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Abstract

Rigorous lower bounds are derived for the exact ground state energy of neutral matter of bosonic and fermionic types with
Coulomb interactions with fixed positive charges by using, in the process, lower bounds for the kinetic energies as some power
of an integral ofp? rather than of the familiap®/3, whereyp is the particle density. This method, while it leads to a weakening
of the bound for fermions, it improves the one for bosons frbose in the literature. The bounds for fermionic matter lead to
the inescapable conclusion that as more and more matter is put together, thus increasing thevmirebestrons, the number
k of nuclei, as separate clusters, would necessarily increase and not arbitrarily fuse together, and their individual charges remain
bounded. That is, technically, & — oo, thenstability implies thatc — oo as well, and no nuclei may be found in matter that
would carry arbitrarily large portions of the total positive charge available.
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The Hamiltonian under study is given by
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where
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with fixed positive charges, and, R; refer to the negative and positive charges, respectively. We note that for
k =1, theV, termin(3) will be absent in the expression fArand one would be dealing with an atom. Throughout,
we are interested in the case for whicke 1 relevant to matter.

A rigorous study of the instability and stability of such systems for bosons and fermions, respectively, began
several years ago in some remarkable work of Dyson and Ldajglving rise to the respective famoug®/3
andN power laws for the ground state energy. Much simplified derivations with tremendous improvements of the
corresponding estimates have been given for the fermionic and bosonic cases notably by Lieb and TReig in
A power law behaviour such ag%, with « > 1, implies the instability of such a system, since the formation of
such matter consisting 62N + 2N) particles will be favourable over two separate systems brought into contact,
each consisting ofN + N) particles, and the energy released upon collapse, in the formation of the former system,
being proportional t4(2N)® — 2(N)*] will be overwhelmingly large for realisti®v, e.g.,N ~ 10?3,

In the present work, we are interested in lower bounds for the exact ground state energies of the above systems
and we present some new ideas on the construction of such bounds. The well-known estimates for these bounds
are[2], respectively,
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in units 0fme4/2h2, for the fermionic and boson@ases, respectively, wharg andcp are some positive constants.

The physically important question then arises as totwappens if matter could arrange itself in such a manner
as the positive charges form large clusters (heavy nuclei) carrying large portions of the total positive charge avail-
able constrained, of course, by the neutrality of matter. In particular, if gy Zo =---=Z, =N/q, Zy41=
0,...,Z,=0forsome X g < N, i.e., theg nuclei carry large portions of the total positive changie|, then(4),
(5) lead to the respective behaviowd/3/4*/3 and N3/q*/3, for sufficiently largeN, for fermionic and bosonic
systems. Motivated by the lower bound of the repulsive fdrof the Coulomb potential derived below, rigorous
lower bounds are derived for the ground state energies of the above systems by using, in the process, lower bounds
for the kinetic energies as some power of an integral®ofather than of the familiap®3, wherep is the particle
density. The physical relevance of the our derived boumdsnjunction with the bounds given above to the ques-
tion raised in the beginning of this paragraph will bebeleated upon below. For a recent review on most of the fine
technical aspects in the problem of the stability of mate lower bounds of kinetic energies for multi-particle
systems and related problems §&fand references therein.

Consider a real function(x) > 0 such that(0) < oo, and its Fourier transforri(p) > 0 as well. Letp (x) be
areal function, andi, ..., Ay (k > 2) be real and positive number. Then we may write

(27)3

k
d3 = DX
S A= [P ¢<p> (Z o) e,px,>’ )
j=1
which upon using the Cauchy—Seértz inequality, we obtain
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For any real numbex, b such thath > 0, we havea?/2b > a — b/2. Hence witha = 2 jAdX)), b=
[ d3p|p(p)|?/(27)%5(p) used on the left-hand side of the inequalit( ), the latter leads to

k k 8 p ?
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Let V(x) be real such that' (x) > v(x), andp(x) real, and so far arbitrary,

$(x) = / &3 () (X =), )

which upon substituting i§8), we obtain
k k 1 1 k
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where, needless to say,d3p 15(P)|2V (p) is real. In particular forV (x) = ¢2/|x| = v(X) = e2(1 — e *X1)/|x],
1> 0,v(0) = €24, V(p) = 4ne?/p?, 5(p) = 47 22/p?(p? + A2), and(10) gives the boundk > 2)

k k
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generalizing a result ifb].
For the bosonic case (of spin 0 for simplicity), for example, we may take

,o(x)=Nfd3xz-~-d3xN|1p(x,xz,..., (12)

whereyr is an N boson symmetric normalized wavefunction. It is then straightforward t¢1i9gwice, once for
A;=1,k— Nandthenagainfod; = Z;,x; — R; for k > 2, for the repulsive potentials (), (3), respectively,
to obtain from(12) and(1) the bound

4
(WIHIY)>T — ’;2 d*x p?(x) <N+ZZ> (13)

whereT = (| Zj p§/2m|1p>. Optimizing over, this gives the remarkably simple bound

3e 2/ /3
(WIHY) > T—ﬁn1/3<N+ZZ> (/d3Xp2<x>) : (14)

i=1

It is of utmost importance that> 2, otherwise thé/, term will be absent in the expression farin (1), and there
will be an additional term—eZNfd3Xp(x)/|x — R] on the right-hand side of the inequality (b4), after having
omitted the positive termzfd3x d3x' p(x)|x — x'|1p(x’) /2. The numerical factor 3 would be also replaced by
3/2. This suggests to use a lower boundtahich is some power of an integral pf.
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To the above end, given a functigtix) > 0, the Schwinger bound] for the number of eigenvalues (counting
degeneracyX —&, (if any) of a Hamiltoniarp?/2m — g(x), for £ > 0, satisfieg2] the inequality

