CONTENTS

			Page
ABS	TRACT	Г IN THAI	1
ABS	TRACT	Γ IN ENGLISH	II
ACK	NOWL	LEDGEMENTS	III
CON	ITENT	· S	IV
LIST	OF F	IGURES	VI
CHA	PTER	t .	
I	INTF	RODUCTION	10
II	LITE	RATURE REVIEW	12
	2.1	Heavy-ion collision	12
	2.2	Quantum chromodynamics phase transition	13
	2.3	Equation of state: EoS	15
	2.4	Correlations and fluctuations	18
	2.5	Experimental results	19
	2.6	Light nuclei production	20
		2.6.1 Coalescence model	21
		2.6.2 Thermal model	22
	2.7	Fluctuations in coordinate vs. momentum space	23
Ш	RESE	EARCH METHODOLOGY	25
	3.1	The UrQMD transport model	25
	3.2	Implementation of a phase transition in UrQMD	26
	3.3	Light nuclei production in UrQMD	27
		3.3.1 Deuteron production	27
		3.3.2 Triton and helium-3 production	28
		3.3.3 Helium-4 production	28
	3.4	UrQMD simulation	29
	3.5	Data analysis	29
		3.5.1 Propagation of the light nuclei in coordinate space	31
IV	RESU	JLTS AND DISCUSSION	32
	4.1	Time evolution in light nuclei multiplicities	32

CONTENTS (Continued)

			Page
	4.2	Time evolution in cumulant ratios of the light nuclei	32
	4.3	Cumulant ratios in different rapidity windows	39
	4.4	Light nuclei ratios	48
٧	CON	CLUSION	51
REF	ERENC	ES	52
CUR	RICUL	LUM VITAE	58

LIST OF FIGURES

rigu	re	age
2.1	The space-time diagram of heavy-ion collision (Braun-Munzinger et al., 2019).	13
2.2	The phase diagram of quarks and gluons. The diagram displays the current	
	knowledge and assumptions on possible states that quarks and gluons	
	can become as function of temperature ${\cal T}$ and baryon density (image by	
	Jan Steinheimer)	14
2.3	The proton cumulant ratio C_4/C_2 in two beam energy scan phases BES-I	
	and BES-II at RHIC in different centralities under AuAu collision within	
	rapidity range $\left y\right < 0.5$ (image taken from the Quark Matter 2025 in	
	Frankfurt by Zachary Sweger, Wed, P35)	19
2.4	Beam energy dependence of the scaled cumulant K_3/K_2 in different	
	centralities including a comparison with the STAR data (Adamczewski-	
	Musch et al., 2020)	20
2.5	Double ratio of triton (t), proton (p) and deuteron (d) as a function of	
	coupling strength with the case of first-order phase transition (blue solid	
	star) and crossover (red open star) (Sun, Ko, et al., 2021)	21
2.6	Corrected scaled variance $\tilde{\omega}_y$ as a function of fixed acceptance fraction α_y .	
	The bands correspond to the beam energies $\sqrt{s_{NN}}$. The limiting cases	
	of coordinate space are shown in red band, labeled $\tilde{\omega}_{coord}$ (Kuznietsov	
	et al., 2024)	24
3.1	Time evolution in pressure and baryon density at $T=0$ between the	
	two scenarios: the CMF EoS with no phase transition (orange line) and the	
	phase transition EoS (blue line). The red shading area refers to a region	
	where the pressure gradient is negative: the spinodal region (Savchuk	
	et al., 2023).	27

LIST OF FIGURES (Continued)

Figu	ire	Page
3.2	Beam-energy dependence of the deuteron to proton ratio from the UrQMD	
	simulation (solid lines), thermal model fit (dotted lines). The symbols of	
	different styles denote the experimental data from the corresponding	
	collaborations: SIS (triangle down), E802 (hexagon), PHENIX (triangles up),	
	NA49 (blue diamonds), STAR (circles), ALICE (pentagon), E814 (square).	
	The blue horizontal line represents the UrQMD+hydro result on the d/p	
	ratio at 2.76 TeV and the green horizontal line represents the UrQMD	
	result of the $rac{ar{d}}{ar{p}}$ ratio in Si+Au collisions at $E_{ extsf{lab}}=14.6~A$ GeV (Sombun	
	et al., 2019)	30
4.1	Time evolution in light nuclei multiplicities (proton (red), deuteron (purple),	
	triton (green), 3He (orange), 4He (blue) at $E_{\mathrm{lab}}=2.0~A\mathrm{GeV}$ (upper plot)	
	and $3.0\ A{\rm GeV}$ (lower plot). The plots display the multiplicities within the	
	spherical volume with radius 2 fm centered at the origin from UrQMD	
	calculations with phase transition (dashed lines) and with a crossover	
	(solid lines)	33
4.2	Time evolution in light nuclei multiplicities (proton (red), deuteron (purple),	
	triton (green), 3He (orange), 4He (blue) at $E_{ m lab}=2.0~A{ m GeV}$ (upper plot)	
	and $3.0\ A {\rm GeV}$ (lower plot). The plots display the multiplicities at mid-	
	rapidity $ y \leq 0.5$ from the same calculations	34
4.3	Time evolution of the scaled variance of the multiplicities of baryons	
	(grey), protons (red) and light nuclei (deuterons (purple), tritons (green),	
	3He (orange), 4He (blue)) at $E_{ m lab}=2.0~A$ GeV (upper plot) and $3.0~A$ GeV	
	(lower plot) within a spatial volume. The UrQMD calculations were carried	
	out using a CMF equation of state (EoS) that includes either a first-order	
	phase transition (dashed lines) or a smooth crossover (solid lines). A	
	distinct enhancement in the baryon cumulants is observed during the	
	phase transition	35

