CONTENTS

			Page
ABSTR	RACT IN	I THAI	I
ABSTR	RACT IN	I ENGLISH	
ACKN	OWLED	GEMENTS	V
CONT	ENTS		VII
LIST C	OF TAB	_ES	Х
LIST C	OF FIGL	JRES	XI
LIST C	of Abb	REVIATIONS	XXII
CHAP	TER		
I	INTRO		1
II	PROS	PECTS OF HEAVY-ION COLLISIONS	6
	2.1	Exploring the QCD Phase Diagram	6
		2.1.1 The Development of Models and Equation of State .	6
		2.1.2 Beam Energy Scan and Low Energy Regime	13
	2.2	Space-Time Evolution	15
III	MOD	ELLING HEAVY-ION COLLISIONS	18
	3.1	Transport models	19
	3.2	Boltzmann(Vlasov)-Uehling-Uhlenbeck (B(V)UU) approach	19
	3.3	Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model .	24
		3.3.1 Initialization	24
		3.3.2 Propagation and Collision	26
		3.3.3 (Hyper)nuclei Formation Routine	29
	3.4	Hydrodynamics Models	30
	3.5	Hybrid Models	32
IV	EXPLO	DRING THE SPACE-TIME STRUCTURE OF THE FIREBALL	36
	4.1	(Anti)deuteron formation rate and source geometry	37
		4.1.1 Mrówcyńzski Density Function	38
	4.2	Energy Dependence of Formation Geometry	40
	4.3	Validation with UrQMD	43
	4.4	HBT Correlation	47

CONTENTS (Continued)

				Page
		4.4.1	Two-Particle Correlations	48
	4.5	Simulatio	on set-ups and EoS	52
	4.6	Two-Pior	n HBT Analysis	54
	4.7	Effect of	the EoS with Phase Transition	57
	4.8	Space-tir	ne Structure from HBT radii	58
V	REVIE	WS ON (H	HYPER) (LIGHT) NUCLEI	64
	5.1	Role of (Hyper)Nuclei Formation	64
		5.1.1	Hypernuclei	68
	5.2	Cluster F	Formation Mechanisms	69
		5.2.1	Thermal productions	69
		5.2.2	Coalescence Model	72
			Simple Momentum Coalescence	73
			Analytic Coalescence Models	76
			Wigner's Function	78
		5.2.3	Dynamical Model	79
		5.2.4	Multifragmentation	82
VI	CORR	ECTING B		85
	6.1	Problem	s with B_A	86
	6.2	Reconstr	ucting Primordial Protons and Neutrons	87
		6.2.1	Rapidity Distribution	87
		6.2.2	p_T Distribution	90
		6.2.3	Estimating B_2 and B_3	93
VII	INVES	TIGATING	CLUSTER PRODUCTION MECHANISMS	99
	7.1	Thermal	vs Coalescence	99
	7.2	lsospin ti	riggering	100
		7.2.1	Simple estimates	101
	7.3	Qualitati	ve Estimates	103
		7.3.1	Freeze-out time distributions	104
	7.4	Light clu	ster yields versus isospin fluctuation	105

CONTENTS (Continued)

			Page
VIII	RESUL		109
	8.1	The needs and potential of small collision systems \ldots	109
	8.2	Model Setup	112
	8.3	Proton and Λ Baryon Production $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	113
	8.4	(Light) Nuclei distributions	118
	8.5	(Hyper) Nuclei distribution	123
	8.6	Fragments of larger mass numbers	125
IX	SUMM	1ARY	130
REFER	ENCES		134
CURRI	CULUN	1 VITAE	170

LIST OF TABLES

Table		Page
3.1	Table of Baryons	28
3.2	Table of Mesons.	28
3.3	The numerical coalescence parameters of UrQMD v3.5	30
6.1	The B_2 values calculated final state protons and both primor-	
	dial protons and neutrons at $p_T/A~=~0.0$ GeV at midrapidity	
	$ y \leq$ 0.5. The calculatation is extracted from 0 — 10% central	
	Au+Au collisions at kinetic beam energies from ${ m E}_{ m beam}=$ 0.3A to	
	40A GeV	96
6.2	The B_3 values calculated final state protons and both primor-	
	dial protons and neutrons at $p_T/A~=~0.0$ GeV at midrapidity	
	$ y \leq$ 0.5. The calculatation is extracted from 0 — 10% central	
	Au+Au collisions at kinetic beam energies from ${ m E}_{ m beam}=$ 0.3A to	
	40A GeV	96

