TABLE OF CONTENTS

Page

ABSTRACT (THA	l)	
ABSTRACT (ENG	LISH)	
ACKNOWLEDGE	MENTS	V
TABLE OF CONT	ENTS	VI
LIST OF TABLES		VIII
LIST OF FIGURES	5	X
CHAPTER		
I. INT	RODUCTION	1
1.1	General Background	1
1.2	Research objectives	5
1.3	Scope and limitation of the study	5
II. LITE	RATURE REVIEW	6
2.1	Poly(lactic acid) (PLA)	6
	2.1.1 Synthesis of poly (lactic acid)	6
	2.1.2 Physical and chemical properties of PLA	7
	2.1.3 The advantages and limitations of PLA	8
	2.1.4 Crystallization of PLA	10
	2.1.5 Degradation of PLA	10
2.2	Natural Rubber (NR)	14
	2.2.1 Properties of NR	14
	2.2.2 Toughness improvement for PLA by blending with NR	15
	2.2.3 Effect of NR on degradation of PLA	18
	2.2.4 Improving the compatibility between PLA and NR	21
2.3	Rice Straw (RS)	22

TABLE OF CONTENTS (Continued)

		Page
	2.3.1 General Properties	23
	2.3.2 Rice straw composites with PLA	23
	2.3.3 Effect of Rice straw on degradation of PLA	25
2.4	Seedling bags and mulch films	27
	2.4.1 Seedling bags	27
	2.4.2 Mulch films	29
2	5 Cast Film Extrusion	33
III. E>	(PERIMENTAL	37
3.	l Materials	37
3.2	2 Preparation and characterization of PLA blended with mas	sticated NR
	at different mastication times	37
	3.2.1 Preparation of PLA/NR blends	37
	3.2.2 Melt flow index	37
	3.2.3 Tensile properties	38
3.3	Preparation and characterization of PLA/NR/RS biocompos	ite films.38
	3.3.1 Rice straw fiber preparation	38
	3.3.2 Preparation of PLA/NR/RS biocomposites	38
	3.3.3 Biocomposite films preparation	39
	3.3.4 Characterization of PLA/NR/RS biocomposite films	39
3.4	Biodegradability of neat PLA, PLA/NR blend and the PLA/N	IR/RS
	biocomposite films	40
	3.4.1 Soil burial biodegradability	40
3.	5 An application of biocomposite films as Seedling bags	42
3 (6. An application of biocomposite films as mulch film	43

Page

TABLE OF CONTENTS (Continued)

IV. RESULTS AND DISCUSSION	45
4.1 Effect of natural rubber's mastication time on the melt flow inde	X
and tensile properties of PLA/NR blends	45
4.1.1 Melt flow index (MFI)	45
4.1.2 Tensile properties	46
4.2 Effect of an amount of rice straw on melt flow index, tensile	
properties, and morphological characteristics of PLA/NR/RS	
biocomposite films	49
4.2.1 Physical characteristics	49
4.2.2 Melt flow index (MFI)	51
4.2.3 Tensile properties	51
4.2.4 Morphological properties	55
4.3 Soil burial degradation of PLA/NR/RS biocomposite films	56
4.3.1 Physical appearance	56
4.3.2 Biodegradability	57
4.4 Examples of Agricultural Applications of the biocomposite films	74
4.4.1 Seedling bags	74
4.4.2 Mulch films	92
V. CONCLUSIONS AND RECOMMENDATION	104
5.1 Conclusion	104
5.2 Recommendation	106
REFERENCES	107
APPENDIX	126
BIOGRAPHY	152

LIST OF TABLES

Table	rage
Table 2.1	The influence of stereochemistry and crystallinity on the mechanical
	properties (Garlotta, 2001)
Table 3.1	Formulations of PLA/NR/RS biocomposites
Table 4.1	Summary of tensile properties of neat PLA and its blends with masticated
	NR at different mastication times47
Table 4.2	The thickness and width of the neat PLA and PLA/NR blend and
	PLA/NR/RS biocomposite films
Table 4.3	Summary of tensile properties of HDPE, neat PLA, PLA/NR blend, and
	PLA/NR/RS biocomposite films55
Table 4.4	Summary of weight loss percentage of the neat PLA, PLA/NR blend, and
	PLA/NR/RS biocomposite films after being buried in soil for 90 days59
Table 4.5	The number-average molecular weights (Mn), weight-average molecular
	weights (Mw), and polydispersity index (PDI) of neat PLA, PLA extracted
	from each film were determined before and after being buried in soil for
	90 days60
Table 4.6	Summary of tensile properties of neat PLA, PLA/NR blend, and PLA/NR/RS
	biocomposite films after being buried in soil for 90 days
Table 4.7	EDX analysis of element contents of neat PLA, PLA/NR blend, and
	PLA/NR/RS biocomposite films before and after in soil for 90 days69
Table 4.8	DSC Results of neat PLA, PLA/NR blend, and PLA/NR/RS biocomposite films
	before and after burial in soil for 90 days

