LIST OF FIGURES

Figure		Page
1	Illustration of Seebeck effect, adapted from Saini et al., 2021	6
2	Illustration of Peltier effect, adapted from Saini et al., 2021	7
3	Illustration to demonstrate Thomson effect (Morrison and Dejene, 2020)	8
4	The thermogalvanomagnetic effects with different directions of involved	
	para meters (Goldsmid, 2010)	19
5	Illustration of model a couple p–n pair refrigerator (Goldsmid, 2010)	21
6	Illustration of model a couple p–n generator (Goldsmid, 2010)	23
7	Illumination of n-type and p-type of thermoelectric materials behaviour	
	(Nabilasamiron, 2012).	24
8	Summary of ZT as a functional temperature of p-type and n-type of the	
	rmo– electric materials, a) p–type thermoelectric materials and b) n–type	
	thermoelectric materials (Rull-Bravo et al., 2015)	26
9	Schematic of sol-gel method step by step (Bokov <i>et al.</i> , 2021)	30
10	Schematic diagram illustrating the hot pressing technique (Moustafa et	
	al., 2011)	31
11	DC magnetron sputtering and. Pulsed DC magnetron sputtering (Vaccoat,	
	2024)	32
12	Illustration of Spark plasma sintering technique (Max Planck Institutes)	33
13	Illustration of quenching process after melting process	34
14	Mechanical alloying with flat and crack bulk sample (Kumar et al., 2022)	35
15	Schematic representation of solid-state reaction method (Sodhiya et al.,	
	2021)	36
16	(a) Crystalline structure model of $Zn_{39}Sb_{30}$ and (b) Crystalline structure	
	model of Zn ₁₃ Sb ₁₀ (Zou <i>et al.,</i> 2015)	37
17	Crystalline structure model of Zn ₆ Sb ₅ (Mayer <i>et al.</i> , 1978)	37
18	Calculated X–ray diffraction pattern yields of Zn ₃₉ Sb ₃₀ model by using	
	Boru's CIF- 7040405 (Borup <i>et al.</i> , 2016)	40
19	Calculated X–ray diffraction pattern yields of Zn ₆ Sb ₅ model by using	
	Jeffrey Snyder's CIF-cm0515505_si_001(Snyder <i>et al.</i> , 2004)	40
20	Calculated X–ray diffraction pattern yields of Zn13Sb10 model by using	
	Yurij's CIF– 4001474 (Mozharivskyj <i>et al.</i> , 2006).	41

Figure	e P	age
21	XRD yields of ZnSd (top) and Zn₄Sb₃ (bottom) were prepares by	
	quenching method (Böttger <i>et al.,</i> 2011).	42
22	XRD pattern of eta –Zn4Sb3 with 0.6 at. % Zn rich via different sintered	
	tempe ratures in vacuum (Lee and Lin, 2018)	43
23	XRD pattern of milled eta –Zn4Sb3 with different at. % Zn rich (Lee and	
	Lin, 2018)	44
24	SEM images of eta –Zn4Sb3 powder; (a) Before mechanical allying	
	method and (b) After mechanical allying method (Ur et al., 2003)	44
25	SEM images of hot–pressed eta –Zn4Sb3 ceramic at temperatures of	
	373 K, 473 K, 573 K and 673 K with pressure 0.98 GPa (Lee and Lin, 2018)	45
26	SEM images of hot–pressed eta –Zn4Sb3 ceramic with pressing pressures	
	of 100 MPa (a) and 200 MPa (b) at 673 K (Ahn <i>et al.</i> , 2011)	45
27	Seebeck coefficient, thermal conductivity and electrical conductivity	
	of hot–pressed eta –Zn4Sb3 ceramic pellets via different temperatures and	
	pressure (Ahn <i>et al.</i> , 2011)	46
28	Schematic of a dual leg TEG module and dual leg series TEG device	
	with isotropic properties (Crawford, 2014).	47
29	Schematic of sing leg TEG module with isotropic properties (Crawford,	
	2014)	48
30	Schematic of serpentine and tilted–multilayer TTE module with	
	anisotropic thermoelectric properties (Goldsmid, 2017)	48
31	(a) Photograph of misaligned make assembly equipment for sputtering	
	Bi/Bi $_{0.5}$ Sb $_{1.5}$ Te $_3$ TTE device, (b) Illustration of layer by layer stacking of	
	Bi/Bi _{0.5} Sb _{1.5} Te ₃ (Mu <i>et al.</i> , 2019).	49
32	Tilted ceramic block TTE device prepared by $La_{1.97}Sr_{0.03}CuO_4$ with	
	silver paste connector (Dreßler <i>et al.</i> , 2015).	50
33	Schematic of dual leg, unileg and transverse series monolithic TEG	
	device (Dreßler <i>et al.</i> , 2015)	51
34	Illustration of charge positions of all monolithic TEGs model	51
35	Monolithic Ag ₂ S _{0.2} Se _{0.8} / Ag ₂ S /Bi _{0.5} Sb _{1.5} Te ₃ TEG modules	52