LIST OF FIGURES (Continued)

Figur	·e	Page
4.4	Time evolution of the scaled variance of the multiplicities of baryons	
	(grey), protons (red) and light nuclei (deuterons (purple), tritons (green),	
	3He (orange), 4He (blue)) at $E_{ m lab}=2.0~A{ m GeV}$ (upper plot) and $3.0~A{ m GeV}$	
	(lower plot) within the rapidity interval $-0.50 \leq y \leq 0.50$ from the	
	same UrQMD calculations with the phase transition EoS. During the phase	
	transition, free protons and other nuclear clusters are only slightly affected.	36
4.5	Time evolution of the skewness of the multiplicities of baryons (black),	
	protons (red) and light nuclei (deuterons (purple), tritons (green), 3He	
	(orange), 4He) at $E_{ m lab}=2.0~A{ m GeV}$ (upper plot) and $3.0~A{ m GeV}$ (lower plot).	
	The plots show the results within a spatial volume. UrQMD calculations	
	were conducted using a CMF EoS incorporating either a first-order phase	
	transition (dashed lines) or a smooth crossover (solid lines)	37
4.6	Time evolution of the skewness of the multiplicities of baryons (black),	
	protons (red) and light nuclei (deuterons (purple), tritons (green), 3He	
	(orange), 4He) at $E_{\mathrm{lab}}=2.0~A\mathrm{GeV}$ (upper plot) and $3.0~A\mathrm{GeV}$ (lower plot).	
	The plots show the results within the rapidity range $ y \leq 0.50$ from the	
	same UrQMD calculations with the phase transition EoS	38
4.7	Scaled variance as a function of rapidity window of the baryons (black),	
	protons (red) and deuterons (purple) at the time 8 fm/c and 50 fm/c	
	$E_{\mathrm{lab}} = 2.0~A \mathrm{GeV}$	40
4.8	Scaled variance as a function of rapidity window of the baryons (black),	
	protons (red) and deuterons (purple) at the time 8 fm/c and 50 fm/c	
	$E_{\mathrm{lab}} = 3.0~A \mathrm{GeV}$	41
4.9	Scaled variance as a function of rapidity window of tritons (green), 3He	
	(orange) and 4He (blue) at the time 8 fm/c and 50 fm/c $E_{\mathrm{lab}}=2.0~A\mathrm{GeV}$	42
4.10	Scaled variance as a function of rapidity window of tritons (green), 3He	
	(orange) and 4He (blue) at the time 8 fm/c and 50 fm/c $E_{\rm lab}=3.0~A{\rm GeV}$	43
4.11	$S\sigma$ as a function of rapidity window of the baryons (black), protons (red)	
	and deuterons (purple) at the time 8 fm/c and 50 fm/c $E_{lab} = 2.0$ AGeV	44

LIST OF FIGURES (Continued)

Figur	Figure	
4.12	$S\sigma$ as a function of rapidity window of the baryons (black), protons (red)	
	and deuterons (purple) at the time 8 fm/c and 50 fm/c $E_{ m lab}=3.0~A{ m GeV}$	45
4.13	$S\sigma$ as a function of rapidity window of tritons (green), 3He (orange) and	
	4He (blue) at the time 8 fm/c and 50 fm/c $E_{\mathrm{lab}}=2.0~A\mathrm{GeV}~\dots$	46
4.14	$S\sigma$ as a function of rapidity window of tritons (green), 3He (orange) and	
	4He (blue) at the time 8 fm/c and 50 fm/c $E_{\mathrm{lab}}=3.0~A\mathrm{GeV}~\dots$	47
4.15	Time evolution of double ratios $\frac{(t)(p)}{d^2}$ and $\frac{(He4)(p)}{(He3)(d)}$ for corresponding	
	energies of $2.0~A{\rm GeV}$ (blue) and $3.0~A{\rm GeV}$ (pink) in coordinate space	49
4.16	Time evolution of double ratios $(t*p)/d^2$ and $(^4He*p)/(^3He*d)$ for	
	corresponding energies of $2.0\ A{\rm GeV}$ (purple) and $3.0\ A{\rm GeV}$ (yellow) in	
	momentum space. The gray bands correspond to the results from the	
	STAR experiment of Au+Au at $E_{\rm lab}=3.0~A{\rm GeV},0-10\%$ centrality. The	
	data is taken from figure 16 (b) in (Abdulhamid et al., 2024)	50