# CHAPTER IV RESULTS AND DISCUSSION

Chapter IV presents the complete experimental results, including the structural characterization of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders and the thermoelectric properties of sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets. This chapter also includes the analysis and evaluation of monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules. he results are presented according to scientific hypotheses and specific theories. This chapter is divided into five sections: X-ray diffraction, X-ray absorption, thermoelectric properties, module analysis and evaluation, respectively.

## 4.1 X-ray diffraction

According to the synthesis of  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders, the process synthesis of  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders were investigated using comparative X-ray diffraction (XRD) pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders, along with calculated XRD pattern of  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> of Mayer's model. Initially, the optimal calcination temperature for the synthesis of  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders without excess Zn powder was determined by comparing temperatures of non-calcined, 300 °C, 400 °C and 500 °C, and held for 3 hours. The experimental results indicate that the optimal calcination temperature for synthesis  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders without excessing of Zn powder is condition of calcination temperature at 400 °C, as it produced essential 3 peaks around 2 $\theta$  ~ 25° in the XRD pattern of  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> materials. Comparative XRD patterns of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders without excessing of Zn powder for calcination temperature of non-calcined, 300 °C, 400 °C and 500 °C, 400 °C and 500 °C, 300 °C, 400 °C and 500 °C, 300 °C, 400 °C and 500 °C, 300 °C, 400 °C and 500 °C are shown in Figure 49.



Figure 49 X-ray diffraction patterns of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under conditions of calcination temperature non-calcined, 300 °C, 400 °C and 500 °C without excess of Zn.

The optimal calcination temperature for synthesizing  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders without excessing of Zn powder is 400 °C. To investigate the effects of varying amounts of excess Zn, different conditions were tested by adding 0, 5, 10, 15 and 20 at.% Zn to the premixed powders. The XRD pattern results indicate that the optimal amount of excess Zn powder is 10 at.% because the XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders with this addition closely resembles of Mayer's model. The comparison XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under varying excessed Zn conditions at a calcination temperature of 400 °C for 3 hours are shown in Figure 50.



Figure 50 The comparison XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under varying excessed Zn condition via calcination temperature 400 °C and held for 3 hours.

The optimal conditions for synthesizing  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders is usage excess of 10 at.% Zn powder and calcination at 400 °C for 3 hours. The calcination holding time was then for 1, 3 and 5 hours. The XRD pattern results show that calcination holding time for 3 hours produces the best XRD pattern for the synthesized  $\beta$ -Zn4Sb3 powders, closely matching XRD pattern of  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> of Mayer's model and outperforming other conditions. Although the XRD pattern under calcination holding time for 3 hours resembles under calcination holding time for 3 hours. Indeed, the XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb powders under calcination holding time for 3 hours has clearer peaks and higher intensity. The comparison XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under varying holding time, using excess Zn of 10 at.% and calcination temperature of 400 °C are shown in Figure 51.



**Figure 51** XRD pattern of varying holding time via excessing Zn of 10 at.% Zn and calcination temperature 400 °C.

Currently, the optimal conditions for synthesizing  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders is excess 10 at.% Zn and calcination temperature of 400 °C for 3 hours. To further refine these conditions, calcination temperature 350 °C, 400 °C and 450 °C were investigated. The XRD pattern results indicate that a calcination temperature condition of 450 °C yields a better XRD pattern for  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> materials better compared to 400 °C, due to reduced impurity phases of ZnSb, Zn and Sb. The comparison of XRD pattern for the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under conditions of calcination temperature at 350 °C, 400 °C and 450 °C is shown in Figure 52.



Figure 52 The comparison XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under varying calcination temperature at 350 °C, 400 °C and 450 °C via adding 10 at.% Zn and calcination holding time for 3 hour.

Under the current conditions, the optimal synthesis for  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders involves using excess Zn powders 10 at.% and calculating at 450 °C for 3 hours. To further refine, conditions of excess Zn powders as 10, 11, 12, 13, 14 at.% were subjected to the same calcination process. As depicted in Figure 53, the XRD diffraction pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under 12 at.% Zn rich at calcination temperature at 450 °C for 3 hours produced the best results, with minimal impurity phases of ZnSb, Zn and Sb.



