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CHAPTER I 
INTRODUCTION 

1.1  Background and problem statement 
This highlights the relentless evolution of communication technology, 

emphasizing the pivotal roles of 5G and emerging 6G networks in meeting the 

growing demand for high-speed and accurate data transmission. Despite the 

advancements of 5G, particularly with millimeter wave (mmWave) frequencies and 

Massive MIMO systems, there are limitations in scenarios requiring even faster and 

more precise data transmission, such as remote-control mechanisms, to address 

these constraints, the exploration has shifted towards 6G, which introduces the UM-

MIMO architecture. In Figure 1.1 show structure of the scenario for Ultra-Massive 

MIMO, this advancement significantly increases antenna volume for both transmission 

and reception, utilizing Terahertz (THz) band frequencies ranging from 0.3 to 10 THz, 

bridging mmWave and THz bands for enhanced performance.  

 
Figure 1.1 The scenario for Ultra-Massive MIMO 
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In infrastructure, techniques like Hybrid Precoding, Beamforming, and Spatial 

Multiplexing have been proposed to optimize signal transmission and improve the 

Signal-to-Noise Ratio (SNR). However, the functional efficacy of these systems hinges 

on advanced signal detection strategies. Techniques such as ZF and MMSE are crucial 

for enhancing data transmission speed and precision while reducing discrepancies. 

This research delves into advanced signal detection methods and their integration 

with deep learning within the UM-MIMO framework, posited as foundational for 6G 

technology. It explores the application of Parallel Multi-Scale Convolutional Neural 

Networks (PMS-CNN) for signal detection and compares its performance with CNN-

LSTM and machine learning methods like ELM, RELM, and ORLEM used in Massive 

MIMO. The comparative analysis demonstrates that PMS-CNN outperforms these 

methods, particularly in terms of channel capacity and bit error rate, while offering 

better computational efficiency and reduced complexity, making it suitable for future 

expansive MIMO systems. 

 

1.2  Thesis objectives 
  1.2.1 To design a new convolutional neural network model for signal 

detection in UM-MIMO system. 

  1.2.2 To compare the algorithmic performance in signal detection with 

other methods in deep learning and machine learning. 

 

1.3  Scope and limitation of the thesis 
 1.3.1 In this thesis focuses only on spatial multiplexing for signal detection 

in UM-MIMO systems. 

  1.3.2 Training and evaluating the model are based on 256 transmit and 256 

receive antennas and 256QAM modulation. Because industry can provide the 

number of antennas like now. 
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 1.3.3 The proposed method is compared with ZF, MMSE traditional 

methods and ELM, RELM, ORELM machine learning algorithms, as well as the CNN-

LSTM deep learning algorithm for signal detection, to ensure the reliability of the 

proposed method and demonstrate better performance. 

 

1.4  Contributions 
 1.4.1 Propose PMS-CNN, a parallel multi-scale deep neural network model 

applied to signal detection in UM-MIMO systems. 

 1.4.2 For signal detection, PMS-CNN provides results that can be effectively 

applied to 5G and 6G networks. 

 1.4.3 PMS-CNN in the signal detection system can directly improve the 

efficiency of data transmission. Instead of using channel estimation methods that is 

more complicated. 

 

1.5  Organization of the thesis 
In various sections of the thesis, the outlined can be explained as follows: 

Chapter II reviews existing research related to this topic by outlining fundamental 

principles relevant to this study within the current body of knowledge, particularly in 

the context of signal detection for performance enhancement through the 

application of deep learning techniques. The focus is on theories, models, and 

significant findings from previous studies concerning UM-MIMO signal detection, 

machine learning, and deep learning. 

Chapter II focuses on explaining the methods used to design the 

communication model in the system. UM-MIMO and deep learning for signal 

detection This chapter has a special focus on deep learning where models are 

designed to match signal detection. This chapter explores the various traditional 
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methods and machine learning techniques used to train and build these models. 

and provide insights into the results. 

Chapter IV presents the results of the developed model. along with a 

detailed discussion the model results are divided into five sub-sections for analysis in 

terms of communication systems. The first subsection shows Evaluation of Algorithm 

Performance through Mean Squared Error (MSE) Computation. The second subsection 

shows Bit Error Rate Performance, giving us an idea of how reliably the system can 

transmit data. A low BER rate means less errors. Make communication more reliable 

the third subsection performs a comparative analysis of Channel Capacity 

performance, indicating the maximum rate at which data can be transmitted over a 

communication channel with the least amount of errors. The fourth subsection, 

Outage Probability, tells us the likelihood that the system will not be able to provide 

the desired quality of service. This measure helps evaluate the reliability of 

communication in different conditions. Finally, the fifth subsection Computational 

Complexity with Big O notation allows the performance of different algorithms to be 

measured and compared, independent of the hardware or software being used. This 

helps to understand how the algorithm works in the case of large data sizes. 

Chapter V serves as the conclusion of this thesis. It summarizes the key 

findings and presents the conclusions drawn from the thesis. Additionally, this 

chapter provides valuable suggestions and suggestions for future studies. 
 

1.6  Summary 
 In the current era, communication technology is advancing rapidly, making it 

a crucial aspect of daily life. Despite significant advancements like 5G and its Massive 

MIMO technology, which uses numerous antennas for data transmission, limitations 

persist in meeting the demands for high-speed and accurate data transmission, 

particularly in applications such as remote-control mechanisms. This has prompted 

research into 6G and Ultra-Massive MIMO, which utilizes Terahertz frequencies for 
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even greater antenna volume and enhanced performance. Within the 5G framework, 

techniques like Hybrid Precoding and Beamforming have been developed to 

optimize signal transmission, yet challenges remain. Effective signal detection 

strategies, such as ZF and MMSE, have motivated further exploration into deep 

learning applications within UM-MIMO systems. This thesis aims to investigate and 

propose new deep neural network models for signal detection, compare their 

performance with traditional methods, and demonstrate their efficacy through 

experimental results. Key contributions include the proposal of a Parallel Multi-Scale 

(PMS-CNN) deep neural network model. The thesis is organized into several chapters, 

with Chapter II reviewing existing research, Chapter III explaining the design methods, 

Chapter IV presenting the results, and Chapter V concluding the study. 

 

 



 

 

CHAPTER II 
THEORETICAL BACKGROUND 

2.1  Introduction 
This chapter discusses the literature review and theories related to 

communication technology in 2020, highlighting significant advancements. One 

notable development is the use of Multiple Input Multiple Output (MIMO) 

technology, which involves transmitting and receiving data through multiple 

antennas. This approach has been widely implemented and researched due to its 

potential to significantly increase data transmission rates and system capacity. The 

evolution of MIMO technology has led to the emergence of Massive MIMO, where a 

large number of antennas are used to improve performance. This technique has 

been the subject of extensive research as it addresses the growing demand for higher 

data rates and increased capacity in wireless communication systems. Various studies 

have explored its applications and benefits, emphasizing its role in enhancing 

communication efficiency and reliability.  

Looking forward to future communication systems, UM-MIMO is anticipated 

to play a critical role in the development of 6G technology. This advanced form of 

MIMO technology aims to further boost data transmission capabilities by 

incorporating an even larger number of antennas. UM-MIMO is expected to be a key 

component in 6G systems, offering significant improvements in both physical and 

conceptual aspects of data transmission. This chapter reviews the latest research on 

Ultra-Massive MIMO, focusing on its potential to overcome existing limitations and 

introduce innovative solutions in wireless communication. Additionally, the chapter 

delves into various signal detection techniques essential for the effective 

implementation of MIMO systems, such as ZF, MMSE, and Deep Learning methods. 
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These techniques are crucial for enhancing signal accuracy and overall system 

performance, paving the way for more efficient and robust wireless communication 

networks. 

 

2.2  Communication Technologies from 5G to 6G 
The transition from 5G to 6G communication technologies represents a 

significant leap in the evolution of wireless communication systems. While 5G has 

brought about remarkable improvements in speed, latency, and connectivity, 6G is 

poised to push these boundaries even further. This section explores the key 

advancements, features, and potential impacts of 5G and 6G technologies, 

incorporating detailed comparisons. 

 2.2.1 5G Technology 

5G technology, the fifth generation of mobile networks, has 

revolutionized the way we communicate by offering enhanced data rates, reduced 

latency, and improved connectivity. With speeds up to 100 times faster than 4G, 5G 

enables seamless streaming of high-definition video, real-time gaming, and the 

proliferation of the Internet of Things (IoT). Key features of 5G include. 

Enhanced Mobile Broadband (eMBB): Provides significantly higher data 

rates, supporting applications such as virtual reality (VR) and augmented reality (AR). 

Ultra-Reliable Low Latency Communications (URLLC): Ensures minimal 

delay, critical for applications like autonomous driving and remote surgery. 

Massive Machine-Type Communications (mMTC): Connects a vast 

number of IoT devices, facilitating smart cities and industrial automation. 

5G networks utilize a range of frequencies, including sub-6GHz and millimeter 

wave (mmWave) bands, to achieve these advancements. Despite these 

improvements, 5G also faces challenges such as limited coverage in rural areas and 

high deployment costs. Research and development efforts continue to address these 

issues, aiming to maximize the potential of 5G technology. 
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 2.2.2 6G Technology 

6G technology is currently in the research and development phase, with 

expectations to deliver even higher data rates and lower latency than 5G, along with 

supporting greater capacity and more connected devices. It aims to make 

communications more reliable and secure, enabling new use cases such as 

holographic communication, artificial intelligence (AI), and autonomous vehicles. 6G 

is set to incorporate new technologies and frequencies, such as Terahertz (THz) 

bands, to achieve these goals. 

 

 
Figure 2.1 Potential Capabilities of 6G Compared to 5G 

 

In Figure 2.1, which compares the potential capabilities of 6G with 5G (Chen, 

2020), several key performance indicators (KPIs) highlight the significant 

improvements expected with 6G. Peak Data Rate: 6G can achieve peak data rates 

exceeding 100 Gb/s, compared to 5G's peak rates of 10-20 Gb/s. User Experience 
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Data Rate: 6G aims for user experience data rates over 10 Gb/s, far surpassing 5G's 1 

Gb/s. Traffic Density: 6G is expected to handle traffic densities greater than 100 

Tb/s/km², compared to 5G's 10 Tb/s/km². Connection Density: 6G will support 

connection densities over 10 million devices per square kilometer, significantly higher 

than 5G's 1 million devices per square kilometer. Latency: 6G aims to reduce latency 

to less than 1 millisecond, compared to the millisecond-level latency in 5G. Mobility: 

6G will support mobility speeds up to 1000 km/h, while 5G supports up to 350 km/h. 

Spectrum Efficiency: 6G will offer spectrum efficiency improvements of more than 3 

times that of 5G. Energy Efficiency: 6G is expected to be over 10 times more energy 

efficient than 5G. Coverage: 6G aims for coverage percentages greater than 99%, 

compared to 5G's approximately 70%. Reliability: 6G will improve reliability to more 

than 99.999%, compared to 5G's approximately 99.9%. Positioning Precision: 6G will 

achieve centimeter-level positioning precision, improving upon 5G's meter-level 

precision. Receiver Sensitivity: 6G will enhance receiver sensitivity to better than -130 

dBm, compared to 5G's approximately -120 dBm. In summary, the progression from 

5G to 6G represents a transformative journey in the field of communication 

technology, while 5G has set new standards for speed and connectivity, 6G is 

expected to introduce groundbreaking innovations that will reshape how we interact 

with the digital world. This section delves into the current state and prospects of 

these technologies, highlighting the ongoing research and development efforts that 

aim to overcome existing challenges and unlock new possibilities. 

 

2.3  Massive MIMO Technology and Ultra-Massive MIMO 
Massive MIMO technology has been a cornerstone in advancing wireless 

communication systems, particularly in the context of 5G networks. This technology 

leverages many antennas at the base station to significantly improve data rates, 

capacity, and reliability. As we transition towards 6G, the concept of UM-MIMO is 

emerging, promising even greater enhancements. Massive MIMO involves the use of 

dozens to hundreds of antennas at the base station to serve multiple users 
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simultaneously. This technology offers several key benefits. Increased Capacity: By 

spatially multiplexing multiple data streams, Massive MIMO can serve many users at 

the same time, greatly enhancing network capacity. Improved Spectral Efficiency: 

With precise beamforming, Massive MIMO can focus energy where it is needed, 

improving spectral efficiency and reducing interference. The many antennas provides 

redundancy, making the system more robust against signal fading and interference. 

Energy Efficiency, Massive MIMO can achieve high data rates with lower transmit 

power, contributing to overall energy efficiency. Massive MIMO has been instrumental 

in achieving the high data rates and low latencies characteristic of 5G networks. 

However, as the demand for wireless communication continues to grow, further 

advancements are necessary. The current research on Massive MIMO often assumes 

the use of many antennas at the base station, which significantly exceeds the 

number of active users. Linear processing methods, such as Maximum Ratio 

Combining (MRC) for uplink and Maximum Ratio Transmission (MRT) for downlink, are 

often considered optimal for single-antenna users. These methods can effectively 

mitigate uncorrelated noise and intra-cell interference, as large numbers of antennas 

cause the channel matrices to tend to orthogonality, simplifying spatial multiplexing 

and providing degrees of freedom for energy-efficient and high-gain RF transmission. 

 
Figure 2.2 The structure of element antennas in Massive MIMO. 

 

Massive MIMO also demonstrates high energy efficiency compared to 

traditional wireless systems. As shown in Figure 2.2, increasing the number of 

antennas at the base station improves beamforming accuracy, reducing radiated 
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power while maintaining overall performance. Doubling the number of antennas 

allows for a 3 dB reduction in transmission power. In the uplink, coherent 

beamforming increases array gain, reducing individual user transmission power. 

 
Figure 2.3 Implementing antennas in Massive MIMO and UM-MIMO. 

 

In Figure 2.3, calculating the spacing between elements of an antenna array for a 

Uniform Rectangular Array (URA), we first need to determine the wavelength ( ). This 

  is then used to calculate the spacing ( d ) between the elements. The   can be 

calculated using the following equation. 

c

f
 =        (2.1) 

f  is frequency using, c  is the speed of light. 

The basic equation for calculating the spacing between elements of an antenna array 

can be derived from the principles of a Uniform Linear Array (ULA) as follows. 

2
d


=        (2.2) 
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Calculating the spacing between elements in a URA, the equation is similar to that 

ULA. However, since the arrangement is in a two-dimensional grid (along both the x 

and y axes), the spacing between elements must be considered in both axes. The 

element area eA  is calculated as the product of the horizontal and vertical spacings. 

e x yA d d=        (2.3) 

If greater spacing is required to avoid mutual coupling, the spacing d  can be set to 

  or less, depending on the design and system requirements. 

As we look towards 6G, UM-MIMO is expected to be a key technology. UM-

MIMO takes the principles of Massive MIMO to the next level by utilizing an even 

larger number of antennas, potentially in the range of thousands. This evolution aims 

to address the increasing demands for data and connectivity in the following ways. 

Higher Data Rates: With a greater number of antennas, UM-MIMO can support higher 

peak data rates, essential for applications such as real-time holographic 

communication and ultra-high-definition video streaming. Lower Latency: The 

enhanced beamforming and signal processing capabilities of UM-MIMO can further 

reduce latency, supporting time-sensitive applications like autonomous vehicles and 

industrial automation. Increased Connection Density: UM-MIMO can handle a higher 

density of connected devices, facilitating the expansion of the Internet of Things (IoT) 

and smart cities. Improved Spectral and Energy Efficiency: By leveraging advanced 

beamforming techniques and more precise spatial multiplexing, UM-MIMO can 

achieve superior spectral efficiency and reduce overall energy consumption. 
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Figure 2.4 Spectral Efficiency vs. Energy Efficiency in SISO, MISO, and Massive MIMO 

Systems with Different Processing Methods. 

 

In the Figure 2.4, shows the spectral efficiency versus energy efficiency in different 

MIMO systems with various processing methods, illustrating the superior performance 

of Massive MIMO over SISO and MISO systems. 

 

 
Figure 2.5 Promising Techniques for 6G Wireless Networks 

 

The development of UM-MIMO for future 6G networks includes several promising 

techniques, categorized into four main areas: Frequency Bands, Transmission Mode, 

Intelligent Transmission, and Integrated Networks, as shown in Figure 2.5. For 
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example, 6G will incorporate Terahertz bands (0.1 THz to 10 THz) and utilize UM-

MIMO technology, considering a higher number of antennas. Research focuses on 

hybrid beamforming, hybrid precoding, and spatial multiplexing to achieve optimal 

performance (Dilli, 2021). 

2.3.1 Hybrid beamforming 

 
Figure 2.6 The simple hybrid beamforming. 

 

In Figure 2.6, Hybrid beamforming is a technique used in wireless 

communication systems to optimize the signal-to-noise ratio (SNR) at the receiver. It 

combines beamforming, which adjusts the signal strength in different directions, with 

digital precoding, which modifies the transmitted signal using digital signal processing 

techniques. The goal is to improve the performance of wireless communication 

systems, especially those with limited RF chains. Traditional digital precoding requires 

many RF chains, which can be expensive and complex. Hybrid beamforming reduces 

the number of required RF chains by performing precoding in both analog and digital 

domains. In the analog domain, hybrid precoding uses beamforming to adjust the 

phase and amplitude of signals at each antenna, while digital signal processing 

techniques optimize the signals in the digital domain to improve SNR at the receiver. 

This approach achieves high performance with lower cost and complexity show in 

Figure 2.7. 
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Figure 2.7 The Structure of Hybrid Beamforming. 

 

Hybrid precoding can be applied in various wireless communication systems, 

including cellular networks, wireless local area networks (WLAN), and wireless 

personal area networks (WPAN). It is also considered a key technology for 5G and 

beyond wireless communication systems (Zhao, 2020). 

2.3.2 Spatial Multiplexing 

Spatial multiplexing is a technique that uses multiple transmission paths 

to send signals simultaneously, increasing the overall data rate of the system. This 

technique improves the performance of wireless communication systems by enabling 

multiple data streams to be transmitted concurrently, supporting multiple users 

simultaneously. In summary, hybrid beamforming and hybrid precoding focus on 

optimizing SNR at the receiver, while spatial multiplexing increases data rates by 

transmitting multiple streams simultaneously. These techniques can be combined to 

enhance the overall performance of wireless communication systems. 