LIST OF FIGURES

Figure	ſ	Dage
2.1	The compilation of the predicted location of the QCD critical	
	point from various models, mainly chiral models and lattice	
	QCD (Stephanov, 2006). Black points represent chiral model	
	predictions. Green points indicate lattice predictions. The two	
	dashed lines are the slopes corresponding to dT/d $\mu^2_{ extsf{B}}$ of the tran-	
	sition line at $\mu_{ extsf{B}}~=~$ 0. The red circles denote the freeze-out	
	points for heavy ion collisions at corresponding center-of-mass	
	energies in GeV per nucleon	12
2.2	QCD diagram with BES program and various facilities (Collabora-	
	tion, 2014)	14
2.3	Space-Time Evolution (Braun-Munzinger and Dönigus, 2019)	16
4.1	The schematic picture of the geometric coalescence model	
	for (anti)deuteron formation if the two (anti)nucleons are close	
	enough in phase-space. A_p and A_T are the incoming projectile	
	and target nucleons and X represents the particles that carry the	
	rest momenta of the system. (Left) The nucleon emission source	
	is a whole spherical with radius r_{0} . (Right) the survived antinu-	
	cleons are emitted only on a spherical shell radius r_0 as the $N\overline{N}$	
	annihilations destroy most of the antinucleon at the center radius $r_{\ast}.$	38
4.2	The antideuteron formation according to the source bulk radius	
	r_0 with varying suppression radii $r_{\ast}.$	41
4.3	The energy dependence coalescence parameters B_2 for	
	deuterons (left) and $\overline{B_2}$ antideuterons (right) from various experi-	
	ments ranging from $\sqrt{ extsf{s}_{ extsf{NN}}}$ $=$ 4.7 $-$ 200 GeV. The black lines	
	show the B_2 and $\overline{B_2}$ fits using the extracted radii r_0 and r_* according	
	to the formation rate in Eq. (4.7) \ldots \ldots \ldots \ldots \ldots \ldots	41
4.4	The emission source radius \boldsymbol{r}_0 of deuteron (solid black lines) and	
	the suppression region of antideuteron source ${\sf r}_{*}$ (dash-dotted	
	line) as a function of energy	42

Figure		Page
4.5	The normalised (anti)nucleon distribution in transverse plane \boldsymbol{r}_{T}	
	at $\sqrt{ extsf{s}_{ extsf{NN}}}=$ 11.5 GeV (left panel) and $\sqrt{ extsf{s}_{ extsf{NN}}}=$ 200 GeV (right	
	panel). The black solid line represents the nucleon distribution	
	and antinucleon distribution is depicted with the dotted line. $\ .$	44
4.6	The energy dependence of the fitted (anti)nucleon source radii is	
	illustrated. The solid circles represent the whole nucleon source	
	radius r_0 . The extracted source radii of antinucleons are depicted	
	with square symbols. The outer source radius of antinucleons ${\rm r_0}$	
	is represented by the full symbols, while the inner source radius	
	of the suppression region ${\sf r}_*$ is indicated by the open symbols. $% {\sf r}_*$.	45
4.7	The energy dependence of the r_{\ast}/r_{0} ratio of antinucleon source	
	from Mrówcyńzski coalescence model (red star symbol) and	
	UrQMD simulation (blue square symbol) at central 0 $-$ 10 $\%$	
	Au+Au collisions	46
4.8	The diagram of particle detection. Particle 1 and particle 2 are	
	emitted, with a four-momentum p_1 and p_2 , at points a and b	
	respectively. Then they are detected by detectors A and B. If	
	the particles are identical, we also need to consider the cases	
	where the particles propagate indistinguishably into the detectors	
	as illustrated with the dashed lines	48
4.9	The comparison of the density dependent potential V (a) and the	
	pressure p (b) from different the CMF EoS scenarios. CMF_PT2 EoS	
	and CMF_PT3 EoS both are incorporated with a phase transition	
	as well as instability region indicated by local maximum and min-	
	imum. The simple CMF EoS corresponds to a smooth crossover	
	transition (Li et al., 2023)	53

