Structural arrangement and dynamics of the hydrated Mg^{2+} : An ab initio QM/MM molecular dynamics simulation

Anan Tongraar ${ }^{\mathrm{a}, *}$, Bernd Michael Rode ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
${ }^{\mathrm{b}}$ Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Received 28 March 2005
Available online 8 June 2005

Abstract

The structural arrangement and dynamics of solvated Mg^{2+} in dilute aqueous solution have been studied by ab initio $\mathrm{QM} / \mathrm{MM}$ molecular dynamics simulation, in which the whole first and most of the second hydration shell of the ion were treated at HartreeFock level using LANL2DZ basis sets. Besides the most stable $\mathrm{Mg}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ species, intermediates such as $\mathrm{Mg}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$, where at least one water molecule temporarily moves into the inter-shell region but remains H -bonded to inner-shell water, as well as transition complexes of the $\mathrm{Mg}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$ type, exist in aqueous solution. The dynamics of solvate and surrounding water molecules are discussed in connection to the 'structure-forming' ability of Mg^{2+}. © 2005 Elsevier B.V. All rights reserved.

