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Abstract

A new method for sizing particle from in-line particle holograms by using absolute values of the wavelet transform is

proposed in order to improve accuracy in measurements. The proposed method provides direct calculation of the par-

ticle size by using spatial frequency information of a chirp signal at minima position of an envelope function. Simula-

tion and experimental results are presented.
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1. Introduction

In-line Fraunhofer holography has been found

to be very useful for sizing small particles [1,2]. In
in-line particle holography, opaque or semi-trans-

parent particles are illuminated by a collimated co-

herent light. By recording an interference pattern

produced between light waves diffracted from the

particles and the light wave transmitted directly
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on a photographic film, a hologram of the particles

is generated. The interference pattern in the holo-

gram contains information about both the three-

dimensional (3-D) spatial position and the size of
the particles which are encoded as a chirp signal

and an envelope function, respectively. In a con-

ventional analyzing method, this information is ex-

tracted by illuminating the developed hologram

with the coherent light. The light transmitted

through the hologram reconstructs images of the

particles at the positions with the same distances

as the recording distances. Since, in general, these
distances are not known in advance, the image

planes with the best focus for the particles must
ed.
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be investigated by scanning the overall depth along

an optical axis with fine steps. Although, this

method allows us to freeze moving particles and

to analyze them later, in real applications we may

deal with a huge number of particles. As a conse-
quence, the conventional reconstruction process is

very tedious and time consuming. Therefore, it is

not suitable for the human-operator based analysis

which is non-repeatable and inaccurate.

To solve this problem, automatic all-optical

analysis of particle holograms by using a wavelet

transform (WT)-based correlator was proposed

by Widjaja [3]. In the method, the WT is used
to enhance edge features of both the images of

particles reconstructed from the hologram and

the image of a reference particle. By correlating

these two edge-enhanced images, the position

and the size of particles are determined. Al-

though the method is indeed useful for analyzing

irregularly shaped particles, the problem in the

method is that the optical system becomes
complicated.

On the other hand, instead of using the optical

reconstruction, alternative methods for particle siz-

ing and tracking by direct analysis of the interfer-

ence pattern in the hologram were reported [4–7].

By establishing a mathematical relationship be-

tween the far-field number given by N=kz/(2a)2

(refer to the definition of k, z and a in Eq. (1)) [4]
and the density and diameter of interference

fringes, Murakami reported direct measurements

of the diameter and position of particles from the

developed in-line holograms. However, this meth-

od is applicable for a small value of the far-field

number which corresponds to a very big diameter

of particles or a very short recording distance. As

for a large far-field number, the density of fringes
does not vary significantly. This leads to an inaccu-

racy of the method. Use of the WT for extracting

the position of particles from the in-line holograms

was proposed by Buraga-Lefebvre et al. [5] and

Soontaranon et al. [7]. In the method of Buraga-Le-

febvre et al., a diffraction process is regarded as a

wavelet transformation with a spherical wave for

the wavelet and an axial distance of the wave prop-
agation for its dilation (scale change). To determine

the position of particles, the digital holograms are

wavelet transformed by using a spherical wave-
based analyzing wavelet. The position of particles

is obtained if the resultant WT gives a maximum

value. In fact, this approach is equivalent to search-

ing the in-focus image plane of particles recon-

structed from the hologram. However, since the
dilation factor is determined by the axial recording

distance, this method is useful only for the short ax-

ial distance. For the longer distance, the dilation in-

creases. As a result, the admissibility condition of

the wavelet is so violated that this method becomes

invalid. An algorithm for extracting 3-D location

and image reconstruction of object obtained by op-

tical scanning holography was proposed by Kim et
al. [6]. In optical scanning holography, the holo-

gram is generated by scanning optically the object

with a time-dependent Fresnel zone plate produced

by a superposition of a plane wave and a temporal-

frequency-shifted spherical wave. The optical scan-

ning is done by using a 2-D scanning mirror, while

the temporal frequency shift is achieved by using an

acousto-optic modulator. The total intensity re-
flected from the object which is proportional to

the correlation between the time-dependent Fresnel

zone plate is detected by an area-integrating photo-

detector. After preprocessing electrically an output

current of the photodetector, a Wigner distribution

function is used for extracting the depth location of

the object. The image of the object is then recon-

structed by convolving the hologram with a free-
space impulse response at the measured depth loca-

tion. However, unlike a wavelet transform, the

Wigner distribution function is not a multiresolu-

tion signal representation, because the window

function is the analyzed signal itself. Since the reso-

lution is fixed, the accuracy in measurement of the

depth location may not be optimized.

