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Abstract 
This article presents a novel Adaptive Tabu Search 
(ATS) method. Our additional back-tracking and 
adaptive search radius mechanisms enhance the 
conventional Tabu Search (TS) method to achieve faster 
and more efficient search. The main application of the 
ATS method discussed in this article is identification of 
system models. Examples cover hot-air tube, system 
with torsional resonance, static nonlinearity and inverted 
pendulum. 
Keywords: System Identification, Adaptive Tabu 
Search, Back-Tracking, Adaptive Radius, Conventional 
Identification, ARX Model 

1. Introduction 
Regression analysis forms the core of model 
identification. This conventional approach has been used 
widely to identify linear [ I ,  21 and nonlinear system [3] 
models. Although their closed-form formulae provide an 
advantage leading to fast computation, its major 
drawback is the restriction of the class of models to be 
difference equations and the like. Consequently, it is not 
possible to apply the method to identify models of other 
forms that do not confine to the same class, such as static 
nonlinearity. 

To provide more alternatives for identification 
problems, we turn our interest to artificial intelligent 
(AI) searching techniques. Three methods are 
candidates: Genetic Algorithm, Evolutionary 
Programming, and Tabu Search. We have chosen the TS 
method since recent researches in optimization problems 
such as those reported in [4-61 confirm the efficiency of 
the method. Yet, the TS method has not been widely 
used for identification problems. 

This article gives a brief description of the 
conventional TS method. The proposed ATS method is 
then described in details. Since our ATS method 
provides more efficient search than the conventional TS 
method does, we have applied the ATS method to 
identify the models of various systems. Examples of case 
studies given in this article include die-swell steady-state 
model for polymer melts, hot-air tube, system with 
torsional resonance, static nonlinearity, and inverted 
pendulum. Conclusions are drawn at the final section of 
this article. 

2. Tabu and Adaptive Tabu Search Mechanisms 
The TS method [7, S] is an iterative process that searches 
for the best solution by moving from a current solution 
to find a better solution repeatedly. One of the most 
important elements that make the TS method different 
from other searching methods is its tabu list. It keeps the 
history of paths. This list is used as information to find 
directions of a new move. This new move should lead 
the search to the better local optimum solution and 
ultimately to the global optimum one. Details of a tabu 
list are varied to suit each different problem. 

2.1 Fundamentals of Tabu Search (TS) 
This section briefly details the TS mechanism. Given 
count as a number of iteration and MAX-ITERATION 
as a predefined maximum number of iteration. The 
simple TS procedures can be outlined as follows: 
I )  Randomly select an initial solution So within a 
search space of radius R .  So is currently a local 
optimum solution and So = bestneighbor (see Fig.1). 
2) Randomly select N new solutions by moving the 
current solution around So within the search space. Let 
S,(r) be a set that contains all N solutions (see Fig. 2) 
3) Compute a cost value of each member in Sl(r) 
using the objective function. Then choose the best 
solution and assign it as bestneighborl (see Fig.2). 
4) If best-neighbor1 i s  better than best-neighbor, then 
best-neighbor = best-neighbor1 (see Fig.3). If there is 
no better solution, go to step 6. 
5) Assign So= best-neighbor (see Fig.4). 
6) If best-neighbor1 i s  not in neighbor-lisf, then store 
bestneighborl in neighbor-list. 
7) If count t MAX-ITERATION, stop the process. The 
current best solution is the overall best solution. 
Otherwise, go back to step 2 and start the process again 
until all criteria is satisfied (see Fig.5). 

2.2Adaptive Tabu Search (ATS) 
In order to improve the performance of the TS method, 
we have proposed the extended version of the TS 
method called adaptive tabu search (ATS). This novel 
ATS consists of two additional steps, namely back- 
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tracking and adaptive radius, different from the 
conventional TS. 

&=-neighbor KaFeh 

neighborhood w 
Fig. 1 Random 5, in search space 

S,(r)=(W 

Neighbor # I  

Fig.2 Neighbor hood around So 

Fig.3 Assign new best neighbor 

Fig.4 Assign new So 

\ -  

best-neighbor in ncighbr#l 

Flg.5 Searching process in the next iteration 

The hack-tracking process allows the system to go 
back and look up the previous solutions that have been 
already searched. The better solution is then chosen 
among the current and the previous solutions. Fig. 6 
demonstrates details of the hack-tracking process. If 
another new solution is assigned within the current 
search space, the new search space is then introduced to 
the current search. Given this new search spasx to 
explore, the search process is likely to have more 
chances of escaping from the local optimum. Noti: that 
the new solution chosen here is obviously not necessary 
to be the best solution within the current search space. 