The implementation of UM-MIMO opens new possibilities for various applications. 

Smart Cities and IoT, supporting a massive number of connected devices, UM-MIMO 

can enable efficient data collection and communication in smart city environments. 

Advanced Manufacturing, Low-latency, high-reliability communication is crucial for 

Industry 4.0 applications, including automated production lines and remote-

controlled machinery. Enhanced Mobile Broadband, UM-MIMO will enhance user 
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experiences in densely populated areas, ensuring consistent high-speed connectivity. 

In summary, UM-MIMO represents the next frontier in wireless communication 

technology, building on the foundation of Massive MIMO to meet the demands of 

future 6G networks. This section explores the advancements, applications, and 

challenges associated with this transformative technology, emphasizing its potential 

to revolutionize the way we connect and communicate. 

 

2.4  Channel Model in UM-MIMO for signal detection 
 In all forms of communication, signals travel through a medium known as a 

channel. During transmission, these signals can become distorted or subjected to 

various forms of noise, which are introduced as the signal passes through the 

channel. Accurately decoding the received signal with minimal errors involves 

removing the distortions and noise imposed by the channel from the received signal. 

This process entails identifying the characteristics of the channel through which the 

signal has passed. The techniques or processes used to identify these channel 

characteristics are known as signal detection.  

 

 
Figure 2.8 The simple of structure communication 

 

In Figure 2.8, which the simple of structure communication, X  represents 

the transmitted signal after modulation, and Y  represents the received signal. The 

channel between the transmitter and receiver is denoted by H , with TM  and RM  
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representing the number of transmit and receive antennas, respectively. The 

relationship between X  and Y  can be described by the equation. 

Y H X n=  +       (2.4) 

Where 
RMn  is the noise signal at the transmitting antenna. When written in matrix 

form, it is as follows. 

11 12 1,1 1 1

2 12 22 2, 2 2

,1 ,2 ,

T
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h h hY X n
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      = +
      
      
            

   (2.5)  

When considering signal detection, we can transfer the variables to estimate the 

channel as follows. 

1

2

TM

X

X
X

X

 
 
 =
 
 
  

      (2.6) 

The channel matrix estimate X  can be computed as 

HX H Y=       (2.7) 

where ( )H  denotes the conjugate transpose. 

There are various current approaches to channel estimation. The scenarios can be 

described as follows. 
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2.4.1 Ray/Cluster Channel 

The Ray/Cluster Channel model is based on the Saleh-Valenzuela 

channel model as cited in (Heath, 2016). This model is widely recognized for 

characterizing mmWave channels, which are marked by significant reflections and 

limited diffraction. Such channels are particularly relevant in contemporary wireless 

communication systems, including 5G and beyond, due to their higher frequency 

operations and the resultant propagation characteristics. Mathematically, the 

ray/cluster channel matrix can be expressed as. 

 

, , ,
1 1

( ) ( )
raysclust

NN

u v rx u v tx u v
v u

H a AoA AoDa 

= =

=      (2.8) 

 

Here, the channel H  is composed of clustN  clusters, with each cluster containing 

raysN  rays. The -thu  ray resides within the -thv  cluster. The parameter ,u v  

represents the complex gain associated with each ray. Additionally, ,u vAoD  refers to 

the Angle of Departure from the transmitting array, and ,u vAoA  denotes the Angle of 

Arrival at the receiving array. The array response vectors for transmission and 

reception are represented by ,( )tx u vAoDa  and ,( )rx u va AoA  respectively. Here is the 

revised section with the new references related to Massive MIMO for millimeter-wave 

communication. Recent studies have further refined and validated the Ray/Cluster 

Channel model for mmWave communications. For instance, research conducted by 

(Li, 2023), emphasizes the importance of accurately modeling the spatial and 

temporal characteristics of clusters to enhance the performance of mmWave 

systems. Similarly, (Wang, 2024) explore the impact of different environmental factors 

on the clustering behavior of rays, offering insights into more precise channel 

estimation techniques. 

These advancements highlight the ongoing evolution of channel modeling 

techniques, ensuring that the Ray/Cluster Channel model remains robust and 

applicable to the latest wireless communication technologies. 
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2.4.2 Rayleigh Fading Channel 

The Rayleigh Fading Channel (Bernard, 1997) is a wireless 

communication channel model that describes signal fading due to the random 

scattering of signals by objects in the environment. This model is named after Lord 

Rayleigh, who was the first to describe the phenomenon of fading in the context of 

wireless communication. A Rayleigh-faded channel is characterized by random 

variations in the amplitude and phase of the received signal. The amplitude of the 

received signal follows a Rayleigh distribution, and the phase is uniformly distributed 

between 0 and 2 . The fading is assumed to be slow, meaning that the channel 

remains constant over the duration of a symbol. Mathematically As stated in 

Equation (2.1), H  represents the channel response. Received signal Y , where X  is 

the transmitted signal and n  is the additive white Gaussian noise (AWGN). In a 

Rayleigh fading environment, the channel impulse response H  can be modeled as a 

complex Gaussian process with zero mean. This implies that both the real and 

imaginary parts of H  are independent and identically distributed (i.i.d.) Gaussian 

processes with zero mean and equal variance.  

 

 
Figure 2.9 Schematic model of a Rayleigh fading channel (Orten, 2002). 

 

In Figure 2.9. Rayleigh fading is commonly observed in wireless communication 

systems such as mobile communications and wireless local area networks (WLANs), 

where signals scatter off buildings, trees, and other objects in the environment. The 

Rayleigh fading channel model is useful for analyzing the performance of wireless 
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communication systems under fading conditions and for designing equalization and 

diversity techniques to combat fading, a Rayleigh-faded channel is described by the 

fact that its entries are drawn from a complex normal distribution with mean 0 and 

variance 1: 

 

,[ ] ( )0,1m n CH N      (2.9) 

 

Therefore, from equation 2.7, we can derive an initial signal detection 

method. However, since this technique is fundamental, it is explained here to 

provide an understanding of the basic principles of signal detection. The widely used 

signal detection techniques are ZF and MMSE. Recent advancements in 

understanding Rayleigh fading have been made by leveraging machine learning 

techniques to predict and mitigate the impact of fading on signal quality. For 

instance, (Li, 2023) proposed a deep learning framework for predicting channel state 

information (CSI) in Rayleigh fading environments, demonstrating significant 

improvements in communication reliability and efficiency. Additionally, (Marye, 2022) 

explored adaptive modulation schemes to dynamically adjust transmission 

parameters based on real-time channel conditions, further enhancing system 

performance. 

 

2.5  Signal Detection Method 
 Signal detection is a critical component in wireless communication systems, 

especially in the presence of interference and noise. Effective signal detection 

ensures reliable data transmission and enhances overall system performance. Several 

methods have been developed to address the challenges posed by complex 

communication environments, each with its strengths and limitations. This section 

outlines key signal detection techniques employed in modern communication 

systems, including both traditional linear methods and advanced approaches 

leveraging machine learning. 
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2.5.1 Zero Forcing (ZF) 

ZF is a linear signal detection technique used to combat interference in 

multiple-antenna systems. The ZF method works by inverting the channel matrix to 

nullify the interference from other signals. Although it is effective in reducing inter-

symbol interference, it can amplify noise, especially when the channel matrix is 

nearly singular, leading to suboptimal performance in low signal-to-noise ratio (SNR) 

scenarios. ZF is an early approach to channel estimation, detecting signals by 

applying various parameters according to the theory from Equation 3.1. This 

estimation method is classified as a 1D estimator, meaning channel estimation is 

performed using test cycles in a single dimension, whether frequency or time. The ZF 

signal detection method reduces the mean square error between the received signal 

and the estimated value. It can be described as follows (Trotobas, 2020). 

 
2

ˆ arg min
ZF

ZF ZFH
H Y H X= −    (2.10) 

 

Conversely, if we consider signal detection, it can be expressed as. 

 

( )
2

  argmin   xy y Hxx = −     (2.11) 

 

Comparing with Equation 2.7, we observe that the constraint of the constellation on 

x  has been removed, significantly reducing complexity. For an invertible square 

matrix, the solution is given by. 

 

( ) † yx y H=       (2.12) 

 

where †H  is the pseudo-inverse of H , equal to 1H − if the matrix is square and 

invertible. If the matrix is not invertible or not square, we use the pseudo-inverse 

instead. When T RM M  and there are at least TM  linearly independent columns in 

 



22 

 

H , the pseudo-inverse, sometimes called the Moore-Penrose pseudo-inverse, is 

defined by. 

 

( )
 1

†   H HH H H H
−

=      (2.13) 

 

The complexity of obtaining †H  from H  is approximately cubic in TM  for square 

matrices. However, obtaining ( )yx  from y  is done in linear time in TM . 

Given that X  is the matrix with the order of the transmitting antennas, 

1,2,3, ,
TM TX M=  , of the total number of transmitting antennas as follows. 

1( ) [ ( ),..., ( )]
T

T

N MX p X p X p=   (2.14) 

where ( )T  denotes the conjugate transpose. 

2.5.2 Minimum Mean Square Error (MMSE) 

The MMSE detection technique aims to minimize the mean square error 

between the transmitted and received signals. Unlike ZF, MMSE takes into account 

both the noise and the interference. By finding a balance between noise 

amplification and interference reduction, MMSE provides a more robust performance 

across a range of SNR conditions. It does so by combining the received signal with a 

weighting factor that accounts for the noise variance. 

The ZF technique can result in noise amplification if the smallest 

singular value of H  is too low. This can be quantified using the concept of the 

condition number of the matrix H . The condition number of H  is a measure of the 

relative magnitude of the singular values of H , defined as the ratio between the 

largest and smallest singular values of H . When the condition number is close to 

unity, the matrix is said to be well-conditioned. However, if the condition number is 

large, the matrix is ill-conditioned (Trotobas, 2020). 
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Reducing the sensitivity of linear receivers to the conditioning of the matrix 

H , a regularization term can be added to the objective function in Equation 2.8 as 

follows: 

( )
2 2

  argmin   +  xx y y Hx x= −    (2.15) 

For 0  , the solution can be rewritten as. 

 

( ) ( ) ( )
 1  1

 H H Hy H H I H y HH I yx  
− −

= + = +   (2.16) 

 

This method, known as the Linear Minimum Mean-Square Error (L-MMSE) 

technique, minimizes the mean square error in estimating x  among all linear 

detectors. It solves the following problem. 

 

( )
 2

 , argmin    ,  

such that s A b,

s Ex nyx s x

y

 
 

= −

= +

    (2.17) 

 

For any T RM M  matrix A  and vector b  TM
C . Note that the 

minimization is over all linear functions of y , where A  and b  are chosen to 

minimize the expected value over the randomness in x  and n  (assuming the 

channel matrix H  is known and not random). If x  is Gaussian (instead of from a 

discrete constellation), this results in an MMSE detector as well. Compared to the 

Maximum Likelihood (ML) detection technique, both ZF and MMSE linear detectors 

are easier to implement, but their Bit Error Rate (BER) performance is inferior. Recent 

research has focused on enhancing MMSE detection techniques, leveraging 

computational advancements and machine learning to address its limitations. 

(Minango, 2018) proposed a robust MMSE approach that dynamically adapts to 

changing channel conditions. Their method utilizes real-time channel state 

information to adjust the detection parameters, thereby improving the BER 
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performance without significantly increasing computational complexity. This adaptive 

approach ensures that the MMSE detector can maintain high performance even in 

fluctuating environments, making it more reliable for practical applications. 

2.5.3 Maximum Likelihood Detection (MLD) 

Maximum Likelihood Detection is a nonlinear detection method that 

searches for the transmitted signal vector that is most likely to have produced the 

observed received signal vector. MLD offers optimal performance in terms of error 

rate, as it considers all possible transmitted signal vectors. However, its 

computational complexity increases exponentially with the number of antennas and 

modulation order, making it impractical for real-time applications with a large 

number of antennas (Jeon, 2018).  

 

Mathematically, the MLD problem can be formulated as follows. Given the received 

signal Y , the transmitted signal vector X  is estimated by maximizing the likelihood. 

 
ˆ arg max ( | )xX P Y X=     (2.18) 

 

In the case of additive white Gaussian noise (AWGN), the likelihood function ( | )P Y X  

can be written as. 

 

2

0 0

1 1
( | ) exp

( ) rN
P y x y Hx

N N

 
= − − 

 
‖ ‖     (2.19) 

where 0N  is the noise variance, RM  is the number of received signals, and H  is the 

channel matrix. To simplify the maximization, we can equivalently minimize the 

negative logarithm of the likelihood function. 

 
2ˆ arg min xx y Hx= −‖ ‖     (2.20) 
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This formulation implies that MLD searches for the x  that minimizes the Euclidean 

distance between the received signal y  and the product Hx . 

Given that x  belongs to a finite set of possible transmitted symbols, the 

minimization can be expressed as. 

 
2ˆ arg min xx y Hx= −‖ ‖     (2.21) 

 

where  represents the set of all possible transmitted symbol vectors. 

Due to the exhaustive search over all possible combinations of x , the 

computational complexity of MLD is (| | )tN
O , where TM  is the number of transmit 

antennas. This exponential complexity makes MLD impractical for large-scale 

systems, despite its optimal performance in terms of minimizing the error probability. 

2.5.4 Deep Learning-Based Detection 

Recent advancements in machine learning have led to the 

development of deep learning-based signal detection techniques. These methods 

employ neural networks to learn and adapt to the characteristics of the channel 

(Wang, 2024). By training on large datasets, deep learning models can capture 

complex relationships and dependencies that traditional methods might miss. This 

approach provides high accuracy in varying channel conditions and is particularly 

useful in scenarios where the channel characteristics change dynamically. Deep 

learning-based detection leverages various neural network architectures, such as 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep 

belief networks (DBNs), to model the intricate patterns of wireless channels. The 

primary advantage of these models is their ability to generalize from the training 

data, enabling robust performance even in challenging and rapidly changing 

environments. Mathematically, deep learning-based detection can be formulated as 

follows. Given the received signal y , a neural network model f  parameterized by 

  is used to estimate the transmitted signal x . 
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ˆ ( )x f y=      (2.22) 

 

The parameters   are learned from the training data by minimizing a suitable loss 

function, such as the mean square error (MSE) between the true transmitted signals 

and the estimated signals. 

 

2

1

arg min ( )
N

i i

i

x f y 
=

= −‖ ‖     (2.23) 

 

where N  is the number of training samples, and ix  and iy  are the transmitted and 

received signals for the thi −  training sample, respectively. A notable advantage of 

deep learning-based detection is its flexibility to incorporate various types of channel 

state information (CSI) and to adapt to different modulation schemes. This 

adaptability makes it a powerful tool for modern wireless communication systems, 

including 5G and beyond. 

 

2.6  Machine Learning (ML) 
The field of machine learning has evolved in tandem with artificial 

intelligence. In fact, machine learning has been present since the early days of 

artificial intelligence. Many scientists were interested in creating machines that could 

learn from data, leading to various experimental methods. The most notable among 

these methods is the artificial neural network. Over time, general linear models 

based on statistical principles were developed, and methods of probabilistic 

reasoning were advanced, especially in applications such as automatic disease 

diagnosis. Broadly speaking, machine learning can be categorized in several ways 

based on the type of input data or training datasets and the types of machine 

learning approaches, as outlined below. 
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2.6.1 Supervised Learning 

Supervised learning, or learning with a supervisor, allows a computer to 

solve problems independently after learning from a set of example data over a 

period of time. The principles of supervised learning can be applied in two main 

forms classification and regression (Draper, 1998). Supervised learning involves 

training a model on a labeled dataset, meaning that each training example is paired 

with an output label. The goal is for the model to learn a mapping from inputs to 

outputs that can be applied to new, unseen data. Supervised learning is widely used 

in various applications, such as image and speech recognition, medical diagnosis, and 

spam detection (LeCun, 2015; Goodfellow, 2016), which is shown in Figure 2.10. 

 

 
Figure 2.10 Types of Supervised Learning 

 

 2.6.1.1 Regression Analysis 

Regression analysis, specifically simple regression analysis, 

studies the relationship between two variables, denoted as X  and Y , that have a 

linear relationship as follows. 

 

0 1Y X = + +     (2.24) 

 

Supervised Learning

Classification Regression
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where 0  is the intercept, 1  is the slope, and  is the error term. Simple regression 

analysis assumes that the variable X  is predetermined and the value of Y  changes 

according to X . Each value of X  pairs with a corresponding value of Y , and when 

these pairs are plotted, they form a regression line that represents the average 

relationship between the variables. 

 

 
Figure 2.11 Example Graph of Accidents and Population 

 

In Figure 2.11, this example, X  represents the number of accidents and Y  

represents the population. The data is hypothetical and demonstrates a regression 

line, which shows the linear relationship between the two variables. The least 

squares method (LS) is commonly used to estimate the parameters 0  and 1 , 

where 0  is a constant and 1  is the slope of the line. This estimation directly 

affects the regression line's change between X  and Y , which researchers refer to as 

the regression coefficient or prediction coefficient (Goodfellow, 2016; Montgomery, 

2021). 

 2.6.1.2 Classification Analysis 

Classification involves categorizing data into distinct classes. 

The general process of classification entails an algorithm attempting to approximate 

a function f  from the training set and producing ( )f x  in the form of distinct 
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categories. A crucial aspect of classification is defining the target data clearly. For 

example, determining whether students in Class A pass or fail an exam. The analysis 

of Class A students' data using classification will yield two outcomes: pass or fail. 

Similarly, in credit approval, the goal might be to determine whether a loan 

application is approved or denied. However, targets can be more than two 

categories, such as classifying flowers into four groups based on features like color, 

petal size, and origin. 

