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Summary, We consider two classes of aCt-lOl’]S on R Qone continuous and one
discrete. For matrices of the form 4 = e? with B € M, (R), we consider the action
given by v — 4A'. Wa characterize the matrices 4 for which there iz a cross{'
section for thig action, The discrete action we consider is given by v — A", where
A € GLn(R). We characterize the matrices A for which there exists a crossféection
for this action as well. We also characterize those A for which there exist special types
of croasrections; namely, bounded cross?gecticns and finite-meagure cross?éections.
Explicit examples of crossfsections are provided for each of the cases in which crogsf”
sections exist, Finally, these explicit crossfsections are used to characterize those |
matrices for which there exis wavelets with infinitely many wavelet functions.
Along the way, we genarslize a well-known aspect of the theory of shift-invariant
spaces to shift-invariant spaces with infinitely many generators.

11.1 Introduction

In discrete wavelet analysis on the line, the classical approach is to dilate
and translate a single function, or wavelet, so that the resulting system is an
orthonormal basis for L2(R). More precisely, a wa.velet is a function ¢ € L*(R)
such that

{2%9(F 2w+ k) 1k, j € Z)

forms an orthonormal basis of L*(R).

In multidimensional discrete wavelet analysis, the approach is similar., Fix
a matrix A &€ GL{R) and a full rank lattlce I". A collection of functions
(¥4 =1,...,N} is called an (A, I") orthonormal wavelet of order N i
dﬂ&tlons by A and translations by I',
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{|det AP P ( ATz + k) i=1,...,N,j€ B kT,

formg/an orthonormal basis for L2(R™). In this generality, there is no charac-
terization (in terms of A and I") of when wavelets exist. It was shown in [10]
that, if A is expansive (that is, a matrix whose eigenvalues all have modulus
greater than 1),then there does exist an orthonormal wavelet. A complete
characterization of such wavelets in terms of the Fourier transform was given
in {13). The no@xpansive case remains problematic,

It is also possible to study the continuous version of wavelet analysis, Con-
_ sider the full affine group of motions given by G Ly, (R) xR with multiplication
given by (a,b){c,d} = (ac,c™1b + d). We are interested in subgroups of the
full affine group of motions of the form

G={{a,b):aecD beR"},

where I is a subgroup of GL.(R). In this case, G is the semi-direct product
D %, R™ Now, if we define the unitary operator T, for g € G by

(To¥)(=) = | detaf™Zp(g ™} (),

then the continuous wavelet transform is given by

(Fove)i= [ @) T b,

which is, of course, a function on G. The function ¢ is a D-continuous wavelet
if it is possible to reconstruct all functions f in LZ%(R™) via the following
reconstruction formula:

f(@) = fc (fribg) o () dA(9),

where A is Jlaar measure on G. -
There Is a simple characterization of continuous wavelets, given in [22],

Theorem L ([22]). Let G be a subgroup of the full affine group of the form
D x,R™ A function ¢ € L*(R") 4s a D-continuous wavelet if and only if the
Calderdn condition

[ 19(ea)f dute) = 1 ae. € in B (11.1)
Fal

holds, where @ isAieft Huoar measure for D.

in this paper, we will always assume one of the two following cases,

which for Eﬂe purposes of—#his—-papei\will be the singly generated subgroups
“of GL,(R). .

1. D= {A*: k ¢ Z} for some A € GL,(R), or
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2, D={A!:t € R} for some A = e?, where B € M,(R).

We will say that D is generated by the matrix 4. Applying Theorem 1 to
these cases gives the following characterizations,

Proposition 2. (a) Let A € GL,(R) and let D denote the dilation group
D = {A* : k € Z}. Then, ¥ € L*(R™) is o D-continuous wavelet if and

only if )
S lbeAn))F =1

kez
for almost all £ € B,

(b) Let D = {A : ¢t € R} for some 4 = €5, where B € M,(R). Then
¥ € L3(R™) is a D-continuous wavelet if and only if '

f (AT 2 dt = 1
R

for-almost all £ € &&=,

In the case [} is generated by a single matrix as above, a complete
characterization of meatrices for which there exists a continuous wavelet is
given in [17].

Theovemn 3. Consider the dilation group D as in Case 1 or 2 above. There
exists o continuous wavelet if and only if [ det(A)| 5 L.

The wavelets constructed in [17] are of the form % = xx, for some set
K. One drawback to the proof in [17] is that, while the proof is constructive,
the sets K that are constructed are written as the countable union of set
differences of sets consisting of those points whose orbits land in a prescribed
closed ball a positive, finite number of times. Hence, it is not clear whether
the set constructed in the end can be chosen to be “nice” or easily described.

The purpose of this article is two-fold. First, we will give explicitly defined,
easily verified sets K such that yx is the Fourier transform of a continuous
wavelet. Here, we will exploit the fact that we are in the singly generated group
case to a very large extent. We will also oblain a characterization of matrices
such that the set K can be chosen to be bounded as well as a characterization
of matrices such that the only sets X that satisfy (11.1) have infinite measure.