Figure

4.10

4.11

Comparison of k_T dependence of pion HBT radii showing the effect of Coulomb interactions. Panels (a), (b), and (c) display the R_0 , R_s , and R_L radii, respectively, and panel (d) shows the ratio R_0/R_s of the π -source from central (0 – 10%) Au+Au collisions at $\sqrt{s_{_{
m NN}}}=$ 2.4 GeV. Red star symbols depict the results from the HADES experiments (Adamczewski-Musch et al., 2019). Black dotted lines indicate the UrOMD simulation results without Coulomb potential (w.o. Coul.), blue dashed lines show the UrQMD simulation results with Coulomb potential for baryons only (with Coul. (B)), and pink solid lines depict the UrQMD simulation with the full Coulomb potential for all hadrons (with Coul. (B+M)). The transverse momentum (k_T) dependence of the HBT radii, R_{Ω} (left panels), R_s (middle panels), and R_L (right panels), for 0 – 10%central Au+Au collisions at $\sqrt{s_{NN}}$ ranging from 2.4 GeV (top panels) to 7.7 GeV (bottom panels). Experimental data are denoted by star symbols from HADES, E895, E866, and STAR collaborations (Lisa et al., 2000; Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch et al., 2019; Adamczewski-Musch et al., 2020; Adam et al., 2021). The UrQMD simulations are represented by lines: the cascade mode (black line with square), hard EoS (blue line with circle), and soft EoS (pink line).

55

56

Page

Figure		Page
4.12	Comparison of the collision energy dependence of the (top panel)	
	R_0/R_s ratio and (bottom panel) $R_0^2 - R_s^2$ for cascade (black line with	
	squares) and various EoS models (hard EoS: blue line with circles,	
	CMF EoS: green line, CMF_PT2 EoS: orange dotted line, CMF_PT3	
	EoS: pink dashed line) with available experimental data (Lisa et al.,	
	2000; Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch	
	et al., 2019; Adamczewski-Musch et al., 2020; Adam et al., 2021).	61
4.13	The freeze-out time distribution of π^- from 0 $-$ 10% Au+Au	
	collisions with the different EoS; Cascade mode (solid black line),	
	Hard EoS (solid blue line), CMF EoS (green dashed line), CMF_PT2	
	EoS (solid orange line), and CMF_PT3 EoS (pink dash-dotted line)	62
4.14	(a) The corresponding mean π^- emission time $\langle { m t} angle$ and (b) trans-	
	verse radii \boldsymbol{r}_{T} at freeze-out as a function of collision energies cal-	
	culated from different EoS	63
5.1	The schematic for a particle production from a thermal model. A	
	projectile $A_{\!P}$ and a target nucleus $A_{\!T}$ exchange energy and mo-	
	mentum upon collision. All particles X, p and n, are emitted	
	directly from the fireball including the composited particle d.	
	This hadronization occurs at chemical freeze-out. The figure is	
	adopted from Ref. (Kapusta, 1980)	70
5.2	The comparison between thermal predictions and the measured	
	(anti)nuclei production on the energy spectrum. The figure is	
	adopted from Ref. (Dönigus, 2020)	72
5.3	The schematic for a particle production and cluster formation	
	from a colliding projectile nucleus A_P and a target nucleus $A_T.$ In	
	the coalescence model, the free streaming neighbor of p and	
	n pair after flying a certain distance will coalesce and form a	
	deuteron outside of the fireball. The rest of the momentum is	
	represented by X. This coalescence process happens at kinetic	
	freeze-out. The figure is adopted from Ref. (Kapusta, 1980) . $\ .$	73