Ncw search space 
, IO escane local ontimum 

Neighbor #2 

tracking 
Neighbo h space 

Fig.6 Back-tracking in ATS 

The adaptive radius process decreases the search area 
during the searching process. This added feature 
continues until the near global solution is found. For a 
regular searching process, the most important factor is 
the search radius which should he appropriately 
chosen. The larger size of the radius, the coarser 
resolution of the searching step. In this case, the 
searching process could possibly overlook the desire 
solution. In contrast, the finer size of the radius, the 
longer computational time. With this too small step of 
moving the solution, however, the searching process 
may not efficiently cover the search area that could 
contain the desire solution. Consequently, the adaptive 
radius mechanism has been developed to suitably adjust 
the search radius during the searching process. By using 
the cost of the solution as a criterion for adapting the 
search radius, once the better solution has been found, 
the search radius will be decreased using the following 
relationship: 

radhso,d radius,,, = 
DF 

where DF is a decreasing factor (DF = 10 for this work). 
A simple procedure of the adaptive radius is as follows: 

If best-cost < a 

End 
If hest-cost < h 

End 
If best-cost < c 

End 

radius = radiusiDF 

radius = radius/DF 

radius = radiusiDF 

At the earlier stage of the searching process, the search 
radius should be efficiently large to speed up the move to 
the vicinity of the global solution. Once the searching 
process approaches the near global solution, the finer 
step of searching is then employed in order to move to 
the solution in a high resolution step. The criteria of the 
cost value (a. b and c) can be vaned for different 
problems. 

The back-tracking process can he added to the 
conventional TS process during the step 6 and 7 while 
the adaptive radius process is normally performed at the 
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end of step 7. The following section presents successful 
applications of the ATS method in identification domain. 

3. Applications 
Identification of model parameters is very important 
issue in control context. Many applications rely on the 
conventional identification methods such as A M ,  
ARMAX, Box-Jenkin, etc. Such methods, however, may 
not be well-suited for all cases. This section presents 
some of the applications that are difficult to solve by the 
conventional approach. The proposed ATS method has 
been applied to demonstrate the more desirable 
performance of solving such problems. During our 
identification processes, the convergence of solutions 
and errors, as well as the minimum identification errors 
were monitored numerically. The detail of each problem, 
however, is not discussed herein. The problems are 
presented as follows. 

Case 1: Die-swell model for polymer melts 
The model for die-swell ratio has been proposed by 

PI as 

B = ( a  + bSRX)” 

where B is die-swell ratio, S n  is recoverable shear strain, 
a, b, x, and y are model parameters, respectively. Table 1 
displays the observed data of SR and B from the actual 
process. The search using ATS method results in 
a=2.6811, b=0.0793, x=2.7946, and y=0.5775, 
respectively. Fig.7 shows the agreement between the 
model and the observed data. 

Table 1 Observed data of polymer melts. 

1.287 1.374 1.432 1.492 1.565 

1.94; I 

I sum squared error = 7.01e-005 
parameters ’.”I a = 2.7946 
b = 0.5775 1 c = 0.0793 

+ Experimental 
1 . q  - 
1.821 I 

1.2 1.4 1.6 1.8 2 
SR 

Fig.7 Plot of the die-swell model against observed data 

Case 2: Model for hot-air tube 
The hot-air tube is an experimental kit made by 

Feedback Instruments Ltd. [IO] to demonstrate transport- 
lag dynamic. Its dynamic is commonly represented by 
first-order plus delay model as 

(3) 

where K=system gain, r=time constant (sec), and 
rd=delay time (sec), respectively. In order to aid the 
identification of model parameters, the system delay is 
represented by the first-order Pade’s approximation. The 
ATS results in K=0.8645, r=0.3337 sec, and 
zd=0.2042 sec, respectively. Fig. 8 illustrates the model 
plotted against the empirical data. The undershoot in the 
plot occurs due to the approximation term that contains a 
zero in the right-half of the s-plane. The proposed 
method has shown very satisfactory results. 

