SYMBOLS AND ABBREVIATIONS

 A_{c} = Ratio of area under particle size distribution curves

 A_{-} = Total area of all particle size distribution curves

 C_{n} = Specific heat capacity

 d_1 = Widest diameters of fragment

 d_2 = Narrowest diameters of fragment

 D_{R} = Disintegration ratio

 E_a = Estimated annual erosion

 E_{i} = Energy used by a fragment for one drum revolution

 E_{p} = Estimated period erosion

 m_0 = Mass of fragment before testing

 m_i = Mass of retained fragment from test cycle i

 m_{i-1} = Mass of retained fragment before test cycle i

 n_c = Calculated porosity

 P_{Λ} = Accumulative passing materials

P _ Mass of passing materials from test cycle i

r = Radius of circles filled to corners of fragment

 $r_{\rm d}$ = Inner drum radius

 R_{i} = Number of fragment revolutions

r = fragment radius

 $r_{\rm ins}$ = Largest radius of circle fitted to fragment

 V_{cl} = Drum velocity

V = Equivalent volume

V = Volumatic percent of each mineral

SYMBOLS AND ABBREVIATIONS (continued)

 W_{i} = Weight percent of each mineral

A = Surface area of fragment

C = Climatic erosivity

D = Degradation rates

E = Accumerated energy

 E_{i} = Energy in test cycle i

 $E_{\rm S}$ = Specific energy

EWE = Erosive wind energy

g = Gravity

 h_s = Hop height

/ = Fragment erodibility

/ = Moment of inertia

Id = Durability index

K = Surface roughness

K = Fluid flow rate

L = Unsheltered distance

 l_s = Hop displacement

m = Mass

n = Porosity

N = Test cycle

n = Number of corner

Q = Absorbed energy

 $R_{\rm b}$ = Buoyant density

SYMBOLS AND ABBREVIATIONS (continued)

s = Sphericity

T = Temperature

t = Time

U = Windspeeds

V = Vegetation cover

v = Velocity

 ε = Rate of erode mass

 ${\boldsymbol{\mathcal{E}}_{kr}}^*$ = Kinetic impact energy

 ϑ = Bedding slope angle

 ρ = Density of fragments

 ρ_{i} = Density of each mineral

 $\rho_{\rm W}$ = Density of water

 φ = Bedding surface angle

 ω = Angular velocity