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Abstract 

A field theoretical derivation is given for the average number of Cherenkov photon emission by a charged particle, in 
a dielectric medium of permitivity el, moving parallel to the plane surface of a different dielectric medium of permitivity 
E2 > [;1 at finite temperatures. Near threshold for the speed of the charged particle, it is shown that an enhancement of 
about 3 1% of this number is possible in the presence of the second medium, by choosing specific windows, obtained from 
a general formula, centered about points of the spectrum at any temperature and arbitrary values of the permitivities 
e~, e2 > e~, The conditions for this 31% enhancement are explicitly worked out for blue and red light. 

PACS: 41.60.Bq; 12.20.Ds; ll.10.-z; 03.50.-z 
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1. Introduction 

There has been much interest in the literature (cf. 
[1 5]) for years in the so-called Cherenkov radi- 
ation emitted by a charged particle in a medium, 
moving with a speed greater than the speed of light 
in the medium, since its discovery [6] and early 
theoretical explanation [7]. In the present paper, 
we investigate Cherenkov photon-emission in a 
dielectric medium of permitivity el, by charged 
particle moving parallel to the plane surface of a 
different dielectric medium of permitivity e2 > q at 
finite temperatures, and hence the derivation in- 
cludes Planck's constant h. More precisely, we derive 
the expression for the average number of Cherenkov 
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photons emitted within the frequency ranges at 
finite T, by the charged particle the time that it 
moves a given distance. It is shown that as we move 

away from the threshold value C/~l  of the speed 
v of the particle and very near to it, an explicit 
enhancement of about  31% of the Cherenkov 
photon number is possible, over the corresponding 
case with no second medium present, for photons 
emitted through "selective windows", obtained 
from a general formula (Eq. (49)), centered about 
points of the spectrum for any temperature and 
arbitrary values of the permitivities e~2 > ea. This 
31% enhancement provides a criterion for the in- 
direct detectability of the presence of the second 
medium. Applications are then carried out for blue 
and red light, and the conditions for this enhance- 
ment are worked out. The treatment of the recoil of 
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the charged particle is beyond the scope of the 
present work. The analysis is given from a quantum 
field theory view point (cf. [1]) via the vacuum-to- 
vacuum transition amplitude (cf. [1, 5, 8]). 

where k = (K, q), x l l  = (x, y), and 

GI+I(K,q)=-(A+ - (gl~2B+),~/-~-/ (6) 

2. Cherenkov photon emission 
2q 

A+ = - 1 + - -  (7) q + Q' 

In the temporal gauge for the vector potential 
A ° =  0, the photon propagator D°(x ', x )=  i(O+l 
(Ai(x')AJ(x))+ l0 >/(0+ l0 > satisfies a well- 
known differential equation (cf. [1, 9]): 

[( - ~': + e(z')?/°2)O ik + ~'iO'k] DkJ(x ', X) 

= (~ij 6(X', X), (1) 

where x = (x °, x), x ° = ct, and 

C(Z') = ":1, > 0, 
{.g2, Z' < 0  (2) 

and we consider ~2 > ~1. The charged particle 
moves in the z' > 0 region parallel to the x y plane 
specifying the surface of the second dielectric me- 
dium. The charged particle will be described by 
a current J l(x). The expectation values of the elec- 
tric and magnetic field components E i, B i, due to 
the charged particle, are given by [1] 

1 f(dx) (?'°Dil (x', x) J I(X), (3) <Eqx')> = 7 

gijk f (Bi(x')) = ~ -  (dx)~.'JDkl(x ', x)J'(x),  (4) 

The boundary conditions are: (E"(x')>, a = 1, 2, 
(Bi(x')), i = 1, 2, 3, and e(z') (Ea(x')) are continu- 
ous across the boundary surface z' = 0. By applying 
these boundary conditions, the photon Green's 
function DiJ(x ', x) has been worked out in detail in 
Ref. [10], and here we need only the Dll(x' ,x) 
component for z' > 0, z > 0. The latter is given [10] 
by 

f d 2 K  ~dq e~(x'll-xloe illtl"'llA'° X°l 

D"(x ' , x )  = i j(Zrc)2 J2T c 2,,~1~1 Ikl 

( I _ ( K " )  2- ] 
x e i°(z" z) 1 \ l k l ]  I + e-~(='+zl 

× GI+I(K, q)'], (5) 
/ 

2eq q 
B+ = - 1 + ~IQ + ~2q' (8) 

Q= / C ~ - l ) k 2 + q 2 s g n q .  (9) 

The vacuum-to-vacuum transition amplitude 
[1, 5, 8, 11], first at T = 0, may be then written 
as  