Figure		Page
5.4	The invariant cross section of π^- , K^- , \overline{p} and \overline{d} from Si+Al, Si+Cu,	
	and Si+Au collisions. The solid-line represents the \overline{d} 's predicted	
	by coalescence model. The measured \overline{d} and the instrumental upper limit are represented by the square open symbol at 6.1 CeV	
	per limit are represented by the square open symbol at 6.1 GeV and down arrow symbols (Aoki et al., 1992).	77
5.5	The Comparison of the tp/d^2 ratio from two cluster formation	11
5.5	mechanisms of thermal (dashed line) and simple coalescence	
	model (solid line) with experimental data (symbols).	81
5.6	Different statistical ensembles used for describing the breakup of	01
0.0	a nuclear system with partition f (Bondorf et al., 1995; Fai and	
	Randrup, 1983; Gross, 1984).	83
6.1	Coalescence parameter B _A measured by experiments (Braun-	
	Munzinger and Dönigus, 2019) and predicted by HBT (Adamczyk	
	et al., 2015) as a function of center-of-mass energy $\sqrt{s_{NN}}$ [GeV].	86
6.2	Rapidity distribution comparison of protons and light nuclei in	
	0 — 10 $\%$ Au+Au collisions at E $_{ m beam}$ = 1.23A GeV. Simu-	
	lated primordial protons (red circles), simulated final state pro-	
	tons (red dashed lines), and reconstructed primordial protons (red	
	solid lines) are contrasted alongside the rapidity distributions of	
	deuterons (green diamonds), tritons (cyan crosses), and 3 He nuclei	
	(yellow hexagons)	88
6.3	Rapidity distribution of simulated (symbols) and reconstructed	
	(lines) proton and neutron at central Au+Au collisions ${ m E_{beam}}$ $=$	
	1.23A GeV. (Left panel) The comparison for the simulated and	
	reconstructed primordial proton (red) and neutron (blue) rapidity	
	based on Eq. (6.2) and Eq. (6.8). (Right panel) The comparison for	
	the simulated and reconstructed final neutron rapidity based on	
	Eq. (6.9)	91

Figure		Page
6.4	Invariant \textbf{p}_{T} spectra of d (green diamonds with dotted line), t	
	(cyan pluses with dotted line), 3 He (yellow hexagons with dot-	
	ted line), the primordial proton (full red circles) and neutron (full	
	blue squares) from the simulations. While, the reconstructed pri-	
	mordial protons and neutrons are shown with solid red and solid	
	blue lines respectively. The calculations are done at mid-rapidity	
	in central Au+Au reactions at E $_{ m beam}=$ 1.23A GeV $$	92
6.5	(Left panel) The Rapidity distributions of the neutron/proton ra-	
	tio (full black line), and the integrated $\Delta_{ m iso}^{ m prim}$ (dashed line). (Right	
	panel) The transverse momentum distributions of the primordial	
	neutron/proton ratio (full black line), and the integrated $\Delta_{ m iso}^{ m prim}$	
	(dashed line).Both from UrQMD for 0 $-$ 10 $\%$ central Au+Au re-	
	actions at E $_{ m beam}=$ 1.23A GeV \ldots \ldots \ldots \ldots \ldots \ldots	93
6.6	The scaled transverse momentum $\ensuremath{p}_{T}/\ensuremath{A}\xspace$ dependence of the coa-	
	lescence parameter $\mathrm{B_2}$ (left panel) and $\mathrm{B_3}$ (right panel) calculated	
	using the final state nucleons and reconstructed primordial nu-	
	cleons from UrQMD for 0 $-$ 10 $\%$ central Au+Au reactions at	
	$E_{beam} = 1.23 A GeV$	94

Figure

Page

5		5
6.7	The figure caption describes the beam energy dependence of B_2	
	extracted at p_T/A $=$ 0 GeV in mid-rapidity y \leq 0.5 for 0 $-$ 10 $\%$	
	central Au+Au collisions. Left panel: The dashed red line illus-	
	trates the original calculation of B_2 using the final state proton	
	square, while the solid red line shows the corrected B_{2} calcu-	
	lated by the product of reconstructed primordial protons and	
	neutrons. Right panel: the original B_3 of tritons and 3 He, calcu-	
	lated from the final state proton cubic square, are depicted by the	
	blue dashed line and green dotted line while the corrected ${\sf B}_3$ of	
	tritons and 3 He, using our reconstructed primordial protons and	
	neutrons, are shown as the blue solid line and the green dash-	
	dotted line, respectively. Experimental data (Wang et al., 1995;	
	Ambrosini et al., 1998; Armstrong et al., 1999; Ahle et al., 1999;	
	Barrette et al., 2000; Armstrong et al., 2000; Afanasiev et al., 2000;	
	Bearden et al., 2002; Anticic et al., 2004; Anticic et al., 2016; Botv-	
	ina et al., 2021) are denoted by symbols, while the dash-dotted	
	black line represents the volume extracted from HBT results from	
	STAR (Adamczyk et al., 2015)	97
7.1	The theoretical estimation of the deuteron d (pink full line), tri-	
	ton t (blue dashed line), and ³ He (orange dotted line) production	
	according to the Eq. (7.6)- (7.8) for central Au+Au reactions as a	
	function of ΔY_{π}	103
7.2	Freeze-out time distribution of nucleons (full black line), pions	
	(dashed black line), deuterons (dotted pink line), tritons (dotted	
	blue line), and 3He (dotted orange line)	104
7.3	Deuteron yield as a function of $\Delta{\sf Y}_\pi$ for Au+Au reactions. The	
	UrQMD results are shown by red circles. The estimated yield,	
	Eq. (7.7), is represented by the full red line. Left: Results at	
	$\sqrt{ m s_{NN}}=$ 3 GeV. Right: Results at $\sqrt{ m s_{NN}}=$ 7.7 GeV	105
	•	