 

 
Figure 2.12 Data Classification (a) 
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Figure 2.13 Learning from Data to Create a Classifier (b) 

 

In Figures 2.12 and 2.13, the process of borrowing and lending. Figure 2.12 shows the 

creation of a classifier from input data, where each recorded data point includes a 

set of attributes that describe the characteristics of individuals borrowing money and 

categorizes them as either low-risk or high-risk borrowers. The process of creating a 

classifier is often called "learning" or "training," where the classification algorithm is 

applied to the data. Each recorded data point includes a set of attributes describing 

its characteristics, along with a class label attribute indicating its category. The input 

dataset used for creating the classifier is called the "training data." 

 

In the second step of classification, shown in Figure 2.13, the created classifier is used 

to predict new data's category. Initially, the classifier is tested and evaluated for 

accuracy. If we use the training data for testing, the classifier's accuracy will be high 

due to overfitting. However, testing with a different dataset (test set) containing the 

class label attribute allows for an accurate evaluation of the classifier's performance. 

The classifier's accuracy is the percentage of correctly classified data points, matching 

the class label of each recorded data point. Once the classifier's accuracy is 

satisfactory, it can be used to classify new, unseen data ("unknown" or "previously 

unseen" data). For instance, the classifier created in Figure 2.12 can be used to 

decide on loan applications. Figures 2.12 and 2.13 depict testing the classifier for 

accuracy. Common criteria for evaluating classification methods include accuracy, 

precision, recall, and F1 score (Bishop, 2006; Tan, 2013). 

 

Table 2.1 Comparison of the Performance of Classification and Data Processing.  

Accuracy 

This concerns the ability of the constructed classifier to correctly 
classify previously unseen data. The accuracy can be evaluated 
using one or more datasets that are separate from the training 
dataset. 
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Table 2.1 Comparison of the Performance of Classification and Data Processing. 
(Continued) 

Speed 
This pertains to the computation time required for both the 
creation of the classifier and the classification or prediction of 
data. 

Robustness 
This involves the classifier's or predictor's ability to make accurate 
predictions from noisy or incomplete initial data. 

 Scalability 
This relates to the efficiency of constructing classifiers or 
predictors when dealing with large volumes of data. 

 Interpretability 
This concerns the extent to which the classifier or predictor can 
be understood by users. 

 

2.6.1 Unsupervised Learning 

In supervised learning, the correct answer is known and provided in the 

form of labels. However, in unsupervised learning, the exact answer is unknown, and 

the goal is for the machine to discover the underlying structure in the data. For 

instance, in the study of DNA structure, we might aim to identify the genes that 

influence eye color, such as blue or black. While we do not know which specific part 

of the DNA affects eye color, we have DNA data from individuals that can be 

categorized into two groups: one with blue eyes and the other with black eyes. The 

objective is for the machine to identify which parts of the DNA distinctly differentiate 

between the two groups and are consistent within each group. Unsupervised learning 

can be divided into two main types, clustering and dimensionality reduction. These 

can be explained as follows. 

 2.6.2.1 Clustering 

Clustering algorithms examine only the input data without 

providing an outcome. For instance, in a population survey to identify patterns in the 

data, we need to know how many classes the data comprises. We must specify what 

each group discovered by the tool represents. This allows us to reduce the number 
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of labels to be as many as the classes. In Figure 2.14, for example, clustering data 

into two dimensions (data input consisting of two values, x  and y ) without knowing 

the groups beforehand. We instruct the tool to find a way to separate the data into 

four groups, and the result is the boundaries of each group, as illustrated in the 

following figure. This approach is comprehensively discussed in (Hastie, 2009). 

 

 
Figure 2.14 Clustering Data 

 

 2.6.2.2 Dimensionality Reduction 

In Figure 2.15, dimensionality reduction compresses the data 

by reducing the number of dimensions, making it unnecessary to store incomplete 

data while still being able to classify it. The goal is to reduce the data to two 

dimensions and still achieve good class separation. This technique is well-articulated 

in (Bishop, 2006) and (Raschka, 2015). 

 
Figure 2.15 Visualization of Dimensionality Reduction for Class Separation. 
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In unsupervised learning, the goal is to find hidden patterns or intrinsic structures in 

the input data. Clustering is one such technique, which involves grouping data points 

with similar characteristics together. Another technique is dimensionality reduction, 

which simplifies the data while retaining its essential features, enabling efficient data 

analysis and visualization. These methodologies are foundational in the field of 

machine learning, as detailed in (Raschka, 2015; Murphy, 2012). 

 

2.7  Deep Learning (DL) 
Deep learning is a subset of machine learning that utilizes artificial neural 

networks (ANNs) with multiple layers to learn from data. These layers are called 

hidden layers because the inputs and outputs are not directly observable. The 

architecture of these neural networks is deep, meaning they have multiple layers, 

typically more than two or three, as shown in the following Figure 2.16. 

 

 
Figure 2.16 Basic Structure of Deep Learning 

 

Deep learning models require training and testing on large amounts of data. 

They learn to recognize patterns and make predictions by adjusting the weights of 

the connections between neurons in each layer. These weights are adjusted during 

the training process using an algorithm called backpropagation, which uses the error 
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between the predicted and actual outcomes to modify the weights. Deep learning 

models can be applied to a variety of tasks, such as image recognition, speech 

recognition, natural language processing, and even playing games. They achieve 

state-of-the-art performance in many of these tasks and are used in applications like 

autonomous driving, medical imaging, and virtual personal assistants. For an overview 

of the field, see (Schmidhuber, 2015). Deep learning models can be classified into 

different types, such as feedforward neural networks (FFNN), recurrent neural 

networks (RNN), convolutional neural networks (CNN), and autoencoders. Each type 

has its own unique characteristics that are tailored to specific problems. Can explain 

as follows. Feedforward Neural Networks (FFNN) these are the simplest type of 

artificial neural network architecture where information moves in one direction 

forward from the input nodes, through the hidden nodes (if any), to the output 

nodes. There are no cycles or loops in the network. Recurrent Neural Networks (RNN) 

unlike feedforward neural networks, RNNs have connections that form directed 

cycles. This means that the output from some neurons can be fed back into the 

network, allowing them to maintain a form of memory. They are particularly useful 

for tasks that involve sequential data, such as time series analysis or natural language 

processing. For more details, refer to (Hinton, 2012). Convolutional Neural Networks 

(CNN) these are particularly effective for spatial data, such as images. They use 

convolutional layers that apply a convolution operation to the input, passing the 

result to the next layer. This helps in capturing spatial hierarchies in images, making 

CNNs very powerful for image recognition tasks. The effectiveness of CNNs in image 

classification is demonstrated by (Krizhevsky, 2012). Autoencoders these are a type of 

neural network used to learn efficient codings of input data. The aim of an 

autoencoder is to learn a representation (encoding) for a set of data, typically for the 

purpose of dimensionality reduction. They are also used for unsupervised learning of 

features. In summary, machine learning is a broad term that encompasses any 

method of teaching computers to learn from data, whereas deep learning is a subset 

of machine learning that uses deep neural networks to learn from data. Deep 
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learning models are particularly powerful because they can learn hierarchical 

representations of the data, which allows them to excel at tasks like image and 

speech recognition. 

 

2.8  Aspects of Comparative Analysis 
 In measuring the performance of data from the application of machine 

learning and deep learning, there are several methods, such as evaluating the 

communication system and assessing the stability of the data processed through 

machine learning. These methods are as follows. 

2.8.1 Data Loss Function 

In measuring the performance of data from the application of machine 

learning, there are various methods, as shown in Table. 

Table 2.2 Performance Metrics: Classification and Regression Loss. 

Classification 

Log Loss 
Focal Loss 
KL Divergence/Relative Entropy 
Exponential Loss 
Hinge Loss 

Regression 

Mean Square Error / Quadratic Loss 
Mean Absolute Error 
Huber Loss / Smooth Mean Absolute Error 
Log cosh Loss 
Quantile Loss 

 

The types of regression loss measurements are as follows. 

 2.8.1.1 Mean Square Error, Quadratic Loss (L2 Loss) 

Mean Square Error (MSE) is the most used regression loss 

function. It measures the average of the squares of the errors that is the average 

squared difference between the estimated values (predictions) and the actual value. 
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This metric is particularly useful because it punishes larger errors more than smaller 

ones, making it very effective for capturing the quality of model predictions (LeCun, 

2016; Montgomery 2021; Tan, 2013). Mathematically, MSE is defined as. 
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Where iy  represents the actual target value. p

iy  represents the predicted value. 

n  is the number of observations. 

The derivation of this equation starts from the basic principle of least squares, which 

seeks to minimize the sum of the squared differences between the observed and 

predicted values. This minimization process leads to the MSE formula, providing a 

clear and effective way to measure prediction accuracy. Below is a plot of the MSE 

function where the true target value is 100 , and the predicted values range from -

10,000 to 10,000. The MSE loss (Y-axis) reaches its minimum when the prediction (X-

axis) is equal to 100. The range of MSE is from 0 to ∞, as it only takes non-negative 

values due to the squaring operation in the formula. This visualization helps to 

understand how deviations from the true value affect the MSE. As predictions move 

away from the actual target value, the MSE increases quadratically, emphasizing the 

penalty for larger errors. 
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Figure 2.17 Plot of MSE Loss (Y-axis) vs. Predictions (X-axis) 

 

In Figure 2.17. MSE is widely used in regression analysis and is fundamental in training 

algorithms for machine learning models. It provides a straightforward approach to 

evaluate the accuracy of model predictions and is an essential tool in various 

applications, such as finance, health care, and engineering, where precise prediction 

is crucial. 

 2.8.1.2 Mean Absolute Error (L1 Loss) 

Mean Absolute Error (MAE) is another loss function used for 

regression models (Hunter, 2007; Pedregosa, 2011). MAE is the sum of the absolute 

differences between the target values and the predicted values. It measures the 

average magnitude of the errors in a set of predictions, without considering their 

direction. If the direction is considered, it is called the Mean Bias Error (MBE), which is 

the sum of the signed errors. The range of MAE is from 0 to ∞. The MAE is defined 

mathematically as. 
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Where iy  represents the actual target value. p

iy  represents the predicted value. 

n  is the number of observations. MAE is particularly useful because it is less 

sensitive to outliers compared to the Mean Square Error (MSE), as it does not square 

the error term. This makes MAE a more robust metric in certain applications. Below is 

a plot of the MAE function where the true target value is 1 0 0 , and the predicted 

values range from -10,000  to 10,000. The MAE loss (Y-axis) is minimized when the 

prediction (X-axis) equals the true value. 

 

 
Figure 2.18 Plot of MAE Loss (Y-axis) vs. Predictions (X-axis) 

 

In Figure 2.18. The MAE graph demonstrates how the average absolute error varies 

with predictions. The MAE provides a clear indication of the average prediction error 

magnitude, making it a straightforward and interpretable loss function for regression 

tasks. 

 2.8.1.3 Huber Loss (Smooth Mean Absolute Error) 

Huber Loss is less sensitive to outliers in data compared to the 

Mean Squared Error (MSE). Additionally, it is differentiable at 0. Essentially, it 
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combines the best properties of both MSE and Mean Absolute Error (MAE). Huber 

Loss behaves like the absolute error when the error is large and like the squared 

error when the error is small. The threshold at which it transitions from one to the 

other is determined by the hyperparameter   (delta), which can be tuned. Huber 

Loss approaches MSE when   is close to 0 and approaches MAE when   is very 

large. The Huber Loss is defined as: 
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Where y  is the actual target value. ( )f x  is the predicted value.   is the threshold 

parameter that determines the point where the loss function changes from quadratic 

to linear. The following plot illustrates the behavior of Huber Loss. The Y-axis 

represents the Huber Loss, and the X-axis represents the predicted values. 

 

 
Figure 2.19 Plot of Huber Loss (Y-axis) vs. Predictions (X-axis) 

 

In Figure 2.19. Huber Loss combines the advantages of both MSE and MAE by 

providing a quadratic loss for small errors and a linear loss for large errors. This 
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characteristic makes it robust to outliers while maintaining sensitivity for smaller 

errors, making it a versatile loss function in regression tasks (Huber, 1964). 

 2.8.1.4 Log-Cosh Loss 

Log-Cosh is another loss function used in regression tasks that 

is smoother than the L2 loss. Log-Cosh is the logarithm of the hyperbolic cosine of 

the prediction error. It combines the benefits of Mean Squared Error (MSE) and Mean 

Absolute Error (MAE) while being less sensitive to outliers. The Log-Cosh Loss is 

defined as. 
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Where iy  represents the actual target value. p

iy  represents the predicted value. 

n  is the number of observations. One of the main advantages of Log-Cosh Loss is 

that log(cosh( ))x  is approximately equal to  
2

2

x  for small x  and | | log(2)x −  for 

large x . This means that Log-Cosh Loss behaves like MSE for small errors and like 

MAE for large errors, making it robust to occasional incorrect predictions. It inherits all 

the benefits of Huber Loss and is differentiable twice everywhere, unlike Huber Loss. 
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Figure 2.20 Plot of Log-Cosh Loss (Y-axis) vs. Predictions (X-axis) 

 

In Figure 2.20. Log-Cosh Loss provides a balance between the sensitivity of MSE and 

the robustness of MAE, making it a versatile and efficient loss function for regression 

tasks. It smooths the transition between different error scales and provides stability 

in the presence of outliers, making it a reliable choice for various machine learning 

applications (Charbonnier, 1994). 

 

 2.8.1.5 Quantile Loss 

In real-world prediction problems, uncertainty in our 

predictions is often a crucial factor to consider. Knowing the range of predictions, 

rather than just point estimates, can significantly improve decision-making processes 

for many business problems. Quantile Loss becomes beneficial when we are 

interested in predicting intervals instead of just point estimates. Prediction intervals 

from least squares regression rely on the assumption that the residuals (actual values 

minus predicted values) have constant variance across the values of the 

independent variables. Linear regression models that violate this assumption cannot 

be trusted. We cannot abandon the concept of linear regression modeling altogether 

by asserting that non-linear functions or tree-based models will always be better in 

such scenarios. This is where quantile loss and quantile regression come into play, as 

quantile regression provides reasonable prediction intervals even for residuals with 

non-constant variance or non-normal distributions, as discussed by (Koenker, 1978). 

Quantile regression aims to estimate the conditional quantiles of the response 

variable given certain values of the predictor variables. Quantile Loss is an extension 

of Mean Absolute Error (MAE); when the quantile is the 50th percentile, it becomes 

MAE. The idea is to choose the quantile value based on whether we want to give 

more weight to positive errors or negative errors. The loss function attempts to 

penalize overestimation and underestimation differently based on the chosen 

quantile value ( ). For instance, a quantile loss function with   = 0.25 penalizes 
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overestimation more and tries to keep predictions slightly below the median. The 

Quantile Loss function is defined as: 
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Where iy  represents the actual target value. p

iy  represents the predicted value.   

is the quantile value. 

This loss function provides different penalties for overestimation and 

underestimation based on the quantile value, making it suitable for constructing 

prediction intervals that accommodate varying levels of uncertainty and non-

constant variance in the data. Quantile regression and quantile loss are valuable 

tools for estimating conditional quantiles, offering robust prediction intervals even in 

the presence of heteroscedasticity or non-normal residual distributions. By selecting 

appropriate quantiles, we can tailor our prediction intervals to better reflect the 

underlying uncertainty in the data. For an in-depth exploration of these methods, 

refer to Koenker's comprehensive work on quantile regression (Koenker, 2005). 

2.8.2 Bit Error Rate (BER) Analysis for Different Modulation Schemes 

In digital communication systems, the Bit Error Rate (BER) is a key 

parameter used to measure the performance of a communication channel. BER is 

defined as the ratio of the number of bits received incorrectly to the total number of 

bits transmitted. It provides insight into the reliability of the communication system 

under various conditions of noise, interference, and distortion. 

 2.8.2.1 BER for BPSK (Binary Phase Shift Keying) 

BPSK is one of the simplest and most robust modulation 

schemes. The BER for BPSK is given by. 
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where: 

- BER  is the bit error rate, 

- ( )Q   is the Q-function, 

- bE  is the energy per bit, 

- 0N  is the noise power spectral density. 

For high Signal-to-Noise Ratio (SNR), the BER can be approximated by: 
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     (2.31) 

For how to find BER calculations for various modulation schemes. The 

researcher has compiled the methods and equations in the table as follows. 

 

Table 2.3 Calculation of BER for the different modulation schemes  

Modulation Schemes Calculation BER Remarks 
BPSK 

0

1
erfc

2

bE
BER

N

 
   

 
 

Equation (2.32) 

QPSK 

0

1
erfc

2 2
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Equation (2.33) 

16-QAM 

0
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Equation (2.34) 

64-QAM 

0

37
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Equation (2.35) 

256-QAM 

0
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erfc

8 17

bE
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Equation (2.36) 

 

In summary, the Bit Error Rate (BER) for different modulation schemes varies 

depending on the modulation order and the Signal-to-Noise Ratio (SNR). Higher-order 

modulation schemes, such as 64-QAM and 256-QAM, offer higher data rates but 

require higher SNR to achieve the same BER as lower-order schemes like BPSK and 

QPSK. Understanding the BER performance of these modulation schemes is crucial 
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for designing reliable and efficient communication systems, as discussed in (Proakis, 

2008). 

 

 
Figure 2.21 the Bit Error Rate (BER) versus 0/bE N  for various modulation schemes 

 

In Figure 2.21, showing the Bit Error Rate (BER) versus 0/bE N  for various 

modulation schemes including BPSK, QPSK, 16-QAM, 64-QAM, and 256-QAM. The 

graph demonstrates how the BER decreases with increasing 0/bE N  for each 

modulation scheme, highlighting the trade-off between higher data rates and the 

required signal-to-noise ratio (SNR). This trade-off is critical in communication system 

design, as detailed by (Sklar, 2001; Haykin, 2008). 

2.8.3 Big O notation for Computational Complexity 

Big O notation is a mathematical representation used to describe the 

asymptotic behavior of functions. It provides a high-level understanding of the time 

or space complexity of an algorithm, especially in terms of its performance relative 

to the size of its input. 