<o+ IO_> = 

exP [ 2@c3 f (dx')(dx) J '(x') D' ~(x', x) J ~ (x) 1. (10) 

We will specialize in currents of the form 

j l (x )  = f ( x  1, t )~(X 2) C~(X 3 --  a), (11) 

where a denotes the distance at which a charged 
particle moves from the surface of the second me- 
dium. The function f (x  1, t) is quite general for the 
time being and a the particular functional form for 
it, for the problem at hand, will be chosen later. We 
consider a causal arrangement of currents f÷ (x', t) 
and f_ (x 1, t) defined through 

f ( x ' ,  t) =J+(x 1, t) + f_(x  1, t), (12) 

where the current f+ (x', t) is switched on after that 
the current f_(x ~, t) is switched off. The compo- 
nents f_ (x 1, t) and f+ (x 1, t) are considered as the 
emission and detection sources of photons, respec- 
tively. The contribution to the exponent in 
(10) coming from such a causal arrangement of 
emitter and detector of photons is then given from 
(5) to be 

i f hc 3 dx q dt 'dx 'dt f+(x  1, t ' )D(x' l t ' ,xl t) f_(x 1, t), 

(13) 
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where 

• (" d2K ~'dq e ix'(~'~ -x')e -ilkl/c, lx' ..... °t 
D(x'lt',xlt) = 1 j(-~)2 J ~  2x~1 [k [ 

(KI~ 2] q)}, 
X - -  + e - 2 i q a a l + l ( K ,  

(14) 

and G[I(K, q) is defined in (6-9). To simplify the 
integral in (14), we first insert the unit operator in 
the integrand 

1 =  f o d c o S ( c o - [ k l c  / ( 1 5 )  

where co will be identified with the angular fre- 
quency of a photon. Secondly, we integrate over the 
K 2, q integrals in polar coordinates K 2 = R cos 0, 
q = R s i n 0 ,  dK 2dq = RdRdO, 0 <<. R < oQ, 

0 ~< 0 ~< 2x. We note, in particular, that due to 

R 2 = k 2 __ ( K 1 )  2 - -  / ; 1 0 ) 2  c2 (K1) 2. (16) 

the delta function in (15), in turn, allows us to 
integrate over R in the expression 

, 1 ,  o~ dK 1 dco 
D(x , t , x l t )  = i -~  2x 2el(co/c) 

x RdR6  c o - x / ( K 1 ) 2 + R  ~ F R ( K , C O ) ,  
x/ el/  

(17) 

where 

F R ( K  1, co) 

12~ dO (K 1 )2 C2~ 
~ o ~  -//[1 - cos (2Ra cos 0)] 

+ 2 cos(2Ra cos 0) cos 0 [,/ 1 

A 2 + cos 20 sgn cos 0 + cos 0 

- -  (K1)2c2/(CO2/;1) ] } ,  (18) 

xfA 2 + cos 2 0 sgn cos 0 + (/;2 cos 0//;1) ( )1 (K1)2c2. - (19) 
A2 = 0;2 -- el) ea co2 

by writing 

( c) 
cS(R - ~1 - -  ( K 1 )  2) 

R c  2 
co/;l (20) 

with the obvious necessary condition that 

o) 2 
C ~ - / ; 1  - -  ( K 1 )  2 /> 0, (21) 

which immediately follows since 
[1 - (K1/(IK[) 2] >~ O. All told, (13) simplifies to 

f ~  d K l f o d c o i f * ( K 1 , 7 )  

(22) 

where 

1 E P(K 1, co) = ~ 1 I(K 1, co), 

,(Kt, co)= f2o'~dO{X-cos(2~ca-x/DcosO) 

2/;1 
+ -D- cos (2coa ~ cos 0) cos 0 

(23) 

x[ 1 
_4A 2 + C O S  2 0 sgn cos 0 + cos 0 

x/A 2 + cos20sgn0 +/;2cos 
81 

(24) 

1) = ( 7  -]. (25) 

In the Appendix, it is shown that I(K 1, co), and 
hence also PfK 1, co), are real and positive definite• 
That is, in the expression (22), one may define the 
effective sources 

(26) 
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and the problem at hand is, in particular, reduced 
to a two-dimensional problem. With effective sour- 
ces as just defined, Eq. (22) may be rewritten as 

f ~  dK1 i S_ ~ - g  f f  do) iS* ( K I , ~ )  (K  1 ,~) .  (27) 

