CONTENTS

		Page
ABS	TRACT IN THAI	1
ABS	TRACT IN ENGLISH	II
ACK	NOWLEDGEMENTS	
CO	ITENTS	V
LIST	OF FIGURES	VII
CH/	APTER	
I	INTRODUCTION	1
	1.1 Background and motivation	1
	1.2 Research objectives	2
	1.3 Outline of thesis	3
II	LITERATURE REVIEWS	4
	2.1 Transition metal dichalcogenides	4
	2.1.1 Molybdenum disulfide	7
	2.2 The electronic band structure and the photoluminescence o	of TMDs8
	2.2.1 The electronic band structure	8
	2.2.2 The photoluminescence	9
	2.2.3 Quenching of fluorescence	11
	2.2.4 Exciton	12
	2.2.5 Trion	13
	2.3 Defects in TMDs	15
	2.4 Electron irradiation	19
	2.5 Vibrational properties of TMDs	21
III	MATERIALS AND METHODOLOGY	
	3.1 Electron beam irradiation preparation	23
	3.2 Confocal microscopy	24
	3.3 Raman spectroscopy	26

CONTENTS (Continued)

			Page
	3.4	The photoluminescence spectroscopy under N ₂	27
	3.5	Processed photoluminescence data	29
IV	RES	ULTS AND DISCUSSION	31
	4.1	Photoluminescence spectroscopy observation	31
	4.2	Raman spectroscopy observation	40
	4.3	Analysis of photoluminescence spectra	44
V	CO	NCLUSION AND FUTURE RESEARCH	51
	5.1	Conclusions	51
	5.2	Improvement and future research	52
REF	EREN	VCES	53
APP	end	IX	59
CUF	RICL	JLUM VITAE	64

LIST OF FIGURES

Figur	e	Page
2.1	Atomic structure of single layer of transition metal dichalcogenides	6
2.2	Top-view and side-view of atomic structure of MoS ₂	7
2.3	The calculation band structures of MoS ₂	8
2.4	PL spectra for mono- and bilayer MoS ₂ samples	9
2.5	Raman and photoluminescence spectra of MoS_2 monolayer, bilayer,	
	hexalayer, and bulks	11
2.6	PL spectrum of MoS_2 at 273 K	15
2.7	PL spectra of monolayer MoS_2 after oxygen plasma irradiation with	
	different durations	17
2.8	Time-dependent photoluminescence (PL) spectra of plasma-treated	
	monolayer MoS ₂	18
2.9	Raman peak shift vs S vacancy	20
2.10	Schematic illustration of in-plane phonon modes E' and the	
	out-of-plane phonon mode A_{1g} , for the bulk MoS_2	21
2.11	Thickness-dependent Raman spectra for MoS ₂	22
3.1	Schematics of electron beam irradiation on monolayer MoS_2 by SEM at	
	ultralow energy with 5 kV accelerating voltage	23
3.2	Diagram of confocal microscope setup	25
3.3	SENTERRA II Dispersive Raman microscope from Bruker Optics	27
3.4	Diagram of a confocal microscope setup under N ₂	28
3.5	The experiment setup	28
3.6	The unprocessed photoluminescence data of monolayer MoS_2	29
3.7	The normalized data after subtracting data	30
4.1	The spectrum of pristine monolayer MoS ₂	32
4.2	The confocal PL intensity image of pristine monolayer MoS ₂	32

LIST OF FIGURES (Continued)

Figur	re	Page
4.3	Confocal PL intensity image of the irradiated sample showing e-beam	
	irradiated regions by SEM at 5 kV accelerating voltage	33
4.4	Comparison of the PL spectrum of pristine, electron irradiated dose	
	of 0.3 \times 10 ³ $\mu\text{C/cm}^2$ and 5.3 \times 10 ³ $\mu\text{C/cm}^2$	34
4.5	Schematics of laser exposure on monolayer MoS ₂ under ambient	35
4.6	Confocal PL intensity image of pristine, low electron dose and high	
	electron dose of monolayer MoS_2 before and after high power	
	exposure for 10 s when storing in the ambient air for 10 hours	36
4.7	The relative PL intensity with varying different condition after high power	
	exposure and storing in ambient air for 10 hours	37
4.8	The PL spectra of the electron irradiation area after exposure	39
4.9	The PL intensity under N_2 and ambient air	40
4.10	The Raman spectrum of pristine of monolayer MoS ₂	41
4.11	Raman spectra of different conditions	42
4.12	Raman peak positions of E_2 and A_1 modes	43
4.13	The PL spectrum before and after exposure	44
4.14	The PL spectrum under $N_{\rm 2}$ for at 15 minutes and 10 hours	45
4.15	The PL spectrum at 25 minutes under ambient air	46
4.16	The PL spectrum at 10 hours under ambient air	47
4.17	The relative peak area as a function of time under $N_{\rm 2}$ and	
	ambient conditions	48
4.18	The schematic and confocal models show that oxygen molecules	
	absorb on the surface	50
A.1	Confocal images of monolayer MoS_2 with electron irradiation	
	doses variation	60
A.2	The relative PL intensity of the areas exposed by different electron	
	irradiation dose	61
A.3	Relative PL intensity of electron dose irradiation D = $0.2 \times 10^3 \mu$ C/cm ²	62

LIST OF FIGURES (Continued)

Figure		Page
A.4	Relative PL intensity of electron dose irradiation D = $2.0 \times 10^3 \mu$ C/cm ²	63