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Abstract

The second-order ordinary differential equations can have one, two, three or eight independent symmetries. Sophus Lie
showed that the equations with eight symmetries and only these equations can be linearized by a change of variables.
Moreover he demonstrated that these equations are at most cubic in the first derivative and gave a convenient invariant
description of all linearizable equations. We provide a similar description of the equations with three symmetries. There are
four different types of such equations. Classes of equations equivalent to one of these equations were studied in [Ibragimov
NH, Meleshko SV. Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. Com-
munication in Nonlinear Science and Numerical Simulation, in press], where we presented the candidates for all four types
and studied one of these candidates. The present paper is the continuation of the work of Ibragimov and Meleshko and is
devoted to other three candidates.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

According to Lie’s classification [2] in the complex domain, any ordinary differential equation of the second
order

V' =fx,), (1)

admitting a three-dimensional Lie algebra belongs to one of four distinctly different types. Each of these four
types is obtained by a change of variables from the following canonical representatives (see, ¢.g. [3], Section 8.4):
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Y+ Gy =0, (2)

Y +e =0, (3)

y// _’_y/(k*Z)/(k*l) =0, (4)
e 13/2 2

y”+2y + xy_y+y —0, (5)

where k and C are constants such that k # 0,1/2,1,2 and C # 0.
Egs. (2)—(5) admit non-similar three-dimensional Lie algebras L; spanned by the operators

Xlza—ax, X2:2x%+y%, X3:X2§+xy%7 (6)

Xlza—ax, ng%, X3:x%+(yfx)%, (7)

Xlza—ax, XZ:%, X3:x%—|—kya—ay, (8)
and

Xlza—i—i—%, X2:x%+y%, )(3:9626—61—1—)/2%7 9)

respectively (see, e.g. [3], Section 8.4).
2. Candidates for equations with three symmetries

Let us subject each of Egs. (2)—(5) to the arbitrary change of variables
t:@<x7y)a u:lp(xvy)v (10)

where ¢ is a new independent variable and u is a new dependent variable. Then we obtain from (2)—(5) the
equations of the form

' + by + 3byu/” + 3bsu + by =0, (11)
" 3 ” ’ 3 ” / b9u/ + b10
u + blu —+ 3b2u —+ 3b3u —+ b4 —+ (b5u —+ 3b6u —+ 3b7u —+ bg) exp PR = 07 (12)
b“u + b12
botl' + by (k=2)/(k=1)
u” + bluB + 3b2u’2 + 3b3u/ + b4 —|— (bsuB + 3b614,2 —|— 3b7u’ + bg) (7) = O7 (13)
buu' + by
and
bol + b 32
M+mw+%ﬂﬁ3@¢+m+@¢ﬂ3mﬁ+%ﬁ+mﬂ(fﬂif) -0, (14)
1nu 12

respectively, where b, = b(t,u), i=1,...,12. Eqgs. (11)—(14) are the candidates for the equations with three
symmetries.
All candidates can be encapsulated in the formula

byt + b
u” + blu'3 + 3b2u/2 + 3b3u/ + b4 + (b5u'3 + 3b614,2 + 3b7u/ + bg)f (M) =0.

buw' + by,
Namely, Egs. (11)—(14) are obtained by letting
f@=0, fl=¢  fl=200 fz)=2" (15)

Using the usual formula for the transformation of derivatives under the change of variables (10), we obtain
the following statement.
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Theorem. Any equation of the form

W+ b + by + 3byid + by + (bsu' + 3beu'> + byl + bs)f (’WJF’JIO) _ (16)
buw + b
is transformed by the change of variables (10) into an equation of the same form:
V' 4 ay? + 3axy* 4 3asy + ag + (asy” + 3agy* + 3a7y + ag)f <m> =0. (17)
any' +an
Here a; and b; are functions of x,y and t,u, respectively, and are connected by:
ay = A", — @b, + bag) + 3b3070, + 3br0,05 + b)),
= A7 [bag, 0} + b3, 20, + @) + by (@, + 20,0,
+ b+ (@, — 0l = 2050, + 20,0, /3], (18)
ay = A7 b, + bip (@b, + 20,01,) + b, 200, + o)
+ b, + (0 — 0ul, — 2000, + 20.4,)/3],
A7 byl + 3b3 07, + 3brp, 2 + b — o+ @],
as = A~ [bs@) + 3brW, + 3bso ) + sy,
as = A7 [bsp, @) + b1, (20,0, + @) + bewr, (0, + 20,0,) + by, (19)
a =4 1{bs<p§qoy + 0190 @b, + 20,0,) + b (20,0, + @u,) + b,
A7 by} + 3b797, + 3bsp. 7 + bsyr],
ay = b, + boy,, aio = b, + boy,, air = bug, +buy,, an =bue, +buy,, (20)
where
A= (oW, — o) #0
is the Jacobian of the change of variables (10).
It follows from Egs. (20) that
Agdz — djodir = A(b9b12 - blobn)-
Hence the equation
agaiy — aypay =0 (21)