The inclusion of temperature may be done in the 
usual manner [ l l ] .  We first replace the amplitude 
( 0 + 1 0 )  by an amplitude (N;N1, N2 .... N; 
N1, N2, ... ) involving an arbitrary number N of 
photons, N1 of which have each an energy hvJ1, 
with their first component of the wave-vector K be- 
ing equal to Kll N2 of which have each energy h~02, 
with their first component of the wave-vector being 
equal to K 1, and so on, in a convenient discrete (cf. 
[12]) notation for co and K 1. Then an average of 
the latter amplitude is made with the statistical 
factor H i e x p ( -  ha)jkT), where 1/kT is the Bol- 
tzmann factor, and a sum over N1, N2 . . . . .  and 
N as well is made. This gives the thermal average 
ground-state persistent amplitude (G+IG) 
containing an arbitrary number of photons of all 
possible energies. The procedure is carried out 
systematically in Ref. [11] and gives 

<G+IG_> 

= ( 0 + 1 0 _ ) e x p - T c 3  o de) -o~ (2n) 

#1 )2 
× , ( K l , ( o ) ( e x p ( ( ~ )  - 1 ) 1 .  (28) 

The average number of photons emitted by a cur- 
rent described in (11) is [1, 5, 11] then 

1 f o  f ~  dKt ( - - ~ )  2 ( N ) r = w  dco _ ~  f K 1, 

0,,coth(¢). (29) 

Since P(K ~, o9) is positive definite, the average 
number density of photons with angular frequency 

e) is then 

dKI 
(N(og))r=hc3j_oc (21~) f (K l ,~ )  2 

x P(K 1, ~o)coth 2~T " (30) 

Note the presence of the h factors in the expression, 
and that 

<N)~=fod,.(N(,~)>T, (31) 

We now specialize the problem at hand by choos- 
ingf (x  1, t) in (11) to be 

f (x 1, t) = ev tS(x I -- Uf), (32) 

where v is the speed of the charged particle. Then 

=2~zec6(K 1 -~,) .  (33) 

Therefore, for a charged particle moving a distance 
L, we may formally write 

f (K1,~)  2=2rce2c25(K1-~)f~dx1. (34) 

That is, the average number density of photons of 
frequency co emitted by the charged particle during 
the time it traverses a distance L is from (23), (24), 
(30) at finite T is 

(N(o°'L))r ~L ~1 - ~ )  

x [ 1 - F ( x ) l c o t h ( ~ T )  , (35) 

where c~ = e2/4~hc, 

F(x)  2fi/2 = -- dO cos(x cos O) /I; 

x 1 - ~ -  A 2 + c o s  2 0 + c o s 0  

co 0 1} 
X 'g2 " ' 

x/A 2 + c o s  2 0 + ~ c o s 0  

sift 2 

(36) 
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X m 2coa X/ 1 4r~va ~1  1 
C f~l fi2 --  - - C  - -  ~ ' 

A2 = (g2 - -  gl)/D, 

where 
fi = V/C, 4,Vl? 1 4,v ; 1 

(37) Xm = a x2 - a /12' C / /2 '  C 

(38) (45) 

(39) 

and the condition (21) for the validity of (35) trans- 
lates to the threshold condition 

1 
f12 > - - .  (40) 

£1 

We will eventually apply our formula (35) to the 
visible spectrum. Near the threshold condition for 

v: x/el - (1/fi 2) 4 1, the function F(x) may be sim- 
plified to 

2 i ~/2 F(x) ~- - dOcos(20)cos(xcosO). (41) 
x J o  

We introduce the measure 

1) 
p ( x ) = ~  e l - ~  ln(e bx-e-bx) ,  

hc 
b - (42) 

J ,  4 k r a  gl f12 

That is, 

dp(x) - 2 ~ a  - ~ coth(bx)dx 

- l ( e  1 - ~ ) c o t h ( b x ) d c o .  (43) 

Therefore, the average number of photons emitted, 
with angular frequencies within a range (~ol, ~o2), 
during the time the charged particle traverses a dis- 
tance L at temperature T is 

f ,,~2 ( N (~o, L))rdco  = c~LEp(x2) - -  p(x1)] 
tOl 

I x 1 -- ~ _ - -  p ~ ) | ,  (44) 

The multiplicative factor 

1 - ' (46) 

gives the correction, due to the presence of the 
second dielectric medium, to the average number of 
photons emitted in the range (o0t, co2) during the 
time the charged particle moves a distance L. From 
the mean value theorem, we may write 

F(x*) = ~x~- - -  p-~l)' xt < x* < x2. (47) 