Second, we will show how to use these explicit forms to characterize those
matrices such that there exists a discrete wavelst of order infinity, Note that
this seems to be a true application of the form of the sets X in Section 11.2,
a8 it is not clear to the authors how to use the proof in [17] (or the related
proof in [16]) to achieve the same result.
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11.2 Crossq/Sections

Throughout this section, we will use vector notation to denote elements of I’R?‘,
and m will denote the Lebesgue measure on R®. Multiplication of a vector
with a matrix will be given by 4, and we will reserve the notation A’ as “4
ralged to the t—powef’.’bln the few placesAwe need the transpose of a matrix,
we will give it a separate name,

Definition 4, A Bérel set 8 C R™ 45 called a cross}gection for the eontinuous
action v — At (t e R) if

. (a) UgerSA! = @\N for some set N of measure zero, and
(b) S4B NSA® =} whenevert; # i3 €R,

Similarly, o Borel set 5§ C R® is called a cross}‘s/ection for the discrete aetion
v — yAF (ke Z) if

(2) UrezSAF = RAN for some set N of measure zero, and
(b) SAF N SAF = @ whenever j # k € 2.

Note that we have defined cross;gectians using left produects, which will
eliminate the need for taking transposes in Section 11.3. .

Note also that if §is & crossﬁection for the continuous action, then {yA? :
T yeS0<t<l}isa Cross}gection for the discrete action. Cross}s/ections are
sometimes referred to as multiplicative tiling sets.

Remark 5. Let S be a cross{gection for the action - — vA¥. Then, S/ 'is a
crossfsection for the action v — yJA*J ™1, and similarly, for the continuous
action v — 7A?, where A = e, ST 1 isa cross}’section for the continuous
~ action ¥ — ﬂ(ﬁt, where A = B4,

To begin with cross%ections for the continuous action, let 4 = e €
GL,(R) be given, where by the preceding remark we may assume that B is
in real Jordan norrhal form. Then, B is a block diagonal mairix, and a block
corresponding to a real eigenvalue ¢; is of the form '

8 7] 1 (O)
- ..
1
(0) %

while a block corresponding to a complex pair of eigenvaluves o; £ if3; with
f; # 0 is of the form

D; I (0 D; — (0—’1’ ﬁi) ,
—0i e
B = with

) ..'3 T2 =((11(1})



11 Explicit cross sections of singly generated group actions 233

In this basis, A* is again a block diagonal matrix, and its blocks are of the
form

g1

ME, () tAE, () SNE, (1) g BB, (1)
NE(8) tALE ()

Ay =B =

B8 GMNE ()

NE() N ()

() MNE® )

with A; = % and Ey(t) = 1 or B(t) = B (t) = (_"fogt 22;@1) depend-
(3 )

ing.‘on_)_{rhethe; this block corresponds to a real eigenvalue or a pair of complex
. eigenvalues of B. The eigenvalues of A are thus e and e e®¥i respectively.

For ease of notation, when referring to a specific block A; of 4 wa wiil
drop the index <. Furthermore, vi,...,v, will denote & Jordan basis of R7
chosen so that this block under discussion is the first block, and (z1,...,2,)
will denote the components of a vector «y in this basis.

. Theorem 6. Lei A == &%, where B € M,(R) is in Jordanjv/mrmal form. There
exists a crossfsection for the continuous action 4y — "rA* if and only if A is
not orthogonal,

Proof. Assume that A is not orthogonal. Then at least one of the following
four situations, formulated in terms of the eigenvalues of B, will always apply.

Case 1: B has a real eigenvalue a 3 (). A corresponding block of A%, which
we may assume t0 be the first block, is of the form

NI L

tAl
()] by

with A =e* &£ 1. Set
8 = {*vi} x span(va,...,vy).

Then & is a crossﬁection and UgerSA = {(21,...,20) € &7 : #0}.
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Case 2: B has a complex pair of eigenvalues « 15 with o #£ 0, 8> 0. At
least one block of At is then of the form

m~-1 -
/\tEﬁ (t) t/\tE‘a(t) Ve W(;m_l)!)\tﬂg(t)
e , (11.2)
tAEs(t)
(0 A Epg(t)
and replacing B with —B if necessary, we may assume that A = ¢® > 1. One
" easily checks that

8 ={sv;:1<s<A"/P)} xspan(vs,...,Vn)

is a crossjsection and UierSA* = {(z1,.... %) € R’ : of -+ a3 # 0}

Case 3 B has an eigenvalue o = 0 and at least one of the blocks of B
belonging to this eigenvalue hasynontrivial nilpotent part. Then the corre-
sponding block of A* is of the form -

1t (%)
(11.3)
ol
W 1

and is of at least size 2 X 2. We set
8 ={sv):acRB\{0}} xspan{vy,...,vy)

s0 that S is & cross-section and UserSA* = {(z1,...,2a) € R% 1 21 # 0},

Case 4: B has a purely imaginary pair of eigenvalues +i8, 8 > 0, and at
least one of the blocks of B belonging to this pair has, nontrivial nilpotent
part. Then the corresponding block of A is of the fcrrrnA

Ep(t) tEp(t) (%)
e (11.4)

o tEg(t)
() Ep(t)

and is of at least size 4 x 4. Set

2
8= {pv1 +gvatavyip>0,05g< —E—p, 8 & R} % span(vs, ..., Va).
Since this is the least intuitive case, let us verify in detail that § is a crog&i_j/
section. For convenience, we group the first four coordinates of a vector -y € R
into two pairs, and write
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v = ({21, 22), (T3,%4), 25, 26, -+, Tn),
80 that
vA* = ({@1,22)Ba(t), H{m1,22)Bp(t) + (2a, 24} B (t), ... ).

