
THE EFFECTS OF TRANSFORMATION METHODS IN 
IMAGE WATERMARKING

Prayoth Kumsawat 1,  Kitti Attakitmongcol1 and Arthit Srikaew2

1Signal and Image Processing Research Group, School of Electrical Engineering
Institute of Engineering, Suranaree University of Technology

111 University Avenue, Muang District, Nakhon Ratchasima, Thailand.30000
{prayoth, kitti}@ccs.sut.ac.th

2Intelligent System Research Group, School of Electrical Engineering
Institute of Engineering, Suranaree University of Technology

111 University Avenue, Muang District, Nakhon Ratchasima, Thailand.30000
ra@ccs.sut.ac.th

ABSTRACT

Image watermarking provides copyright protection 
and becomes very crucial for ownership verification 
of digital images. In this paper, we investigate the 
effects of different types of transformations in image 
watermarking algorithm including discrete cosine
transform, discrete wavelet transform, and discrete 
multiwavelet transform. We also provide a brief
overview of the multiwavelet transform since it is
relatively new as compared to the other transforms. 
The efficiencies of these transforms are discussed by 
evaluating watermarked image quality and
robustness of the watermark. Experimental results
show that the multiwavelet transform method is
superior to other two methods in term of image
quality.

1. INTRODUCTION

Due to the rapid and extensive growth of the internet, 
intellectual property protection is a pressing concern 

for  owners who are exhibiting digital representations 
of the photographs or original artworks. Digital
watermarking is one of the most popular approaches 

considered as a tool for providing the copyright
protection of digital images. This technique is based 
on embedding a digital signature into the digital

images. Ideally, there should be no perceptible
difference between the watermarked and original
images, and the watermark should be easily

extractable, reliable and robust against image
compression or common image processing. In
general, we can classify digital watermarking into 
two classes depending on the domain of watermark

to be embedded: the spatial domain watermarking 
and the transform domain watermarking. 

Currently, watermarking techniques based on

transform domain are more popular than those based 
on spatial domain since they provide higher image 
quality and much more robust watermark. Cox et al. 
[1] proposed a watermarking technique by embedding 
the watermark in the discrete cosine transform (DCT) 
domain of an image using the concept of spread
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spectrum communication. Xia et al. [2] introduced a 

new multiresolution watermarking method based on 
the discrete wavelet transform (DWT). The
watermark is embedded to the large wavelet

coefficients at high and middle frequency bands of 
the image’s DWT. Song et al. [3] gave the
comparison of difference watermarking techniques by 

focus on the evaluation of robustness and visual
quality property. S. H. Yang [4] has concentrated on 
the evaluation of biorthogonal wavelets  using

spread-spectrum watermarking framework.
In this paper, we investigate the effects of three 

different transformation methods including discrete

cosine transform, discrete wavelet transform and
discrete multiwavelet transform. All transform
methods are performed on the same platform using 

the spread spectrum image watermarking technique. 
In the spread spectrum watermarking, the watermark 
insertion is like transmitting a spread spectrum signal 
(the watermark) through a noisy environment (the 

original image). We then compare the experimental 
results of these three transformation methods.

2. TRANSFORMATION METHODS

Discrete cosine transform (DCT) is commonly used 

in MPEG and JPEG as an orthogonal transform. In 
DCT domain, the energy concentrates in the low
frequency regions around the upper-left corner.

Figures 1(a) and 1(b) show the original Lena image 
and its transformed coefficients using DCT.

Figure 1. (a) Original “Lena” image, (b) transform 
coefficients of “Lena” image obtained by DCT.

Discrete wavelet transform (DWT) can
decompose the image into different frequency bands 

and still retain the spatial information. In wavelet 
watermarking techniques, since DWT of an image 
gives  multiresolution representation, this allows the 
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independent processing of the resulting components 
and the trade-off between robustness and invisibility 
can be decently made.

Discrete multiwavelet transform (DMT) is
relatively new type of signal transform that is
commonly used in image compression. The main 

motivation of using multiwavelet is that it is possible 
to construct multiwavelets that simultaneously
possess desirable properties such as orthogonality, 

symmetry and compact support with a given
approximation order. These properties are not
possible in any real-valued scalar wavelet (wavelet 

based on one scaling function). Next we give a brief 
overview of the multiwavelet transform.

Let Φ  denote a compactly supported orthogonal 

scaling vector Tr ),...,,( 21 φφφ=Φ  where r  is the 

number of scalar scaling functions. Then )(tΦ  is 

satisfy a two-scale dilation equation of the form
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The coefficients 1c  and 1d  are related to 0c  via 

the following decomposition and reconstruction

algorithm:
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Unlike scalar wavelet, even though the
multiwavelet is designed to have approximation order 
p , the filter bank associated with the multiwavelet 

basis does not inherit this property. Furthermore, 
since the multiwavelets have more than one scaling 
function, the dilation equation becomes a dilation 

with matrix coefficients. Thus, in applications, one
must associate a given discrete signal into a sequence 
of length r−  vectors (where r  is the number of

scaling functions) without losing some certain
properties of the underlying multiwavelet. Such a
process is referred to as prefiltering or multiwavelet

initialization. The block diagram of a multiwavelet 
with prefilter )(zQ  and postfilter )(zP  is show in 

figure 2. )( zH and )(zQ are the z  transform of )(nh
and )(ng , respectively. The sequence x  is a vector-

valued sequence obtained by the following operator. 

Define the operator ZrZ
r RRD )(: →  which

partitions a scalar sequence into a sequence grouped 

in vectors of length r  as follows. Given a scalar

sequence )(nx  , Zn∈  then )(xDx r=  is given by
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Figure 2. Multiwavelet filter bank.