Figure		Page
7.4	The $\Delta { m Y}_{\pi}$ dependent of triton (blue squares and dashed blue	
	line) and 3 He (orange triangles and dotted orange line) yields.	
	The UrQMD results are shown by symbols. The estimated yields,	
	Eqs. (7.7) and (7.8), are represented by the lines. Left: Results at	
	$\sqrt{ m s_{NN}}=$ 3 GeV. Right: Results at $\sqrt{ m s_{NN}}=$ 7.7 GeV $$	106
7.5	Distribution of cluster yields on the ΔY_π spectrum is normalized	
	to unity at $\Delta extsf{Y}_{\pi}=$ 39. The symbols represent simulation results	
	from various collision energies ranging from ${ t E}_{ ext{lab}}=1.23$ A GeV to	
	E_{lab} = 40A GeV in ultra-central Au+Au reactions from UrQMD.	
	Left: Deuteron distribution. Right: Triton and 3 He distribution. $$.	107
8.1	ALICE measurements in p $+$ Pb (in red) and Pb $+$ Pb colli-	
	sions (Adam et al., 2016) (in blue) as a function of mean charged-	
	particle multiplicity and the predictions from canonical statistical	
	hadronization (excluded volume) (Vovchenko et al., 2018a) and	
	coalescence models are shown (Sun et al., 2019). The figure is	
	adopted from Ref. (Acharya et al., 2022)	110

Figure		Page
minimum bias collisions at va as measured by $[\mu b/(GeV\Delta y)]$ tively multiplie visualization. S lation results, perimental me shows the relation	momentum (p_T) spectra of protons produced in $\pi^- + C$ (left panel) and $\pi^- + C$ (right panel) rious rapidity bins ($0 \le y < 0.1$ to $0.9 \le y < 1.0$) by the UrQMD model (v3.5). The p_T spectra are differential cross sections ($d^2\sigma/dp_T dy$) in units of . The curves for each rapidity bin are consecu- d by a factor of 10 from bottom to top for better Solid lines with symbols depict the UrQMD simu- while open symbols represent recent HADES ex- asurements (Yassine et al., 2023). The lower panel tive deviation (percentage difference) between the ions and the corresponding experimental data for in.	114
8.3 The upper part tra of Λ hypero $\pi^- + C$ (right) $0.9 \le y < 1.05$ spectra are rep in units of [μ b consecutively r tion (bottom to simulations, wh imental measu presents the re the UrQMD sim	hel displays the transverse momentum (p_T) spec- ons produced in minimum bias $\pi^- + C$ (left) and collisions at various rapidity bins ($0 \le y < 0.15$ to) as calculated by the UrQMD model (v3.5). The p_T resented by differential cross sections ($d^2\sigma/dp_T dy$) /(GeV Δy)]. The curves for each rapidity bin are nultiplied by a factor of 100 for improved visualiza- to top). Solid lines with symbols depict the UrQMD hile open symbols represent recent HADES exper- rements (Yassine et al., 2023). The lower panel elative deviation (percentage difference) between ulations and the corresponding experimental data by bin	115