LIST OF TABLES (Continued)

Table Page
Table 4.9 The number-average molecular weights (Mn), the weight-average molecular
weights (Mw), and the polydispersity index (PDI) of neat PLA and the PLA
extracted from PLA/NR blend and PLA/NR/RS biocomposite film, as well as
from the films cut from seedling bags and mulch films after 3 months of
chili plant growth83
Table 4.10 Summary of tensile properties of the film specimens cut from seedling
bags produced from neat PLA, PLA/NR blend, and PLA/NR/RS
biocomposite films after planting for 3 months86
Table 4.11 The DSC results from the first heating scan of the cast film and the
samples taken from seedling bags and mulch films after growing chili
plants for 3 months90

LIST OF FIGURES

Figure	Page
Figure 2.1 General routes of poly(lactic acid) production (Sin and Bee, 2019)	6
Figure 2.2 The stereoisomers of L-lactic acid and D-lactic acid (Xiao, Wang, Ya	ng, and
Gauthier, 2012)	7
Figure 2.3 Polymerization degradation routes for polylactic acid (Elsawy, Kim,	Park
and Deep, 2017)	12
Figure 2.4 The chemical structure of natural rubber's cis-1,4-polyisoprene (He	rculano
et al., 2011)	15
Figure 2.5 Slit die for cast film (Casalini and Perale, 2016).	33
Figure 3.1 Dimensions of seedling bags.	43
Figure 3.2 Dimensions of mulch films.	44
Figure 4.1 Melt flow index (MFI) of neat PLA and its blends with masticated N	IR at
different mastication times	45
Figure 4.2 Stress-strain curves of neat PLA and its blends with masticated NR	at
different mastication times	46
Figure 4.3 Tensile properties of neat PLA and its blends with masticated NR a	it
different mastication times: Tensile strength (a), Young's Modulus (b), and
Elongation at break (c).	48
Figure 4.4 Physical characteristics of neat PLA (a), PLA/NR blend (b), and PLA/	NR/RS
biocomposite films; 3 wt.% (c), 5 wt.% (d), and 10 wt.% RS (e)	50
Figure 4.5 Melt flow index (MFI) of neat PLA, PLA/NR blend, and PLA/NR/RS	
hiocomposites	51

Figure Pag	зe
Figure 4.6 Stress-strain curve of neat PLA, PLA/NR, and PLA/NR/RS biocomposite	
films; machine direction (MD) (a) and transverse direction (TD) (b)	53
Figure 4.7 Tensile properties of HDPE, neat PLA, PLA/NR blend, and PLA/NR/RS	
biocomposites films; Tensile strength (a), Young's Modulus (b), and	
Elongation at break (c)	54
Figure 4.8 FE-SEM micrographs at 5000x magnification of tensile fracture surface of	
neat PLA (a) PLA/NR blend (b), and PLA/NR/RS biocomposite films with R	S
concentrations of 3 wt.% (c) and 5 wt.% (d)	56
Figure 4.9 Physical appearance of the films before and after soil burial test for 90	
days	57
Figure 4.10 Weight loss percentage of neat PLA, PLA/NR blend, and PLA/NR/RS	
biocomposite films after being buried in soil for 90 days	58
Figure 4.11 Stress-strain curve of neat PLA, PLA/NR, and PLA/NR/RS biocomposite	
films; machine direction (MD) (a) and transverse direction (TD) (b) after	
being buried in soil for 90 days	62
Figure 4.12 Tensile strength of neat PLA, PLA/NR blend, and PLA/NR/RS	
biocomposites films; MD (a), TD (b) before and after soil burial test for 9	90
days	63
Figure 4.13 Elongation at break of neat PLA, PLA/NR blend, and PLA/NR/RS	
biocomposites films; MD (a), TD (b) before and after soil burial test for 9	90
days	64
Figure 4.14 Young's Modulus of neat PLA, PLA/NR blend, and PLA/NR/RS	
biocomposites films; MD (a), TD (b) before and after soil burial test for 9	90
davs	65

Figure	<u> </u>
Figure 4.15 FE-SEM micrographs at 5000x magnification of film surface of neat PLA (a))
PLA/NR blend (b), and PLA/NR/RS biocomposite films at RS contents of;	3
wt.% (c), and 5 wt.% (d)6	7
Figure 4.16 FE-SEM micrographs at 5000x magnification of film surface after soil buria	l
for 90 days of neat PLA (a) PLA/NR blend (b), and PLA/NR/RS	
biocomposite films at RS contents of; 3 wt.% (c), and 5 wt.% (d)6	8
Figure 4.17 DSC thermograms of neat PLA, PLA/NR blend, PLA/NR/3%RS, and	
PLA/NR/5%RS biocomposite films before (a) and after (b) burial in soil fo	r
90 days7	2
Figure 4.18 XRD patterns of neat PLA, PLA/NR blend, PLA/NR/3%RS, and	
PLA/NR/5%RS biocomposite films before (a) and after (b) burial in soil fo	r
90 days7	3
Figure 4.19 Seedling bags produced from neat PLA (a), PLA/NR blend (b),	
PLA/NR/3%RS (d), and PLA/NR/5%RS (e) biocomposite films7	4
Figure 4.20 Chilli plants in seedling bags made from different types of film: (a) HDPE,	
(b) neat PLA, (c) PLA/NR blend, (d) PLA/NR/3%RS, and (e) PLA/NR/5%RS	
at 0 month. (All bags were placed in a plant pot filled with soil.)7	5
Figure 4.21 Chilli plants in seedling bag made from HDPE (a), neat PLA (b), PLA/NR	
blend (c), PLA/NR/3%RS (d), and PLA/NR/5%RS (e) biocomposite films at	
1 month of cultivation7	6
Figure 4.22 Chilli plants in seedling bag made from HDPE (a), neat PLA (b), PLA/NR	
blend (c), PLA/NR/3%RS (d), and PLA/NR/5%RS (e) biocomposite films at	
2 months of cultivation 7	7

