รุ่งเรือง พัฒนากุล : การออกแบบและสร้างไมโครวาล์วเพื่อควบคุมการไหลของแก๊สด้วย เทคโนโลซีระบบกลไฟฟ้าจุลภาค (DESIGN AND FABRICATION OF MICROVALVE FOR GAS FLOW CONTROL USING MEMS TECHNOLOGY) อาจารย์ที่ปรึกษา : อ. คร. นิมิต ชมนาวัง, 171 หน้า. ISBN 974-533-589-4

ระบบกลไฟฟ้าจุลภาคหรือ MEMS ได้เข้ามามีบทบาทในการควบคุมการไหลของแก๊สและ ของเหลว ในรูปของไมโครวาล์ว ซึ่งเป็นอุปกรณ์ที่ใช้เปิด-ปิดให้แก๊สหรือสารละลายไหลไปตาม ้ช่องทางเดินจุลภาคได้โดยการควบคุมทางไฟฟ้า ในงานวิจัยนี้ มุ่งหมายที่จะออกแบบ และสร้างไม ้โครวาล์วสำหรับใช้ควบคุมการไหลของแก๊ส ที่ทำงานด้วยแรงไฟฟ้าสถิตระหว่างฐานรองที่มี ช่องทางเดินจุลภาคและ โครงสร้างแผ่นคานปลายอิสระที่ โค้งตัวขึ้นเนื่องจากความเค้นภายในและ การขยายตัวตามอุณหภูมิของชั้นวัสดุ การพัฒนากระบวนการสร้างช่องทางเดินจุลภาคพร้อมกับ ฐานรองนิกเกิลด้วยวิธีการสร้างแม่พิมพ์ชั้นหนาด้วยแสงอัลตราไวโอเลตเพื่อสร้างเบ้าขึ้นรูปก่อน นำเข้าสู่กระบวนการชุบนิกเกิลด้วยไฟฟ้า ทำให้ได้ช่องทางเดินจุลภาคขนาดประมาณ 70 μm × 70 ุµm ส่วนแผ่นคานปลายอิสระสร้างจากวัสดุพอลิเมอร์ที่เป็นสาร ไวแสงโฟโตรีซิสชนิคลบ SU-8 ด้วย กระบวนการสร้างลวดลายด้วยการฉายแสง ซึ่งภายหลังการสกัดชั้นวัสดุชั่วคราวทิ้งจะมีระยะปลาย แผ่นกานที่โก้งตัวขึ้นจากฐานรองประมาณ 273 µm ซึ่งจะได้รัศมีส่วนโก้งเท่ากับ 1.93 มิลลิเมตรที่ก่า ้ความเก้นภายในชั้นวัสดุ SU-8 เท่ากับ 4.55 MPa สำหรับแรงดันไฟฟ้าแนบติดที่สามารถดึงแผ่นกาน ้ลงมาปีดช่องทางเดินแก๊สในสภาวะปกติได้เท่ากับ 200 โวลต์ ซึ่งสอดคล้องกับแบบจำลองทาง ู คณิตศาสตร์ที่ 204 โวลต์ การยกตัวของแผ่นคานจะเริ่มขึ้นเมื่อมีแรงคันแก๊ส 69 kPa เข้าสู่ไมโคร ้วาล์ว ซึ่งจะให้อัตราการใหลของมวลสูงสุดในการใหลแบบ ความเร็วเท่ากับความเร็วเสียงเท่ากับ 24.653 µg/sec และเท่ากับ 15.289 µg/sec สำหรับการใหลแบบความเร็วต่ำกว่าความเร็วเสียง โดยมี ระดับแรงดันไฟฟ้าสูงสุดที่สามารถดึงแผ่นคานให้เคลื่อนที่ลงมาปิดช่องทางเดินแก๊สเท่ากับ 150 ้โวลต์ ก่อนการลัควงจรระหว่างขั้วต่อชิ้นงาน ซึ่งระดับแรงคันแก๊สดังกล่าวสูงกว่าแรงคันแก๊สที่ใช้ ในระบบแสดงผลอักษรเบรลล์ที่ 27.6 kPa แสดงถึงความเป็นไปได้ในการนำโครงสร้างดังกล่าวไป ควบคุมการใหลของแก๊สในระบบแสดงอักษรเบรลล์ในการพัฒนาโครงสร้างการทำงานต่อไป

สาขาวิชา <u>วิศวกรรมไฟฟ้า</u> ปีการศึกษา 2549

RUNGRUEANG PHATTHANAKUN: DESIGN AND FABRICATION OF MICROVALVE FOR GAS FLOW CONTROL USING MEMS TECHNOLOGY. THESIS ADVISOR: NIMIT CHOMNAWANG, Ph.D., 171 PP. ISBN 974-533-589-4

MEMS/ELECTROSTATIC MICROVALVE/GAS FLOW CONTROL

Micro-Electro Mechanical System (MEMS) has played a significant role in flow control of gas and liquid. One form of MEMS devices used to control flow of fluids through microchannels is microvalve. In this thesis electrostatic actuation is used to enable or disable fluid flow in microscale. Novel microstructures and materials of a curl-up type electrostatic microvalve have been proposed in order to reduce fabrication cost and activation voltage. The microvalve is designed to have two major parts, a conductive substrate with a UV LIGA fabricated gas inlet orifice, and a polymer-based curl-up closure plate. Fabrication of the conductive substrate was done by UV lithography of an SU-8 photoresist column on copper or graphite sacrificial materials followed by electroforming of nickel thick layer. After removal of SU-8 column, a 70 μ m \times 70 μ m gas inlet hole was obtained. The gas inlet hole was filled with AZ P4620 photoresist baked and planarized. Subsequently, a 1,040 μ m \times 720 μ m sacrificial aluminum layer was deposited above the planarized gas inlet hold. Polymeric closure plate was then fabricated by spin coating of 2.5 µm-thick SU-8 photoresist and patterning with UV lithography so that a 940 μ m × 620 μ m area of SU-8 film was on top of the sacrificial aluminum layer while another large area anchored nickel substrate. Conductive composite lavers of thin on chromium/copper/nickel were then deposited on top of SU-8 closure plate. After removal of all sacrificial materials, the SU-8 closure plate was forced to curl away

removal of all sacrificial materials, the SU-8 closure plate was forced to curl away from the substrate due to different thermal expansion between SU-8 and composite metal layers. At room temperature the free standing tip of the released closure plate was raised up from the nickel substrate for 273 μ m.

The completed microvalve was tested by applying a positive DC voltage to the composite metal layer on the closure plate and a ground to the nickel substrate. In absence of gas flow through the orifice, a voltage of 200 V was needed to pull down the closure plate. This pull-in voltage was in agreement with calculations based-on finite difference method. This voltage was less than the one required by a microvalve with silicon substrate and silicon dioxide closure plate for the same size. The test with presence of gas flow was done by feeding gas pressure of 69 kPa through the inlet hole and applying a voltage to the microvalve. The applied voltage between 100 V to 180 V could pull the closure plate down to a certain distance but not fully. Applying a voltage greater than 180 V caused a severe short circuit and destroyed the device. Nevertheless, a microvalve of novel structure and materials with lower pull-in voltage and fabrication cost has been successfully demonstrated. Better controls of fabrication processes and testing apparatus are needed in order realized a fully functioning microvalve in presence of gas flow.

School of <u>Electrical Engineering</u> Academic Year 2006

Student's Signature Advisor's Signature Nim; 7 Chommanay