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Abstract— Effective wing design plays an important role
in determining the flight performance of fixed-wing
unmanned aerial vehicles (UAVs), which require basic
aerodynamic principles. The process of engineering
such aircraft is entrenched in navigating intricate
computational challenges, especially in the realm of
aerodynamics computation, mostly within computation-
nal fluid dynamics. This study utilizes of the Efficient
Global Optimization (EGO) algorithm as a robust and
innovative approach tailored to address the multi-
faceted complexities inherent in UAV wing design. This
study employs the Efficient Global Optimization (EGO)
algorithm to solve the challenges inherent in UAV wing
design. Implementing Latin Hypercube Sampling (LHS)
strategically for experiment designing and adding
sampling points guided by the Expected Improvement
(EI) for single-objective optimization, the primary
objective is to enhance the lift-to-drag ratio, a crucial
metric defining overall operational efficiency. The
solution of this method was obtained with aerodynamic
evaluation performed through Vortex Lattice
simulation in VSPAERO software. These design

hodol for optimizing UAV wing design focus on
achieving an efficiency increase of up to 16.56% in the
lift-to-drag ratio when compared to the initial
r 1 wing ation. This enhancement
represents the efficacy of the proposed approach in
enhancing UAV wing designs, contributing to improved
flight performance.

Keywords-Efficient global optimization, UAV Wing
design, VSPAERO, Aerodynamics computation

E INTRODUCTION

Efficient Global Optimization (EGO) algorithm
represents a breakthrough algorithmic approach that
has become pivotal in addressing the computational
complexities inherent in various engineering
problems, especially within the domain of aircraft
design [1-3]. The unique strength of EGO lies in its
ability to effectively manage the substantial
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computational demands associated with optimization
tasks. By surrogate models, EGO optimizes the
utilization of computational resources, strategically
sampling data to enhance model accuracy iteratively.
Traditionally centered around the Ordinary Kriging
model, initially designed for single-objective
optimization, EGO has been the focus of extensive
research endeavors aimed at its application across a
wide spectrum of engineering challenges [4-6]. This
algorithm’s  adaptability and efficiency have
positioned it as a promising solution for diverse
optimization needs, driving its exploration and
implementation by numerous researchers within the
realm of engineering problem-solving.

In this specific study, the application of the EGO
method offers a promising approach to address the
intricate challenge of unmanned aerial vehicles
(UAVs) wing design. This methodology is further
complemented by the utilization of the Vortex Lattice
Equation integrated into VSPAERO software,
providing a comprehensive aerodynamic evaluation of
diverse UAV wing configurations to increase
efficiency for fixed-wing UAVs, which is shown in
Fig. 1.

Fig. 1. Fixed-wing unmanned aerial vehicles (UAVs)

II.  EFFICIENT GLOBAL OPTIMIZATION

The Efficient Global Optimization (EGO)
procedure [7], delineated in Fig. 2, initiates by
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generating samples through the design of experiment
technique (DoE) [8]. Within this study, Latin
Hypercube Sampling (LHS) [9] has been specifically
chosen for this process due to its ability to preserve
data diversity and allow for user-defined control over
the number of experiments. The subsequent step
involves constructing the surrogate model. For single-
fidelity optimization, the Kriging method is employed,
while for optimization, Once the surrogate model is
established, identifying an additional sample point for
optimization involves maximizing the Expected
Improvement (EI) through genetic algorithms [10]

Surogate madel

Fig. 2. Flowchart of EGO.

