EFFECT OF POLARIZATION ON FRACTURE TOUGHNESS

OF BaTiO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> COMPOSITES

Sirirat Rattanachan <sup>a</sup> Yukio Miyashita <sup>b</sup>, Yoshiharu Mutoh <sup>b</sup>

<sup>a</sup>Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Nakhon

Ratchasima 3000, Thailand

<sup>b</sup>Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1

Kamitomioka, Nagaoka-shi 940-2811, Japan

**Abstract** 

In this study, Al<sub>2</sub>O<sub>3</sub> based composites dispersed with BaTiO<sub>3</sub> particles were fabricated by

a conventional sintering process. The relative density and microstructure (grain size, phase) of

composites were studied. The relative density of BaTiO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> composites decreased with

increasing BaTiO<sub>3</sub> content, and there were reaction phased between Al<sub>2</sub>O<sub>3</sub> matrix and dispersed

BaTiO<sub>3</sub> particles. The Indentation Fracture Method was used to evaluate the fracture toughness of

the present composites before and after polarization. It was verified that an applied electric field

induced distinct anisotropy in fracture toughness of BaTiO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> composites between parallel

and perpendicular directions to the poling direction. The fracture toughness was improved with

addition of BaTiO<sub>3</sub> particles to Al<sub>2</sub>O<sub>3</sub> matrix. The toughening mechanisms of BaTiO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>

composites have been also discussed.

**Keywords:** Al<sub>2</sub>O<sub>3</sub>; BaTiO<sub>3</sub>; Composites; Ferroelectric properties; Fracture toughness;

Piezoelectric properties; Polarization

**Published in:** Journal of the European Ceramic Society 24 2004: pp.775-783.

123