Clearly (47), in particular, holds when F(x) is al- 
most a constant in the range (x~,x2): 
F(Xl) ~ F(x*) ~- F(x2). Near the threshold, the 
minimum value of (47) is obtained, numerically, for 
Xl -~ 6.65, x2 --- 6.75, x* ~ 6.7 with the minimum 
value 

f .i; F(x)dp(x) 
F(x*) = p ~ 2 )  ~ p--~l  ) ~ - 0.310 (48) 

independently of T, el and ~-;2 > c1. Eq. (48) says 
that as long as one chooses a window centered 
about a given point Vo, such that 

4rtVl ~ 1 47~v2 X/ 1 a - ~6.65,  - - a  e ~ -  ~6.75, 
c ~-7 c ~5 

(49) 

there will be about a 31% enhancement of the 
number of photons emitted in the presence of a sec- 
ond dielectric medium, compared to with corres- 
ponding no second dielectric medium for any T, 
el and e2 > el, as we gradually "increase" v near its 
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threshold value. Eqs. (49) lead to 

13.3 13.5 
Vl = ~ Vo, v2 = ~ Vo (50) 

and 

1 6.7c 
(51) 

a f12 - 4rcvo" 

Eq. (51) will allow us to quantify the near threshold 
condition below. 

Practically, such an enhancement of 31%, with 
a window (vi, v2) defined in (50) about a point v0, 
will be meaningful if in turn 

3 . 9 c ~ L  
o ~ L [ p ( x 2  - p(xl) - -  8~;Cl aZv  0 

[ b 1 (} - e-2hx2"]l/J x (x2 - Xx) + in --5~,-- >> 1, (52) 
- - C  

as the coefficient of the corrective factor (46) in (44), 
to ensure the detactibility of at least some photons 
in the absence of a second dielectric medium. 

For blue light with Vo ~ 6.172 x 1014 Hz, 

v l - 6 . 1 2 6 x 1 0  l~Hz, v2~6 .218x1014Hz (53) 

and 

a - ~ - ~ 0 . 2 6 x 1 0  6m. (54) 

The definition of b in (42) then gives 

2214.5 
b - [T/K~" (55) 

We note that for 0 ~< T < 5000 K, with x2 = 6.75, 
Xl = 6.65, 

1 (~ - e-2hx~ / 
(X 2 __ X1 ) -t- in ~ }  ~ (x2 -- xi) = 0.10. 

(56) 

Hence the criterion in (52) leads to 

<0"74x10-5  x/~l ' 

where m is the unit of meter. For 

a - 10 -6 (Lx / (~ /x /~ l ,  Eq. (54) gives 

x/ci - (1/fi 2) ~ 0.26 x/ql/x/-L~m. For the charged 

particle moving, e.g., in water ~ - ~ - ~  over 
a 100 m, the latter gives 

- - ~ - 0 . 0 3 5 < ~ 1  

which is near the threshold. 
For red light with Vo ~ 4.283 x 1014 Hz, 

vi ~ 4.25 x 1014 Hz, v2 ~ 4.315 x 1014 Hz (58) 

and 

a -fl-5 ~-0"37x10 6m. (59) 

The criterion in (52) leads to 

I a ]  ~ - / m  (60) ~0"85x10-5  ~ , a  " 

Again for a ~ 10 .6 ~ / x / ~ l  Eq. (59)leads to 

N/,~I - -  ( 1 / f l  2) ~ 0.37 ,,/-q~/x/L-/m ~ 0.05 for ~ =3~  _4 

for the charged particle moving 100 m, which is 
near the threshold. 

The curve G ( x )  = - F ( x ) ,  with the latter defined 
in (36), and its asymptotic threshold curve 
G o ( x )  = - F ( x ) ,  with the latter defined in (41), are 
plotted in the Fig. 1 about the optimal value 
x* = 6.7 in (48). The solid line denotes the curve 
G o ( x )  and the dotted and dashed lines represent the 
exact curves for ~2/el = 10 and 2, respectively, with 
both curves approaching the threshold solid curve 
in the threshold limit. In particular, for blue light 
threshold limit is defined in (54) and for red light it 
is defined in (59). The windows for maximum en- 
hancement of photon emission for blue light and 
red light are worked in (53): (6.126x 1014Hz, 
6.218 x 1014 Hz) and (4.251 x 1014, 4.315 x 1014 Hz) 
in (58) in the frequency variable, respectively. The 
universality character of the 31% enhancement at 
the threshold limit is emphasized by working with 
the variable x, defined in (45), with the window 
defined by (Xl = 6.65, x2 = 6.75) as given in (49), 
applicable, in particular, for both blue and red 
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Fig. 1. Plot of G(x) - - F(x)  and Go(x) versus as given, respectively, in (36) and (41) with the latter denoting the asymptotic threshold 
behavior and is represented by the solid curve. The dashed and the dotted curves correspond to ~2/el = 2, 10, respectively, with both 
approaching the threshold curve in the threshold limit with estimates, in particular, for blue and red light given in (54) and (59). The 
universality of maximum enhancement of number of photon emission is emphasized by working with the x variable defining a window 
(6.65, 6.75) about the optimal point x* = 6.7. A wide range for x was chosen to show the gradual decrease of the curves about the point 
6.70. The precise x value for blue (6.6999) and red light (6.7001) frequencies are too close to be identified on the x-axis. 