Given functions ( )f n  and ( )g n , we say that ( ) ( )( )  f n O g n=  if there exist 

positive constants c  and 0n  such that for all 0n n ,  ( ) ( )f n c g n  . This notation 
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captures the upper bound of an algorithm's growth rate, ignoring constant factors 

and lower-order terms to focus on the most significant component as the input size 

n  grows. In essence, Big O notation provides an abstract measurement of an 

algorithm's efficiency, enabling comparison of different algorithms regardless of 

machine-specific constants and implementation details. 

 2.8.3.1 Application in Computational Complexity 

About of algorithm analysis, Big O notation helps compare the 

efficiency of different algorithms by providing a common framework to describe their 

time and space requirements. Here are key properties and applications relevant to 

this discussion. In the field of computational complexity, understanding the efficiency 

of various algorithms is crucial. The Big O notation is a mathematical notation used to 

describe the upper bound of an algorithm's time or space complexity, providing a 

common framework for comparing different algorithms and many studies have 

mentioned the process of analytical thinking (Cormen, 2009; Golub, 2013; Strang, 

2006; Nocedal, 2006; Trefethen, 1997; Higham, 2002). This notation helps in analyzing 

how the runtime or space requirements of an algorithm grow as the input size 

increases. The following table summarizes the time complexities of several common 

matrix operations and iterative methods used in computational complexity. Each 

entry includes a brief description of the operation and its associated Big O notation. 

This information is essential for selecting the most appropriate algorithm based on 

the specific requirements of a given problem, ensuring optimal performance and 

resource utilization. 

 

Table 2.4 Computational Complexity Applications  

Operation                              Vector 
Complexity  

 Matrix 
Complexity  

 Description                            

Addition 
Subtraction 

( )O N  ( )O MN   Element-wise addition/subtraction of two 
vectors a and b of size N  or two matrices 
A  and B of size M N . 
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Table 2.4 Computational Complexity Applications (Continued) 

Scalar 
Multiplication 

( )O N  ( )O MN   Multiplication of vector a  of size N  or 
matrix A of size M N  by a scalar c . 

Dot Product ( )O N   N/A                 Inner product of two vectors a and b of size 
N . 

Matrix-Vector 
Multiplication 

 N/A                ( )O MN   Multiplication of matrix A of size M N  
by vector b of size N . 

Matrix-Matrix 
Multiplication 

 N/A                ( )O MKN   Multiplication of matrix A  of size M K

by matrix B  of size K N . 

Element-wise 
Division 

( )O N  ( )O MN   Element-wise division of two vectors a and 
b of size N  or two matrices A  and B of 
size M N . 

Matrix 
Inversion 

 N/A                3( )O N   Inverting a square matrix A of size N N . 

Element-wise 
Operations 

( )O N  ( )O MN   Element-wise operations (e.g., ReLU, 
sigmoid) on vector a  of size N  or matrix 
A  of size M N  

Activation 
Function 

( )O N  ( )O MN   Applying activation function on vector a  of 
size N  or matrix A  of size M N  

 

2.9  Literature Review  
 This section describes research studies that have been reviewed and 

validated by researchers to provide a consistent basis and to improve the results of 

this research. By collecting analytical work related to UM-MIMO in the past 4 years in 

the IEEE database that includes academic journals and academic conferences, a total 

of 23 works. Updated on 24 May 2022. 
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Figure 2.22 The amount of research on UM-MIMO by publication year. Updated on 24 

May 2022. 

 

In Figure 2.22, which only a few studies have been done on channel 

estimation and signal detection, with 1 research related to signal detection and 4 

research related to Channel estimation. The researcher will first discuss the origins of 

this work, which the details are as follows: 

(Sarieddeen, 2019), research focuses on the use of Spatial Modulation (SM) 

techniques for UM-MIMO systems operating in the terahertz frequency range. (THz), 

which is one of the first works to address Ultra-Massive MIMO. The focus of the study 

is to address the long-range transmission problem at THz frequencies, which are 

known to have propagation losses and inherent limitations. very high energy This 

research presents the use of graphene sheets to create high-density nano-antennas. 

This can increase beamforming efficiency. However, this design still has limitations in 

the number of spatial degrees of freedom available for spatial adjustment. 
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Figure 2.23 Array-of-subarrayas antenna structure. 

 

In Figure 2.23, the proposed antenna arrangement structure in this research is crucial 

for enhancing performance and communication range in the Terahertz frequency 

band using UM-MIMO and Spatial Modulation techniques. This figure illustrates an 

Array-of-Subarrays (AoSA) configuration, consisting of multiple subarrays. Each 

subarray contains a significant number of nano-antennas. This subarray arrangement, 

comprising numerous nano-antennas, facilitates signal tuning and control, allowing 

adjustments based on frequency and communication distance. 
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Figure 2.24 BER performance of SM (solid lines) and SMX (dotted lines): f = 1 THz, D = 

1 m, M = 8, Q = 32 and |X| = 64. 

 

In Figure 2 . 2 4, the simulation compares the performance of Bit Error Rate (BER) 

between two communication methods, Spatial Modulation (SM) and Spatial 

Multiplexing (SMX) at a frequency of 1  THz and a distance of 1  meter in a 64 ×6 4 

MIMO system (M=8). The system uses nano-antennas with 1024-element SAs (Q=32) 

and 6 4 -QAM for the modulation scheme. The results demonstrate that the use of 

optimized antenna tuning in a 64×64 MIMO system at 1 THz significantly reduces the 

BER for both SM and SMX compared to the unoptimized case. Particularly for SMX, 

there is a notable reduction in BER with antenna optimization. However, SM exhibits 

greater stability in scenarios with poor channel quality, underscoring the importance 

of antenna optimization for enhancing communication performance in UM-MIMO 

systems at Terahertz frequencies. On the other hand, the results presented in this 

paper have limitations due to the excessively high SNR range of 45-95 dB, which may 

not be cost-effective for some organizations or users with budget constraints. Despite 

the high SNR, there could still be interference from other stronger signals in certain 

conditions, necessitating further management. 
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Based on the review of previous articles, the researchers have explored the 

application of Deep Learning and Machine Learning in UM-MIMO systems. In the work 

by (Nie, 2019), a method for channel estimation in UM-MIMO communication systems 

operating in the frequency range of 0 .06 -10  THz is presented. This method utilizes 

Deep Kernel Learning (DKL) in conjunction with Gaussian Process Regression (GPR) to 

enhance the accuracy and efficiency of channel estimation in systems with antenna 

arrays comprising more than 1 , 0 0 0  elements. DKL reduces the computational 

complexity compared to traditional linear estimation methods such as Least Squares 

(LS) and MMSE. 

 

 
 

Figure 2.25 An illustration of the deep kernel learning architecture in the Gaussian 

process regression (Nie, 2019).  

 

In Figure 2.25, The GPR as presented in this work, is a statistical estimation method 

that employs Gaussian Processes (GP) to estimate the relationship between input 

and output variables without requiring a predefined functional form for the 

relationship.  
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Figure 2.26 Simulation results for channel estimation using LS, MMSE, and DKL 

Estimators. 

 

In Figure 2 .2 6 , presents the simulation results comparing the Bit Error Rate 

(BER) performance for channel estimation using LS, MMSE, and Deep Kernel Learning 

with Gaussian Process Regression (DKL-GPR) in a UM MIMO system with a subarray 

size of 16 x16 . The results indicate that DKL-GPR consistently achieves a lower BER 

compared to MMSE and LS across all SNR values, with DKL-GPR showing the best 

performance, followed by MMSE and LS, respectively. The reduction in subarray size 

further enhances the performance of DKL-GPR significantly, due to the improved 

resolution of the beamspace in channel estimation. 

Advantages, no predefined functional form required: GPR does not 

necessitate assumptions about the relationship between input and output variables, 

making it adaptable to complex data relationships. High accuracy: GPR often provides 

more accurate estimates compared to linear methods. 

Disadvantages, computational complexity, GPR involves high computational 

complexity, especially as the size of the data increases, leading to longer 
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computation times for the covariance matrix. Kernel function selection: The 

performance of GPR depends on choosing an appropriate kernel function, which may 

require multiple trials. 

 In the work by (Murshed, 2022), a beamforming method for UM-MIMO 

systems operating in the Terahertz (THz) frequency band is presented. This method 

employs a Deep Neural Network (DNN) that integrates a 1 D Convolutional Neural 

Network (CNN) with Long Short-Term Memory (LSTM), referred to as the Fusion 

Separation Network. The aim of this approach is to reduce computational complexity 

while maintaining high spectral efficiency.  

 

 
 

Figure 2.27 Architecture of the proposed 1D CNN-LSTM-based (Murshed, 2022). 

 

In Figure 2.27, the CNN-LSTM model used for fusion and signal separation in 

UM-MIMO systems. The input comprises phase and magnitude signals that pass 

through three 1 D-Convolution Blocks. Each block includes convolutions, batch 

normalization, activation (ReLU), and pooling to reduce data size and extract 
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essential features. The processed data then goes through a Depth-wise Separable 

Convolution Block, performing separable convolution and pooling again. The outputs 

from the CNN are concatenated and fed into LSTM Blocks, which consist of 

bidirectional LSTM layers to capture temporal relationships. The data processed by 

the LSTM is separated into phase and magnitude signals through dense layers and 

flattening, resulting in distinct Phase Output and Magnitude Output for hybrid 

beamforming in UM-MIMO systems. Batch normalization and activation (Swish) 

techniques are employed to enhance processing accuracy and reduce computational 

complexity. 

 

 
Figure 2.28 SE of different algorithms for varying transmit power with Nt = Nr = 256 

and Ns = NRF = 5. (Murshed, 2022). 

 

 In Figure 2 .2 8 , the left graph shows that the Deep Neural Network (DNN) 

demonstrates spectral efficiency comparable to other techniques as the transmission 

power increases, particularly at higher power levels. The DNN (Proposed) performs 

closely to the optimal value while consistently outperforming the Orthogonal 

Matching Pursuit (OMP) method across all power levels. The right graph zooms in on 

the power range from -8  dBm to 4  dBm, providing more detailed comparisons. This 

confirms that the DNN performs well at low transmission power levels, similar to 
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other Alternating Minimization techniques, but with greater stability and superior 

performance in several aspects. Although the DNN-based method reduces 

computational complexity compared to the Alternating Minimization (Alt-Min) 

method, it still faces limitations in real-time processing due to the model's 

complexity. 

 

 In the research by (Chen, 2021), a Hybrid Spherical- and Planar-Wave Model 

(HSPM) and channel estimation (CE) method using a Deep Convolutional Neural 

Network (DCNN) for UM-MIMO systems in THz band are presented. The HSPM 

integrates the characteristics of both planar-wave and spherical-wave to enhance the 

accuracy of THz UM-MIMO system analysis and design. Additionally, a two-stage 

channel estimation mechanism is developed. In the first stage, the DCNN estimates 

the channel parameters of the reference subarrays. In the second stage, the 

geometric relationships between the parameters of the remaining subarrays are used 

to construct the full channel matrix. The simulation results demonstrate that the 

HSPM provides high accuracy over various communication distances, array sizes, and 

carrier frequencies. The DCNN quickly and accurately estimates parameters, 

significantly reducing processing complexity. However, the computations involved 

with HSPM and using DCNN for channel estimation require substantial computational 

resources, which can lead to prolonged processing times and increased complexity, 

as illustrated. Shown in Figure 2.29. 
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Figure 2.29 The structure of the proposed DCNN network. 

 

 
Figure 2.30 NMSE performance of different CE methods. 

 

 In Figure 2.30 , the comparison of Normalized Mean Squared Error (NMSE) for 

various channel estimation techniques is shown as the SNR varies from -10 dB to 10 

dB. The techniques compared include Orthogonal Matching Pursuit (OMP), 

Approximate Message Passing (AMP), Convolutional Neural Network (CNN), Recurrent 

Neural Network (RNN), DCNN+derived, and pure DCNN. The results indicate that the 

pure DCNN (orange line) achieves the lowest NMSE across all SNR values, signifying 
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the highest accuracy in channel estimation. This is followed by DCNN+derived (black 

line), which has a performance close to pure DCNN. On the other hand, OMP (blue 

line) exhibits the highest NMSE, indicating the lowest accuracy in channel estimation. 

These results confirm that DCNN-based techniques are more accurate and efficient in 

channel estimation compared to traditional methods and other deep learning 

techniques. 

 In addition to channel estimation, (Ju, 2024) notes that channel estimation 

(CE) is often more complex than signal detection due to the need for calculating 

intricate matrices and the high computational resources required, especially in MIMO 

systems with a large number of antennas. Channel estimation demands precise 

parameter tuning and extensive training time. In contrast, signal detection can be 

performed more quickly, and its efficiency can be significantly enhanced using deep 

learning techniques such as DetNet and OAMP-Net, or other algorithms. 

 In the research by Jiyuan Yang [46], a method for signal detection (SD) in 

Ultra-Massive Multiple-Input Multiple-Output (UM MIMO) systems is presented using 

the Information Geometry Approach (IGA). This method detects signals by calculating 

the a posteriori probability estimates of the transmitted symbol vectors and then 

finding the maximum of these probability estimates using an iterative m-projection 

process between submanifolds with different constraints. Simulation results show 

that IGA-SD is a promising and efficient method for signal detection in UM MIMO 

systems. However, there are some limitations, such as the constraints of the Central 

Limit Theorem (CLT): the accuracy of CLT-based estimation is high only when the 

number of antennas and users is large. In cases where the number of antennas or 

users is small, the accuracy of the estimation may decrease. 
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Figure 2.31 BER performance of IGA compared with AMP, EP and LMMSE under 4-

QAM. 

 

 In Figure 2.31, compares the Bit Error Rate (BER) of various signal detection 

techniques in UM-MIMO systems as the Signal-to-Noise Ratio (SNR) varies from -4 dB 

to 5  dB. The techniques compared include Linear Minimum Mean Squared Error 

(LMMSE), Expectation Propagation (EP) with 1 0  and 3 0  iterations, Approximate 

Message Passing (AMP) with 1 0  and 3 0  iterations, and Information Geometry 

Approach (IGA) with 10  iterations. The results show that IGA (pink line) achieves the 

best performance across all SNR values, with the lowest BER, indicating its superior 

capability in minimizing signal detection errors. This is followed by AMP and EP, while 

LMMSE has the highest BER, indicating the lowest performance in signal detection. 

Multiple iterations improve the accuracy of signal detection and reduce the BER, but 

they also increase complexity, processing time, and resource usage. 
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2.10  Application of Services 5G and 6G 
3GPP Commits to Develop 6G Specifications (3GPP), there was a discussion about 

information on the range of Bit Error Rate (BER) values, a crucial metric for assessing 

the quality of data communication systems. Different ranges of BER values impact 

various applications and have distinct considerations (Uusitalo, 2021). 

 

Table 2.6 The standard Bit Error Rate (BER) is determined by the requirements of the 
application and the Quality of Service (QoS). 

BER Applications Key Considerations 

010  
Testing or transmitting 
insignificant data 

High data loss, suitable for testing or 
transmitting easily lost data 

110−  

Communications with 
acceptable errors, high 
noise environments 

High data loss, suitable for non-critical 
communications such as servers with frequent 
updates 

210−  

Communications requiring 
moderate reliability, 
general communications 
with acceptable errors 

Low data loss, suitable for general 
communications such as medium quality video 
streaming or voice communications 

310−  
General communications Suitable for communications requiring moderate 

reliability such as IoT sensor data 

410−  

Communications requiring 
high accuracy 

Suitable for communications needing high 
accuracy such as high-resolution video 
streaming 

510−  

Communications requiring 
high reliability 

Suitable for high reliability communications 
such as unit control or medium distance 
communications 

610−  

Communications requiring 
very high reliability 

Suitable for very high reliability communications 
such as remote medical applications or high 
precision unit control 
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In this Table 2.6, it can be seen that higher BER values (e.g., 010 ) are suitable for 

testing or transmitting less critical information due to higher data loss. Conversely, 

lower BER values (e.g., 610− ) are appropriate for communication requiring high 

reliability, such as telemedicine or precision control in critical sectors. 

 

In 5G and 6G networks (Jain, 2022; Nguyen, 2021), selecting the appropriate services 

that align with the specified BER values in the table is crucial to achieving optimal 

communication performance tailored to the specific requirements of each service 

from Table 2.7. Enhanced Mobile Broadband (eMBB) has a BER range of 4 210 10− −− , 

suitable for high-bandwidth communications such as high-definition video streaming, 

high-speed internet usage, and video conferencing. This service is ideal for 

applications that require high data volumes and speeds but can tolerate some errors. 

In contrast, Ultra-Reliable and Low-Latency Communications (uRLLC) with a BER 

range of 5 310 10− −−  focuses on communications that demand high reliability and low 

latency, such as remote control, telemedicine, and industrial automation. This 

service requires extreme accuracy and reliability in data transmission. Massive 

Machine Type Communications (mMTC), with a BER range of 6 210 10− −− , is designed 

for communications involving a large number of IoT devices, such as sensors in smart 

cities and supply chain tracking systems. It emphasizes connecting a vast number of 

devices simultaneously while maintaining acceptable data transmission stability. 

Long-Distance and High-Mobility Communications (LDHMC), with a BER range of 
5 310 10− −− , is suited for communications that involve high mobility and long 

distances, such as high-speed vehicle communications and communication between 

space stations and the earth. This service demands high reliability in data 

transmission to ensure no data loss, even under high mobility conditions. Finally, 

Extremely Low-Power Communications (ELPC) with a BER range of 6 410 10− −−  is used 

for ultra-low-power communications, such as wearable health devices and low-

power sensors in IoT systems. This service is ideal for applications that require energy 

efficiency while maintaining high reliability in data transmission. 

 



60 

 

 

Table 2.7 Services 5G and 6G with BER. 

Services Network BER 

Enhanced Mobile Broadband (eMBB) 5G/6G 4 210 10− −−  

Ultra-Reliable and Low-Latency Communications (uRLLC) 5G/6G 5 310 10− −−  

Massive Machine Type Communications (mMTC) 5G/6G 6 210 10− −−  

Long-Distance and High-Mobility Communications (LDHMC) 6G 5 310 10− −−  

Extremely Low-Power Communications (ELPC) 6G 6 410 10− −−  

 

In Figure 2.32, in general, models can process various applications rapidly due to 

their workflow being divided into two main stages.  