Our previous work [7] is based on a signal pro-
cessing approach applied directly to digitally-re-

corded in-line holograms. Our proposed method

excels in the point that it obviates the need for

searching all depth planes and has a larger far-field

number. The WT is employed to determine a

space-varying frequency of the transmittance of

the hologram. Since this spatial frequency corre-

sponds to the inverse of the recording distance,
the position of the particle with respect to the re-

cording plane can be measured. In the computa-

tion process, a Morlet wavelet is used as an
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analyzing wavelet with the dilation factor which is

not determined by the axial distance. Furthermore,

the size of particles can be calculated by using a

combination of the resultant recording distance

and the position of the minima of the envelope
function which are determined in its reconstruc-

tion process through determination of maximum

and minimum amplitudes of the transmittance of

the holograms.

However, the results in our study show that

errors in measurements of the particle size are

mainly determined by the accuracy in detecting

the positions of the minima from the envelope.
This is due to the fact that the amplitude of the

chirp signal around the minima is very small.

The measured maximum and minimum ampli-

tudes cannot be used for determining the exact

position of the minima.

In order to improve the accuracy in measure-

ments of the size of the particles, a novel method

for sizing the particles by using the absolute value
of the WT is proposed. This interest stems from

the fact that the absolute value of the WT extracts

the positions of the minima of the envelope func-

tion. In the WT domain, these minima are func-

tions of the dilation and the spatial translation.

The frequencies of the fringes at the minima are di-

rectly obtained by using values of the dilation of

the wavelet at the corresponding minima. Since
the particle size is inversely proportional to these

frequencies, the particle size can be accurately

measured.
2. In-line particle hologram

An amplitude transmittance of the in-line Fra-
unhofer hologram of a small spherical particle

with a radius of a can be mathematically expressed

as [2]

IðrÞ ¼ 1� 2pa2

kz
sin

pr2

kz

� �
2J 1

2par
kz

� �
2par
kz

" #

þ p2a4

k2z2
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2par
kz

� �
2par

" #2

; ð1Þ

kz
where k and z are the wavelength of the illuminat-

ing light and the distance between the particle and

the recording plane, respectively. J1 denotes the

first-order Bessel function while r represents the

radius coordinate in the hologram plane. The first
term of Eq. (1) corresponds to the light transmit-

ted directly. The second term corresponding to a

modulation of the chirp signal by an Airy function

encodes the recording distance z into the frequency

of the chirp signal, while the particle size a is en-

coded in the Airy function. The third term is a

square of the Airy function whose amplitude is

much smaller than the other terms [8].
The second term of Eq. (1) shows that the fre-

quency of the chirp signal is r/kz, while the mini-

mum positions of the interference pattern

corresponding to the zero-crossing positions of

the Bessel function appear at 2par/kz=3.83, 7.02,

10.17,. . . [9]. Thus, the frequencies of the chirp sig-

nal at the positions of the first three minima are

found to be 3.83/2pa, 7.02/2pa, and 10.17/2pa, re-
spectively. By taking this into consideration, the

size of particles can be calculated, provided that

the spatial frequencies of the chirp signal at the

minimum positions are known. In this work, the

frequencies of the chirp signal at the minima are de-

termined by using the absolute values of the WT.
3. Method

In this work, the interference pattern of a holo-

gram of the particles being studied is captured by a

CCD sensor and stored into a frame memory of

the computer. The captured pattern or its 1-D

cross-sectional profile is digitally wavelet trans-

formed. By taking the absolute values of the resul-
tant WT output, the frequencies of the chirp signal

at the minima of the envelope function are deter-

mined. The size of the particles is finally calculated

from the relationship of these frequencies with the

positions of the minima. All digital computations

were conducted by using the Matlab 6.1.