lights. This window is about  a frequency 
Vo ~ 6.172 x 1014 Hz for blue light corresponding 
to an x value of 6.6999 and a frequency 
Vo ~ 4.283 x 1014 Hz for red light which corres- 
ponds to an x value of 6.7001 as determined from 
(50) and the xl = 6.65. 

Applications to other points of the spectrum, 
such as in the microwave region, cannot be readily 
extended since we have effectively set the per- 
meabilities to be equal. The generalization to in- 
clude the permeabilities is beyond the scope of the 
present work and will be at tempted in a future 
work. 

Appendix 

A direct proof of the important  positive definite- 
ness of the obviously real integral I(K 1, o)) in (24) 
follows. The integrand of the latter may rewritten 

as  

1 - cos(x cos 0) 

{ co 0 
x 1 - ~  A 2 + c o s / 0 s g n c o s 0 + c o s 0  

_ a c o s 0  [ ,  (A.1) 

x/A 2 + cos2OsgncosO + b c o s 0 j  

where 

a = (Ka)2CZ/((D2E1) ~ 1, (A.2) 

b = e z / z l  > 1, 

2coa 
x = - - ~ a ( 1  - a), (A.3) 

c 

A 2 = (b - 1)/(1 - a). (A.4) 

The positive definiteness of I(K I, ~o) will follow if 
the expression in (A.1) is positive. The expression 
multiplying cos(x cos 0)) in (A.1) may be rewritten 



E.B. Manoukian et al. /Physica B 240 (1997) 68-75 75 

as 

(b - 1) - (1 + a)(b - 1)cos2  0 q- (1 - -  a)(b - I ) N / A  2 q- COS2 0[COS 01 

(b - 1) + (1 - a)(b + 1)cos2 0 + (1 - a)(b + 1 ) x / A  2 + cos2 0[cos0[ 
- E. (A.5) 

The  d e n o m i n a t o r  is posi t ive ,  a n d  by  a direct  c o m -  
p a r i s o n  of the n u m e r a t o r  a n d  the d e n o m i n a t o r  in  
(A.5), we no t e  tha t  

E ~< 1. (A.6) 

N o w  we show tha t  E ~ > -  1. Suppose  tha t  the 
c o n t r a r y  is true,  tha t  is E < 1, a n d  hence  

(b - 1) - (1 + a)(b - 1)cos2 0 

÷ (1 - a)(b - 1 ) x / A  2 + c o s 2 0 [ c o s O [  

< - (b - 1 ) -  (1 - a)(b + 1)cos20 

- (1 - a)(b + 1)~/A 2 + cos 20 [cos 0l (A.7) 

or  

(b - 1-) + (1 - a ) b x / A  2 + eos2 01cos 01 

< (ba - 1-) cos 20. (A.8) 

Fu r the r ,  us ing  a lower  b o u n d  to the l e f t -hand  side 
of  this inequa l i ty ,  we m a y  wri te  

(b - 1) + (1 - a)b cos 20 < (ba - 1) cos 20 (A.9) 

or  

(b - 1) < (2ab - 1 - b ) c o s  2 0. (A. 10) 

If  (2ba - 1 - b) <~ O, we r u n  in to  a c o n t r a d i c t i o n  
tha t  b < 1 since c o s 2 0 / >  0. O n  the o the r  h a n d ,  if 

( 2 b a -  1 -  b ) >  0, we m a y  devide  (A.10) by  this 

express ion  to o b t a i n  

(b - 1) 
< cos20  ~< 1, (A.11) 

(2ab - 1 - b) 

which  leads  to the inequa l i ty :  
(b - 1) < 2ab - 1 - b, or  to the c o n t r a d i c t i o n  tha t  
1 < a. Therefore ,  E ~> - 1. T h a t  is f rom (A.6), we 

have  [El ~< 1. Eq. (A.1), m a y  be rewr i t t en  as 
[ 1 - c o s ( x c o s O ) E ] ,  which  is obv ious ly  b o u n d e d  
be low by  0, since f rom wha t  we have  j u s t  es tab-  
l ished for E,  [ c o s ( x c o s O ) ) E I  <<, 1. 
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