

Available online at www.sciencedirect.com

Physica B 376-377 (2006) 686-689

www.elsevier.com/locate/physb

Probing deactivations in Nitrogen doped ZnO by vibrational signatures: A first principles study

Sukit Limpijumnong^{a,b,*}, Xiaonan Li^c, Su-Huai Wei^c, S.B. Zhang^c

^aNational Synchrotron Research Center, Nakhon Ratchasima, Thailand ^bSchool of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand ^cNational Renewable Energy Laboratory, Golden, CO, USA

Abstract

Based on first principles calculations, we investigate two probable types of deactivation mechanisms that hinder current efforts of doping ZnO p-type. (i) Passivation by Hydrogen. H prefers to bind with N_O at the anti-bonding site and form N_O -H complexes with a binding energy of about 1 eV. (ii) Passivation by the formation of substitutional diatomic molecules (SDM). Carbon impurities and excess N strongly prefer to passivate N_O and form low-energy SDM on the Oxygen site, (NC)_O or (N₂)_O, both of which are donors with several-eV binding energies. Our calculated vibrational frequencies of N_O -H complexes and SDMs are consistent with the frequencies recently observed by IR measurement on N-doped ZnO, which is not p-type.

PACS: 61.72.Bb; 61.72.Vv; 63.20.Pw; 78.30.Fs

Keywords: Zno; First principles; Vibrational frequency; Wide band gap