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We prove rigorously the stability of matter in 2D. 
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1. Introduction 

Early investigations of the stability of matter go to the classical work of Dyson and 
Lenard [1] and more recently to the monumental work of Lieb and Thirring [2, 3]. 
The Panli exclusion principle turns out to be not only sufficient for stability but also 
necessary. In regard to the exclusion principle, or more generally to the spin and 
statistics connection, it is interesting to quote from the translator's Preface [4] of 
the classical book by Tomonaga on spin: "The existence o f  spin, and the statistics 
associated with it, is the most subtle and ingenious design of  Nature - -  without 
it the whole universe would collapse." For matter, with the exclusion principle, 
with Coulomb interactions, the ground-state energy EN ~ N ,  with N denoting the 
number of electrons in matter, and matter consisting of (2N + 2N) particles is not 
favoured over two separate systems brought together, each consisting of (N + N) 
particles. This is unlike the situation with "matter" without the exclusion principle, 
for which EN ~ N ~ with a > 1. A key result in the stability of matter is that for 
a non-vanishing probability of having the electrons within a sphere of radius R, the 
latter, necessarily, grows not any slower than N 1/3 for large N [5], and the infinite 
density limit does not occur. No wonder why matter occupies so large a volume! 
Here it is worth recalling the words addressed by Ehrenfest to Pauli in 1931 on the 
occasion of the Lorentz model (cf. [6]) to this effect: "We take a piece o f  metal, 
or a stone. When we think about it, we are astonished that this quantity of  matter 
should occupy so large a volume." He went on by stating that the Pauli exclusion 
principle is the reason: "Answer: only the Pauli principle, no two electrons in the 
same state." 

There was much interest in recent years in physics in 2D, e.g. [7-10], and in the 
role of the spin and statistics theorem. It has thus become important to investigate 
the nature of matter in 2D with the exclusion principle. As a matter of fact, it is 
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an important theoretical question to investigate if the change of the dimensionality 
of space will change matter from a stable to an unstable or an explosive phase. 
We show that matter is stable in 2D. In 2D we work with the logarithmic potential 
and, as it turns out, the corresponding Laplace equation is more important for the 
proof of stability in spite of the fact that the logarithmic potential does not go to 
zero at infinity and one might expect difficulties for the proof of stability. We do 
not, however, dwell upon nature for other dimensions here, with the exception of 
some comments made in the concluding section (Section 6). (Some of the present 
field theories speculate that at early stages of our universe the dimensionality of 
space was not necessarily coinciding with three, and by a process which may be 
referred to as compactification of space, the present three-dimensional character of 
space arose from the evolution and the cooling down of the universe.) 

In Section 2 a detailed study of the Thomas-Fermi (TF) atom is carried out 
in 2D. Some very preliminary study of this was also carried out in [11]. The TF 
energy, however, was neither computed in the latter reference nor it was shown that 
it provides the smallest possible energy value for the TF energy functional. The 
no-binding theorem [2] is established in Section 3 in 2D from which a lower bound 
to the electron-electron potential is obtained. A lower bound to the exact-ground- 
state energy of matter in 2D is derived in Section 4. The expansion of matter is 
investigated in Section 5 where it is shown that for a non-vanishing probability of 
having the electrons within a circle of radius R, the latter, necessarily, does not 
grow any slower than N 1/2 for large N. Section 6 deals with our conclusion. 

. T h e  T F  a t o m  in  2 D  

The particle density n(x) may be quite elegantly expressed in terms of the Green 

r= fa2xlFa [i° ] 2rri oor----/• ~ V(x) G ~ ( x ,  h r ; x ,  0), (4) 