3.1. Wavelet transform

The WT is a useful mathematical method

for representing simultaneously time-frequency
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information of signals. This signal representation

has been introduced in signal analysis to overcome

the inability of Fourier analysis in providing local

frequency spectra. The WT of a signal pattern s(r)

is defined as [10,11]

W ðt; dÞ ¼ 1ffiffiffi
d

p
Z 1

�1
g�

r � t
d

� �
sðrÞdr; ð2Þ

where d and t are the dilation and the translation

(shift) parameters, respectively. Eq. (2) can be con-
sidered as a cross correlation between the signal

s(r) and the dilated (scaled) wavelet g(r/d). The

WT is computed by dilating and translating the

analyzing wavelet g(r) into a set of functions hav-

ing different frequency responses. The frequency is

inversely proportional to the dilation. By varying

the dilation factor, the WT provides a multi-reso-

lution decomposition of the signal in such a way
that it gives a good spatial resolution at the high

frequency and a good frequency resolution at the

low frequency. When the frequency content f of

the signal s(r) in the region subtended by

g�[(r�t)/d] matches the center frequency of the di-

lated wavelet g(r/d), a correlation peak is generated

along the dilation d at the position t where the fre-

quency f occurs. This peak is found to be propor-
tional to the amplitude of the signal s(r).

3.2. Absolute value of wavelet transform

In the general case of signals that s(r) is an

amplitude-modulated signal, the amplitudes of

the resultant correlation peaks are determined

by the amplitude of the modulating function.
Therefore, besides its excellent ability of provid-

ing the time-frequency information simulta-

neously, the WT extracts the modulating

information of the signals being analyzed. A fur-

ther insight into this property may be gained by

analyzing mathematically the modulated signal

with the use of the WT.

For the sake of simplicity, we consider that a
modulated signal is given by

sðxÞ ¼ cos 2pf 1xð Þ cos 2pf 0xð Þ; ð3Þ

where the first cosine term corresponds to the car-

rier signal while the second one is the modulating

signal. Here, the carrier frequency f1 is greater
than the modulating frequency f0. By using a Mor-

let wavelet given by [11]

gðxÞ ¼ exp i2pf gx
� �

exp �x2=2
� �

; ð4Þ

as an analyzing wavelet, the WT of the signal s(x)

is found to be
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h
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where fg denotes the frequency of the wavelet.

Since the first and second terms of Eq. (5) are

much smaller than the other terms, the first two

terms can be neglected. Therefore, Eq. (5) may

be approximated as
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ffiffiffiffiffiffi
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The absolute value of the WT given by Eq. (6) re-

sults in

W ðt;dÞj j¼
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Eq. (7) shows that the first two terms are a summa-

tion of two Gaussian functions, while the third

term is a multiplication of the cosine function cor-

responding to the modulating function with a

product of two other Gaussian functions. The first
and third Gaussian functions have the same mean

values, while the means of the second and fourth

Gaussians are the same. Since f1� f0 the difference

between the values of the two means is not signif-

icant as well as the variances. As a result, either the

summation or the multiplication of the two Gauss-

ian functions produces a Gaussian-like function

whose maximum peak appears at the same posi-
tion of the average value of the two means,

d= fg/f1. This can be mathematically verified by

substituting this average value into the first and

second derivatives of the summation and the mul-

tiplication of the Gaussian functions. The first de-

rivative test yields zero for the critical value d= fg/

f1, while the second derivative test gives a negative

result. These tests verify that the peak position of
the Gaussian-like function is at d= fg/f1. This posi-

tion is regarded as the one where the frequency of

the dilated wavelet fg/d matches the frequency of

the modulating signal f1 Therefore, the cosine

function in the third term of Eq. (7) is confined

by the Gaussian-like function centered at the

dilation d= fg/f1.
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Fig. 1. Modulated signal s(x) of Eq. (3) and the normalized

absolute value of its WT given by Eq. (8).
When the dilation d= fg/f1 is achieved, Eq. (7)

reduces to
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Eq. (8) confirms that the absolute value of the WT

gives the information about the modulating signal
with its absolute value j cosð2pf 0tÞ j. Fig. 1 shows

the modulated signal s(x) of Eq. (3) and the nor-

malized absolute value of its WT given by Eq.

(8), which are represented by the solid and broken

lines, respectively. Here, the carrier frequency f1 is

five times higher than the modulating frequency f0.

It is clear from the figure that the minima of the

absolute value of the resultant WT output coincide
with the zero-crossing points of the carrier signal

of Eq. (3).
4. Results and discussions

In a preliminary verification, the in-line holo-

gram of an optical fiber with the diameter of 125
lm was simulated under illumination of the coher-

ent light operating at the wavelength of 543.5 nm.