A.  Kriging surrogate model
The ordinary Kriging model [11] functions to
predict the unknown function y(x) as

P(x)=p(x)-¢(x) M

where #(x) and &£(x) represent the global model
and local model, respectively. The global model,
denoted as (x), is articulated as

I'R'F
X)=——
A(x) "R

where the matrix R is the correlations among the
sample points, while F represents a vector housing
the evaluation values assigned to each sampling point.
Within the framework of the Kriging surrogate model,
 signifies the constant global model. The local

2)

model, denoted as &(x), is articulated as follows

£(x)=r(x)" R (F-1n) )

the vector r(x) represents a collection of sampling
points in terms of x , with its correlations, particularly
between £(x) and E(x’), determined by the distance
between x and x'. Within the Kriging surrogate
model, the local derivation at an unknown point x is

established via stochastic processes. This involves the
generation of multiple design points as sampling
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points, followed by the construction of a surrogate
model. This model utilizes a Gaussian random
function as the correlation function to estimate the
trend through the stochastic process.

B.  Expected Improvement (EI)
The Expected Improvement (EI) [12], denoted as
E[l(x)], atapoint x can be expressed as

1(x)=max[ £, - 3(x),0], @

E[1(x)]=[" (fy -3(x)0(3(x)) . (5)

Continuously leveraging the probability density
function ¢, which encapsulates uncertainty regarding
¥(x), which is the predicted function value from the
surrogate model, the process iterates, adding sampling
points guided by the EL This iterative addition of

sampling points persists until convergence of the
objective function is achieved.

C.  Genetic Algorithm (GA)

Genetic Algorithms (GA) represent a stochastic
search methodology rooted in the principles of natural
selection, pioneered by Holland [13] at the University
of Michigan. Renowned as an Evolution Algorithms
method, GA stands out for its versatility and
applicability to optimization problems, often regarded
as a black box method due to its ease of
implementation. Initially adapted for single-objective
optimization, the original GA formulation remains a
fundamental framework in the domain of evolutionary
computation.

Evaluation/Selection

Crossaver

Fig. 3. Flowchart of GA.

III. ' WING DESIGN PROBLEM
In this study, the primary aim within the wing
design problem is to maximize the lift per drag ratio
(L/D) specifically at a Mach speed of 0.054286 (19
m/s) and Reynolds number of 1.57x10° The
following equation illustrates the expression of the
optimization problem.

Maximize: L/D at Re=1.57x10° 6)
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The initial design, created with Airfoil S8036,
exhibited an initial L/D value of 18.5476, featuring a
wing length of 0.9 meters and no wing sweep angle.
For this study, the NACA series 6 airfoil was
specifically selected and designed to achieve a lift
coefficient of 0.5. The involves the adjustment of
three design parameters, specifically focusing on the
airfoil's maximum thickness per chord length (¢/c¢),
half wing span (b/2), and wing sweep angle (A),
encompassing upper and lower limits as specified in
Table 1.

TABLE I
THE RANGE OF DESIGN PARAMETERS
Design parameter Design range
Maximum thickness per chord length, 1 /¢ 0.08t0 0.24
Half wing span, b/2 (m) 0.9 to 1.035
Wing sweep angle, A (°) 01030

These design variables are optimized using Latin
Hypercube Sampling (LHS) while adhering to
constraints—a fixed wing area of 0.504 m” and a root
chord size of 0.28 m. The initial number of samples is
set to 30. Furthermore, this optimization process by
add a single sample iterates through a total of 30
rounds, ensuring a comprehensive exploration and
refinement of the design space to achieve the desired
objective of maximizing the lift per drag ratio (L/D ).
The most suitable values for optimization are
calculated  using  Genetic ~ Algorithms  (GA),
configuring generation = 100 and population = 100 for
each iteration calculation.

IV.  AERODYNAMIC EVOLUTIONS

VSPAERO [14] was employed to evaluate the
aircraft aerodynamics performance for this work. The
VSPAERO is the software based on the vortex lattice
method. The advantage of the vortex Ilattice
aerodynamic evaluation based is it required for low
computation time. The rapid computation times
facilitate handling numerous estimations, providing
the advantage of grasping the evolving trend for each
variable. The first step involves creating a UAV
model based on the specifications outlined in Table 2.