Now Eg(t) acts by rotation through the angle 3¢, so whenever 2% + 23 # 0
#~shen there exists {; € R such that

(z1,22)Ep(t1) = (p,0)
) for some p > 0. Then
YA® = (p,0, 10 + ¥3, Y4, ...} 5

where (y3, 14} = (23,24)E(t1). So if weset fg = 61 + & %’5 for some integer k,
then

Pa
'YAtz = (p,O,k—ﬁE +f1p+ya,y4,...).

. Now there exists a & such that

2mp
3 3
and for this choice of k, 7A4* € 5. We conclude that

|J 84 = {{z1,..., 4a) € B% : 2 4 2 £ O},
teR

2
USk—gE+t1P+y3<

Suppose now that
,YlAtl — 72‘41&3

for some ~y1, 2 € 8, ¢, to € R. Equivalently,
V1 = 2 A’
for some ¢, If 41 = (p1, 0, qu, 81, ... ) and va = (p2, 0,42, 52, .. ._)jthen
((p1,0), (g:s8)s- ) = ( (2, 0)Ep(t), t(pa, 0} Bs(2) + (a2, 52) B (2), )

80 that

(pI,O) = {P2. O)Eﬁ(t)a
(q1,81) = t(p2, 0) Ep(2) + (@2, 52} Ep(t).

The first equality gives p; = pe and 1 = %’f k for some integer k. Then the
second equality reads .

2
(QI,SI) = <_"' kpl + gz, 82

€ )5



236 David Larson, Eckart Schulz, Darrin Speegle, and Keith F. Taylor
which gives 1 = s5,and because 0 £ ¢z, ¢; < Z—Ezhalsoﬁﬂnt k=0and g; = go.
Thus, § is indeed & cross}’section.

Now suppose to the contrary that A is orthogonal, but there exists a cross}'
section S. Then
T={vyA':v€ 8 0Kt <1}

is a crossrsection for the discrete action of A on R, Note that A maps the
closed unit ball B (0) onto itself, so if To =T N By {0) )then

By (0) = | ] ToA¥,
keZ

except for a set of measure zero, snd this union is disjoint. Then

m(B1(0)) = > m(Tod¥) = m(T.) € {0,00},

keZ keZ
which is impossible, O

BRemark 7. The cross}gections constructed in the proof above allow for a

change of variables to integrate along the orbits. .

For examplg in Case 3, given v = (x1,%3,...,2n) € R® with z1.# 0, we.

set
~ = F(t,5,03,...,0,) = (8,0,a3,...,a5)A®

- where g # 0. The Jacobian of this transformation is

{5,0,as,...,a,)8 Oss... 4
Vi ‘ 100... 0
\E det(A)t = (001 ... O det(A)t = ~a8t #£0,
Vn 000...1

go that for f € Lz(ﬁ"),

fﬁ f('y)d'y=f f ff((s,o,ag,,...,an)At){slétdtdsdaa---dan.
& Re—2 JR\ {0} JR

In Case 4, given « = (z1,%2,...,%n) € &7 with z} + 22 # 0, we set
’Y :F(t1p1q331a5l"’!aﬂ) = (plo?q}S‘DG’SH" '}an)At _)

where p > 0, 0 < g < 2xp/f. The Jacobien of this transformation is
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(p.0,q,9,a8,...,00)B OCfBp*x%s...%
v 10000...0
V3 det(A)tw——OOlOO"'O det(A)*
Vi 000 0...1
= —fpd* £ 0

. aince B £ 0. Thus,

Limar=[ [ ] no,esm.. 04160

dtdg dsdpdas - - da,,.

Any invertible matrix gives rise to a discrete action on ]l-é?t, and nearly
always there will exist a crossfsection for this action.

" Theorem B. Let A € GL,(R) be in Jorden normal form, and consider the
discrete action v — AP,

(a) There exists o crossféction if and only if A is not orthegonal,

{(b) There exists o crossisection of finite measure if and only if { det{A)) # 1.

(c) There exists a bounded crossfsection if and only if the (real or complex)
etgenvalues of A have all modulus > 1 or oll modulus < 1.