Figure 53 Comparison XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under excessing Zn for 10, 11, 12, 13 and 14 at.% Zn and calcination at 450 °C for 3 hours.

Additionally, calcination temperature of 400 °C and 425 °C were investigated with excess Zn powders as 10, 11, 12, 13, 14 at.%. As shown in Figure 54 and Figure 55, the XRD diffraction pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under calcination temperature at 400 °C and 425 °C with excess Zn powders as 10, 11, 12, 13, 14 at.% Zn, indicate that the best results for both 400 °C and 425 °C were obtained with excess Zn powders 13 at.%, as depict in Figure 54 and Figure 55. Finally, Figure 56 compares the XRD patterns for the best synthesis conditions: 400 °C with 13 at.% Zn, 425 °C with 13 at.% Zn and 450 °C with 12 at.% Zn, all with a holding time of 3 hours. Among these, the optimal condition for synthesizing  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders is excess Zn powders 12 at.% under calcination temperature 450 °C for 3 hours, as it results in the least amount of impurity phases



Figure 54 Comparison XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under excessing Zn for 10, 11, 12, 13 and 14 at.% Zn and calcination at 400 °C for 3 hours.



Figure 55 Comparison XRD pattern of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders under excessing Zn for 10, 11, 12, 13 and 14 at.% Zn and calcination at 425 °C for 3 hours.



**Figure 56** Comparison of the synthesis series of excessing Zn for 10, 11, 12, 13, 14 and 15 at.% Zn and calcination at 400 °C, 425 °C, 450 °C for 3 hours.

## 4.2 X-ray absorption spectroscopy

The purest  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>, synthesized with excessing 12 at.% Zn rich at a calcination temperature of 450 °C for 3 hours, were investigated using x-rays absorption near-edge structure (XANES) spectra at the Zn K-edge and Sb L-edges. This analysis was conducted at SUT-NANOTEC-SLRI XAS beamline (BL 5.2) using synchrotron. The exciting core electrons as oxidation states of Zn atoms in the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powder were measured at level K (Zn K-edge) across energy range 9,550–9800 eV, as shown in Figure 57. The normalized XANES spectrum of the Zn K-edge reveals a rising energy edge range of 9,640–9,667, with the main absorption edge at 9,659 eV. Then, the derivation of normalized XANES spectrum of the Zn K-edge of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders further confirms the main absorption edge at 9,659 eV, as expressed in Figure 58.



Figure 57 Normalized XANES of Zn K-edge of the high pure synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powder.



Figure 58 Derivative normalized XANES of Zn K–edge of the high pure synthesized  $\beta$ – Zn<sub>4</sub>Sb<sub>3</sub> powder.

The exciting core electrons as oxidation states of Sb atoms in the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders were measured at level L (Sb L-edges) across energy range 4,000-4,750 eV, as shown in Figure 59. The normalized XANES spectrum for the Sb L3, L2 and L1-edge reveal rising energy edges range of 4,100-4,150 eV, 4,377-4,397 eV and 4,690-4,700 eV, with the main absorption edges at 4,132 eV, 4,380 eV and 4,698 eV, respectively. Then, the derivation of normalized XANES spectrum for the Sb L3, L2 and L1-edge of the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders further confirms these main absorption, as shown in Figure 60.



Figure 59 Normalized XANES of Sb L3, L2 and L1–edge of the high pure synthesized  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub> powder.



Figure 60 Derivative normalized XANES of Sb L3, L2 and L1–edge of the high pure synthesized  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub> powder.

Originally,  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> is an alloy material with characteristic ionization energies of exciting core electrons as oxidation states of Zn<sup>0</sup> and Sb<sup>0</sup>. Based on the experimental results from the normalized XANES and derivative normalized XANES spectra of the Zn K-edge and Sb L-edges for the high pure synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders, it is confirmed that the ionization energy of exciting core electrons as oxidation state correspond to the Zn<sup>0</sup> and Sb<sup>0</sup> oxidation states. This finding aligns with the absorption edge database of the Hephaestus program (Ravel and Newville, 2005) and further confirms that the synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders is devoid of existing ionic bonding and oxides.