• -~ +0, giving zrh2 f dZx [n(x)] 2 (5) 
T =  q m  

function G~ , (xT;  x0) for coincident space points as 

n(x) = E ~ /1  J-f~ - - r  dr_ t• G ~ ( x ,  hT; x, 0), • --+ +0, (1) 
o" o<3 

where or, o" are spin indices, and in the semi-classical approximation 

f [ d2P exp - i  + V ( x )  r (2) G~, (xT;  x0) = ~o ,  (27rh) 2 ~mm ' 

r = T / h ,  for a spin independent potential V(x). This gives 

n ( x ) -  q m  V(x), (3) 
27rh 2 

where q is the spin multiplicity. For the kinetic energy T, we similarly have 



STABILITY OF MATTER IN 2D 265 

Of particular importance in 2D is the Poisson equation 

V2 In ( C )  = 2zr~2(r) 

for any dimensional scale factor C. 
We define the TF energy functional F[n], 

F[n] = - -  =h2 + 2Ze2f  d2x In ( Ixl In(x)  qm f d2x [n(x)]2 \ 2 r o ]  

-e2f d2xd2x'n(x)ln(IX~rX'l)n(x'), 

(6) 

(7) 

ro = "-(h2/2qme2) 1/2, and the correctness of the dimensional scale factor 2r0 where 
will be established below. 

The TF density nTF(X) and potential energy VTF(X) may be obtained by functionally 
differentiating F[n] with respect to n(x) and setting the resulting expression equal 
to zero. This gives 

q m e 2 f d 2  x, ( I x z x ' l )  Ze2qm In ( I x l )  + _  In nTF(X'), (8) 
nTF(X) -- n.h2 \ 2 r o /  zrh 2 \ 2ro 

and from (3) we have 

VTF(X):2Ze21n(IX]] 
\ 2r0 ./ 

Eq. (8) leads from (6) to 

qme ~ (Ix - x'l) + f d2x' In \ 2to VTV(X'). (9) 

2Ze2qm 2qme 2 
VZRTF(X) -- h 2 ~2(X) -1- T nTF(X) (10) 

which, with spherical symmetry, may be rewritten as 

r2 d 2qme 2 2Ze2qm 
~ r  2 + r ~ r  r h2 r 2 n T F ( r )  - -  h------T--- ra(r)a(O). (11) 

The properly normalized solution of (11) is given by 

qm e2 (r) 
nTF(r) -- 7 r h ~  Ko ~o (12) 

where Ko is a modified Bessel function of order zero, and we have abandoned the 
function Io(r/ro) which increases exponentially in r for r -+ o~, ro = (li2/2qme2) 1/2. 

Using the integral 

fo x dx Ko(x) = 1 (13) 
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we explicitly verify the correct normalization condition 

f d2x nTF(X) Z. 

Other useful integrals involving Ko(x) are 

fo ~ x d x  ln(x)Ko(x) = + l n 2 ,  - y  

where V = 0.57724 is Euler's constant, and 

xdx  Ko(x) =-~. 

For x --+ 0, we may use the asymptotic expression 

~ ( x ) - ,  - [ l n  ( ~  t + ~]. 

Accordingly, from (12), (17) and (8), we have for r ~ 0, 

(14) 

(15) 

(16) 

(17) 

(22) 

f (Ix-x,I) - - e  2 dZxd2x ' n~(x )  In \ 2to .1 n~(x ' )  = ZZe2( ln2 -  0.61592) 

= 0.07723 ZZe 2, 

where in evaluating the last integral we have used the fact that 

fo dO In p2 + p,2 _ 2ppl cos 0 = Jr ln(p~), 

where p> is the largest of p, p'. 

and 

(21) 

qmZe2[,n(r ) ] qmZe2 n(r ) 
~h---~ ~ + × - ~h-- ~ 

qmZe2 x' dx' lnx' Ko(x I) 
+ jrh--------- ~ 

fo qmZe--~2 ln(2) xl dx' Ko(x') (18) 
rc h 2 

and using the integrals (13) and (15) in (18) we, in particular, verify the correctness 
of the dimensional scale factor 2r0 in (7). 

The evaluation of F[n~], with nTF given in (12), is now straightforward thanks 
to the integrals in (13), (15) and (16). In particular, 

~h2 f d2x nZ(x)  Z2e2 
_ ( 1 9 )  

qm J 2 ' 

2Ze2 f dZx ln(~rlo)nTF(X)=--2Z2e2y, (20) 
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The TF energy ETF = F[nav] is then given by 

ETF = --0.5773 Z2e 2. (23) 

Let 

Using the fact that 

n(x) = tnl(x)  + (1 - t)n2(x) ---- tn l  + (1 - t)n2, 

n(x') ---- tnl(x ' )  + (1 - t)n2(x') -- tnrl + (1 - t)nt2, 0 < t < 1. 