Figure	Pa	зe
Figure 4.23	Chilli plants in seedling bag made from HDPE (a), neat PLA (b), PLA/NR	
	blend (c), PLA/NR/3%RS (d), and PLA/NR/5%RS (e) biocomposite films a	at
	3 months of cultivation	78
Figure 4.24	The growth of chili plant's root from seedling bags made from HDPE (a)	,
	neat PLA (b), PLA/NR blend (c), PLA/NR/3%RS (d), and PLA/NR/5%RS (e))
	biocomposite films after planting for 3 months.	79
Figure 4.25	Comparison of the average dry weight and total weight of chili fruit per	
	plant of the chili plant grown in different types of seedling bags for a	
	period of 3 months.	80
Figure 4.26	Comparison of the stem size and height of the chili plant grown in	
	different types of seedling bags for a period of 3 months	81
Figure 4.27	Weight loss percentage of seedling bags produced from neat PLA, PLA/N	۱R
	blend, and PLA/NR/RS biocomposite films after planting for 3 months	82
Figure 4.28	Tensile properties of the film specimens cut from seedling bags produce	ed
	from HDPE, neat PLA, PLA/NR blend, and PLA/NR/RS biocomposites film	∩s;
	Tensile strength (a), Young's Modulus (b), and Elongation at break (c)	
	before and after chili planting for 3 months.	85
Figure 4.29	FE-SEM micrographs at 5000x magnification of the film specimens cut	
	from seedling bags produced from neat PLA (a), PLA/NR blend (b),	
	PLA/NR/3%RS (c) and PLA/NR/5%RS (d) biocomposite films after chili	
	planting for 3 months	87
Figure 4.30	DSC thermograms of the samples taken from seedling bags after growin	g
	chili plants for a pariod of 3 months	90

Figure	Page
Figure 4.31 XF	RD patterns of film samples taken from seedling bags after growing chili
pl	lants for a period of 3 months91
Figure 4.32 Ch	nilli planting without mulch film (a) and with various types of mulch
fil	lms: HDPE (b), neat PLA (c), PLA/NR blend (d), PLA/NR/3%RS (e), and
PI	LA/NR/5%RS (f) biocomposite films on the first day of cultivation92
Figure 4.33 Ch	nilli planting without mulch film (a, a') and with various types of mulch
fil	lms: HDPE (b, b'), neat PLA (c, c'), PLA/NR blend (d, d'), PLA/NR/3%RS
(e	e, e'), and PLA/NR/5%RS (f, f') biocomposite films at 1 month of
CU	ultivation94
Figure 4.34 Ch	nilli planting without mulch film (a, a') and with various types of mulch
fil	lms: HDPE (b, b'), neat PLA (c, c'), PLA/NR blend (d, d'), PLA/NR/3%RS
(e	e, e'), and PLA/NR/5%RS (f, f') biocomposite films at 2 months of
Cl	ultivation95
Figure 4.35 Ch	nilli planting without mulch film (a, a') and with various types of mulch
fil	lms: HDPE (b, b'), neat PLA (c, c'), PLA/NR blend (d, d'), PLA/NR/3%RS
(e	e, e'), and PLA/NR/5%RS (f, f') biocomposite films at 3 months of
CU	ultivation96
Figure 4.36 Co	omparison of the average dry weight and total weight of chili fruit of the
cł	hili plant grown in different types of mulch films for a period of 3
m	nonths97
Figure 4.37 Co	omparison of the stem size and height of the chili plant grown in
di	ifferent types of mulch films for a period of 3 months98

Figure
Figure 4.38 FE-SEM micrographs at 5000x magnification of mulch films produced from
neat PLA (a), PLA/NR blend (b), PLA/NR/3%RS (c) and PLA/NR/5%RS (d)
biocomposite films after chili planting for 3 months
Figure 4.39 DSC thermograms of the samples taken from mulch films after growing
chili plants for a period of 3 months
Figure 4.40 XRD patterns of film samples taken from mulch films after growing chili
plants for a period of 3 months103