Figure Pag		
36	Process synthesis of eta –Zn4Sb3 powders: a) Premixed powders with	
	zirconia balls were filled into a PP bottle, b) The filled PP bottle was	
	rotated using roller milling machine, c) The mixture powders were	
	calcined under Ar gas flowing, and d) Synthesized eta –Zn4Sb3 powders	54
37	The eta –Zn4Sb3 bulk pellets after were pressed at 500 and 700 MPa,	
	respectively	56
38	The sintered eta –Zn4Sb3 pellets after were sintered at 500 °C, 550 °C,	
	575 °C and 600 °C for 6 hours	57
39	The cyclical compression process for preparing $meta$ –Zn4Sb3/ZnO pellets	59
40	The test cells of monolithic eta –Zn4Sb3 /ZnO TEGs versus weight size of	
	eta–Zn4Sb3 pellets part	59
41	Fabrication processes of monolithic eta –Zn4Sb3/ZnO TEGs: a) compressed	
	multi–stacks eta –Zn4Sb3/ZnO pellet, b) sintered multi–stacks eta –Zn4Sb3/	
	ZnO pellet, c) connected electrical wire with zigzags connection of	
	monolithic eta –Zn4Sb3/ZnO TEGs, and d) monolithic eta –Zn4Sb3 TEGs was	
	plastered with cement filler	60
42	Shows x-ray incident and diffraction, according to Bragg's law (www.didak	
	tik .physik.uni-muenchen.de/elektronenbahnen/en/index.php)	62
43	Shows X-ray diffraction machine, D8-Bruker, SUT	62
44	Illustration of a x–ray absorption energies of K edge, L edges and M edges	
	(Chem.libretexts, 2000)	63
45	Illustration of x-ray absorption transmission mode (Mit.edu, 2004)	64
46	Illustration of Seebeck coefficient and electrical resistivity (Linseis, 2024)	64
47	LINSEIS LSR-3 Seebeck type resistivity measurement system	65
48	The self-made heating/cooling system with IV measurement capabilities	66
49	X–ray diffraction patterns of the synthesized eta –Zn4Sb3 powders under	
	con ditions of calcination temperature non–calcined, 300 °C, 400 °C and	
	500 °C without excess of Zn	68
50	The comparison XRD pattern of the synthesized $meta$ –Zn4Sb3 powders under	
	varying excessed Zn condition via calcination temperature 400 °C and	
	held for 3 hours	69