From convexity or directly we have 

[tnl + (1 - t)n2] 2 <_ tn 2 + (1 - t )n  2 (27) 

and 

[tn i + ( 1 - t)n2] [tntl + (1 - t)n~2] = tn  a nrl + ( 1 - t )n2n'  2 - t ( 1 - t) (n I - n2) (n' 1 - n~). (28) 

f {Ix-  x'l'X, , , d2xd2x ' ( n l - n 2 )  l n ~  2to ) ~ n , - n 2 )  

is negative, for example by Fourier transform, we may then infer that 

F [ t n l  + (1 - t)n2] <_ t F[nl]  + (1 -- t) F[n2]. (29) 

It is also easily seen that for n2 =--nay, we have from (8), 

d F[ tn l  + (1 t)n2] t=0 0. (30) 
dt  

From (29) and (30), the inequality in (26) readily follows by replacing nl by n. 

For the TF potential energy VTF(X), we have from (9) and (6), 

V2VTF(X) = 4re Z e  2 32(x) - 4rr e2nav(x), (24) 

with the first term corresponding to the nucleus at the origin, while the second 
term corresponds to the electron density. Upon integration over x, and using (14), 
we obtain 

f d2x V2V(x)  0 (25) 

verifying the neutrality of  the TF atom. 

It remains to show that nTF provides the smallest possible value for F[n] in 
(7), that is 

F[n] > F[nTF]. (26) 
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3. No-binding theorem 

We introduce a TF energy-like functional 

qm[3rchZ/ k f ([N~Rjl~2ro / ~[p] = d~x p2 (x) + 2 ~ Zj e 2 dZx p (x) In 
j=l 

k 
_ 2e2 ~ Zi Zj ln(lRi - Rj]'~ 

\ U r o /  

-e2f d2xd2x'p(x) ln( Ix- x'12ro / p(x'), (31) 

where /~ > 0 is arbitrary. Here the Ri denote the positions of the nuclei. Taking 
the functional derivative of )t-[p] with respect to p(x) and setting the resulting 
expression equal to zero, we have 

qm,B rch2 k (/x-RJI~2Fo ] e2 f  d2x, ({x-xr,~_~r0. J po(X) = - ~ Zj e 2 In + In po(x') (32) 

for the corresponding solution po(X), 

k 

f d2x p0(x) = Z Zj. (33) 
j-=l 

We introduce the functionals with some of the Zj scaled by a positive parameter 
2. as 

5t'[p; I, Zl .. . . .  ~.Zl, ZI+I . . . . .  Zk; RI . . . . .  Ilk] (34) 

and 
~'[p; )~Z~ . . . . .  )~Zl; R1 . . . . .  Rl] (35) 

for l < k, with the corresponding solutions to P0 in (32) denoted by pl(x), p2(x), 
respectively. That is, 

qrnl3 IOl(X)= In 2ro - Z Zje21n ~ro ,I 
j = l  j = / + l  

+ e2 f dZ x' ln( lX ~ x ' l ]  pl(X'), (36) 
\ 2ro / 

' ( ) f ( ) qm---~ pz(x) = - ~  Zj=a Zj e 2 In Ix 2-ro- IRjl + e z d2x ' In IX2ro- x'l p2(x'). (37) 

Let 
jrh 2 

Qi (x) = qm~8 pi (x), i = 1, 2. (38) 
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Then 

k ( I x - -  R j l )  
Q l ( X ) -  Q 2 ( x ) = -  Z Zje21n 

j= l+ l  2-1"0 

f qmfle2 d2x ' In [Ql(X') -- Q2(x')] (39) 
+ 7r t i~ 

and, in particular, 

k 2qmfl 
V 2 [Ql(X) - Q2(x)] = -27r E Zj e232(x - Rj)  + - 7  e2[Ql(x) - Q2(x)]. (40) 

j=l+l 

By an elementary application of Green's theorem, we may infer, as in the 3D 
case, that Ql(x) - Q2(x) > 0. Now in reference to the functional 