is invariant under the change of variables (10). If aga;, — ajoa; = 0, and hence bob > — b1ob1; = 0, the function
fdisappears in both Egs. (16) and (17). This leads to the equations equivalent to Eq. (2), i.e. to the case con-
sidered in [1]. Therefore, we assume in what follows that

bob1y — biob11 # 0, asay — aypay 7 0.

3. Equations equivalent to Eqs. (3) and (4)

The test for equivalence to both Egs. (3) and (4) have the same form. The only difference is that Eqgs. (3) and
(4) have the candidates (12) and (13), respectively, with the different functions f.
Egs. (3) and (4) have the form (17) with
ay, = 0, ay; = O, ay = 0, as = O, as = 0, dg = (), (22)
a; =0, as—1=0, ay —ap =0, ap =0, an =0,
whereas the function f has the form f{z) = ¢” for (3) and f(z) = k=21 for (4). Furthermore, the change of
variables (10) leaves invariant each candidate. Hence, the equations which are equivalent to (3) and (4) belong
to equations of the form (16):

bou + b
W'+ byl + 3byu’ + 3bsu + by + (bsu + 3bgu'> + 3yl + b)f (M) —0.

b’ + by
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Thus for the functions (10) ¢(x, y) and ¥/(x, y) one obtains the overdetermined system of equations which con-
sists of Egs. (22), where the coefficients a;, (i =1,2,...,12) are defined by the relations (18)—(20).

Analysis of compatibility of the overdetermined system depends on the value of b;,. If the argument of the
function f'in (16) is a linear function with respect to the derivative u’, then without loss of generality one can
assume that 1; = 0 and b1, = 1. If the argument of the function f'in (16) is a rational function with respect to
the derivative u’, then without loss of generality one can assume that b;; = 1.

Let us consider the first case

bu =1, b, = 0.
In this case the result of compatibility analysis gives that bsbio # 0 and
by=0, bs=0, by=0, by=0,
bsi — 3bsb; = 0, biobs, — 3bs(2biobs + by,) = 0, by, + b1oby = 0,
bios + 3b1obs = 0, b1ou + 3b10b2 + b, = 0.
The functions ¢(x,y) and Y(x,y) are found from the compatible system of equations

by 1 1

%Zma QDy:—%a ‘//x:—ma

¥, =0.

The generators corresponding to (7) are

af, © 0 1 0
X1 = (bibs)™ _b9a—t— bl()a_u:|v X5 = (bjobs) la_tv
- o o
X3 = (biybs) _((b9 + )x _)/)5 - bloxa .
The generators corresponding to (8) are
af, o 0 4 0
Xy = (bjybs) _b9& - bloa ; X5 = (bjybs) 7
af 0 0
X3 = (b%0b5) ! _(b9x — ky) 5 — bl()Xa:| .

In the second case b, = 1 one obtains that bg # 0 and

biibiy — biy + bf1b4 - 3b%1b3 +3b11by — by =0,

3by(b11b1g — bo)bs + (b11b1g — bo)bs, + 3b11bgbig, = 0,

6b3(b11b19 — bo)bs + (b11bro — by)bs, + 3b11bgbio; + 3bgbio, = 0,

by(b11bro — by) + bio = 0, bs = by, bs, bs = b7, bs, by = by bs,
bg(2b11:b10 + brob11 + brow — 2bo,) + by (b11b1g — by) = 0,

(b11b1o — by) (2bsy, — 2b11,bs — bg,bi1) + bs(2b11,b10 — blOtbﬁ + 3b1gub11 — 2bg,) = 0.

The functions ¢(x,y) and (x,y) are found from the compatible system of equations

o __ b o _ b

* bg(bibig — by Y bg(bubig — bo)”’
b 1

Y=t v, =

by(biibio — by)*’ bs(biibio — bo)*
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The generators corresponding to (7) are
- _ 0 0
X, = bg' (b1 — by) ? b9—b10—u}7

_ L. 0 0
X, = by (b11b1o — bo) ? bll___u:|a

0

_ 0
X3 = by (b11big — by) (bn(x—y)+b9x)a+(y—(1+b10)x)a .

