

Available online at www.sciencedirect.com

International Journal of Fatigue 28 (2006) 1413-1419

www.elsevier.com/locate/ijfatigue

Fatigue behavior of Al₂O₃-based composite with BaTiO₃ piezoelectric phase

Sirirat Rattanachan^{a,*}, Yukio Miyashita^b, Yoshiharu Mutoh^b

^a Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang, Nakron Ratchasima 30000, Thailand ^b Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi 940-2188, Japan

Available online 20 March 2006

Abstract

Fatigue behavior of Al₂O₃-based composite with BaTiO₃ piezoelectric phase was studied by carrying out four-point bending fatigue tests for the poled and unpoled composites, which was compared to that of monolithic Al₂O₃. Tests were conducted under load ratio of R = 0.1 at frequency of 20 Hz with sinusoidal waveform. The present composites exhibited high fatigue resistance compared to monolithic Al₂O₃. From the detailed observations, it was found that the improvement of fatigue strength was mainly due to stress-induced domain switching. The relationship between da/dN and K_{max} was evaluated by conducting fatigue crack growth tests. The threshold stress intensity factors for unpoled and poled composites were higher than that of monolithic Al₂O₃.

Keywords: Fatigue; Crack growth behavior; Piezoelectric composite; Barium titanate; Alumina