1.2 
- ATS I 

0.8 

i “‘!J s u m  squared , error , = 7.59e-001 , 1 
k = 8.M52e-001 

L 0.4 p = 3.3368e-001 
T = 2.0424e-001 

E 0.2 -0.8M5s +5.182 
G(s) = ................................ 

0 1 2 3 4 5 
t (secs) 

I 

0 0.3337s2+3s+5.994 

0.2 

Fig.8 Plot of the hot-air model against observed data 

Case 3: Torsional resonance and nonlinear saturation 
models 

A rotational system exhibiting torsional resonance is 
represented by the diagram shown in Fig.9. Torsional 
resonance affects speed performance in terms of 
imposed oscillation with a small amplitude. The dynamic 
of torsional resonance has been studied for many years 
such as those appeared in [11,12]. The work [13] 
provides a reduced order model expressed by the transfer 
function 

K 
G(s)  = (4) 4s’ + a4s4 + a3s3 + a,s2 + qs + a, 

At the first step, the system is considered linear and 
described by the fifth-order model in equation (4). Table 
2 summarizes the coefficients obtained from the ATS. 
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Fig. I O  depicts the response of the model plotted against 
the actual response. The amplitude (y-axis) in Fig.10 
represents speed measured at load. The agreement 
between the experimental and the theoretical result!; can 
be noticed. 

Motor Load 

JT 1 d m  Jctki 1 s . K ~  ] c a b  J L J ~ L  IT 

Fig.9 A system exhibiting torsional resonance 

Table 2 Model parameters resulted from the AT9 
method for the system with torsional resonance. 

I 
- 

aa - K 
8 .60~10"  I 8.42~10" I 5 . 3 8 ~ 1 0 ' ~  - 

1.41 1 

1.2 I 
s u m  squared error = 2.5757e+000 

0 

3 -7.7982e+002+4.7632e+002i .= 0.6 
-7.7982e+0024.7632e+OO2i 
6.9525e+002+2.4944e+002i 
6.9525e+002-2.4944e+OO2i 

0.4 - 

-1.6193e+001 
O2 tl gain = 1.0217'8.4198e+011 

0 0.2 0.4 0.6 0.8 
t (secs) 

Fig.10 Plot of the linear model for the two-mass rol:ary 

The above transfer function is accurate for a specific 
operating point. Based on this transfer function, :some 
feedback and feed-forward designs were made for the 
system to improve its dynamic performance. In order to 
extend the useful range of the operation, we may 
economically drive the system beyond the operating 
point. In this regard, the system becomes nonlinear 
because of the protective mechanisms of drive amplifier 
and compensators for eliminating the jiggling effect 
caused by torsional resonance. The extended system is 
dominated by a saturation characteristic as shown in. Fig. 
1 1  in which m=slope, x,=positive saturation starting 
point, and xl=negative saturation starting point. 

This saturation characteristic appcars in the feedback 
loop of the compensated system with an operating point 

extension. Obviously, it is impossible to obtain the 
parameters using any conventional identification 
method. The ATS method, however, is capable of 
finding such solutions and results in m=1.1447, 
x,=2.7590, and xl=1.9159. Fig. 12 depicts the extended 
nonlinear model plotted against the observed data. 

In this case, the ATS method yields very satisfactoly 
results for both linear and nonlinear models. 

output ? mx, 

x, input 

-" I 
Fig. 11 Saturation characteristic 

1.4 

1.2 

- 1  
Y) +. - 
2 0.8 
s 
E 

D 

.= - 0.6 

0.4 

0.2 sum squared error = 4.9545e001 
0 ~ . . .  I 

0 0.05 0.1 0.15 0.2 
t (secs) 

Fig. 12 Plot of the nonlinear model of the system with 
torsional resonance (compensated) against observed 

speed 

Case 4: Inverted pendulum on cart 
The diagram in Fig. 13 represents an inverted 

pendulum on a cart [14]. With small angles of 
oscillation, the system can be considered linear and 
represented by the following 10th-order transfer function. 
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performance. The 5'h-order ARX and ATS models are 
shown as follows: 

The ARX 5"-order model is 

N(S) = 0.06051S5 + 0 . 1 1 3 6 ~ ~  - 4 6 . 3 9 ~ ~  

] f i $ ; f ) l g  , 
(8) -+ 

~ 4 5 . 3 4 ~ ~  + 6335s + 4470 
D(s) = S5 + 14.24S4 + 153qS3 + 5360S2 

+ 2.58 Y 104s + 6.02 Y lo4. 
, ,  S .. 