2 3/2 1
N—g(S—m - g(x)) < (zﬂhz) —~ f d*x g?(x). (15)

Hence for any > 0, we may choose

148 3 2
e =52 () ([ ) (16)

o] thatN,g(pz/Zm — g(x)) < 1, which implies thatN,g(pz/Zm — g(x)) = 0, and the right-hand side ¢16)
provides a lower bound to the spectrum[pf/2m — g(x)] since its spectrum would then be empty for energies
< 6.

Accordingly, with

4 Tp(x)

gx) = §m

17)

we obtain from(16), the following inequality involvingl’, by noting, in the process, that for bosons, we may put
all of the N particles at the bottom of the spectrum[pf/2m — g(x)1,

12 gma(z) e[ w) 4o

for anye > 0, where we have s¢l +8)/3=1+¢.
Upon setting [ d3x p?(x))Y2 = A, 312(m/2)%/3/2m(1+ ¢) = c, (14), (18) lead to(k > 2)
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where we have taken arbitrarily small for N sufficiently large. It is interesting to note that everzif = --- =
Zy =1 in (5), the coefficient ofN%/3 in (5) is of the order 8.71, and the new estimate(19) improves this

numerical estimate by a factor of about two. Fr=--- =27, =N/q, Nyy1=---=N;y=0,2< g < N, i.e,,
N <« N?/q, the N dependence of the right-hand side(ibg) is N3/g*/3 commdmg with that obtained frortb).
Such N dependences alone withi®/3 for Z; = --- = Zy = 1 andN3/¢*3 for the case just discussed imply

physically that for no arrangements of the positive chargesasponding to light or heavy nuclei, bosonic matter
may be stable. The situation with fermionic matter is quite different as discussed below.
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For the fermionic case, we may use a Lieb—Thirring inequality for the kinetic en&rgyg[ (3.7),p = 2,n = 3]:
T = b([ d® p?(x))?/3h? /2m whereb is independent of N, which from(14) leads tok > 2

2/3\ 2 k 4/3
n? 3me? k 9 723 me*
Hiy)>—blA— VIN+Y 77 — s N+D>_72)

4/3
9 723 k 2 me*
> s (N ; zt) S (20)

(As a rough estimate obtained froj@], the numerical factor #%/3/2%/3p is of the order 1.5.) FogZy = --- =
Z,=N/q,2<q < N, theN dependence on the right-hand sidg2®) is N®3/¢**2 and does not improve the
bound obtained fron4) which has theV dependence oiV’/3/¢%/3. On the other hand, faf; = --- = Zy =1,

or more generally for boundeti the right-hand side d#) grows with a single power a¥. One may consider the
situation of having; separate ions, each in its ground state with nuclear chifies . . ., |e| Z, having each only
one electron and having separatély — ¢) “free” electrons with arbitrarily smll kinetic energies with all thev
entities, i.e., they ions and the N — ¢) “free” electrons being infinitely sepated from each other. This leads to
an upper bound for the ground state energy of such matter given by the well know expregipnl?me“/th
(which incidently is bounded above byNme*/212 for 3", Z; = N). From this and4)/(20), we conclude that for
Zi=--=Zy=N/q, Zy11=---=Z;=0,2< g < N, the ground state energy for fermionic matter will grow
not slower than- N2 and is obviously quite relevant physically to tstability of matter. It leads to the conclusion
that as more and more matter is put together, thus increasing the nihdielectrons, the numbérof nuclei in
such matter, as separate clusters, would necessarily increase and not arbitrarily fuse together and their individual
charges remaibounded. That is, asN — oo, then stability implies that — oo as well, and no nuclei may be
found in matter that would carry arbitrarily large portions of the total charge available.

Finally we note that our new estimates (obtained by somewhat simpler methods) and the other well known ones
in the literaturg2] for the bosonic case are comparable leading toNR€ law and, as expected, two different
methods of estimation lead, in general, tdefiént multiplicative numerical factors 16> with some improvement
in our case. The situation for the fermionic case is, howewere critical and deserves some comments. The lower
bound for the ground state energy arisssaacompetition betweenefkinetic energy and thiateraction parts in
(1) contributing, respectively, with positive and negative signs. A lower bound corresponding to the repulsive part
of the potential if11) based on the so-called “no-binding theorem” (E&8] for detail), based on the/3 power
of p, is expected to be a better one than the one givgai)based only on positivity arguments and hence the
former will contribute more optimally to the lower bound of the ground state energy being sought. Also the extra
N3 multiplicative factor arising in the second term on the right-hand sid@@fmay presumably be accounted
for by an application of Hélder’s inequality relating our integraldfand the familiar one of the integral pf/3
of the densityp. In this case, it reads

2/3 1/3
/ 3% p®R(x) < ( f d3x p2<x>) ( / d%(x)) (21)

) 2/3 1
( / d*p (x)) > <13 a3 p*3(x), (22)

which upon comparison with the known method, using thi@ power of the density, would provide a weaker
contribution to (a lower bound to) the kinetic energy in an estimation of the ground state energy.

or
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