Similar to the traditional scalar wavelet
transform, the two-dimensional multiwavelet
transform can be achieved by applying the one-

dimensional transform on the rows by treating each 
row as a one-dimensional signal and afterward on 
columns. However, for the applications using

multiwavelets, prefiltering process must be applied to 
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each row and each column to initiate the vector
sequence c0 to the filter bank.  Figures 3(a) and 3(b) 
show the image subbands of three-level wavelet

decomposition using Daubechies-8 filter and three-
level multiwavelet decomposition using the DGHM 
multiwavelet, respectively.

                      (a) (b)

Figure 3. Image subbands of “Lena” image obtained 
by (a) three-level wavelet decomposition using D8 
filters  (b) three-level multiwavelet decomposition 

using the DGHM multiwavelet (with prefiltering).

3. SPREAD SPECTRUM WATERMARKING

Spread spectrum communication is a popular analogy 
for watermarking. The well-known spread spectrum

watermarking technique is proposed by Cox et al.[1].
For this technique, the embedding procedure is like 
transmitting a spread spectrum signal (the watermark) 

thought a noisy environment (the original image). 
Watermark extraction is equivalent to the detection of 
the spread spectrum signal from an interference

environment. The watermarking to be embedded is a 
sequence of 1,000 random numbers, having a

Gaussian distribution )1,0(N . The watermark

sequence is embedded in the 1,000 largest

coefficients excluding the DC coefficients of DCT 
domain by the following equation:

iiii XVVV α+='          (9)

, where iV  is the selected DCT coefficients, iX is

the watermark and α is the embedding strength. The 

watermarked image is obtained by the inverse DCT 

of '
iV .

The detection process is the inverse procedure of 
the watermark insertion process. It is composes of

transformation of the original image and watermarked 
image, and watermark extraction process. After
ext racting the watermark, similarity measurement

between the original watermark and the extracted 
watermark is taken as a measurement of presence of 

the watermark. A similarity between X and *X  is 

defined in [1] as:

**

*
*),(

XX

XXXXsim
⋅

⋅= (10)

, where X  is the original watermark and *X  is the 

extracted watermark. To decide whether the
suspected image is a watermarked version of the
original image, the tested result is compared to a

fixed threshold )6( =δδ . If the similarity is greater 

than the fixed threshold, the watermark has been
detected.

4. EXPERIMENTAL RESULTS 

AND DISCUSSIONS

In this section, some experimental results are
demonstrated to show the effects of the three
transformations on the spread spectrum watermarking 

technique. All of the original images are  gray-scaled

standard image of size 512×512 pixels. To study the 
effects of transformation methods, we perform the

same watermark insertion and watermark detection 
based on [1] with various transformation methods.
For the cases of using DWT and DMT, we

decompose an original image into 3 levels and the
watermark is embedded to the 1,000 largest
coefficients of all subbands, except for approximation 

subband.   The embedding strength is 0.1 as in [1]. 
The performance of each transform-based
watermarking scheme is measured by image quality 

and robustness of the watermark. 
To measure the image quality of the

watermarked image, we use the peak signal to noise

ratio (PSNR) and mean structural similarity (MSSIM) 
[6]. The experimental results of image quality
measured by PSNR and MSSIM are shown in figures 
4 (a) and 4(b), respectively. The PSNR of the

watermarked image with various embedding
strengths is shown in figure 4 (c). From figure 4, the 
results clearly show that the method using DMT

yields the best image quality. To verify the detecting 
uniqueness, we send the extracted watermark together 
with other 1,000 random watermarks to the

correlation detector. The 500th watermark is the
extracted watermark. From figure 5(a), we can see 
that the detector response of the real watermark is 

very high while other responses are very low.
To verify the robustness of the watermark under 

JPEG and JPEG2000 compression, we compressed 

watermarked image with Q factors varying from 10% 
to 100%. The similarities of the original and extracted 
watermarks are shown in figure 5(b) and 5(c) for 

JPEG and JPEG2000, respectively. We can see that 
the algorithm using DCT gives the most robust
watermark.

To evaluate the robustness of the watermark 
under common image processing, we apply different

types of attacks including 3×3 lowpass filtering and 

3×3 Wiener filtering. In addition, we attack the
watermarked image by adding Gaussian noise with 
variance of 500. Figures 6(a)-6(c) show the

similarities of watermarks when the watermarked
image is attacked by common image processing.
From Figures 6(a)-6(c), we can also see that the
method using DCT yields the most robust watermark 

under those attacks.

5. CONCLUSIONS

We have studied the effects of transformations
including the discrete cosine, discrete wavelet and 

discrete multiwavelet transforms in the spread
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spectrum watermarking algorithm. Due to the
multiresolution representation obtained from using
DWT and DMT, the algorithms using both transforms 

yield better image quality than the one using DCT. 
However, the algorithm using DCT gives the most 
robust watermark under compression and common 

image processing that were included in this study.

This is likely due to the fact that for the watermarking 
in the DCT domain, watermark spreads over a set of 
visually important frequency components. Further

research can be focused on the development of robust 
watermarking method using the multiwavelet
transform.
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Figure 4. (a) PSNR of watermarked images using 5 test images (Lena, Baboon, Gold Hill, Boat, and Peppers) 

(b) MSSIM of watermarked image using 5 test images (c) PSNR of “Lena” watermarked image with different 
watermark strengths.
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Figure 5. (a) Detector response of 1,000 watermarks including extracted watermark of Lena image using DWT 
under 10 % JPEG  quality. (b) and (c) Similarities of watermarks under JPEG and JPEG2000 compressions, 
respectively.
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Figure 6. Similarities of watermarks under different types of attacks of 5 test images: (a) Lowpass filtering , (b) 
Wiener filtering , and (c) adding Gaussian noise.
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