Fig.13 Inverted pendulum on cart The ATS 5Ih-order model is 

We have applied both the classical ARX method and N(s)  = 0 . 0 0 2 5 7 ~ ~  + 23.36S4 - 22.862 
~ 4 5 . 2 7 ~ ~  + 1.25 x 10% +lo53 

the ATS method for comparison of their identification 
performance. The ARX model composes of 

N(s)  = 0.003737~'~ + 49.04s' - 594.3s' 
+ 1.64 104s7 - 4.79 105s6 
+ 2.62 106s5 - 4.24 io7? 
+ 5.56 Y lo's' + 3.72 Y 108s2 

+ 1.99 x 10% - 1.07 Y 10" 

O(s) =do + 171.55' + 1.12 x 104s' 
+ 3.92 1 0 5 ~ 7  + ~ . 3 4 ' ~  1 0 6 ~ 6  

+ 1.14 1 0 8 ~ 5  +1.02 1 0 9 5 4  

+ 5.96 x lo's' + 2 . 2 9 ~  1Oi0s2 
+ 5.87 x 10% + 8.72 x 10". 

The ATS method results in 

N ( s )  = -0.004152S10 + 35.06s' - 37195' 
+ 3.14 x 104s7 ~ 2.53 x 106s6 

+ 1.48 io6? - 2.90 io's4 
+ 1.17 x lo's3 + 4.90 x lo's2 
+ 1.61 x 10"s - 2.99 Y 10" 

D(s) = 0.0851~ '~  + 152.5s' + 12145s' 
+ 9 7 1 6 7 0 ~ ~  + 1.69 x 107s6 
+ 3.22 1 0 8 ~ 5  + 3.61 1 0 9 ~ 4  

+1.31 x lOLos3 + 6.26 Y 1 0 " ~ ~  

+ 9.16 x 10"s + 1.52 x 10". 

D(S) = 5 . 9 1 ~ ~  + 35.06S4 + 2 5 7 9 ~ ~  (9) 

+ 1.05 x104s2 + 3.78 x 104s 
+ 8.53 x 104. 

0.2 

0.1 

0 

4.1 

I 
404 

4.2 
398 400 402 

1 (secs) 

The observed angles of oscillation, and the plots of 
the lO"-order models of both methods are depicted in 
Fig. 14. In the figure, the vertical axis indicates the 
angles (in radians) of oscillation while the horizontal 
axis indicates the nIh-datum point of a specific block of 
observed data for model validation. The sum squared 
errors of the ARX model and the ATS method are 
7.7966 and 6.2859, respectively. 

Because the 10ih-order model is unlikely practical, 
we have applied both the classical ARX and the ATS 
methods again on the hasis of a Sth-order transfer 
function and then compare their identification 

Fig.14 Angles of oscillation ofthe pendulum (observed 
data and the 10th-order models plotted) (7) 

398 400 402 404 
t (secs) 

Fig. 15 Angles of oscillation of the pendulum (observed 
data and the 5"-order models plotted) 
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Fig. 15 illustrates comparison plots of the observed 
data, and the reduced order models. The explanation of 
the axes in Fig. 14 is still applied. The results show that 
the ARX model yields the sum squared error of 10.1412, 
while the ATS-based model gives 7.7107. It is clear that 
our ATS method provides superior results. 

4. Conclusions 
We have presented the novel adaptive tabu search (ATS) 
method and its application to system identification in this 
article so far. While the conventional TS is reviewi:d, the 
adaptive mechanisms, namely back-tracking: and 
adaptive search radius, are highlighted. The article also 
presents some case studies including die-swell model, 
hot-air tube, system with torsional resonance, static 
nonlinear characteristic, and inverted pendulum on cart. 
Besides its less complicated structure than many other 
conventional methods, the ATS method has shown very 
superior results to all cases even when it is compared 
with the ARX models of the inverted pendulum system. 
Moreover, to apply the method is so simple and requires 
no special arrangement of the model forms. The only 
thing that it consumes is computing time. The ATS 
method is then proved to be one of the most efficient 
tools for the system identification. 
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