Progf, 'To prove the first assertion, choose a Jordan basis vi,..., vy so that
the Jordan block of A under discussion is the first block. Each Jordan block
will be an upper diagonal matrix of the form

M Eg(k) (MA-1Bpk-1) ... ... o A= Bk — it 1)

()A~1Bg(k —1)
{©) AR Eg(k)

where Fg = 1 if this block corresponds to a real eigenvalue A, and Ep is &
rotation if it belongs to a complex pair Aet of sigenvalues. By a change of
basis, we can always simplify this block to

NeBa(k) (MASB(k) ... ... (m’il)AkEg(k)
' ' ' (11.5)

($) Ak Eg(k)
(0} - AREg(k)
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Now if A is not orthogonabthen at least one of the following cases will be
true.

Case I A has a real eigenvalue A with {A| # 1. Replacing A by A~ if
necessary we may assume that |[A] > 1. A corresponding block of A% is an
m x m upper diagonal matrix of the form (11.5) with Eg = 1, and one easily
checks that

8=1{svi:1<]s| <|A}xspan(vy,...,vn)

is & cross‘]@ection.

Case 2: A has s complex pair of eigenvalues Ae*® with A £ 1,0 < 8 < .
We mey again assume that A > 1. A corresponding block of AFig 8 9m x2m
upper diagenal matrix of form (11.5} with Eg a proper rotation. Then

§={sviAEs{t): 1< 5 <A P 0<t <1} Xspan(vs,...,Vn)

is a crossjsection, which can be checked by using Case 2 ixi"':lf‘heo;em 6 and
keeping in mind the note immediately following Definition 4. -~

Case 3 A has a real eigenvalue A = +1 and at least one of the blocks
of A belonging to this eigenvalue hasqnontrivial nilpotent part. Then the
correspondmg block of A is of the form (11.5) with Eg = 1 and is of at least
size 2 X 2. 011 ensily verifies that the set

S ={s(vi +tva): s € R\{0}, 0<t <1} xspan(vs,...,Vn)

is & cross)tgection.

Case 4: A bas a complex pair of eigenvalues et 0-< 8 <, of modulus
one and at least one of the blocks of A belonging to this pair hasynontrivial
nilpotent part. Then the corresponding block of A* is of the form (11.5), with
A =1 and Ej a proper rotation, and

{(P‘ﬁ + gva + 5V4) (Eﬁ (t) tEﬁ((ﬁ)))

2
p>0,0<¢< —B—p, seR, 0Kt < l} % span(vs,...,Va)
is the desired crossr ection, which can be checked by using Case 4 in Theorem G
and keeping in mind the note immediately following Definition 4. -

The argument at the end of the proof of Theorem 6 shows that if 4 is
orthogonal, then bhegg (ca@ot G}W This proves the first
assertion.

The remaining assertions are obvious if »n = 1, or if n = 2 and A has
complex eigenvalues. We thus can exclude this situation in what follows, so
that the cross}gectlon 3 constructed above has infinite measure,
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Next let us( prove the second assertion. In crder to show that | det(A)] # 1
is a sufficient condition, we only neasd to distinguish between the first two of
the above cases.

We begin by considering the first case, and we may agsume that |A| > 1.
Take the crossfsection constructed above,

S={en+v:15[s| <A, vespan(va,...,va) },

partition span(vy,...,v,) into a collection {T;}82, of measurable sets of
positive, finite measure each, and set

Sp={svit+v:ig|s|<|A, veTi}, k=1,2,... o

Then {S¢}g2.; is a partition of S into measurable subsets of positive, finite
measure. Pick a collection of positive numbers {d}22, so that Y oo, di = 1,

and pick ng € Z such that §™ < mf‘(igk—) where ¢ = | det(A4)]. It follows that

(o]
3= U S AT

k=1

is a crossfsection for the discrete action such that

m(8) = " 6"m(Sk) £ D de=1.
k=1 k=1

In the second case, we may assume that A > 1. Start with the above
constructed crossféection,

S={sviNEs(t) +v:1<s < AP 0<t <1, vespan(vs,...,vs) },

partition span(vs,..., vy} into a collection {T%}72, of measurable subsets of
finite, positive measure each, and set

Sp={sVINEgM) +v:1<s< )P 0<t<]l, veTs }, k=1,2...

so that {S;}{°, is a partition of § into measurable subsets of pasitive, finite
measure, Continuing as in the first case,we have shown sufficiency.

To prove the necesgity implication, supposethere exists a cross;gection P
of finite measure for the discrete action and |det{A)] = 1. Let § denote the
cross}éec’ﬁion for the discrete action constructed in Part 1 above. Then,
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=3 [ et xstra™) dy

EE

—EfovA Y dy

i€l

:./11;’?*}(5(7) dy:m(5)=oo)

which is impossible. Thus, there c4b fot exist & crosglsection of finite measure.

