

Available online at www.sciencedirect.com

PHYTOCHEMISTRY

Phytochemistry 66 (2005) 1880-1889

www.elsevier.com/locate/phytochem

Purification of an isoflavonoid 7-O- β -apiosyl-glucoside β -glycosidase and its substrates from *Dalbergia nigrescens* Kurz

Phimonphan Chuankhayan^a, Yanling Hua^b, Jisnuson Svasti^c, Santi Sakdarat^a, Patrick A. Sullivan^d, James R. Ketudat Cairns^{a,*}

 ^a Institute of Science, Suranaree University of Technology, Schools of Biochemistry and Chemistry, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
^b Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
^c Center for Excellence in Protein Structure and Function, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
^d Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand

> Received 11 February 2005; received in revised form 18 May 2005 Available online 10 August 2005

Abstract

A β -glycosidase was purified from the seeds of *Dalbergia nigescens* Kurz based on its ability to hydrolyse *p*-nitrophenyl β -glucoside and β -fucoside. This enzyme did not hydrolyze various glycosidic substrates efficiently, so it was used to identify its own natural substrates. Two substrates were identified, isolated and their structures determined as: compound **1**, dalpatein 7-O- β -D-apiofurano-syl-(1 \rightarrow 6)- β -D-glucopyranoside and compound **2**, 6,2',4',5'-tetramethoxy-7-hydroxy-7-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside). The β -glycosidase removes the sugar from these glycosides as a disaccharide, despite its initial identification as a β -glucosidase and β -fucosidase.

Keywords: Dalbergia nigrescens Kurz; Leguminosae; β-Glucosidase; β-Glycosidase substrate; Isoflavonoid glycoside; Apiosyl glucoside