Phase separation and crystallization in the system SiO_2 -Al₂O₃-P₂O₅-B₂O₃-Na₂O glasses

Shigeki Morimoto *

School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand

> Received 12 July 2005; received in revised form 26 January 2006 Available online 24 March 2006

Abstract

The phase separation and crystallization behavior in the system $(80 - X)SiO_2 \cdot X(Al_2O_3 + P_2O_5) \cdot 5B_2O_3 \cdot 15Na_2O \pmod{9}$ glasses was investigated. Glasses with X = 20 and 30 phase separated into two phases, one of which is rich in Al_2O_3 - P_2O_5 -SiO_2 and forms a continuous phase. Glasses containing a larger amount of Al_2O_3 - $P_2O_5 (X = 40 \text{ and } 50)$ readily crystallize and precipitates tridymite type $AlPO_4$ crystals. It is estimated that the phase separation occurs forming continuous Al_2O_3 - P_2O_5 -SiO_2 phase at first, and then tridymite type $AlPO_4$ crystals precipitate and grow in this phase. Highly transparent glass-ceramics comparable to glass can be successfully obtained by controlling heat treatment precisely. The crystal size and percent crystallinity of these transparent glass-ceramics are 20– 30 nm and about 50%, respectively.

© 2006 Elsevier B.V. All rights reserved.

PACS: 64.75; 61.43; 81.05.P; 78.66.J

Keywords: Crystallization; Glass-ceramics; Nucleation; Crystals; Nanocrystals; Optical properties; Oxide glasses; Alkali silicates; Phases and equilibria