For the line object, the envelope function of the in-

terference pattern is a sinc function with the same

argument as the Airy function of Eq. (1) [2]. The

frequency of the interference fringe at the mini-

mum position becomes n/2a, where n represents

the order of the minima. Fig. 2(a) shows the simu-
lated in-line hologram of the optical fiber and the

absolute value of its WT which is obtained by re-

trieving the amplitude of the resultant absolute

value of the WT along the dilation d= fg/f1. In

the case of in-line holograms, f1 stands for the fre-

quency of the chirp signal determined by r/kz. As a

function of dilation 2a/d, Fig. 2(b) illustrates a 3-D

plot for the absolute value of the WT of the fringe
which is cut along the dilation d= fg/f1 represented

by the dash line. In the WT domain, the path of

the dilation is nonlinear, because it is inversely

proportional to the space-varying frequency f1 of

the chirp signal. Evidently, the minima of the ab-

solute value of the resultant WT output appear

at the correct zero-crossing points of the chirp



Fig. 2. (a) Simulated in-line hologram of the optical fiber and

the normalized absolute value of its WT which is retrieved

along the dilation d= fg/f1 and (b) the 3-D plot of the absolute

value of the WT which is cut along the dilation d= fg/f1.
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Fig. 3. Errors in measurements of the fiber size from the

simulated holograms by using the envelope reconstruction

method and the absolute value of WT.
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optical fiber and the normalized absolute of its WT which is

retrieved along the dilation d= fg/f1.
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signal. By determining the frequencies of the chirp

function at these minima, the fiber size can then be

calculated.

Fig. 3 shows the errors in measurements of the

diameter by using our previous and proposed

methods for given values of the recording distance
z from 10 to 50 cm. The errors in the envelope re-

construction method used previously is repre-

sented by the circle sign, while the errors in the

proposed current method is shown as the cross

sign. It is obvious from the figure that, in compar-

ison with the previous method, the errors in mea-

surements using the proposed method are

significantly reduced. The reason of this reduction
is that the proposed method employs only the fre-
quency of the chirp signal at the minimum position

of the envelope function for evaluating the object

size. Since the information of the recording

distance is not required, its measurement errors

do not affect the measurements in the size of the

object.

Next, feasibility of the proposed method was

experimentally verified by generating optically
the in-line holograms of the optical fiber. The col-
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limated coherent light was obtained from a He–Ne

laser with the wavelength of 543.5 nm. The gener-

ated hologram was recorded by using a CCD cam-

era HAMAMATSU C5948 with the resolution of

640·480 pixels in the area of 8.3·6.3 mm. Fig. 4
shows the digitized in-line hologram of the optical

fiber recorded at the distance z=15 cm and the

normalized absolute value of its WT. It is obvious

from the figure that, since the interference fringes

have not been faithfully sampled, the resultant ab-

solute value of its WT does not appear exactly at

the zero-crossing points of the chirp signal. This

may be caused by the limited spatial-resolution
of the CCD combined with the speckle noise. In

this figure, the information about the absolute

value of the envelope function is also obtained

by retrieving the amplitude value of the resultant

output along the dilation d= fg/f1. Note that, in

our previous work [7], the dependencies of the

measurable recording distance and the object size

on the aperture and the resolution of the CCD
were discussed.

Fig. 5 shows a comparison of the errors in

measurements of the diameter of the optical fi-

ber, where the circle and cross signs correspond

to the envelope reconstruction method and the

proposed absolute value of the WT, respectively.

Although the errors in experimental measure-
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Fig. 5. Errors in measurements of the fiber size from the

experimentally generated holograms by using the envelope

reconstruction method and the absolute value of the WT.
ments using the proposed method are higher

than the simulation results in Fig. 3, the errors

of measurement have been reduced to less than

1% which are smaller than those of the envelope

reconstruction method. Therefore, the accuracy
in measurements of the object size has been

improved.
5. Conclusions

We have proposed and verified experimentally a

novel method for sizing the particles from the in-
line holograms by using the absolute value of the

WT. The proposed method takes an advantage

of the property of the WT whose absolute value

could extract the positions of the minima of the en-

velope function. Since the resultant extracted min-

ima are functions of the dilation of the wavelet, the

frequencies of the fringes at the minima of the en-

velope function are measured. The size of the
particles can be finally calculated from the rela-

tionship between the frequencies with the positions

of the minima. Unlike the previous method, the in-

formation of the recording distance is not used for

determining the object size and, therefore, the

errors in measurements do not affect the accuracy

of the proposed method. The experimental results

agree well with the theory.
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