Finally,we will prove the last assertion. For sufficiency, it is enough to
assume that all eigenvalues of A have modulus |A| < 1 so that

lim 4% =0.
k—oo

Choosing each of the above sets T to be bounded we may assume that the sets
Sy are bounded, so that there exist integers ng such that S, A™ is contained
in the unit ball. Then § = U2, S5A™ is the desired bounded cross/bection.
For necessity, suppose to the contraxy that there exists a bounded cmss-f/
"section 9, but A has an eigenvalue [A;| < 1 and an eigenvalue |Az] > 1.
(The case where |A1| < 1 and [As] > 1 is treated similarly.) Using the block

decomposition of A it js easy to see that for almost all v € R™, either

&
1 klﬁm Il A%} =

or, in the special case where no eigenvalue of A lies ontside of the unit circle,
lim [lvAF]| = oo
k——o0

while {ﬂrA"‘ k = 0} is bounded below awsay from zero. Thus, for almost all
¥ E R™ there exists & constant M = M {(7) so that :

vAF| > M vk e Z.

Fix any such 5. Then for sufficiently large scalars c, the orbit of ¢y does not
pass through S, contradicting the choice of §. O

We note that in the proof of the second assertion, the sets T, can be chosen
go that the cross}éectlon S has unit measure,

Remark 9. Tn [17), it was obtained as a corollary of their general work that

(a) For A € GL,(R) and D = {A* : k € Z}, there is a continuous wavelet if
and only if | det(A4)} # 1.

(b) For A = e? and D = {A! : ¢ € R}, there is a continuous wavelet if and
only if | det{A)| # 1. '
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It is possible to recover these results using the ideas in this section. We mention
only how to do so in the case ){tat continuous wavelets exist. Let A € G L, (IR),
and let § be a crossfsection ‘of Lebesgue measure 1 for the discrete action
4 — ~A¥, Then, the function ¢ whose Fourier transform equals yg is a
continuous wavelet for the group {A* : k € Z}. If in addition, 4 = €7, then
1) is also a continuous wavelet for the group {A® : ¢ € R} since

1 1
f]l‘bcs(’)u‘l't)l2 dt=/; 3 Ixs(yAt AR dt:/o ldt=1.

ke

We note here that the method of proof in [17], while ostensibly construc-
tive, does not easily yield crOss}éections of a desirable form such as the ones
constructed above.

11.3 Shift-Invariant Spaces and Discrete Wavelets

Let A€ GL,(R) and I" ¢ R" be & foll-rank lattice. An (A, I') orthonormal
[resp. Parseval, Bessel] wavelet of order NV is a collection of functions {4},
{where here we allow the possibility of IV = oo} such that

(Idet A2yt (AT +k):5€Z, kel i=1,. .. ,N}

is an orthonormal basis [resp. Parseval frame, Bessel system)] for L? (R™). There
has been much work done on determining for which pairs (A, I') orthonorma)
wavelets of finite order exist, often with extra desired properties such as fast
decay in time or frequency. -

' This is not necessary for the proofs that we present. Of particular impor-
tance in determining when orthonormal wavelets exist are the defminimally
supported frequencfﬂwave]ets, which are intimately related to wavelet sets.
An (A, I') multi-wavelet set & of order L is a set that can be partitioned into
subsets {;}, such that { rratynre XK‘}::;I is the Fourjer transform of an .
(4, I') orthonormal wavelet .where I" = BZ", where B is an invertible matrix.
When the order of a, multi-wavelet set is 1, we call it a wavelet set. These have
been studied in detail in {1}, [2], (3], [10], [14], {18], [19], [21]). The following
fundamental question in this ares remains open, even in the case L = 1.

Question 10. For which pairs (4, I') and orders I do there exist (A4, I") wavelet
sets of order L7

1t is known that if A is expansive and I" is any full-rank lattice, then
there exists an (A4, ") wavelet set of order 1 [10]. One can also modify the
construction to obtain (A4, I'} wavelet sets of any finite order along the lines 1}}1
Theorem 23 below. Diagonal matrices A for which there exist (A4, Z™) multi-
wavelet sets of finite order were characterized in [20]. Theorem 8, part (b)
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above implies that, in order for an {4, ") multi-wavelet set of finite order to
exigt, it is necessary that A not have determinant one. There is currently no
good conjecture as to what the condition on (A4, I") should be for wavelet sets
to exist. It is known that | det(A)| # 1 is not sufficient and that all eigenvalues
greater than or equal to 1 in modulus is not necessary.

We begin with the following.

Theorem 11. Let A € GLy(R) and I' T R™ be a full-rank lattice with dual

I'*. The set K is o multi-wavelet set of order L if and only if

SoxrE+m =L e ek, (11.6)
yE*
Soxk(EA) =1 ae £€RY (11.7)
JEZ

Proof. The forward direction is very similar to the arguments presented in
[10], so we sketch the proof only. Let K be a multi-wavelet set of order L.
_ Pastition X into {K:}E., such t.hat me is sn (A, ') multi-wavelet

of order L. Then, since xx,(£A?) is orthogopal 1o xx, (§A') for each (i,4) #

(k,1), it follows that K;A7 NKpA'is a null}éalt when (1, 7) # (k, ). Therefore,
YieaXk(EAT) < 1 ae. & € R Moreover, since every L?* function can be
written as the combination of functions supported on Ug2, K Al it follows
that ¥ ,ez Xi (6A7) = 1 ae. § € R™, proving (11.7). To see (11.6), since K; is
disjoint from K;A* for all (k) # (3,0), it follows that {Wazﬂ(fm :
v € I'} must be an orthonormal basts for L*(K;). This implies (11.6).