 

 
Figure 2.32 Training and inference for application to using 

 

Training Stage: In this stage, the model is trained using pre-prepared data (Training 

Data), where the model learns the characteristics and patterns of the data through 

the adjustment of parameters (e.g., weights and biases). The training process is 
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typically time-consuming and resource-intensive (e.g., using GPUs or TPUs) but is 

done only once or when the model needs to be updated. 

 

Inference Stage: Once the model is trained, it can be used to process new data 

immediately without needing to retrain the model. In this stage, the model takes 

new input data and processes it through its layers to produce an output, such as 

classifying signals or analyzing images. This process is fast and efficient because the 

model already possesses the knowledge gained from the training stage. The 

inference process can be executed swiftly because CNNs are well-suited for parallel 

processing, allowing them to fully leverage high-performance hardware like GPUs and 

CPUs. Therefore, when deploying a trained CNN model, you simply feed the input 

data into the model, and it will quickly and accurately generate the desired output. 

 

2.11  Summary 
All of this pertains to the methodologies and background of the thesis, 

including the selection of algorithms for improving channel estimation in UM-MIMO 
systems. The researchers aim to apply deep learning to 6G communication systems, 
considering the Terahertz frequency band and signal detection to identify the most 
suitable methods for this research. The researcher has surveyed various academic 
articles such as academic journals and academic conferences. Which has been 
summarized in the following Table 2.8. The research survey results found that there 
were only three articles using signal detection methods without applying ML or DL. 
Additionally, most articles focused on hybrid precoding or hybrid beamforming. Only 
two articles employed the spatial multiplexing system, incorporating different 
channel models and methods of interest. Therefore, this thesis focuses on applying 
DL in the spatial multiplexing system using the Ray/cluster channel model with the 
signal detection method in the UM-MIMO system. 
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Table 2.8 Survey of research related to the proposed method.  

Ref. 

System 
model 

Channel model Method Model 

HB SM R/C 
 

RC LoS 
 

CE SD Etc. ML DL 

(Sarieddeen, 2019)          

(Nie, 2019)          

(Murshed, 2022)          

(Chen, 2021)          

(Ju, 2024)          

(Yang, 2024)          

(Yan, 2020)          

(Yan, 2022)          

(Morsali, 2020)          

(Hu, 2022)          

(Jamali, 2020)          

(Yan, 2021)          

(Elbir, 2021)          

(Sarieddeen, 2021)          

(Tarboush, 2021)          

(Shahjalal, 2021)          

Proposed  
in Thesis          

 

Where is HB: Hybrid Beamforming, SM: Spatial Multiplexing, CE: Channel Estimation, 

SD: Signal Detection, R/C: Ray/Cluster Channel, RC: Rayleigh Channel, LoS: Line of 

Sight. 

 



 

 

CHAPTER III 
METHODOLOGY 

 
3.1  Introduction 

In this chapter, the methodological approach adopted for detecting signals in 

UN-MIMO systems is thoroughly explored. This exploration is grounded in the 

advanced application of deep learning techniques, with a spotlight on the PMS-CNN. 

The investigation particularly emphasizes the integration of CNN within the ELM 1 

Dimension (1D) framework. The aim is to critically assess the effectiveness of these 

innovative methodologies for signal detection tasks.  

Furthermore, this study undertakes a comparative analysis by juxtaposing 

traditional signal detection methods, such as ZF and MMSE, against a spectrum of 

machine learning strategies. These include the ELM, RELM, and ORELM. This 

comparative evaluation focuses on gauging the performance of these methodologies 

through established metrics, namely the MSE and BER. The objective is to provide a 

nuanced understanding of the operational effectiveness of these approaches in the 

context of signal detection, thereby contributing to the broader discourse on 

technological advancements in signal processing. 

 

3.2  System Model 
The use of MATLAB for simulating UM-MIMO systems is widely accepted 

among researchers. In this study, we configured the simulations to include 256 

antennas at both the transmitter and receiver ends to enhance the efficiency of 

signal detection. Such a configuration enables the formulation of relevant equations. 

For example, consider a simplistic system model that includes transmitting antennas 

TM  and receiving antennas RM , embodying the concept of spatial multiplexing.  
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The relationship between the transmitted and received signals in this framework can 

be summarized using the memoryless MIMO flat fading channel model, represented 

by the narrowband model. As show in Figure 3.1. 

 

 
Figure 3.1 UM-MIMO system model. 

 

Y Hx n= +       (3.1) 

 

Within the framework of equation,  

Y   is the received signal vector at the RM  receive antennas. 

H  is the channel matrix between TM  transmit antennas and RM receive 

antennas, showing how the signal from each transmit antenna affects each receive 

antenna. 

x   is the transmit signal vector from the TM  transmit antennas. 

n   is the additive white Gaussian noise vector at the RM  receive antennas. 

The equation can be represented in matrix form as follows: 

 

11 12 1,1 1 1

2 12 22 2, 2 2

,1 ,2 ,

T

T

R T RR R R T

M

M

M M MM M M M

h h hY X n

Y h h h X n

Y X nh h h

      
      
      = +
      
      
            

    (3.2) 
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3.3  Channel Model 
This section delves into the examination of various channels, predicated on 

the potentiality of realistic scenarios. To approximate real-world conditions as closely 

as possible, the Saleh-Valenzuela signal model has been employed. This model 

posits that the signal comprises a conglomerate of discrete ray bundles, a 

characterization that is quintessential for mmWave signals, notable for their high 

reflectivity and minimal dispersion. From a mathematical perspective, the ray/cluster 

signal matrix can be delineated as follows. 

 

( ) ( ), , ,

1 1
R T

NrayNclust

u v M u v M u v

v u

H a AoA a AoD


= =

=       (3.3) 

 

Within the ambit of Massive MIMO systems, the channel matrix H  embodies the 

cumulative effect of myriad signal paths interfacing the transmitter and receiver 

arrays. The variables u  and v  within the equation are indices representing specific 

subarrays within the transmitting array TM  and the receiving array RM , 

correspondingly. The propagation of signals is envisaged through the prism of several 

'clusters,' each imbued with unique attributes. The notation clustN  designates the 

number of such clusters, serving as a pivotal parameter in the channel modeling 

process that encapsulates the environment's multipath complexity. Each cluster 

comprises numerous 'rays', denoted by raysN , symbolizing individual signal 

trajectories that cumulatively augment the aggregate signal received. The symbol ,u v   

delineates the complex gain associated with a signal path connecting the u -th 

subarray at the transmitter to the v -th subarray at the receiver, incorporating both 

signal attenuation and phase shift phenomena encountered during transmission. 

Additionally, ,( )u vAoD  and ,( )u vAoA  are paramount angular parameters, with 

,( )u vAoD , the Angle of Departure, delineating the vector along which the signal 

projects from the transmitting subarray u , and ,( )u vAoA , the Angle of Arrival, 
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indicating the vector along which the signal is apprehended by the receiving subarray 

v . Lastly, the functions ,( )
TM u va AoD and ,( )

RM u va AoA  articulate the antenna array 

responses at the transmitter and receiver, respectively. These functions play a crucial 

role in modulating the signal processing by the antenna arrays, predicated on the 

angles of departure and arrival. The notation '* ' signifies the conjugate transpose. 

Which has a communication structure as show in the following Figure 3.2. 

 
 
Figure 3.2 Ray/cluster-based UM-MIMO channel model schematic. 

 

3.4  Data preparation  
 Information from Figure 3.1, in studying the constellation diagrams of various 

QAM schemes, we found that using 256QAM has significant drawbacks in terms of Bit 

Error Rate (BER). The increased number of signal levels in 256QAM results in smaller 

distances between each signal level, making the signals more susceptible to noise 

and distortion in the channel. Consequently, the BER of 256QAM is higher compared 

to modulation schemes with fewer signal levels, such as 64QAM or 16QAM. 

Therefore, in environments with high noise levels or poor channel quality, using 

256QAM may be unsuitable as it leads to more errors in data transmission. As show 
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in Figure 3.3. Given this, the use of CNN for signal detection in UM-MIMO systems is 

an appropriate choice. CNN can learn and distinguish complex signal characteristics 

from the provided data. Using modulation signals with 256QAM helps the model 

capture the intricate relationships between the signals and the distortions occurring 

in the channel effectively, particularly in high-noise conditions. Additionally, 

employing CNN improves the accuracy of signal prediction and detection, enhancing 

the overall reliability and precision of UM-MIMO systems. 

 
Figure 3.3 QAM Constellation Diagram. 

 

 This section describes the preparation of data to be imported into the 

proposed model. which the data obtained from the system simulation UM-MIMO 

data selection uses appropriate data sets related to signal detection principles. And 

the dataset will be divided into training set and test set. But the process of preparing 
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a data set requires separating the real and imaginary parts of complex numbers. This 

method is called Because of the programming limitations of deep learning 

processing, values cannot be directly inputted. This is an advantage as researchers 

can learn the dataset and validate the values that will be used in deep learning. The 

researcher will explain the methods for preparing the data as follows. 

 The first step, from Figure 3.4, in red line box involves collecting test results 

from simulating the communication system, incorporating real and imaginary values. 

The size of this dataset is contingent upon the number of antennas specified for the 

task. This initial preparation phase is crucial for accurately reflecting the complexity 

and dynamics of the communication system under study. 

 
Figure 3.4 Workflow of the process. 

 
Figure 3.5 The Process about of Separation of real and imaginary parts 

 

Generate Channel Matrics according 
to channel model

Resolve all samples in to real part 
and imaginary part

Train Proposed model to predict 
target output

Appilcation to Signal Detection
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In Figure 3.5, the second step involves manipulating the data matrix through 

reformatting. Because understanding the behavior of neural networks is important for 

preparing training data, in Python, using a library like PyTorch, there are specific 

requirements for structuring the data to facilitate processing. This step must ensure 

that the dataset is in the correct format for the neural network to process it 

efficiently. It emphasizes the importance of fitting the data to the input requirements 

of the neural network model. 

 

3.5  Convolutional Neural Network (CNN) 
 In this section, the application of CNN for signal detection in UM-MIMO 

systems involves several interconnected mathematical steps. The following 

combines the equations from each step to provide a comprehensive understanding 

of CNN operations in this context, as shown in Figure 3.4. 

 
Figure 3.6 CNN Model Architecture. 

 

As explained in Figure 3.6, there are four main steps: Convolution Operation, 

Activation Function, Pooling Layer, and Fully Connected Layer, leading to the final 

predicted value.  

Convolution Operation, the convolution operation involves sliding a kernel w  over 

the input x  (which represents received signal data) to create a feature map S : 
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( ) ( * )( ) ( ) ( )
m

i m

S t x w t x t i w i
=−

= = +     (3.4) 

 

Activation Function, the feature map ( )S t  is then passed through an activation 

function to introduce non-linearity. The commonly used ReLU function is defined as: 

 

( ( )) max(0, ( ))f S t S t=      (3.5) 

 

Pooling Layer, the output from the activation function ( ( ))f S t  is then sent to a 

pooling layer, such as Max Pooling, to reduce the dimensionality of the data: 

 

( ) max( ( ( )), ( ( 1)), , ( ( 1)))P t f S t f S t f S t n= +  + −    (3.6) 

 

Fully Connected Layer, the output from the pooling layer ( )P t  is then flattened into 

a vector and passed through a fully connected layer, which aggregates the 

information and produces the final output: 

 

z Wp b= +       (3.7) 

 

Where W  is the weight matrix. p is the vector of the pooled results. b  is the bias 

vector. z is the output vector. 

Combining all the equations, we get the following sequence, summarizing the entire 

process. 

max(max(0, ( ) ( )),max(0, ( 1 ) ( )),

, max(0, ( 1 ) ( )))

m m

i m i m

m

i m

z W x t i w i x t i w i

x t n i w i b

=− =−

=−

=  + + + 

+ − + +

 


  (3.8) 
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This interconnected sequence of steps shows how numerical data representing 

signals in UM-MIMO systems is processed through the different layers of a CNN. The 

process involves extracting important features, introducing non-linearity, reducing 

dimensionality, and finally connecting and aggregating the information to predict the 

output, which is crucial for effective signal detection. 

 

3.6  Parallel Multi-Scale Convolutional Neural Network (PMS-CNN) 
In the field of signal detection and regression analysis, traditional CNN are 

commonly used for feature extraction and prediction tasks. However, CNNs with a 

single scale of convolutional filters might not be sufficient to capture the multi-scale 

nature of signal data, where patterns of various sizes and temporal lengths are 

present. To address this limitation, we propose PMS-CNN model to enhance feature 

extraction by incorporating multiple convolutional layers with different kernel sizes, 

capturing both fine and coarse features simultaneously. 

 
Figure 3.7 The proposed PMS-CNN architecture. 

 

In Figure 3.7, PMS-CNN operations involve using multiple kernels jw  (where j  

represents different kernel sizes: 1, 3, 5, 7, 9, 12) sliding over the input x  (which 

represents received signal data) to create multiple sets of feature maps jS . 
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( ) ( * )( ) ( ) ( )
j

j

m

j j j

i m

S t x w t x t i w i
=−

= = +     (3.9) 

 

Where jS  is the feature map for kernel size j  at position t . ( )x t i+  is the input 

data at position ( )t i+ . ( )jw i  is the weight of the kernel of size j  at position i . jm  

is the half-width of the kernel size j . 

Activation Functions, each set of feature maps ( )jS t  is then passed through an 

activation function to introduce non-linearity. For the ReLU function. 

( ( )) max(0, ( ))j jf S t S t=      (3.10) 

 

Where ( ( ))jf S t is the output of the ReLU function applied to ( )jS t . 

Batch Normalization, after ReLU activation, batch normalization is applied to each 

feature map ( ( ))jf S t . 

 

2

( )
ˆ ( )

j j

j

j

S t
S t





−
=

+
      (3.11) 

 

Where ˆ ( )jS t  is the normalized feature map. j  is the mean of the feature map 

( )jS t . 2

j  is the variance of the feature map ( )jS t .  is a small constant added for 

numerical stability. 

Multi-Scale Pooling Layers, the normalized feature maps ˆ ( )jS t  are then sent to 

multi-scale pooling layers, such as Max Pooling, to reduce the dimensionality: 

 

( ) max( ( ( )), ( ( 1)), , ( ( 1)))j j j jP t f S t f S t f S t n= +  + −  (3.12) 

Where ( )jP t is the pooled feature map. n  is the pooling window size. 

Feature Map Concatenation, the pooled feature maps ( )jP t  from different kernel 

sizes are concatenated to form a combined feature map concatP . 

 



73 

 

 

concat 1 2[ ( ), ( ), , ( )]kP P t P t P t=       (3.13) 

 

Where concatP is the concatenated feature map containing features from all scales. 

Fully Connected Layers (Linear), the concatenated feature map concatP  is flattened 

into a vector and passed through fully connected (linear) layers: 

 

concatz WP b= +       (3.14) 

 

Where W is the weight matrix of the fully connected layer. concatP is the flattened 

vector of the concatenated multi-scale pooled results. b is the bias vector. z is the 

output vector representing the detected signal. 

Combining all the equations, we get the following sequence, summarizing the entire 

process. 

1

1

1[max(max(0, ( ) ( )), ),

max(max(0, ( ) ( )), )]
k

k

m

i m

m

k

i m

z W x t i w i

x t i w i b

=−

=−

=  + 

+  +





   (3.15) 

 

This interconnected sequence of steps shows how numerical data representing 

signals in UM-MIMO systems is processed through the various layers of PMS-CNN. The 

process involves extracting important features at multiple scales, introducing non-

linearity, reducing dimensionality, and finally connecting and aggregating the 

information to predict the output, which is crucial for effective signal detection. The 

PMS-CNN architecture leverages the concept of multi-scale feature extraction, based 

on the observation that signals often contain patterns of varying sizes. Traditional 

CNNs with fixed kernel sizes may not effectively capture these diverse patterns. By 

employing multiple parallel convolutional layers with different kernel sizes, PMS-CNN 
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can simultaneously extract fine, medium, and coarse features, providing a more 

comprehensive representation of the signal data. The use of parallel convolutional 

layers allows the network to process different aspects of the input signal 

independently. This is particularly useful in signal detection tasks where the relevant 

features may occur at different scales. The subsequent channel pooling and 

concatenation steps ensure that the extracted features are effectively combined, 

enhancing the network's ability to learn and generalize from the data. 

 

3.7  Extreme Learning Machine (ELM) Techniques 
The ELM is a notable breakthrough in the domain of machine learning, 

primarily designed to tackle the computing requirements and efficiency limitations of 

conventional learning methods. ELM was developed in 2004 to address the 

increasing demand for processing frameworks that can effectively handle intricate, 

high-dimensional data sets and produce efficient learning results. This situation 

emphasized the need for creative methods that might provide both adaptability in 

data management and enhanced algorithmic efficiency. The fundamental essence of 

ELM is rooted in the architectural principles of Single-layer Feedforward Neural 

Networks (SLFNs), a deliberate design decision that significantly impacts its 

operational effectiveness. The SLFN design is distinguished by its inherent simplicity, 

as it comprises a solitary layer of concealed nodes that facilitate the conversion of 

input data into a linearly separable or more readily modelled space. Subsequently, 

an output layer is employed to establish a mapping between these transformed 

inputs and the intended outputs. The primary differentiation of ELM resides in its 

learning mechanism, specifically in the random assignment and fixed weighting of the 

weights between the input layer and the hidden layer. ELM circumvents the 

computationally demanding process of iteratively adjusting weights by 

backpropagation, unlike traditional neural networks. In ELM, the weights between the 

hidden layer and the output layer are the only parameters that are optimized. These 

weights are typically computed in a single step by solving a linear solution. This 
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methodology effectively decreases the duration of training while maintaining optimal 

performance. One notable characteristic of ELM is its ability to provide universal 

approximations and exhibit strong generalization performance. Although the starting 

weights and biases are set randomly, ELM may effectively simulate complex 

nonlinear functions and reach generalization performance that is equivalent to or 

even better than typical feedforward neural networks. Additionally, ELM often 

achieves a significantly quicker learning speed. The efficiency and simplicity of ELM 

render it highly attractive for a wide range of applications, encompassing function 

approximation, classification, regression, and deep learning tasks, among others. ELM 

presents a viable alternative to gradient-based learning methods by addressing their 

limitations, including local minima, overfitting, and the requirement for extensive 

hyperparameter tuning. This approach capitalizes on the advantages of feedforward 

neural networks while substantially reducing the computational load associated with 

their training process. 