Figure		Page
8.4	The differential cross section with respect to the rapidity $d\sigma/dy$ $[\mu b/\Delta y]$ of protons (red), Λ 's (orange), and Ξ 's (black) from mini- mum bias $\pi^- + C$ (left panel) and $\pi^- + C$ (right panel) collisions. The UrQMD results are shown as colored lines with symbols, while the open black symbols depict the recent HADES measurements (Yassine et al., 2023). The blue line with crosses shows the ex-	
8.5	perimental fit function for the p_T extrapolation The transverse momentum differential cross section $d^2\sigma/dp_Tdy$ in $\left[\mu b/(GeV\Delta y)\right]$ of deuterons as a function of transverse momentum in different rapidity bins (from $0 \le y < 0.1$ to $0.8 \le y < 0.9$, the curves are successively multiplied by fac- tors of 100 from bottom to top) for minimum bias $\pi^- + C$ (left panel) and $\pi^- + C$ (right panel) collisions from UrQMD	117
8.6	The transverse momentum differential cross section $d^2\sigma/dp_T dy$ in $\left[\mu b/(GeV\Delta y)\right]$ of tritons as a function of transverse momen- tum in different rapidity bins (from $0 \le y < 0.1$ to $0.5 \le y < 0.6$, the curves are successively multiplied by factors of 100 from bot- tom to top) for minimum bias $\pi^- + C$ (left panel) and $\pi^- + C$ (right panel) collisions from UrQMD.	119
8.7	The transverse momentum differential cross section $d^2\sigma/dp_T dy$ in $\left[\mu b/(GeV\Delta y)\right]$ of ³ He as a function of transverse momentum in different rapidity bins (from $0 \le y < 0.1$ to $0.5 \le y < 0.6$, the curves are successively multiplied by factors of 100 from bottom to top) for minimum bias $\pi^- + C$ (left panel) and $\pi^- + C$ (right	121
8.8	panel) collisions from UrQMD	121

Figure		Page
8.9	The differential cross section with respect to transverse momen- tum $d^2\sigma/dp_T dy \left[\mu b/(GeV\Delta y)\right]$ of ³ He (blue line with squares) and N Ξ (black triangles) from UrQMD results at mid-rapidity mini- mum bias $\pi^- + C$ (left panel) and $\pi^- + W$ (right panel) collisions.	123
8.10	The dashed line indicates the extrapolated fit of NE The differential cross section with respect to rapidity $d\sigma/dy$ $[\mu b/\Delta y]$ of NA (blue), NNA (green), ${}^{3}_{\Lambda}$ H (red), ${}^{4}_{\Lambda}$ H (orange), ${}^{4}_{\Lambda}$ He (pink), and NE (black) from minimum bias π^{-} + C (left panel) and π^{-} + W (right panel). The UrQMD results are denoted by dashed lines with open symbols, while the results from the statistical multifragmentation model (SMM) are denoted by solid lines	125
8.11	 with full symbols. The mass number distribution of the integrated cross section of light nuclei (full symbols: Y=0) and hypernuclei (single-strange as open symbols: Y=1) production with different charges Z (denoted by the color) from SMM analysis of the UrQMD data at minimum 	124
8.12	bias $\pi^- + C$ and $\pi^- + C$ collisions	126
	by the ALICE collaboration (Acharya et al., 2022)	127

LIST OF ABBREVIATIONS

AGS	Alternating Gradient Synchrotron
ALICE	A Large Ion Collider Experiment
BNL	Brookhaven National Laboratory
BES	Beam Energy Scan
BUU	Boltzmann-Uehling-Uhlenbeck
CBM	Compressed Baryonic Matter
CMF	Chiral Mean Field
EoS	Equation of State
FAIR	Facility for Antiproton and Ion Research
FOPI	Forschungszentrum für Atomphysik und Institut für Nuklearphysik
GiBUU	Giessen Boltzmann-Uehling-Uhlenbeck
GSI	Gesellschaft für Schwerionenforschung
HADES	High Acceptance Di-Electron Spectrometer
HBT	Hanbury-Brown Twiss
LHC	Large Hadron Collider
PHSD	Parton-Hadron-String Dynamics
QCD	Quantum Chromodynamics
QGP	Quark Gluon Plasma
QMD	Quantum Molecular Dynamics
RHIC	Relativistic Heavy Ion Collider
SIS	Schwerlonen Synchrotron
SMM	Statistical Multifragmentation Model
SHM	Statistical Hadronization Model
STAR	Solenoidal Tracker at RHIC
UrQMD	Ultra-relativistic Quantum Molecular Dynamics
VUU	Vlasov-Uehling-Uhlenbeck