For the reverse direction, it is clear that what is needed is to partition K
into {K;}E, so that each K; satisfies 3, o . xx,(£-+7) = 1 a.e. § € R™. This
will follow from repeated application of the followin/g_ fact. Given a measurable
set K such that 3 o xx(€+7) 2 1wae £ € R~ there exists a set U =
U(K) C K such that

Y xolE+m) =1, aeéeRn (11.8)
yEI*

Now, let {V;}32, be a partition of R7 consisting of fundamental regions of

I™*; that is, the sets Vi satisfy Yo.cpe xw(é+7) = lae £ € R”. For a set
M C R we define M* = Uyere(M + 7). Let

Ly=K.

Let )
Ky = (Vi N Lo) U (U{Lo) \ (VN Lo},

where U(Lg) is the subset of L satisfying (11.8). Let L1 = Lo\ K1, and notice
that L; satisfies (11.6) with the right-ﬂha.nd side reduced by 1. In general, let

—
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Ky = (Vin Lioy) U (U(Li—1) \ (Vi 0 Li=1)*),

and
Li=Li  \ Ky

In the case H:M L is finite, this procedure will continue for L steps, resulting in
& partition “Sf K with the desired properties. In this case, the initial partition
{Vi} was not necessary. In the case L = oo, since the ¥'s partition R®, the
union of the K;'s will contain A Since the K;'s were constructed to be disjoint
and to satisfy (11.8), the proof is complete, O

There is also & soft proof of the reverse direction of Theorem 11, that yields
slightly less information about wavelets, but provides some interesting facts
about shift-invariant spaces. Before turning to the applications of Theorem 11,
we provide this second proof.

When L is finite, we call an (A4,I") orthonormal wavelet {1*}£, an
(A, I combined MSF wavelet if U,_lsupp(y') ‘) has minimal Lebesgue mea~
sure. This terminology was introduced in [6], where it was showu that the
. mininial Lebesgue measure is L. It was also shown that if {9}, is a com-
‘bined MSYF wavelet, then there s a multi- wavelet set K of order L such that
K = UL supp(¥*).

When L = ¢o, it is not clear what the significance is for the union of the
supports of ¢ to have minimal Lebesgue measure, For this reason, we adopt
the following definition. An (A, I") orthonormal wavelet {wi}fe, is an (4,I")
combined MSF wavelet if K = UL lsupp('zﬁ’) is & multi-wavelet set of order L.
This definition agrees with the pravious definition in the case L is finite,

Let us begin by recalling some of the basic notions of shift-invariant spaces.
A closed subspace V C L2(R™) is called shiftfinvariont if whenever f € V and
k € Z™, f(x + k) € V. The shift-invariant space generated by the collection
of functions ® C L*(R") is denoted by S(%¥) and given by

apan{¢(z + k) : k€ Z", ¢ € &},

Given a shift-invariant space, if there exists a finite set @ < L*(R™) such that
V = 8{@), then we say,V/ is finitely generated. In the case,® can be chosen to
be a single function, we say V is a principsl shilt-invariant {(PSI) space. For
further basics about shift-invariant spaces, we recommend (7], [11], {12]. We
will follow closely the development in L’Qy_

Proposition 12. The map T : L*(R™) — L*(T™,£2(Z™)) defined by

Tf(x) = (@ + &))pesn

is an isometric isomorphism between L2(R™) and L*(T", £2(Z7)), where T™ =
R™/Z" is identified with its fundemental domain, e.g., [0,1)".
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In what follows, as in Proposition 12, we will always assume that T? =
R"/Z" ig identified with [0, 1)™,
A range function is a mapping

J:T" — {B C £(Z") : E is a closed linear subspace}.

The function J is measurable if the associated orthogonal projections FP(x) :

£2(Z™) = J(z) are weakly operator measurable. With these preliminaries, we

can state an important theorem in the theory of shift-invariant spaces, due to
+ Helson [7].

Theo;ér; 13. A closed subspace V C L2(R™) is shiftfinvariant if and only if
V ={fec L*(R") : Tf(z) € J(z) for ae. z €T},

where J is a measurable range function. The correspondence between V' and
J is one-to-one under the convention that the range functions are identified if
they are equal a.e. Furthermore, if V = S(P) for some countable & C L*(R™),
then ~-

' J(z) = span{T ¢(x) : ¢ € B}

Definition 14. The dimension function of a shift-invariont space V is the
mapping dimV : T* — NU {0, 00} given by

dim V' (z) = dim J(z), (11.9)

where J 45 the range function associated with V. The spectrum of V' is defined
by o (V) = {@ €T : J(z) # {0}}.