~'[p; Zt+l . . . . .  Z~; Rl+l . . . . .  Rk], (41) 

let p3(x) satisfy 

( ) f (v')  yTh2 k Ix -- Rjl e2 d2xr I I 
q m----~ P3 (x) = --  j=/+IZ Zj e 2 In 2-ro + In P3 (x'). (42) 

An almost identical analysis as in the 3D case then shows that 

.T ' [pl ;  Z1 . . . . .  Zk; R1 . . . . .  Rk] > ~[P2; Z1 . . . . .  Zt; R1 . . . . .  R/ ]  

+ ~[P3; Zt+I . . . . .  Zk; Rl+l . . . . .  Rk], (43) 

and more generally 

where 

zrh 2 

qm13 

k 

--~"[P0; Z1 . . . . .  Zk; RI . . . . .  Rk] ~ ~ ' [PTF '  Zi' Ri], 
i=1 

_ _  - -Ri l ' ]  e2 I n  ~F 0 PTF(X). piTF(X):--Zie21n(IX2r 0 ] +  f. x ~ , x - x , , )  

(44) 

(45) 

Replacing x by x + Ri, and setting 

P/TF(X + Ri) = nTF(X)[m--,m~, Z~Zi' (46) 

where nTF(X) satisfies (8) and (12), we obtain 
k 

.T'[p; Z1 . . . . .  Zk; R1 . . . . .  Rk] >_ -- 0.5773 e 2 Z Z2 (47) 
i=1 

and we have used (23). Here p _> 0 is arbitrary since, as in (26), P0 provides the 
smallest value for 5t-[p]. Eq. (44) embodies a no-binding theorem. 
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From (31) and (47), we then obtain the following basic inequality: 

k ( [ R i = R j [ )  7r~2 f -2e2 Z Zi Zj In > d2x p2(x) 
i<j \ 2ro - qm~ 

i ( _2~__Zje2 d2x p(x)1 n IX-- RjI~ 
j = l  2ro ,/ 

+ e 2 f d2x d2x ' p (x) 

-0.5773 e 2 ~ Z 2 ~ i" 
i=1 

The latter also implies that 

L-~ N ( I X / ~ X j l )  
--2e 2 ~ "  In > 

• . \ 2ro - 
1 < j  

(Ixzx*l 
In 

~, 2r0 } p 
(x') 

7rh2 f d2x p2(x) 
qmfl 

N 

-2 Z e~ f ~2x ~(x) 
i=1 

q- e 2 f d2x d2x ' p (x) 

-0.5773 e2N. 

ln(IX-X'l~ 
2r0 / 

(zx-x'l~ 
l n \  2ro J p(x') 

(48) 

(49) 

4. Lower  bound for the exact ground-state  energy of  matter  in 2D 

Let 

p(x, :  N E f d ~ x ~ d ~ x "  I~(x~,,x~ . . . . .  x.~.)[ ~ (50) 
Cr 1 ..... O" N 

satisfy the normalization condition 

f d2x p(x) = N. (51) 

To derive a lower bound to the ground-state energy of matter, we need a lower 
bound to the expectation value of the kinetic energy (~l ~_,ff_l p2i/2m I~) = T. To 
this end, set 

p(x) 
f (x) = 2 T (52) 

f d2x p2(x) 

then 

(~ £ F°'~ - f(x/)] v~) =-r. 
i=1 L2m 

(53) 
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An adaptation of the Schwinger bound [12] then leads to 

h 2 
I d2x p2(x) < T (54) 

3qm J 
by making use, in the process, of the exclusion principle for the effective Hamiltonian 
zN=I [p2/2m -- f(xi)]. 