### 4.3 Thermoelectric properties

The high pure synthesized  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powder were used to fabricate the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets. The thermoelectric properties of these sintered pellets, including Seebeck coefficient, electrical resistivity and electrical power factor, were measured using Linseis LSR-3 equipment. The Seebeck coefficient of the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets, under produced under pressing pressure of 700 MPa and sintering temperature at 500 °C, 525 °C and 550 °C were measured across varying operating temperature. A comparison of the Seebeck coefficient is shown in Figure 61. The Seebeck coefficient of all sample increased with rising operating temperature up to 300 °C, after which the Seebeck coefficient continued decreased. The experimental results are consistent with literature reports (Lee and Lin, 2018; Kunioka et al., 2018). The Seebeck coefficients of the sintered  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub> pellets at sintering temperatures of 500 °C, 525 °C and 550 °C are 255  $\mu$ V/°C, 216  $\mu$ V/°C and 191  $\mu$ V/°C, respectively. The positive Seebeck coefficient values of the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets confirms that the sintered pellets are p-type thermoelectric materials. The sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets under condition of pressing pressure 700 MPa and sintering temperature at 500 °C showed the highest Seebeck coefficient at an operating temperature of 320 °C, as shown in Figure 61.

In addition to the Seebeck coefficient, the electrical resistivity was also measured. As depicted in Figure 62, the electrical resistivity of all sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets samples gradually decreased with increasing operating temperature until reaching 200 °C.



Figure 61 Seebeck coefficient of the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets versus varying temperature.

The electrical resistivity of all samples remains constant across the operating temperature range of 200–480 °C. The electrical resistivity of the sintered  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub> pellets within this temperature range is approximately  $1.25 \times 10^{-6} \Omega$ .m for the sample sintered at 500 °C,  $1.60 \times 10^{-6} \Omega$ .m for the sample sintered at 500 °C, and  $1.90 \times 10^{-6} \Omega$ .m for the sample sintered at 500 °C. Although the electrical resistivity curves of all samples are similar, the pellet sintered under a condition of pressing pressure of 700 MPa with sintering temperature of 500 °C stands out, exhibiting the lowest electrical resistivity and thus the highest electrical conductivity. High electrical conductivity positively impacts the figure of merit, as indicated by Equation (96), which reflects superior thermoelectric properties.



Figure 62 Electrical resistivity of the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets versus varying temperature.

The performance of thermoelectric materials is evaluated by electrical power factor. The electrical power factor of the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets was measured across varying operating temperature. As shown in Figure 63, the electrical power factor exhibits significant fluctuations, which may be attributed to the inherent properties of the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets and potential issues with the measurement equipment. Despite this, the results suggest that the optimal operating temperature for all sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets is approximately across temperature range 200–300 °C.

Consequently, a monolithic multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module were fabricated under condition of pressing pressure of 700 MPa and sintering temperature at 500 °C. This module was tested for performance at operating temperature at 200 °C and 300 °C, corresponding to the highest Seebeck coefficient of 255  $\mu$ V/°C at 320 °C and the optimal operating temperature range (high power factor) of 200–300 °C.



Figure 63 Electrical power factor of the sintered  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> pellets versus varying temperature.