Figure	e Pa	age
51	XRD pattern of varying holding time via excessing Zn of 10 at.% Zn and	
	calcination temperature 400 °C	. 70
52	The comparison XRD pattern of the synthesized eta –Zn4Sb3 powders	
	under varying calcination temperature at 350 °C, 400 °C and 450 °C via	
	adding 10 at.% Zn and calcination holding time for 3 hour	. 71
53	Comparison XRD pattern of the synthesized $meta$ –Zn4Sb3 powders under	
	excessing Zn for 10, 11, 12, 13 and 14 at.% Zn and calcination at 450 $^\circ \! C$	
	for 3 hours	. 72
54	Comparison XRD pattern of the synthesized $meta$ –Zn4Sb3 powders under	
	excessing Zn for 10, 11, 12, 13 and 14 at.% Zn and calcination at 400 $^\circ \! C$	
	for 3 hours	. 73
55	Comparison XRD pattern of the synthesized eta –Zn4Sb3 powders under	
	excessing Zn for 10, 11, 12, 13 and 14 at.% Zn and calcination at 425 $^\circ \!$	
	for 3 hours	74
56	Comparison of synthesis series of excessing Zn for 10, 11, 12, 13, 14 and	
	15 at.% Zn and calcination at 400 °C, 425 °C, 450 °C for 3 hours of	. 75
57	Normalized XANES of Zn K–edge of the high pure synthesized eta –Zn4Sb3	
	powder	. 76
58	Derivative normalized XANES of Zn K-edge of the high pure synthesized	
	eta–Zn ₄ Sb ₃ powder	77
59	Normalized XANES of Sb L3, L2 and L1–edge of the high pure synthesized	
	eta–Zn ₄ Sb ₃ powder	. 78
60	Derivative normalized XANES of Sb L3, L2 and L1–edge of the high pure	
	synthesized eta –Zn4Sb3 powder	. 79
61	Seebeck coefficient of the sintered eta –Zn4Sb3 pellets versus varying	
	temperature	81
62	Electrical resistivity of the sintered eta –Zn4Sb3 pellets versus varying	
	temperature	. 82
63	Electrical power factor of the sintered eta –Zn4Sb3 pellets versus varying	
	temperature	. 83
64	IV-curve of the test cells of monolithic eta -Zn ₄ Sb ₃ /ZnO TEGs under condition	n of
	weight 1.0 g versus different operating Th and Δ T	. 83

Figure	Page
65	Electrical power output curves of the test cells of monolithic eta –Zn4Sb3
	/ZnO TEG module under condition of weight 1.0 g versus different
	operating T_h and ΔT_{\cdots} .87
66	IV characteristics of the monolithic multi–stack eta –Zn4Sb3/ZnO TEGs versus
	varying operation hot side temperature and temperature gradients Δ T
67	Electrical power output curves of the monolithic multi–stack eta –Zn4Sb3
	/ZnO TEGs versus varying operation hot side temperature and
	temperature gradients $\Delta \text{T.}$
68	IV–curve of the test cells of monolithic eta –Zn4Sb3/ZnO TEGs under
	condition of weight 0.2 g versus different operating T_h and $\Delta\text{T.}$ 107
69	IV–curve of the test cells of monolithic eta –Zn4Sb3/ZnO TEGs under
	condition of weight 0.5 g versus different operating Th and $\Delta\text{T.}$ 108
70	IV–curve of the test cells of monolithic eta –Zn4Sb3/ZnO TEGs under
	condition of weight 2.0 g versus different operating T_h and $\DeltaT.$ 109
71	IV–curve of the test cells of monolithic eta –Zn4Sb3/ZnO TEGs under
	condition of weight 4.0 g versus different operating Th and $\Delta\text{T.}$ 110
72	Electrical power output curves of the test cells of monolithic $meta$ –Zn4Sb3
	/ZnO TEG module under condition of weight 0.2 g versus different
	operating T_h and ΔT_{\cdots} 111
73	Electrical power output curves of the test cells of monolithic $meta$ –Zn4Sb3
	/ZnO TEG module under condition of weight 0.5 g versus different
	operating T_h and ΔT_{\cdots} 112
74	Electrical power output curves of the test cells of monolithic $meta$ –Zn4Sb3
	/ZnO TEG module under condition of weight 2.0 g versus different
	operating Th and $\DeltaT113$
75	Electrical power output curves of the test cells of monolithic $meta$ –Zn4Sb3
	/ZnO TEG module under condition of weight 4.0 g versus different
	operating Th and $\Delta\text{T}114$