 

 
Figure 3.8 The Neural System Structure of Extreme Learning Machine. 

 

In Figure 3.8, we illustrate the operational structure of the ELM, where the variables 

involved can be represented by the following equation: 
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1

ˆ ( ), 1,2,...,j j

N

i i i

i

t o c X V j N
=

=  + =    (3.16) 

 

Where is iX  denotes the input data values. 

   it  represents the output data values. 

   ic  is the weight vector of the input data for the hidden layer, expressed 

as 1 2[ , ,.., ]T

i i i inc c c c= . 

i  denotes the output weight vector of the hidden layer, with   

1 12[ , ,..., ]T

i i im   = . 

  iV  is the bias term for the hidden layer. 

  o  represents the activation function of the hidden layer. 

 

This equation encapsulates the computational process within ELM, highlighting the 

transformation of input data through the hidden layer using a combination of 

weights, biases, and an activation function, to produce the predicted output ˆjt  for 

each input jX . Given the complete dataset of N  as previously described, Equation 

3.16 can be analogously represented as a linear system: 

 

=Hβ T       (3.17) 

 

where the activation function o  applied to inputs and parameters over all 

data instances is expressed as. 
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     (3.18) 

 

Here, H  denotes the output matrix of the hidden layer nodes in Single-hidden Layer 

Feedforward Neural Networks (SLFNs), represented by the i th−  row and thj −  
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column of outcomes from the activation function matrix o  in the hidden layer. The 

vectors β  and T  are defined as follows. 
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β T T T     (3.19) 

 

To minimize the network cost function −T Hβ , where T  is the target output matrix, 

ELM theory posits that the parameters of the hidden layer nodes ic  and iX   can be 

randomly assigned without the need for iterative adjustment based on incoming 

data. Thus, Equation 3.16 becomes a linear model equation, and the output weights 

can be analyzed by deriving the least squares solution of the linear system as 

follows. 

 
†=β H T       (3.20) 

 

Where †
H represents the Moore-Penrose pseudoinverse of the hidden layer output 

matrix H , given that the number of training samples typically exceeds the number 

of hidden layer nodes. This can be reformulated as: 

 
1( )T T−=β H H H T      (3.21) 

 

This approach enables the determination of the output weights for ELM, showcasing 

its efficiency in solving regression and classification problems within a linear 

framework, without necessitating iterative training methods commonly used in other 

neural network models. 
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3.8  Regularized Extreme Learning Machine (RELM) Techniques 
  The ELM framework lies in its adeptness at mitigating training errors. 

Nonetheless, this proficiency may precipitate an undue escalation in model 

complexity, or overfitting, thereby attenuating the model's predictive precision. 

Bartlett's theory posits that, within the context of SLFNs, an inverse relationship exists 

between the magnitude of weights, training errors, and the network's generalization 

capability; a reduced norm of weights and training errors enhances the model's 

generalizability. Consequently, an ELM model poised for optimal generalization 

should ideally facilitate an equilibrium between minimizing training error and 

regulating output weights' norm. This equilibrium can be achieved by standardizing 

with a parameter C , thus engendering the RELM, distinguished by its enhanced 

generalizability due to this regularization criterion. A salient feature distinguishing 

RELM from its ELM counterpart is the concurrent diminution of training errors and the 

imposition of a regularization scheme on the output weights via a regularization 

parameter. This dynamic can be mathematically articulated as: 

 
2 2min C T H  − +‖ ‖ ‖ ‖     (3.22) 

 

This equation is further distilled into an equivalent constrained optimization 

problem. 

 
2 2min C a +‖ ‖ ‖ ‖     (3.23) 

 

where a T H= − , and reframing this in the Lagrangian formalism yields: 

 
2 2( , , ) ( )T TL a C a H H a    = + + − −‖ ‖ ‖ ‖    (3.24) 
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Here, 1 2 3[ , , ,..., ]T

Na a a a a=  denotes the vector of error variables for N  instances, 

and   represents the vector of Lagrange multipliers. The Karush–Kuhn–Tucker (KKT) 

optimization conditions are thus defined. 
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     (3.25) 

 

This formulation facilitates the determination of   as. 

 
1ˆ ( )T TH H IC H T −= +      (3.26) 

 

It is pivotal to acknowledge that when the training sample size is lesser than the 

number of hidden nodes, a methodological adjustment can be applied to decrease 

computational complexity: 

 
1ˆ ( )T TH HH IC T −= +      (3.27) 

 

Through this methodology, the ELM and its regulated variant, RELM, strategically 

optimize the interplay between training error reduction and weight norm 

regularization, thus achieving superior generalization capabilities. 

 

3.9  Outliner-Robust Extreme Learning Machine (ORELM) Techniques 
 Typically, ORELM anomalies constitute only a fraction of the total training 

samples for the training error a . This phenomenon, while not comprehensively 

elucidated, is well understood to be more accurately reflected by the 0 -norm 

rather than the 2 -norm. Consequently, the pursuit for minimizing the output 
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weights   incorporates a reduced 2 -norm to diminish the training error a , as 

delineated by: 

 
2

0 2min || || || ||C a +       (3.28) 

 

where it depends on a T H= − . 

However, the problem articulated in Equation 3.28 addresses a non-convex 

challenge, which can be more straightforwardly resolved by reformulating into a 

convex relaxation. This alternative approach retains the distributive characteristics 

essential for detection and component analysis without forfeiting the model's 

sparsity, achievable through the 1 -norm. Clearly, replacing the 0 -norm with the 1 -

norm not only validates the sparsity assumption but also facilitates an overall 

dimensional reduction. This results in the formulation: 

 

2

1 2

1
min || || || ||a

C
 +       (3.29) 

 

based on a T H= − . 

Equation 3.29 proposes a convex optimization challenge with constraints, particularly 

amenable to the Augmented Lagrange Multiplier (ALM) methodology. The 

augmented Lagrangian function is thus defined. 

 

2 2

1 2 2

1
( , , ) || || || || ( ) || ||

2

T TL a a H H a T H a
C




     = + + − − + − −  (3.30) 

 

Let   represent the vector of Lagrange multipliers, with   as the penalty function, 

in accordance with recommendations. The selection of 2 /N T = optimizes the 

variables ( , )a   and   within the ALM framework by progressively minimizing the 

Lagrangian function to obtain optimal values ( , )k   for iterative refinement in the 

ALM process as. 
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1 1 , 1 1 1( , ) arg min ( , , ), ( )k k a k k k k ka L a T H a       + + + + += = + − −  (3.31) 

 

The iterative process, predominantly computational in each iteration, focuses on the 

inversion of 2TH H I
C

+ . This matrix, constant across iterations, can be pre-

calculated to enhance computational efficiency. Concurrently, it's noteworthy that 

different continuity techniques may expedite convergence with fewer iterations, 

although such equations necessitate more complex computations, even with fast 

Singular Value Decomposition (SVD) techniques. It is also important to note that 

while this iterative method may not be the fastest route to achieving high accuracy 

when training data are devoid of anomalies, it remains the most effective in attaining 

optimal precision levels. However, when data anomalies are present—which is often 

the case in real-world applications—it becomes necessary to halt the iterations once 

a predefined maximum iteration count (MaxIter) is reached for practicality. 

 

3.10  Application of Techniques to Signal Detection 
 This section will apply deep learning and machine learning techniques 

discussed from sections 3.4 to 3.8, illustrated in the subsequent figure. The 

researchers will designate the input data, or Training data, as the received channel, 

represented by parameter Y , and the output data, or Teaching data, as the channel 

between parameters Y  and X  within the communication system discussed in 

section 3.2. to 3.3 This structure is depicted in Figure 3.1. Figure 3.2 demonstrates the 

dataset grouping for testing in the Convolutional Neural Network (CNN). The dataset 

includes both real and imaginary values, necessitating the extraction of imaginary 

values and their integration into the dataset alongside real values. This arrangement 

is crucial for ensuring that the dataset reflects the full spectrum of information 

present in the communication system, with parameters referenced according to the 

number of antennas defined in the communication system setup. The organization 

and preprocessing of data in these stages are pivotal for the effective application of 
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machine learning techniques, particularly CNN, in signal detection. By meticulously 

preparing the data to include both real and imaginary components and ensuring 

compatibility with neural network requirements, researchers can optimize the 

model's learning process and enhance its predictive accuracy. These preparatory 

steps underscore the detailed and methodical approach required to harness the full 

potential of machine learning in complex applications such as communication 

systems analysis, as depicted in Figure 3.4. In the context of the communication 

system, the channel H  is modeled in accordance with the Saleh-Valenzuela 

theoretical framework, striving to approximate real-world conditions as closely as 

possible. Through random value generation in line with equation (2.1) and system 

simulation via MATLAB, the researchers ensured that the number of transmit and 

receive antennas are equivalently matched. 
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The signal from the transmit side, X , fundamentally influences the signal as it 

directly pertains to: 

1

2

TM

X

X
X
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 =
 
 
  

     (3.33) 

For the receive side Y , the process encompasses signal modulation and 

demodulation, with a focus specifically tailored towards examining signal detection 

techniques, employing fundamental encoding strategies to concentrate on the 

detection aspects. Appropriate adaptations, such as optimizing the number of nodes 

in the hidden layer and varying parameters in each machine learning algorithm, are 

instrumental in refining the learning process. In particular, Regularized Extreme 
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Learning Machines (RELM) incorporate certain parameters that regulate variability and 

diminish the risk of overfitting, resulting in more stable output data and potentially 

reducing operation times during certain phases. This pivotal parameter, known as the 

regularization parameter C , is not determined by a definitive rule but is rather 

contingent upon the empirical outcomes of the processed data, including operation 

duration and post-learning performance efficiency. Hence, the resulting output is a 

set of signal detection values processed through the machine learning operation as 

follows. 

Signal detection value using PMS-CNN. 

 

PMSX       (3.34) 

 

Signal detection value using ELM. 

 

ELMX       (3.35) 

 

Signal detection value using RELM. 

 

RELMX       (3.36) 

 

Signal detection value using Optimized RELM (ORELM). 

 

ORELMX      (3.37) 

 

Subsequently, researchers will compute the efficiency of each algorithm to further 

ascertain the feasibility and effectiveness of the applied methodologies. 

Implementation of ZF and MMSE Signal Detection Techniques. Following the 

application of various signal detection techniques, researchers are obliged to 

demonstrate different types of signal detection methods to serve as benchmarks for 
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comparing performance across different metrics. Two commonly utilized methods 

are ZF and MMSE, each defined by their respective equations. 

For ZF: 

 
1( )H H

ZFX YH HH −=      (3.38) 

 

For MMSE: 
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    (3.39) 

 

These techniques, as discussed in Chapter 2, pertain to the theories underlying ZF 

and MMSE signal detection. In summary, both methods are widely implemented due 

to their broad applicability and effectiveness in measuring signal detection 

performance. These methods have been adopted in various research innovations 

due to their conceptual simplicity and ease of implementation. 

 

3.11  Mean Squared Error (MSE) Performance Comparison Method 
 Quantify the efficacy of signal detection, multiple metrics exist that articulate 

the overall performance. Among these, Mean Squared Error (MSE) is a standard and 

widely utilized metric, particularly in regression analyses. The MSE methodology 

encapsulates the average of the squares of errors, providing a robust measure of the 

estimator's precision. The formula for computing MSE is given by: 

 

2

1

 
1

( )
N

N

i

MSE x x
N =

= −     (3.40) 

 

where x  symbolizes the authentic channel signal derived from the simulated 

communication system, and x  represents the estimated channel signal deduced 
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from various methodologies such as ZF, MMSE, ELM, RELM, ORELM, and PMS-CNN. 

The MSE computation aggregates the square of the error values, systematically 

disregarding the direction of the discrepancy, thus allowing for an unbiased 

assessment of deviation magnitude. This measurement is pivotal for determining the 

accuracy of different signal detection methodologies across a spectrum of Signal-to-

Noise Ratios (SNR), thus providing a clear and comparative understanding of their 

performance relative to the genuine signal propagation characteristics. 

 

3.12  Bit Error Rate (BER) Performance Comparison Method 
 Upon the completion of precision assessment through Mean Squared Error 

(MSE), researchers progress to a more nuanced analysis focusing on the integrity and 

reliability of data transmission within communication systems. This subsequent phase 

involves a meticulous examination of the Bit Error Rate (BER), a pivotal metric that 

quantifies the proportion of bits that have been incorrectly identified or altered 

during the signal detection process, across a variety of deployed methodologies. The 

BER serves as a paramount indicator of transmission quality, reflecting the 

effectiveness of signal detection algorithms in preserving the original data content 

amidst the inherent noise and interference present in communication channels. It 

measures the frequency at which errors occur in the received signal relative to the 

total number of bits transmitted during a specified time interval. This metric is 

instrumental in evaluating the performance of different signal detection techniques, 

offering a direct comparison of their capability to accurately interpret and reconstruct 

the transmitted data. A comprehensive analysis of BER involves the simulation or 

practical implementation of signal transmission scenarios, where data is encoded, 

transmitted through a simulated or actual communication channel, and then 

decoded using the signal detection algorithms under review. The decoded data is 

then compared to the original transmitted data, with discrepancies indicating errors. 

These errors are tallied and expressed as a ratio to the total transmitted bits to yield 

the BER. By examining the BER, researchers can identify which signal detection 
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methods are more resilient to errors induced by channel conditions, such as noise, 

fading, and interference, thereby gauging the robustness and reliability of these 

methods in real-world communication scenarios. This detailed exploration, 

encapsulated in Figure 3.9, underscores the critical role of BER in the comparative 

assessment of signal detection algorithms, highlighting its utility in determining the 

most efficient and reliable methods for data transmission within complex 

communication systems. 

 

 
Figure 3.9 Simple Data Encoding and Decoding Process 

 

A method involving the inversion of Equation (3.1) is employed, frequently 

denominated as Maximum Ratio Combining (MRC) or Maximum Likelihood Estimation 

(MLE) in scholarly literature. This procedure is encapsulated by the following 

formulation. 

 
HX H Y=       (3.41) 

 

This equation represents the mathematical inversion pertaining to the data 

transmitted. Upon obtaining X , the subsequent step involves calculating the data's 

error rate. This calculation is facilitated through the utilization of specific functions 

within the MATLAB programming environment, namely `qammod` for Quadrature 

Amplitude Modulation (QAM) encoding and `qamdemod` for QAM decoding. These 
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functions play a pivotal role in the encoding and decoding processes, respectively, 

enabling the precise evaluation of the fidelity of data transmission. The `qammod` 

function modulates a sequence of input data into a complex symbol set based on 

the QAM scheme, effectively preparing the data for transmission through the 

communication channel. Conversely, the `qamdemod` function demodulates the 

received QAM signals, extracting the transmitted data from the complex symbols. By 

applying these functions, researchers can quantitatively assess the accuracy of the 

data recovery process, thereby determining the efficacy of the signal detection and 

data transmission methods under investigation. 

 

3.13  Channel Capacity and Outage Probability Comparison Method 
3.13.1 Channel Capacity 

Calculating Channel Capacity in systems utilizing Signal Detection is 

crucial for evaluating the performance of communication systems, particularly in 

MIMO (Multiple Input Multiple Output) and Massive MIMO systems. The following 

section will explain the theory related to Channel Capacity used in Signal Detection. 

The theory of Channel Capacity refers to the maximum capability of a channel to 

transmit information without errors, considering the limitations of noise and 

interference. For MIMO systems, calculating Channel Capacity depends on the 

channel matrix H , which is an R TM M  matrix, where RM  represents the number 

of receiving paths and TM  represents the number of transmitting paths. The Channel 

Capacity C  can be calculated using the following equation: 
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     (3.42) 

 

Where P  is the total transmit power, 0N  is the noise power, H  is the channel 

matrix, HH is the Hermitian transpose of H , 
RMI  is the identity matrix of size 

R RM M , B is bandwidth (Hz). In Signal Detection, directly obtaining the Channel 
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Matrix H  from the estimated H  using various techniques is not feasible. This is 

because H  is the result of signal detection that has passed through the 

communication channel processes and signal filtering, which do not retain all 

necessary information about H . However, there is a way to estimate H  from the 

received signal Y  and the transmitted signal X . This process is called Channel 

Estimation, and the method of interest to the researchers is Least Squares Estimation 

to find H  for each X  detected. Using Least Squares Estimation (LSE) to find H  has 

a significant advantage in its ability to approximate H  by minimizing the overall 

discrepancy between the received signal and the predicted signal. This method seeks 

to find H  that minimizes the sum of squared errors, leading to accurate estimates 

even in the presence of noise or uncertainties in the signal data. Additionally, Least 

Squares Estimation involves straightforward computations and can be effectively 

applied in real systems. The equation is as follows. 

 

H YX =       (3.43) 

 

Where X   is Moore-Penrose pseudo-inverse of X  which can be calculated by. 

 

( )
1

T TX X X X
−

=       (3.44) 

 

In cases where X  is a non-square matrix or cannot be inverted, pseudo-inverse is 

used. It will help to estimate the value correctly. From the LSE method, the 

researcher was able to return to calculate the channel capacity in Equation (3 .3 2 ) 

and obtain the following equations. 

