Symposium of the Protein Society of Thailand. Bangkok, Thailand, 24-25 October, 2006.
Songsiriritthigul, C., Kobdaj A. \& Suginta W. The active site residues Trp275 and Trp397 are important for the binding selectivity of chitinase A to soluble substrates. Second Annual Symposium of Protein Society of Thailand "Odysseys in Protein Research". Bangkok, Thailand, 20-21 September, 2007.
Pantoom S., Songsiriritthigul, C. \& Suginta W. The influence of the surface-exposed residues on the binding and hydrolytic activities of Vibrio carchariae chitinase A. Second Annual Symposium of Protein Society of Thailand "Odysseys in Protein Research". Bangkok, Thailand, 20-21 September, 2007.

Songsiriritthigul, C., Kobdaj A. \& Suginta W. The active site residues Trp275 and Trp397 are important for the binding selectivity of chitinase A to soluble substrates. Second Annual Symposium of Protein Society of Thailand "Odysseys in Protein Research". Bangkok, Thailand, 20-21 September, 2007.
Pantoom S., Songsiriritthigul, C. \& Suginta W. The influence of the surface-exposed residues on the binding and hydrolytic activities of Vibrio carchariae chitinase A. Odysseys in Protein Research. Bangkok, Thailand, 20-21 September, 2007.

## Personal

Birth date: 21 December 1972
Married with two children