We are now ready to state the main result from [7] that we will need in
this paper. . -

Theorem 15. Suppose V is o shift-invariant subspace of L*(R™). Then V
can be decornposed os an orthogonal sum

V=P Siga), (11.10)

€N

where {¢;(x + k) : k € Z"} is o Parseval frame for S(¢;) ond o(S($is1)) C
o(S(9:)) for all i &€ N. Moreover, dim 8(¢s)(z) = | T ¢s{z)|| € {0.1} fori € N,
and
dimV(z) =Y |[T¢:(z)] Jfor ae. z €T (11.11)
icN
Finally, there is a fo lor?efact about dimension functions that we recall
~ here. See Theorem 3.1 in [8] for,discussion and references.

A
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Proposition 16. Suppose V is ¢ shifi-invariant space such that there exists
a set $ such that
{8(-+k):keZ e}

is o Parseval frame for V., Then

dimV(e)=>_ Y ¢+ k). (11.12)

DED heZn

The following theorem is a relatively easy application of Theorem 15, which
- was certainly known in the case N < oo, and probably known to experts in the
theory of shift-invariant spaces in this full generality. It seems to be missing
from the literature, so we include a proof.

Theorem 17. Let V be o shift-invariant subspace of L*{R"™). There exists a
collection & = {¢s}L, C L*(R™) such thet

=1

{g{z+k):ie {1,...JN},k e Z"}
. 48 (-1;1 orthonormal basis for V if and only if dim Viz) =N ge. x€T"

Proof. For the forward direction, it suffices to show that if {g{z+ k) : & €
Z' i=1,..., N} is an orthonormsl basis for the (necessarily shift-invarient)
space V, then dim V(z) = N for a.e. = € T™. It is easy to see that if {f(z+ k) :
k € Z™} is an orthonormal sequence, then 3, .50 |f(€ + E)? = 1 a.e. Thus,
by Proposition 16, dim V{z) = N a.e.

For the reverse direction, assume V' is a shift-invariant space satisfying
dimV{z) = N ae z & T" Let {$}32, be the collection of functions such
that {11.10) is satisfied, Using the facts that o(S(@i+1)) C o(S{¢:)) for all 4,
(V) = T™ and {11.11), it follows that

o(S(60)) = {;"" e (11.13)

By Equation 11.10, we have fdr 1€ig N,.
dimsg(€) = 1= [Te:OF = Y 16+ R @
keZn

Thus, {#:(x-&) : k € Z"} is an orthonormal basis for S(¢;}. Since the space
&S(¢y) are orthogonal, {¢:(z + k) : 4 € {1,. .JN},k € Z"} is an orthonormal
basis for V, as desired. O

We include a proof of the following proposition for completeness.

‘Proposition 18. Let V = {f € L2(R™) : Gugplf) © W}. Then, V is aha’ﬁj/
invariont and dim V{E€} = 3, gn xwll+ k) = #{E € Z" : £+ k € W} a.e.
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Proof. Clearly, V so defined is shiftl;nva.ria.nt. Let {ex : & € Z"} be the
standard basis for £2(Z™), and let ¢ be defined by dak = X(rr+#)nw 2gain for
k € Z®. Tt is easy to see that V = S(¥), where ¥ = {ti : k € Z"}. Therefore,
_-by Theorem 13, J{(¢) = span{7Tvx(£) : k € Z"} = span{ex : £ + k € W}, The
result then follows from the definition of dimension function in (11.9). O

Corollary 19. Let A € GLn(R), and K be @ measurable subset 70)_’ &n., If

S xr(EA) =1 aeéin &, (11.14)
€2

and .
Z xr(E+k)=N a.e §inR",
kEEn

then there is an (A, Z™) orthonormel wovelet of order N with U;-“’=1supp('q!3i) =
K.

Proof- By Proposition 18 and Theorem 17, there exists ¥ = {4/*}J_, such that
" {Myt: k€ Z*, i=1,...,N} is an orthonormal basis for L*(K}, where M
denotes modulation by k. Thus, by (11.14), 7 is an (A, Z"} wavelet, O

The main theorem in this section is given in Theorem 23. Before stating
this theorem, we give three results that will be useful in its proof,

Lemma 20. Let C C R® be a cone with noﬂ]’émpty interior, I' C R™ be o
full-rank lattice, and T € N. Then, the cardinality of C N I'N (R™\ Br(0)) is
infinity.

Progf. Let | bo a line through the origin contained in the interior of C. The
set U = {z € R™ : dist(z, ) < €} is a centrally symmetric convex set, and

((C N Bp(0))\ U) is bounded. ©(11.15)

By Minkowski's {’theorem (see, for example Theorem 1, Chapter 2, Section 7
in [18] and discussion thereafter), the cardinality of U N I' is infinity. Hence,
by {11.15), the result follows. O

The following proposition was proven in the setting of wave packets in
L%(R) in [9]. We sketch the proof here in our setting of wavelets.