#### 4.4 Module analysis and evaluation

The performance of test cells of monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules and monolithic multi-stack  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules was evaluated using a custombuilt heating/cooling system with IV measurement capabilities. Initially, the test cells of the monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules were assessed for IV characteristics and electrical power output curves. Based on the results, the monolithic multi-stack  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules were fabricated under the condition of the test cells that expressed the best IV-characteristics and electrical power output curves. The test cells were investigated under different conditions, with varying weights of  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> powders : 0.2 g, 0.5 g, 1 g, 2 g and 4 g applied to each side of the  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub> component (Figure 40). Open-circuit voltage (V<sub>op</sub>) and short circuit current (I<sub>sc</sub>) were measured, representing the maximum potential difference and current between the charge terminals of the modules, respectively. The V<sub>op</sub> and I<sub>sc</sub> measurements of the test cells under condition of weight 0.2 g, 0.5 g, 1 g, 2 g and 4 g were conducted under operating conditions with a hot side temperature ( $T_h$ ) of 100 °C and gradient temperature ( $\Delta T$ ) of 50 °C,  $T_h$ =200 °C– $\Delta T$ =50 °C,  $T_h$ =200 °C – $\Delta T$ =100 °C,  $T_h$ =300 °C – $\Delta T$ =50 °C and  $T_h$ =300 °C – $\Delta T$ =100 °C. The V<sub>op</sub> and I<sub>sc</sub> results of all the test cells of monolithic  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules under these conditions are presented in Table 6. The V<sub>op</sub> and I<sub>sc</sub> values showed an increase with rising hot side temperature and temperature gradient. The maximum V<sub>op</sub> and I<sub>sc</sub> values for the test cells under condition weight of 0.2 g, 0.5 g, 1.0 g, 2.0 g, 4.0 g are 23.1 mV, 38.1 mV, 45.4 mV, 39.5 mV 41.2 mV, and 8.81 mA, 16.71 mA, 19.87 mA, 16.25 mA, 11.26 mA, respectively at  $T_h$ =300 °C– $\Delta T$ =100 °C. Although the maximum V<sub>op</sub> and I<sub>sc</sub> for the test cells under condition weight of 0.5 g, 1.0 g, 2.0 g and 4.0 g were quite good, the test cells under condition of 1 g was the best, achieving the highest maximum electrical power output of 595  $\mu$ W (Figure 65) and the highest V<sub>op</sub> of 45.4 V at the operating hot side temperature of 300°C – $\Delta T$ =100 °C.

Table 6 List of open-circuit voltage ( $V_{op}$ ) and short circuit current ( $I_{sc}$ ) versus varying operating condition temperature of the test cells of monolithic couple  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEGs with condition of 0.5 g, 1.0 g, 2.0 g and 4.0 g.

| Test cells<br>conditions (g) | 100°C, ∆ <b>T</b> 50°C  |                         | 200°C,∆ <i>T</i> 50°C   |                         | 200°⊂, ∆ <i>T</i> 100°C |                         | 300°C, <i>ΔT</i> 50°C   |                         | 300°C, <i>ΔΤ</i> 100°C  |                         |
|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                              | V <sub>op</sub><br>(mV) | l <sub>sc</sub><br>(mA) | V <sub>op</sub><br>(mV) | I <sub>sc</sub><br>(mA) | V <sub>op</sub><br>(mV) | l <sub>sc</sub><br>(mA) | V <sub>op</sub><br>(mV) | I <sub>sc</sub><br>(mA) | V <sub>op</sub><br>(mV) | I <sub>sc</sub><br>(mA) |
| 0.2                          | 5.4                     | 2.12                    | 10.7                    | 4.11                    | 13.7                    | 5.33                    | 12.4                    | 5.11                    | 23.1                    | 8.81                    |
| 0.5                          | 8.8                     | 1.74                    | 13.8                    | 5.09                    | 28.9                    | 9.62                    | 20.8                    | 8.86                    | 38.1                    | 16.71                   |
| 1                            | 16.2                    | 6.07                    | 24.1                    | 11.50                   | 31.8                    | 15.61                   | 24.7                    | 11.87                   | 45.4                    | 19.87                   |
| 2                            | 11.3                    | 4.00                    | 20.9                    | 8.43                    | 29.6                    | 12.02                   | 27.7                    | 11.09                   | 39.5                    | 16.29                   |
| 4                            | 9.3                     | 1.60                    | 18.9                    | 4.67                    | 23.1                    | 6.55                    | 18.4                    | 4.30                    | 41.2                    | 11.26                   |

Therefore, test cells condition of 1.0 g was selected to applied in fabrication of the multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules. Moreover, the IV–curve and electrical power output curve of the test cells of monolithic  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module under condition of 1.0 g are shown in Figure 64 and Figure 65, respectively.



Figure 64 IV–curve of the test cells of monolithic  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEGs under condition of weight 1.0 g versus different operating T<sub>h</sub> and  $\Delta$ T.

The IV-curve of the test cells of monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module under condition weight of 1.0 g reveals a significant area under the curve at operating conditions of T<sub>h</sub>=300 °C - $\Delta$ T=100 °C and T<sub>h</sub>=200 °C - $\Delta$ T=100 °C. Moreover, the maximum power output of these test cells is approximately 595  $\mu$ W at T<sub>h</sub>=300 °C - $\Delta$ T=100 °C. A comparison of the maximum electrical power output (P<sub>out</sub>) under operating temperatures is presented in Table 7.