We define the total Hamiltonian of the system 

N 2 N k ( I X / ~ _ R j ] ~  
H =  Z pi ~ m + 2 e 2 ~ Z Z j l n  

i=1 i=1 j=l \ 2r0 ./ 

N (,Xi __Xj] ) k (,Ri _Rj, ~ 
- 2e2 Z In 2ro - 2e2 Z Zi Zj In 2ro ]" i<j i<j 

From (49) we have the following bound: 

(~ --2e2Zln(IXi--xJl'~i<j ~ 2F° /ll[f) 

-- 0.5773 e2N, 
and explicitly 

( N k (,xi -- Rj, 
7t 2e2 ~--~ ~ ZJ In 2ro 

i=1 j = l  

From (54)-(57), we obtain 

Yt'h2 e2 f d2x d2x' qm/3 f d2x p2(x) -- p(x) 
(,x-x',) 

I n \  2ro ]P(X')  

)) f (,x-..,) = 2e 2 ~ Zj d2x In 2r0 p(x). 

( H ) rrh2 k f ( ) p d2x p2(x) + 2e 2 ~ Zj d2x In Ix - Rjl  
> - -  2 r o  p(x) 

f - e  2 d2xd2x 'p(x)  ln 2ro ] p(x') 

k (IRe--_Rj[) 
- 2e 2 ~ Zi Zj In - 0.5773 e2N, 

i<j \ 2ro 

(55) 

(56) 

(57) 

(58) 

where 1/3'= (1/3zr) - (1/fl), with fl > 37r chosen as such for consistency. 
With /3 replaced by 13' in (48), the latter in conjunction with (58) then gives 

(PIHtP) > -0 .5773e 2 N+ Zj . (59) 
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Finally, using the bound 

k k 

2 < Zmax ~ Zj : Zmax N ~-'~ Zj _ 
j= l  j= l  

in Eq. (59), we obtain 

(V~IHIV~) ~ - 0.5773 e2N[1 + Zmax], 

where Zmax corresponds to the nucleus with largest charge in units of lel. 

(60) 

(61) 

5. Inflation of matter 

Let x denote the position of an electron relative, for example, to the center of 
mass of the nuclei. We define the set function 

1,, if x lies within a circle of radius R; 
XR(x) = 0 otherwise. (62) 

Accordingly, for the probability of finding the electrons within a circle of radius R, 

Prob[lxll  < R . . . . .  IXNI < R] < Prob[lxll  < R] 

---- --N1 f d2 x P (x) XR (x) 

l [ f  ]1/2al/2 (63) < d2x P2(x) ~R , 

where in the last inequality we have used the Schwarz inequality. Here AR denotes 
the area in which the electrons are confined, i.e. AR = 7 r R  2. 

Let V denote the interaction part in (55), i.e. H = ~-,ff-1 P2i/2m + V. Then for a 
strictly negative energy state of matter I~(m)), i.e. (~(m)lHlap(m)) < 0, we have 

N p? ( ~ p . 2 )  
(*(m)l Z ~m 10(m)) < -(ap(m)l ~mm + V 10(m)). (64) 

i=1 i=1 

Let --£U denote the ground-state energy of matter, i.e. from (61), 

- S o  > - 0.5773 e2N[1 + Zmax]. (65) 

Since the state Iqt(m/2)) cannot lead for (~p(m/2)lHl~P(m/2)) to a numerical value 
lower than --CN, we have 

--£U < (~p(m/2)lHl¢(m/2)).  (66) 

From Eq. (64), we then obtain 

U p.2 
(~P(m)l Z ~mm I~(m)) < 2£N. (67) 

i=1 
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This inequality in conjunction with the one in (54) then gives 

f qme2 d2x pZ(x) < 3.464 - - ~  N[1 + Zmax] (68) 

where we have finally made use of (65). 
Now we invoke the inequality (63) to infer that 

( A ~ )  1/2 ,/qrne2 
Prob[Ixll  _< R . . . . .  IXNI _< R] ~ 1.861V-----~[1 -~- Zmax]. (69) 

This leads to an inescapable fact that necessarily, for a non-vanishing probability 
of having the electrons within a circle of radius R, the corresponding area AR 
grows not any slower than the single power of N for N --+ cx~, since otherwise the 
left-hand side of (69) would go to infinity in this limit and would be in contradiction 
with the finite upper bound in (69). Upon multiplying (69) by (AR/N) 1/2, we also 
note that the infinite density limit N/AR -+ cx~ does not occur, as the probability 
on the left-hand side of (69) would go to zero in this limit. 