 

 

Channel Capacity for ZF: 
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    (3.45) 

 

Channel Capacity for MMSE: 
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   (3.46) 

 

Channel Capacity for ELM: 
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Channel Capacity for RELM: 
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   (3.48) 

 

Channel Capacity for ORELM: 
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   (3.49) 

 

Channel Capacity for CNN-LSTM: 
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  (3.50) 

 

Channel Capacity for PMS-CNN: 
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   (3.51) 

 

3.13.2 Outage Probability 

Outage Probability is the likelihood that the channel capacity will fall 

below a specified threshold R . It is commonly used as a metric to evaluate the 

reliability of communication systems in environments with noise and uncertain signal 

interference. After deriving equations (3.35-3.41), the Outage Probability can be 

calculated as follows. Outage Probability for ZF: 

 

( )out,ZF ZFP C R=        (3.52) 

 

Outage Probability for MMSE: 

 

( )out,MMSE MMSEP C R=       (3.53) 

 

Outage Probability for ELM: 

 

( )out,ELM ELMP C R=       (3.54) 

 

Outage Probability for RELM: 

 

( )out,RELM RELMP C R=       (3.55) 

 

Outage Probability for ORELM: 

 

( )out,ORELM ORELMP C R=       (3.56) 

Outage Probability for CNN-LSTM: 
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( )out,CNNLSTM CNNLSTMP C R=      (3.57) 

 

Outage Probability for PMS-CNN: 

 

( )out,PMS PMSP C R=       (3.58) 

 

3.14  Summary 
 This section delves into the conceptualization and computational modeling 

of UM-MIMO communication systems, with a particular focus on signal detection 

efficacy. It adheres to a theoretical framework of communication system principles, 

proposing hypotheses regarding the impact of an increased antenna count on the 

dynamics of signal detection. This exploration seeks to elucidate the nuanced effects 

both advantageous and detrimental that an augmentation in antenna numbers 

exerts on signal detection processes. Furthermore, the discussion extends to the 

ramifications of refining channel resolution, examining the potential shifts in 

detection outcomes and the intricacies involved. The application of deep learning 

techniques is introduced as a novel approach, reflecting its burgeoning relevance 

across a spectrum of research areas. The suitability and adaptability of deep learning 

methodologies for enhancing signal detection in UM-MIMO systems are critically 

evaluated. In pursuit of empirical validation, this analysis incorporates the assessment 

of key performance indicators, including error rates and mean square deviations. 

Such metrics are instrumental in quantifying the operational efficacy of the proposed 

models, facilitating a comprehensive understanding of their practical viability and the 

optimization avenues for signal detection in UM-MIMO communication systems. 

 

 



 

 

CHAPTER IV 
RESULTS AND DISCUSSIONS 

 
4.1  Introduction 
 This chapter proposed result of Deep learning performance in UM-MIMO with 

compare another method such as ZF, MMSE, ELM, RELM, ORLEM, CNN-LSTM and 

PMS-CNN. This section presents the outcomes of the process undertaken to prepare 

the PMS-CNN dataset specifically tailored for signal detection tasks. The preparation 

of this dataset is critical for the effective training of PMS-CNN model, which are 

designed to recognize and interpret complex patterns within the data. This process 

involves the collection, cleaning, and augmentation of data to create a 

comprehensive dataset that reflects a wide array of signal scenarios.  

 

4.2  Evaluation of Algorithm Performance Mean Squared Error (MSE)  
This section elucidates the assessment of algorithmic performance by 

computing the Mean Squared Error (MSE), a critical metric in evaluating the precision 

of algorithms in various computational tasks. The MSE computation serves as a 

quantitative measure to gauge the discrepancy between the predicted values 

generated by the algorithm and the actual values within the dataset. This evaluation 

process involves the systematic application of the algorithm across a designated 

dataset and the subsequent calculation of MSE to determine the algorithm’s 

accuracy and efficiency in data analysis and prediction. The computation of MSE is 

instrumental in identifying the algorithm's strengths and weaknesses, enabling 

researchers to refine and optimize its performance. By analyzing the MSE values, it 

becomes possible to discern the algorithm's capability to handle complex datasets 

and its sensitivity to variations within the data. This assessment not only contributes 
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to the enhancement of the algorithm's accuracy but also its applicability to a 

broader range of computational problems. The meticulous examination of MSE 

values under different conditions and scenarios facilitates a deeper understanding of 

the algorithm's performance, guiding further improvements and adaptations. In the 

examination of error metrics, researchers have conducted simulations involving 256 

transmit antennas and 256 receive antennas in a Spatial Multiplexing configuration to 

approximate the communication channels using the following methodologies. 

 

 
Figure 4.1 The MSE Performance vs SNR [dB] PMS-CNN, ZF, MMSE 

 

In Figure 4.1, the MSE performance of three algorithms—PMS-CNN, ZF, and MMSE in 

an UM-MIMO system using 256QAM modulation across a range of SNR from 0 dB to 

25 dB. The PMS-CNN algorithm shows remarkably low MSE throughout the SNR range, 

starting just above 210  and demonstrating a minimal increase, indicating excellent 

robustness and accuracy in signal detection. In contrast, the ZF algorithm starts with 
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a higher MSE around 810  and experiences a more gradual reduction, suggesting it is 

less effective at lower SNRs but improves significantly as SNR increases. The MMSE 

algorithm demonstrates a consistent and sharp decline in MSE from around 710  to 

below 410 , highlighting its effectiveness in reducing error as the signal quality 

improves. These distinct MSE profiles underline the varied capabilities of these 

algorithms to handle complex modulation schemes like 256QAM in high-density 

MIMO environments, crucial for optimizing system performance under varying noise 

conditions. 

 
Figure 4.2 The MSE evaluation of Algorithm Performance between CNN-LSTM, ELM, 

RELM ORELM and PMS-CNN method. 

 

In Figure 4.2, this details the Mean Square Error (MSE) performance of various signal 

detection algorithms in an UM-MIMO system, measured across SNR levels from 0 dB 

to 25 dB. The PMS-CNN algorithm, depicted with a dotted red line, consistently 

shows the lowest MSE, starting around 210  and dropping below 310  even at low SNR 

levels, highlighting its exceptional accuracy and robustness against noise. The CNN-

LSTM model, indicated by the blue dashed line, also performs well with its MSE 
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beginning slightly above 310  and descending as SNR increases, showing effective 

noise handling capabilities though not as strong as PMS-CNN. The other algorithms, 

ELM (solid green line), RELM (dashed green line), and ORELM (solid green line with 

diamonds), start with higher MSEs around 510 , but they show a significant 

improvement trend, especially beyond 10 dB SNR, dropping to levels around 310  to 
410 , which indicates that while they are less efficient at very low SNR, their 

performance becomes competitive as signal conditions improve. This detailed 

depiction of MSE variations helps in evaluating the algorithms' performance in 

managing errors relative to signal quality, crucial for optimizing detection strategies in 

high-density MIMO configurations. 

 

 
Figure 4.3 The MSE evaluation of Algorithm Performance between ZF, MMSE CNN-

LSTM, ELM, RELM ORELM and PMS-CNN method. 

 

In Figure 4.3, This graph effectively delineates the diverse error-handling capabilities 

of these algorithms, providing crucial insights for selecting the appropriate signal 

detection method based on specific error tolerance and SNR conditions. This graph 
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shows a detailed comparison of the MSE performance across various signal detection 

algorithms in an UM-MIMO system employing 256QAM modulation, with the SNR 

spanning from 0 dB to 25 dB. The PMS-CNN algorithm, represented by the dotted red 

line, stands out with the lowest MSE throughout the SNR range, beginning just above 
210  and demonstrating minimal error as SNR increases, which underscores its 

exceptional effectiveness in a high-interference environment. The CNN-LSTM model, 

depicted by the blue dashed line, also showcases commendable error reduction 

capabilities, with MSE values starting around 310  and consistently improving, 

indicating strong adaptability to increasing SNR levels. The ZF algorithm, shown with 

the solid red line, has a relatively high initial MSE around 710  but exhibits a steady 

decrease in error, becoming more competitive as SNR approaches 25 dB. The MMSE 

algorithm, marked by the green line with diamonds, starts with a slightly better 

position than ZF near 610  and reduces errors more effectively, especially at higher 

SNR levels, reflecting its robust design for noise mitigation. The ELM, RELM, and 

ORELM algorithms are illustrated with various green lines and shapes, starting with 

MSEs in the range of 510  to 610  and showing gradual improvements. However, they 

maintain higher error rates compared to the more sophisticated PMS-CNN and CNN-

LSTM models, indicating a lower performance in handling the complex error 

landscapes of 256QAM modulation in UM-MIMO systems. 

 

4.3  Bit Error Rate Performance (BER) 
 In this section, BER is an important metric used to evaluate the performance 

of communication systems in delivering accurate data under various conditions. This 

comparison was performed over a signal-to-noise ratio (SNR) range from 0 dB to 30 

dB, providing clear insight into each algorithm's ability to reduce signal processing 

errors. The researchers present these results with the aim of highlighting how these 

algorithms perform under increased noise levels. This is a common challenge in high-

density MIMO environments. This helps in understanding the robustness and 

effectiveness in maintaining communication integrity in real-world situations. 
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Figure 4.4 The BER of different Modulation in Ultra Massive MIMO 256x256 

 

In Figure 4.4, this graph depicts the Bit Error Rate (BER) performance across different 

modulation schemes within an UM-MIMO system employing a 2 5 6 x2 5 6  antenna 

array. Each line represents a modulation scheme varying from 4QAM  2 5 6 QAM, 

analyzed over a range of SNR from 0 dB to 30 dB. 

In communications theory, the BER is a critical measure of the number of bit errors 

per unit time or per number of total bits transmitted. The BER gives us insight into 

the effectiveness of the communication link under varying conditions and 

modulation schemes. In this graph, each modulation scheme's susceptibility to noise 

and interference as SNR increases is clearly visible. Higher-order modulations like 

256QAM and 64QAM offer higher data rates because they pack more bits into each 

symbol. However, they also show higher BER at lower SNR values compared to 

schemes like 4QAM, which is more robust but offers lower data throughput. UM-

MIMO systems, which capitalize on spatial multiplexing to significantly increase 
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channel capacity, choosing the right modulation scheme is crucial. These systems 

can benefit from higher-order modulation schemes like 256QAM at high SNR levels, 

where the BER becomes acceptably low, maximizing data throughput without 

sacrificing reliability. At lower SNR levels, the graph demonstrates how higher-order 

modulations become less feasible as their BER rises sharply, indicating a greater 

likelihood of error in detected signals. This analysis is essential for optimizing the 

modulation scheme in UM-MIMO systems based on the operational environment's 

SNR conditions, ensuring that the system can achieve the highest possible 

throughput while maintaining data integrity and minimizing errors. The use of 

256QAM in this setup, as shown, would be most advantageous in high SNR scenarios 

where the system's advanced signal processing capabilities can effectively mitigate 

the inherent noise and error risks associated with such high-density signal 

environments. 

 
Figure 4.5 The BER of Algorithm Performance between ZF, MMSE and PMS-CNN 

method. 
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In Figure 4.5, the BER performance of three signal detection algorithms PMS-CNN, ZF, 

and MMSE in an UM-MIMO system using 256QAM modulation across varying SNR. The 

PMS-CNN algorithm shows excellent improvement in BER as the SNR increases, 

indicating its superior error correction abilities, particularly effective beyond 15 dB. In 

comparison, the ZF method maintains a relatively constant BER around 110−  across 

all SNR levels, showing limited improvement with increased SNR, which suggests it 

may struggle with the high noise levels typical with 256QAM. Meanwhile, the MMSE 

algorithm starts with higher error rates at lower SNR but improves significantly to 

approach PMS-CNN performance at higher SNR, demonstrating its effectiveness in 

reducing errors as the signal quality improves. This visualization underscores the 

capabilities of these algorithms in managing errors under different noise conditions, 

especially in a complex modulation scheme like 256QAM, highlighting the robust 

performance of PMS-CNN in scenarios demanding high data integrity. 

 
Figure 4.6 The BER of Algorithm Performance CNN-LSTM, ELM, RELM ORELM and PMS-

CNN method. 
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In Figure 4.6, show the BER performance of various algorithms in an UM-MIMO system 

using 256QAM modulation across SNR from 0 to 25 dB. The PMS-CNN algorithm, 

indicated by the dotted red line, demonstrates exceptional performance with a BER 

starting below 210−  and further improving, indicating highly effective error correction. 

The CNN-LSTM, shown with the blue dashed line, also achieves low BER, maintaining 

steady improvement across the SNR range. Meanwhile, the ELM, RELM, and ORELM 

algorithms, represented by green lines, exhibit higher initial BERs but show significant 

improvement as SNR increases. This visualization highlights the robustness of these 

algorithms in handling complex modulation schemes and their efficiency in reducing 

errors in a high-density MIMO setting, making them vital for ensuring reliable signal 

detection. 

 

 
Figure 4.7 The BER of Algorithm Performance ZF, MMSE, CNN-LSTM, ELM, RELM, 

ORELM and PMS-CNN method. 
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In Figure 4.7, the BER performance of various algorithms in an UM-MIMO system using 

256QAM modulation, across a range of SNR from 0 dB to 25 dB. The PMS-CNN 

algorithm, indicated by the dotted red line, shows the best performance with a 

significantly lower BER, particularly noticeable as the SNR increases, demonstrating its 

high efficiency in error correction. CNN-LSTM, shown by the blue dashed line, also 

maintains a relatively low and stable BER across all SNR levels, suggesting its 

robustness in complex signal environments. In contrast, ZF and MMSE, marked by 

the green and red solid lines respectively, exhibit higher BERs but show gradual 

improvement with increased SNR. The ELM, RELM, and ORELM algorithms, 

represented by the green lines with different markers, perform comparably, each 

reducing BER as SNR increases, though not as effectively as PMS-CNN or CNN-LSTM. 

This visualization highlights the effectiveness of these algorithms in managing signal 

detection errors in a high-density MIMO configuration under the demanding 

conditions of 256QAM modulation. 

 

4.4  Channel Capacity 
 Channel capacity is one of the most important characteristics in designing and 

evaluating the performance of a communication system. Especially in the system 

Ultra-Massive MIMO, which uses many antennas to increase data transfer capacity 

and signal quality. Theoretically, Channel Capacity represents the maximum capacity 

to transmit data over a communication channel without errors. Under specified noise 

conditions or SNR. As shown in the following. 
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Figure 4.8 The Channel Capacity (Mbps) vs SNR [dB] 

 

In Figure 4.8, UM-MIMO 256x256 Bandwidth: 20MHz, it shows a comparison of 

channel capacity between different signal detection algorithms within a UM-MIMO 

system using 256QAM modulation, where both the transmitter and receiver have 256 

antennas. The comparison is conducted over a SNR range from 0 dB to 25 dB. The 

PMS-CNN algorithm, represented by the red dotted line with an open triangle 

symbol, continuously achieves the highest channel capacity throughout the tested 

SNR range. It starts at approximately 4 Gbps at 0 dB SNR and increases to about 5.5 

Gbps at 25 dB SNR, demonstrating the best performance in signal processing and 

spatial multiplexing capabilities in the Ultra-Massive MIMO system. Meanwhile, the 

CNN-LSTM algorithm, depicted by the red dotted line with a diamond symbol, shows 

nearly identical performance to PMS-CNN across all SNR levels, highlighting its ability 

to leverage complex deep learning models for efficient signal interpretation. The 

MMSE algorithm (purple line) and ZF algorithm (blue line) show lower performance, 

with capacities of about 2.5 Gbps and 1.5 Gbps respectively at 25 dB SNR, indicating 

lower capabilities in handling noise and interpreting signals compared to PMS-CNN 
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and CNN-LSTM. The ELM, RELM, and ORELM algorithms (green, pink, and black lines 

respectively) show grouped results with channel capacities increasing up to around 3 

Gbps at 25 dB SNR, which is lower compared to the PMS-CNN and CNN-LSTM 

algorithms. 

 

4.5  Outage Probability 
The following graph provides a detailed visualization of the outage probability 

against channel capacity for various signal detection algorithms utilized within an UM-

MIMO system. Outage probability is a crucial metric in telecommunications that 

indicates the likelihood of a system's capacity falling below a required threshold, 

impacting the quality and reliability of the communication service. Each curve 

represents a different algorithm's performance in maintaining sufficient channel 

capacity under varying conditions, showcasing their respective abilities to handle high 

capacity demands typical of advanced MIMO systems. This comparison is pivotal for 

assessing the robustness and efficiency of each method, particularly in scenarios 

where maintaining a high data transmission rate is critical for system functionality. 
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Figure 4.9 Outage Probability vs Channel Capacity (bps/Hz) 

 

In Figure 4.9, shows the outage probability versus capacity for different signal 

detection algorithms in the UM-MIMO system, including advanced machine learning 

techniques evaluated using 256QAM adjustments. The theoretical foundations are 

likely based on equations similar to equations (3.52) to (3.58), which describe the 

analytical relationship between channel capacity and outage probability. From the 

results, PMS-CNN (blue line) shows nearly zero outage probability at approximately 

5.5 Gbps, indicating exceptionally high reliability and optimal channel capacity 

maintenance. CNN-LSTM (red line) exhibits an outage probability nearly equivalent to 

PMS-CNN, outperforming other techniques and maintaining better channel capacity. 

In contrast, ELM (orange line), RELM (brown line), and ORELM (green line) show higher 

outage probabilities, with the probability decreasing more slowly as capacity 

increases. At zero outage probability, these algorithms achieve a capacity of around 
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3.8 Gbps. In summary, PMS-CNN and CNN-LSTM offer superior reliability and channel 

capacity maintenance compared to other machine learning methods. 

 

4.6  Computational Complexity with Big O notation  
 In this section, the researcher shows the results of calculating the complexity 

of Algorithms using the Big O Notation method are widely used in algorithm 

verification and comparison work. The researchers performed calculations with all 

algorithms used in this work, including ZF, MMSE, RELM, ORELM, CNN-LSTM, and 

including the PMS-CNN method. For processing ZF and MMSE methods, the basic 

assumption used for complexity analysis is that the calculation uses matrix access 

and matrix inversion in different ways. From the foregoing, consider from Table 2.4, 

Table 4.1 to Table 4.7 as follows. 

 

Table 4.1 Big O Complexity Analysis for ZF  

Step                   
 

 Equation                          Complexity            Methodology                                                                                                   
Matrix 
Inversion       

1

1( )H

H

H H

−

−

=
 

3( )O M  Calculate the Hermitian matrix HH  
(size N M ), then compute HH H  
(size M M ), and finally the inverse 

1( )HH H − . 