TABLE IT
UAV SPECIFICATION AND FLIGHT CONDITIONS

Parameters Value
Wing area (mz) 0.504
Root chord (m) 0.28
Wing dihedral (°) 22
Fuselage (m) 133
Center of gravity (% Chord) 30
Mach speed 0.054286
Reynolds number 1.57x10°

This entails adjusting the design variable sizes within
the parameters established in Table 1 using LHS, with
visual representations provided in Figures 4 and 5.
Subsequently, a Computational Fluid Dynamics
(CFD) mesh is generated to facilitate data preparation
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for result evaluation. The next phase tackles problem-
solving using VSPAERO, configured as depicted in
Figure 6. Finally, solution data is systematically
collected for subsequent comparative analysis.

Lateral axis
Root chord (c, )
) Sweep angle (A)

Wing span (5) 4»]

Fig. 4. Wing span and sweep angle of UAV

Thickness (1)

k Chord ()

Fig. 5. Thickness and chord of UAV

Lomar b 1 - —
= ety Il Lt e,
Lows Premcus Sevat ] tapenie “cw

Fig. 6. Thickness and chord of UAV

Fig. 7. The process of evaluating with VSPAERO

Figure 7 shown the attributes and features of the
evaluation process with VSPAERO from CAD
modeling, CFD mesh to the obtained solution results.
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V. PARALLEL COORDINATE PLOT (PCP)

The Parallel Coordinate Plot (PCP), a statistical
visualization method used to represent high-
dimensional data in a 2D graph. This technique
involves arranging multiple numerical variables along
parallel axes to facilitate comparison and analysis of
the data's patterns and relationships. Each axis
represents a different variable, and lines connecting
these axes create a profile for each data point,
allowing analysts to visualize and explore complex
data sets efficiently. In this study, the expression for
the normalization value p, derived from the design

variable dv is provided as follows:

o dv,—dv mm,- o)
dv, max,—dv min,

This expression utilizes dv min, to indicate the
lower boundary of the i* design variable and
dv max, to represent the upper limit of the i* design
variable.

VL RESULTS

Figure 8 depicts the results derived from EGO
alongside EGO's initial sampling. This comparison
showcases that EGO successfully acquired a UAV
wing shape with superior aerodynamic efficiency
compared to the initial sampling. Additionally, Figure
9 illustrates a comparative analysis between the
chosen optimal design and the initial design.
Remarkably, the selected optimal design demonstrates
the potential to enhance the L/D by approximately
16.56% compared to the initial design, maintaining an
equal wing area. Figure 9, the results displayed in the
PCP format exhibit the relationship between input and
output. The data, normalized and visualized in a
graph, incorporates gray lines representing the initial
sampling data and red lines indicating additional
sampling points. This visualization suggests that wing
span exerts the most significant impact on aircraft
performance. Additionally, the blue line represents
optimal design information, potentially applicable to
the actual aircraft as demonstrated in Figure 10 b.

" e—— Initial Sampling ——«— Additional Sampling —

» "
Design swsber

Fig. 8. Wing design solution
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Fig. 9. PCP of the sampling in the EGO process

b

a. initial design

b. selected optimum design

Fig. 10. Comparisons of
the selected optimum design and initial design

VII.  CONCLUSION

In this study, the combination of Efficient Global
Optimization (EGO) alongside Latin Hypercube
Sampling (LHS) and Expected Improvement (EI)
methodologies was utilized to address the UAV wing
design challenge with the objective of augmenting the
L/D ratio. Employing with thorough iterations and
strategic sampling based on LHS coupled with the
evaluative power of EI, the optimization process
efficiently traversed the design space. EGO's iterative
refinement of the wing shape led to the identification
of an optimal design, markedly enhancing the L/D
ratio. The selected optimal design demonstrated a
remarkable improvement of approximately 16.56% in
L/D when compared to the initial design, highlighting
the effectiveness of this integrated approach. This
study underscores the potential and efficacy of
harnessing EGO, LHS, and EI methodologies in
optimizing UAV wing designs, ultimately achieving
significant enhancements in aerodynamic
performance.
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