Finally, we note that for the expectation value 

( ~ - ~ ) =  ~ fd2Xl'"d2XN(~=lXN)l~P(xl~rl . . . . .  XNO-N)[ 2 
i=1 cr 1 ,...,a N 

_-- __1 f d2 x Ixl p(x) 
N J 

> - -  dZx p(x) 
- N  

Ixl>R 

= R (1 -- P r O b [ I x  I _ R]) 

qme 2 > R(1- (~--~---~)l/21.861~-~[l + Zmax]). (70) 

Optimizing the extreme right-hand side of (70) over R, we obtain 

R = 0.2687 qme 2 [1 q- Zmax],] (71) 

leading from (70) to the explicit non-vanishing lower bound 

N1/2 ( h2 )1/2 
( ~ ) > 0 . 1 3 4 3 i = 1  Ikqme27r(1--I-Zmax]/I " (72) 

6. Conclusion 

Two-dimensional matter is physically relevant, see e.g. [7-10], and our analysis 
shows that matter is stable in 2D. It is an important theoretical question to investigate 
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if the change of the dimensionality of space will alter these properties, or that 
stability is a characteristic of the space dimension. We do not wish to speculate 
on this until a detailed rigorous study of this is carried out in dimensions higher 
than three. A preliminary study of this shows that the TF density is too singular at 
the origin leading to serious problems with normalizability conditions in conformity 
with earlier studies [11]. The situation becomes more extreme in 1D as the potential 
rises linearly as opposed to the 2D case which is only logarithmic. These problems 
will be considered in a forthcoming report. 

Acknowledgement 

The authors would like to thank Professor Walter Thirring for his valuable 
comments concerning the stability of matter in arbitrary dimensions at early stages 
of our work and for his constant encouragement. 

REFERENCES 

[1] F.J. Dyson and A. Lenard: Stability of matter. I, J. Math. Phys. 8, 423 (1967); A. Lenard and F. J. Dyson: 
Stability of matter. II, J. Math. Phys. 9 (1968), 698. 

[2] E. H. Lieb and W. E. Thirring: Bound for the kinetic energy of fermions which proves the stability of 
matter, Phys. Rev. Lett. 35 (1975), 687; ibid 35 (1975), 1116 (E). 

[3] E. H. Lieb: The Stability of Matter: From Atoms to Stars, edited by W. E. Thirfing, Springer, Berlin 
1991. 

[4] T. Oka: The Story of Spin, University of Chicago Press, Chicago 1997. 
[5] E. B. Manoukian and S. Sirininlakul: High-density limit and inflation of matter, Phys. Rev. Lett. 95 

(2005), 190402-1. 
[6] E J. Dyson: Ground-state energy of a finite system of charged particles, J. Math. Phys. 8 (1967), 1538. 
[7] H. B. Geyer (Ed.): Field Theory, Topology and Condensed Matter Physics, Springer, Berlin 1995. 
[8] R. K. Badhuri, M. V. N. Murthy and M. K. Srivastava: Fractional exclusion statistics and two dimensional 

electron systems, Phys. Rev. Lett. 76 (1996), 165. 
[9] G. W. Semenoff and L. C. R. Wijewardhana: Induced fractional spin and statistics in three-dimensional 

QED, Phys. Lett. B. 184 (1987), 397. 
[10] S. Forte: Quantum mechanics and field theory with fractional spin and statistics, Rev. Mod. Phys. 64 

(1992), 193. 
[11] G. E Kventzel and J. Katriel: Thomas-Fermi atom in n dimensions, Phys. Rev. A. 24 (1981), 2299. 
[12] J. Schwinger: On the bound states of a given potential, Proc. Nat Acad. Sci. USA 47 (1961), 122. 