**Figure 65** Electrical power output curves of the test cells of monolithic  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module under condition of weight 1.0 g versus different operating T<sub>h</sub> and  $\Delta$ T.

The IV–curves, electrical power output curves and comparative tables of the test cells of monolithic  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules under conditions of weight 0.2 g, 0.5 g, 2.0 g and 4.0 g are shown in <u>appendix figure and table part</u>.

| Hot-side    | Gradient         | Maximum P      |  |
|-------------|------------------|----------------|--|
| Temperature | temperature (∆T) | Maximum Fout   |  |
| 100 °C      | 50 ℃             | 87 <b>μ</b> W  |  |
| 200 °C      | 50 ℃             | 204 <b>µ</b> W |  |
| 200 °C      | 100 ℃            | 502 <b>μ</b> W |  |
| 300 ℃       | 50 °C            | 186 <b>µ</b> W |  |
| 300 ℃       | 100 ℃            | 595 <b>μ</b> W |  |
|             |                  |                |  |

Table 7 Comparison of maximum electrical power output of test cell of monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module under condition of weight 1.0 g for different conditions of T<sub>h</sub> and  $\Delta$ T.

The monolithic multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module was measured V<sub>op</sub> and I<sub>sc</sub> across its charge terminals. The V<sub>op</sub> and I<sub>sc</sub> of the monolithic multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module were measured under various operating condition, with a hot side temperature (T<sub>h</sub>) of 100 °C and gradient temperature ( $\Delta$ T) of 50 °C, as well as T<sub>h</sub>=200 °C– $\Delta$ T=50 °C, T<sub>h</sub>=200 °C – $\Delta$ T=100 °C, T<sub>h</sub>=300 °C – $\Delta$ T=50 °C and T<sub>h</sub>=300 °C – $\Delta$ T=100 °C. The results of V<sub>op</sub> and I<sub>sc</sub> of the monolithic multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module under all operating conditions are listed in Table 8, as illustrated in Figure 62 and Figure 63.

**Table 8** The V<sub>op</sub> and I<sub>sc</sub> values for the monolithic multi-stack  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module were found to be 11.6 mV, 36.0 mV, 45.3 mV 47.5 mV, 73.1 mV and 5.11 mA, 14.83 mA, 18.07 mA, 13.53 mA, 18.36 mA, respectively, for T<sub>h</sub>=100 °C –  $\Delta$ T=50 °C, T<sub>h</sub>=200 °C –  $\Delta$ T=50 °C, T<sub>h</sub>=200 °C –  $\Delta$ T=50 °C, T<sub>h</sub>=200 °C –  $\Delta$ T=50 °C, T<sub>h</sub>=300 °C –  $\Delta$ T=50 °C and 300°C –  $\Delta$ T 100 °C, respectively. The results showed an increasing trend in both V<sub>op</sub> and I<sub>sc</sub> as T<sub>h</sub> and  $\Delta$ T increased. As depicted in Figure 66, the IV–curves of the multi-stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module at operating temperature of T<sub>h</sub>=300 °C exhibit a similar steep slope under condition of  $\Delta$ T=50 °C and  $\Delta$ T=100 °C, while the intercepts on the current axis differ significantly between these two conditions. Conversely, the IV–curve results at T<sub>h</sub>=200 °C appear quite similar to each other, likely due to the effects of low electrical resistivity and the enhanced power factor of the  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub> pellets at an operating temperature of 200 °C, as illustrated in Figure 62 and Figure 63.

| Hot-side    | Gradient         | Open-circuit                  | Short circuit                 |
|-------------|------------------|-------------------------------|-------------------------------|
| Temperature | temperature (∆T) | voltage (V <sub>op</sub> ) mV | current (I <sub>sc</sub> ) mA |
| 100 ℃       | 50 ℃             | 11.6                          | 5.11                          |
| 200 °C      | 50 °C            | 36.0                          | 14.83                         |
| 200 °C      | 100 °C           | 45.3                          | 18.07                         |
| 300 ℃       | 50 °C            | 47.5                          | 13.53                         |
| 300 ℃       | 100 °C           | 73.1                          | 18.36                         |
|             |                  |                               |                               |

**Table 8** List of open–circuit voltage ( $V_{op}$ ) and short circuit current ( $I_{sc}$ ) versus varying operating condition temperature of the monolithic multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEGs.