The generators corresponding to (8) are

L[ 0 0
X1 = by (buibig — by) b9a—b10@}v

L[ 0 0
X, = by (biibyg — by) ? blla—a],

_ 0 0
X3 = bgl(bllblo — bg) 2 (ng — bllky) & + (ky — blox)a .

4. Equations equivalent to Eq. (5)

Eq. (5) has the form (17) with

a; =0, 3a, —2/(x—y) =0, 3a; —2/(x—y) =0,
as =0, as =0, as =0, a; =0, ag — C(x —)/)71 =0, (23)

as —ap =0, ap =0, an =0,
and f has the form f{z) = Cz*. The equations that are equivalent to (5) belong to equations of the form (16):

—bgu/ T blO) =0.

W'+ bl + 3bou’ + 3bsul + by + (bsu/3 + 3bg” + byl + bg)f
bnu’ + b12

Thus for the functions (10) ¢(x,y) and Y(x,y) one obtains the overdetermined system of equations which con-
sists of Egs. (23), where the coefficients a; (i =1,2,...,12) are defined by the relations (18)—(20).

Analysis of compatibility of the overdetermined system depends on the value of by,. If the argument of the
function f'in (16) is a linear function with respect to the derivative u’, then without loss of generality one can
assume that b;; = 0 and b, = 1. If the argument of the function fin (16) is a rational function with respect to
the derivative u’, then without loss of generality one can assume that b;; = 1.

Let us consider the first case

by =1, b1, =0.
In this case the result of compatibility analysis gives that bshb;q # 0 and
by=0, be=0  b;=0, bs=0,
b10C — b1o(2b3,bs — 3b3C) = 0,
4b% bobs + 2b% bs — 3b1gh,C — by,C — by, C = 0,
3bs(—biybs + b3C) — bs,C =0,
3bs(—3b1ybobs — biybs + 2b19byC + by, C) — bs,byC = 0,
b1o(2b3bs + 2bgbs — by C) — by, C = 0.
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The functions ¢(x, y) and (x, y) are found from the compatible system of equations
__me ho
biobs(x —y)’ g biobs(x — )’ ' biobs(x —y)’

The generators corresponding to (9) are

(px lpy = 0'

Xy = (b%ObS(x _y))_l (b — 1)3— bloa—au],

Xy = (Bybs(e— ) | (box — ) 2 — b]oxi],
L ot Ou

X3 = (Bobs(x — 1) | (bor? = 37) 2 — bor? i} |
L ot ou

In the second case b, = 1 one obtains that bg # 0 and

bs = b by,  bs=biby, by =bybg,

— b16:C + (b11b19 — bo)(2b19bs(b1o + 1) — bsC) = 0,

biibi — by, + b3 by — 3b7,b3 + 3by by — by =0,

— 3b10ub11b3C — by, C(by1brg — bo) + 3b3 (b1 + bo) (b7, b3, — b3) — 3(b11b1o — bo)bsh,C = 0,

— 3b10b11bsC — 3b10,bs C + b, C(—by1b1g + bo) + 3b3 (b1, b3y + 3b7, b7y + 2b11b63by — 2b11b10bo
— 3byobs — b3) — 6(b11b1g — by)b3bsC = 0,

2b11,b10bsC + biob11bsC + b19ubsC — 2bg,bs C + bs,C(by11b1o — bo)
+ b3 (b3, b3y — b2, bly — 2b11b3yby 4 2by1b1oby + bioby — by) = 0,

2b11,b3C(—b11big + b) + 2b11,b10bsC — bio,b3 bsC 4 3b10,b11bsC + bgiby C(—bybyg + by)
+ 2bg, C(by1bg — by) + by(—b3, b3, — b3\ b1y + 4b3,bibg + 2%, bioby — S5by1bioby
— by b3 4 2b3) — 2bg,bsC =0

The functions ¢(x,y) and y(x,y) are found from the compatible system of equations

0, = bgc 0, = b“C

* (bnblo - b9)2(x —y)bs 7 g (bnblo - bo)z(x - J’)bs 7
U =— b1oC v = C

* (bnblo - b9)2(x - y)bs 7 g (bublo - b9)2(x - y)bs .

The generators corresponding to (9) are

X, = ((Bubio — by~ 3)bs) [(bg )+ (1 bm)%]’

-1 0 0
X2 = ((b]]b]() —_ bg)z(x 7y)b8> |:(b9x — blly) & + (y — b]()x) a:| 5

-1 0 0
X; = ((bnblo — bo)’(x —y)bs)) [(b9x2 - bnyz)a +07 - bloxz)a}
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