Proposition 21. Suppose A € GL,(R) has the following property: for all
Z C R™ with positive tneasure and all g € N, there exist le &g € £ such

that .
m(ﬂ ZA“) >0,
=1

Then, for every ncga;z\ero i & LA(R™), 9 is not an (A, Z™) Bessel wavelet,
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Proof. Let ¢ € L3(R"™), 4 # 0. Then there exists a set Z C R? of positive
measure such that [1[3(.5)} >C>0forall £ €Z Byreducing to a subset, we
may assume that there exists a constant K > 0 such that, for every function .
f € L*(R%) with support in Z, we have

>, A M) 2 K £

keEn
Since the operator D f = | det{A)[*/? f(-A) is unitery, for every j € Z and for
- each function f € L2(R™) supported in A™7(Z), we obtain

3" DI M) P = K| £ (11.16)

kEeEn

By hypothesis, there exist x1,...,2, € Z such that for U = (N{_, ZA%), we
have m(U) > 0. This tmplie

: q .
STl M2 ST Nxw, D7 M)

jeB,keln i=1 kegn
q
>y Klxvl?
i=1

= ¢K |Ixvi®.
Thus, since g I8 arbitrary, ¥ is not an (4, Z") Bessel wavelet.

Theorem 22 (Bonferroni’s Inequality). If {4}, are measurable subsets
of the measurable sel B and k is a positive integer such thai

N

> 14l > &|Bl,

=1

then there exist 1 £ 1y <fy < -+ <dgyy < N such that

Theorem 23, Let A € GL, (R} with real Jordan form J. The following state-
ments are equivalent.

(a) For every full-rank lattice I' C R®, there ewists o (J,I") orthonormal
wavelet of order co.

(b) There exists an (A, Z") orthenormal wavelet of order oo,
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(c) For eveﬁy Full-rank lattice I' C R™, there exists an (A, I') orthonormal
wavelet of order co.

" (d} There exisis o () noﬁfz@m} (A, Z™) Bessel wavelet of order 1,

(8} J is not orthogonal.

(f) The matriz A is noi similar {over Mp(C)) to e unitary matriz.

Proof. Let us begin by summarizing the known results and obvious impli-

cations. The implication (b) = (f) was proved in [16, Theorem 4.2]. The
- implications (c) => (b) = (d) are obvious, and (¢) < (23) is standard.

{e) = (a). Let I" be a full-rank lattice with convex fundatiental region Y
for I'*. By Theorem 11, it suffices to show that there is 2 measurable cross—f
section § for the discrete action £ — £J* satisfying (11.7). As in Theorems 6
and 8, we break the analysis into cases. -

Case I: There is an eigenvalue of J not equal to 1 in modulus, Without
loss of generality, we assumesthere is an eigenvalue of modulus greater than
1. In this case, J can be written as a block diagonal matrix

({; fﬁ) , (11.17)

where Ji is expansive, and we allow the possibility that rank(J,) = rank(J).
Let S be an open cross;’section for the discrete action £ — £J¥. Partition S
into disjoint open subsets {S; : ¢ € N}. For each ¢, choose k; such that thers
exists y; € ™ such that §;A% x Rrank(Ja) 5 (Y 4 +;), Then,

o0
U(SiAicg X Rrank(.!g})

i=1
is a crossTsection satisfying {11.7).

Case 2: All eigenvalues of J have modulus 1, This means that we are in
Case 3 or Case 4 of Theorem 8. We show thlat in either of these cases, the
cross?section exhibited in Theorem 8 satisfies {11.7). First, note that § in
these cases is a cone of infinite measure with a dense, open subset S°. Let
B ¢ S° be an open ball bounded away from the origin satisfying B C §°. Let
d = diam(Y"). There exists a T such that

Sp:={tb:t>T,be B}

satisfies dist(S,R™\ &) > §. By Lemma 20, I'* N 57 has infinite cardinality,
and by choice of §, ¥ 4+ v C & for each v € I'* 1 Sp. Therefore, § is a
crossfsection satisfying (11.7). '

(8) = (b) = {c). This follows from the following two facts. First, I" is
a full-rank lattice if and only if there is an invertible matrix B such that
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I'= BE™. Second, if B € GL.(R), ¥ is an (A, I') orthonormal wavelet if and
only if Ug = {Ww(B“l-) ;9 € W} is a (BAB™1, BI') orthonormal
wavelet. Indeed, {a) = (b) is ther immediate.

To see (b) = (¢), recall that (b} = (f). Thus, if (b) is satisfied, then
J = B~1AB is not orthogonal, Let I" be a full-rank lattice. There exists a
{J, B-1I'} orthonormal wavelet of order oo, so there exists an {4, ') orthonor-
mal wavelet of order oo,

(d) = {f). Suppose that the real Jordan form of A is orthogonal. Then,
_ for any bounded set Z ¢ IR™, there exists M such that for every k€ Z,z € Z,
we have || zA*|| < M. Furthermore, if Z hes positive measure, then

3 m(ZA4% 0 By (0)) = 0.
kel

Therefore, by Bonferroni’s inequality, for every ¢ € N, there exist k,... &y

such that .
m(ﬂ ZA’“J) >0.

. e g=1
By Proposition 21, this says that for every n@ero %, 9 s not an (A, Z7)
Bessel wavelet. O
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