Figure 66 IV characteristics of the monolithic multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEGs versus varying operation hot side temperature and temperature gradients  $\Delta$ T.

As depicted in Figure 67, the operating condition that produced the highest maximum electrical power output ( $P_{out}$ ) of 550  $\mu$ W was  $T_h$ =300 °C- $\Delta$ T=100 °C, while the lowest  $P_{out}$  of 38  $\mu$ W was observed under the condition of  $T_h$ =100 °C- $\Delta$ T=50 °C. A comparison of maximum electrical power output ( $P_{out}$ ) under different operating conditions is provided in Table 9. Although, the maximum electrical power output was achieved under the operating temperature of  $T_h$ =300 °C- $\Delta$ T=100 °C, the optimal operating temperature for the monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG module is  $T_h$ =200 °C. This is because the electrical power output curves at  $T_h$ =200 °C of the monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules demonstrate remarkably consistent behaviour under both  $\Delta$ T=50 °C and  $\Delta$ T=100 °C conditions. The broad and consistent IV-curves and electrical power output curves at  $T_h$ =200 °C at an operating the trical power output within the range of  $\Delta$ T 50-100 °C at an operating temperature of 200 °C.

| Hot-side    | Gradient         | Maximum P <sub>out</sub> |  |
|-------------|------------------|--------------------------|--|
| Temperature | temperature (∆T) |                          |  |
| 100 °C      | 50 °C            | 38 <b>µ</b> W            |  |
| 200 °C      | 50 ℃             | 370 <b>µ</b> W           |  |
| 200 ℃       | 100 ℃            | 418 <b>µ</b> W           |  |
| 300 °C      | 50 ℃             | 250 <b>µ</b> W           |  |
| 300 °C      | 100 °C           | 550 <b>μ</b> W           |  |

Table 9 Results of the maximum electrical power output for different conditions of hot–side temperature and  $\Delta T$  of the monolithic  $\beta$ –Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEGs.



Figure 67 Electrical power output curves of the monolithic multi–stack  $\beta$ –Zn<sub>4</sub>Sb<sub>3/</sub>ZnO TEGs versus varying operation hot side temperature and temperature gradients  $\Delta T$ .

Based on the maximum electrical power output of 550  $\mu$ W, the monolithic  $\beta$ -Zn<sub>4</sub>Sb<sub>3</sub>/ZnO TEG modules are comparable to other monolithic TEG modules that reported in the literature. A comparison of the maximum electrical power output from this work with of other reports is shown in Table 10.

| TE-materials                                                                                                | N-pairs | N–cells | T <sub>h</sub> (°C) | ∆T (°C) | P <sub>out</sub> (μW) | Ref.                            |
|-------------------------------------------------------------------------------------------------------------|---------|---------|---------------------|---------|-----------------------|---------------------------------|
| Single walled carbon<br>nanotube (SWCNT)                                                                    | 8       | 16      | 70                  | 50      | 7.19                  | (Hasan <i>et al.,</i> 2024)     |
| Bi <sub>0.5</sub> Sb <sub>1.5</sub> Te <sub>3</sub> &<br>Ag <sub>2</sub> S <sub>0.2</sub> Se <sub>0.8</sub> | 3       | 6       | 130                 | 50      | 2,350                 | (Lai <i>et al.,</i> 2022)       |
| Ni <sub>0.9</sub> MO <sub>0.1</sub> &<br>La <sub>0.035</sub> Sr <sub>0.965</sub> TiO <sub>3</sub>           | 50      | 100     | 30                  | 10      | 100                   | (Funahashi <i>et al.,</i> 2011) |
| Cu <sub>2.075</sub> Se &<br>Ag <sub>2</sub> S <sub>0.55</sub> Se <sub>0.45</sub>                            | 1       | 2       | 60                  | 30      | 310                   | (Ang <i>et al.,</i> 2023)       |
| $m{eta}$ –Zn <sub>4</sub> Sb $_3$                                                                           | 0       | 4       | 300                 | 100     | 550                   | this work                       |

**Table 10** Comparison of the maximum electrical power output versus variant monolithic TEG modules of this work and literaturereports.