Matrix 
Multiplication  

1ŝ H y−=  
 

2( )O M  Multiply the inverse matrix (size 
M M ) with the signal vector y  (size 

1M  ). 
Overall 
Complexity     

 3 2( )O M M+  Combine the complexities: 3( )O M  for 
inversion and 2( )O M  for 
multiplication.                         
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Table 4.2 Big O Complexity Analysis for MMSE 

Step                   
 

 Equation                          Complexity            Methodology                                                                                                   
Matrix 
Inversion       

2 1( )HH H I −+  3( )O M  Calculate the Hermitian matrix HH

, then compute 2( )HH H I+ and 
finally the inverse. 

Matrix 
Multiplication  2 1

ˆ (

)

H

H

s H H

I H y −

= +
 

 

2( )O M  Multiply the inverse matrix (size 
M M ) with the Hermitian HH

and the signal vector y . 
Overall 
Complexity     

 3 2( )O M M+  Combine the complexities: 3( )O M  
for inversion and 2( )O M  for 
multiplication.                         

 

Table 4.3 Big O Complexity Analysis for ELM 

Step                   
 

 Equation                          Complexity            Methodology                                                                                                   
Matrix 
Inversion       

†H  3( )O M  Calculate the inverse of 
matrix H (size M M ). 

Matrix 
Multiplication  

†H T =  2( )O M  Multiply the inverse 
matrix (size M M ) with 
vector T (size 1M  ). 

Activation 
Function 

i j ic X V +  ( )O N  Multiply vector jX (size 
1N  ). With constant ic  

and add iV .                         
Activation 
Function 

( )i j ic X V  +  (1)O  Apply activation function 
with complexity (1)O . 

Scalar 
Multiplication 

( )i i j ic X V   +  (1)O  Multiply   by i  with 
complexity (1)O . 

Summation 
1

( )
N

i i j i

i

c X V
=

 +  ( )O N N  Sum N  terms, each 
with complexity ( )O N . 

Overall 
Complexity 

 3 2( )O M M N N+ +   Combine the 
complexities of all steps. 
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Table 4.4 Big O Complexity Analysis for RELM 

Step                   
 

 Equation                          Complexity            Methodology                                                                                                   
Matrix 
Inversion       

1( )TH H I −+  3( )O M  Calculate the pseudo-inverse 
of matrix H (size M M ). 

Matrix 
Multiplication  

1( )T TH H I H −+  2( )O M N  Multiply the inverse matrix 
(size M M ) with vector TH  
(size M N ). 

Matrix 
Multiplication 

1( )T TH H I H T −+  ( )O MN  Multiply the result (size 
M N ) with vector T  (size 

1M  ). 
Activation 
Function 

i j ic X V +  ( )O N  Multiply vector jX (size 1N  ). 
With constant ic  and add iV .                         

Activation 
Function 

( )i j ic X V  +  (1)O  Apply activation function like 
sigmoid, ReLU with complexity 

(1)O . 
Scalar 
Multiplication 

( )i i j ic X V   +  (1)O  Multiply  by i  with 
complexity (1)O . 

Summation 
1

( )
N

i i j i

i

c X V
=

 +  ( )O N N  Sum N  terms, each with 
complexity ( )O N . 

Overall 
Complexity 

 3 2(

)

O M M N

MN N N

+

+ + 
 

Combine the complexities of 
all steps. 

 

Table 4.5 Big O Complexity Analysis for ORELM 

Step                   
 

 Equation                          Complexity            Methodology                                                                                                   
Matrix 
Inversion       

12
( )TH H I

C

 −+  3( )O M  Calculate the pseudo-
inverse of matrix H

(size M M ). 
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Table 4.5 Big O Complexity Analysis for ORELM (Continued) 

Matrix 
Multiplication  

12
( )T TH H I H

C

 −+  2( )O M N  Multiply the inverse 
matrix (size M M ) 
with vector TH  (size 
M N ). 

Matrix 
Multiplication 

12
( )

( )

T

T k
k

H H I
C

H y e







−+

− +

 
( )O MN  Multiply the result (size 

M N ) with vector 
( )/k ky e  − +  (size 

1M  ). 
Compute x

using MProj  
( )Mx Proj b e




= − +  ( )O N  Based on the MProj

unction, which can be 
approximated as ( )O N . 

Compute e

using shrink  
1

(

, )

e shrink b

A x





 −

= +

− 

 
( )O N  The shrink function is 

linear in complexity, 
and matrix 
multiplication A x has 
complexity ( )O N . 

Update   ( )b A x e  = +  −  −  ( )O N  Updating  has 
complexity ( )O N . 

Activation 
Function 

i j ic X V +  ( )O N  Multiply vector jX (size 
1N  ). With constant ic  

and add iV .                         
Activation 
Function 

( )i j ic X V  +  (1)O  Apply activation fun-
ction like sigmoid, ReLU 
with complexity (1)O . 

Scalar 
Multiplication 

( )i i j ic X V   +  (1)O  Multiply  by i  with 
complexity (1)O . 

Summation 
1

( )
N

i i j i

i

c X V
=

 +  ( )O N N  Sum N  terms, each 
with complexity ( )O N . 

Overall 
Complexity 

 3 2(

)

O M M N

MN N N N

+ +

+  +
 

Combine the comp-
lexities of all steps. 
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M is Number of receive antennas (size of the matrix H ). 

N is Number of transmit antennas (size of the vector y ). 

N is Number of conditions used in the equation. 

 

The calculation of Big O Notation in this case involves a structural analysis of the 

CNN-LSTM and PMS-CNN model used for comparison in this thesis. This analysis will 

examine the operations of each step and the processes in the code in detail to 

obtain the mathematical complexity that represents the number of operations as the 

data size increases. The summary is shown in the following Table 4.6. 
 

 Table 4.6 Big O Complexity Analysis for CNN-LSTM 

Step 
Matrix/Vector 
Operation Complexity (Big O) 

Conv1d Layer 1 1  
n c k m

x W
 

    1 1  ( )O n c k m    
BatchNorm1d Layer 

1Normalization of n m  1( ) O n m  
Conv1d Layer 1 2n m k c

x W
 

    1 2( )O n m k c    
BatchNorm1d Layer 

2Normalization of n c  2( )O n c  
MaxPool1d Layer max(  )x  ( )O n  
Repeat ConvBlock 2 more times  3 (ConvBlock)  
Linear Layer 1 1 2  

d d d
x W


    1 2  ( )O n d d   

LSTM Layer 
1( [ ] ) ,t t th W h x b −=  +  2( )O n h  

Linear Layer 1 1 2f f f
x W


    1 2( )O f f  

MaxPool1d Layer max(  )x  ( )O n  
Linear Layer 2 2 n _ classesf f

x W


    2( n _ classes)O f   
Overall Complexity 

 

1 1 1 2 1

2

2 1 2 2

( (

n _ classes))

O n c k m m k c d

d h f f f

   +   +

 + +  + 
 

 

In this Table 4.6, where n  is size of the input sequence. 1c Number of input channels 

for the first Conv1d layer. k  is kernel size. 1m  is number of output channels (filters) 

for the first Conv1d layer. 2c  is number of input channels for the second Conv1d 
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layer. 1d  is number of features before the first linear layer. 2d  is number of features 

after the first linear layer. h  is hidden size for the LSTM layer. 1f  is number of 

features after the first linear layer in the classifier. 2f  is number of features after the 

second linear layer in the classifier. n _ classes  is number of output classes. 

 

Table 4.7 Big O Complexity Analysis for PMS-CNN 

Step                     Matrix/Vector Operation                                              Complexity (Big O) 
 Conv1d Layer 1          1n c cx W      ( )O n c  
 Conv1d Layer 2          3n c cx W     2( )O n c k   
 Conv1d Layer 3          5n c cx W     3( )O n c k   
 Conv1d Layer 4          7  n c cx W     4( )O n c k   
 Conv1d Layer 5          9  n c cx W     5( )O n c k   
 Conv1d Layer 6          12n c cx W     6( )O n c k   
 Channel Pooling         n p k px W     ( )O n c k p    
 Flattening               n px   ( )O n p  
 Linear Layer 1          1  

d fdx W


    1( ) O d f  
 Linear Layer 2          1 1 n _ classes

 
f f

x W


   1  ( n _ classes)O f   
Overall 
Complexity                                             

2 3 4 5 6

1 1 n _ classe )

( ( ( )

)s

O n c c k k k k k k p

p d f f

 +  + + + + + 

+ +  +  
 

In this Table 4.7, where n  is size of the input sequence. c Number of input channels 

for the first Conv1d layer. k  is kernel size for Channel Pooling layer. 2 3 4 5 6, , , ,k k k k k  

are kernel sizes for Conv1d layers (3, 5, 7, 9, 12). p  is number of pooling channels d  

is number of features before the first linear layer. 1f  is number of features after the 

first linear layer in the classifier. n _ classes  is number of output classes. These 

detailed accounts ensure a robust understanding of the computational demands and 

theoretical underpinnings of each algorithm, complete with supporting equations 

that clarify the source of each complexity component. From the results obtained, 

the researcher will summarize and put in a Table. 4.8. 
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Table 4.8 The Computational Complexity by Big O notation. By M , N , N , n = 10, c

=32, k = 5, 2 3 4 5 6, , , ,k k k k k =3, 5, 7, 9, 12, p =32, d  = 509, 1f =2024, and 
n _ classes =10. 

Algorithm Computational Complexity Formula The Overall 
Complexity 

ZF 3 2( )O M M+  3(1.01 10 )O   
MMSE 3 2( )O M M+  3(1.01 10 )O   
ELM 3 2( )O M M N N+ +   3(1.2 10 )O   
RELM 3 2( )O M M N MN N N+ + +   3(2.2 10 )O   

ORELM 3 2( )O M M N MN N N N+ + +  +  3(3.2 10 )O   
CNN-LSTM 1 1 1 2 1

2

2 1 2 2

( (

n _ classes))

O n c k m m k c d

d h f f f

   +   +

 + +  + 
 7(4.614336 10 )O   

PMS-CNN 2 3 4 5 6

1 1 n _ classe )

( ( ( )

)s

O n c c k k k k k k p

p d f f

 +  + + + + + 

+ +  + 
 5 )(4.6885 10O   

 

According to Table 4.8, we have details for calculating according to the specified 

values for calculations in this table Each value is represented by a defined 

parameter. It helps to understand the temporal complexity in the computational 

model that meets the conditions and data volume being simulated. Using this table 

can help clearly differentiate the different models. and better compare complexity 

between different models. 
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Figure 4.10 Big O Complexity Chart CNN-LSTM, ELM, RELM ORELM and PMS-CNN 

method. 

 

In Figure 4.10, the chart shows the computational complexity of various algorithms 

used in signal detection for UM-MIMO systems, using a logarithmic scale on the y-axis 

to represent complexity levels from 210  to 810 . The proposed PMS-CNN method has 

a moderate computational complexity, shown by the blue bar at around 510 , 

indicating it is efficient and suitable for applications where a balance between 

performance and resource consumption is crucial. The CNN-LSTM model, 

represented by the tall red bar, has the highest complexity, close to 710 , indicating it 

requires significant computational resources. This might be justifiable by potentially 

better detection performance but could be impractical for resource-constrained 

environments. Other methods like ZF, MMSE, ELM, RELM, and ORELM exhibit lower 

complexities at 310 , making them viable alternatives that balance between 

complexity and performance. These are shown with purple, orange, cyan, green, and 

pink bars, respectively. This visualization helps in comparing these methods in terms 
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of resource efficiency, which is crucial in selecting algorithms for practical 

deployments in systems handling UM-MIMO operations. 

 

 
Figure 4.11 Big O Complexity Growth by Model CNN-LSTM, ELM, RELM ORELM and 

PMS-CNN method. 

 

In Figure 4.11, the growth of Big O complexity of various computational models used 

to detect signals for the UM-MIMO system is presented. The logarithmically scaled 

plot shows the CNN-LSTM model with a significant increase in complexity, starting at 
1510  and increasing to approximately 17.510  at the highest scaling factor. This 

indicates the need for substantial resources. In contrast, the proposed PMS-CNN 

model shows effective scalability, starting at 10.510  and increasing only moderately to 
12.510 , emphasizing its suitability for resource-constrained situations. Other models, 

including ZF, MMSE, ELM, RELM, and ORELM, start with a complexity of 

approximately 2.510  to 2.710 and show a slight increase to approximately 4.510  to 
5.010 , making them usable in applications that require lower computational costs. 
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These results highlight the trade-off between computational efficiency and resource 

efficiency, which is crucial for selecting the appropriate model in UM-MIMO systems 

depending on specific application requirements and resource limitations. 

 

In section 2.10, which discusses the application of deep learning in real-world 

scenarios, to evaluate the model’s performance with latency in 6G systems that 

support usage in the range of 0.1-1 ms, the calculation involves transforming the 

overall Big O notation results from Table 4.8 and using the results to compute based 

on the following equation 

 

( )
Overall Complexity

Time  ms = ×1000
FLOPS

    (4.1) 

 

This FLOPS is stands for Floating Point Operations Per Second and is a measure of 

computer performance, particularly in fields of scientific calculations that require 

floating-point calculations. By using this equation, one can estimate the latency or 

time required for a model to process data, which is crucial for evaluating the 

performance of models in 6G systems with stringent latency requirements.  

 

Table 4.9 Big O Complexity with Latency 6G 

Algorithm PMS-CNN CNN-LSTM ELM RELM ORELM MMSE ZF 
Time on  
CPU (ms)  

0.000887 0.087261 0.000002 0.000002 0.000006 0.000002 0.000002 

 

From Table 4.9, it can be concluded that the PMS-CNN can achieve low latency 

usage, enabling its practical application in UM-MIMO systems to support 6G 

applications. 
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4.7  Summary  
 This chapter thoroughly assessed the performance of various signal detection 

algorithms in an UM-MIMO system, particularly focusing on the integration of 

advanced machine learning techniques like CNN-LSTM and ELM variants with 

256QAM modulation. Detailed analyses were presented on MSE and BER, where the 

PMS-CNN method consistently showed superior performance by achieving the lowest 

MSE and BER across various SNR levels, highlighting its efficiency and robustness in 

handling high-density signal environments. Additionally, channel capacity evaluations 

revealed that higher-order modulation schemes maximize throughput at higher SNRs, 

balancing data rate enhancements with acceptable error rates. Outage probability 

and computational complexity assessments further illuminated the practical 

implications of deploying these algorithms in real-world settings, emphasizing the 

importance of selecting appropriate techniques that align with specific system 

demands and operational conditions to optimize both performance and resource 

utilization in next-generation wireless communication systems. 

 



 

 

CHAPTER V 
CONCLUSIONS 

5.1  Conclusions 
 The PMS-CNN method within UM-MIMO systems demonstrates exemplary 

performance across various benchmarks critical for modern telecommunications. 

Detailed evaluations in MSE consistently show the PMS method maintaining 

extremely low MSE values, far outpacing competitors like ZF, MMSE, and various ELM 

adaptations, especially evident across a broad spectrum of SNR levels. This robust 

performance in error minimization attests to its superior signal detection capabilities, 

making it highly effective in environments demanding high precision. Furthermore, 

the BER analysis confirms the PMS-CNN superior ability to maintain low error rates, 

thereby ensuring high-quality signal integrity under diverse operational conditions. 

This is particularly advantageous for applications that require reliable high data 

throughput with minimal permissible error margins. 

PMS-CNN offers a powerful and efficient approach for signal detection and regression. 

Its ability to extract and combine multi-scale features makes it well-suited for 

handling complex and varied signal data, providing a robust solution for real-world 

applications. In terms of system capacity and reliability, the PMS-CNN method 

significantly excels by leveraging the spatial multiplexing strengths of UM-MIMO 

systems to achieve the highest data transmission rates, as evidenced in the channel 

capacity evaluations. It consistently shows the highest throughput levels at varying 

SNRs, effectively utilizing higher-order modulation schemes like 256QAM without 

sacrificing performance. Additionally, the algorithm demonstrates a near-zero outage 

probability across extensive capacity ranges, underscoring its reliability and making it 

a preferred choice for critical communication sectors. Despite its computational 

demands, the PMS-CNN method manages to balance complexity and performance 
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efficiently, making it scalable and suitable for widespread implementation in large-

scale MIMO systems.  

 

In Table 5.1 can be explained as follows. Enhanced Mobile Broadband (eMBB), Video 

streaming may experience occasional buffering, but downloading large files ensures 

rapid data transfer. Using the internet simultaneously by multiple people in an office 

requiring high data transmission speeds enhances work efficiency. Although there 

may be some errors, they do not significantly impact performance. With throughput 

reaching up to 5.442 Gbps, these services become more efficient, providing a better 

user experience. Massive Machine Type Communications (mMTC), IoT devices that 

are not highly critical and can tolerate communication errors, such as low-

importance sensors. High throughput enables the support of many devices 

transmitting data simultaneously. 

 

Table 5.1 Summary of Services and Applications for 5G and 6G 

Modulation  BER Throughput (Gbps) 
256QAM 210−   5.442 Gbps 

Services 
Enhanced Mobile Broadband (eMBB) 
Massive Machine Type Communications (mMTC) 

 

This blend of high efficiency, reliability, and superior performance establishes the 

PMS-CNN method as a pivotal solution for advancing the capabilities of next-

generation wireless communication networks. 
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Figure 5.1 Application for Next communication networks (Thantharate, 2019). 

 

In Figure 5.1, The PMS-CNN can achieve low latency usage, enabling its practical 

application in UM-MIMO systems to support 6G applications. If the model is 

implemented, it will be in the form of specialized chips that are developed and 

integrated into the Radio Access Network (RAN), Core Network, User and Control 

Plane. PMS-CNN can be used in the RAN for signal detection and automatic resource 

management, enhancing communication efficiency and reducing latency. 

 

5.1  Future works 
In this thesis, the researchers simulated the system using signal detection in 

UM-MIMO using a deep learning computer program. In the future, it will be very good 

to apply it to operations to help optimize communication networks. The model can 

also be used to develop channel estimates. Or channel capacity to make the system 

more efficient than before by looking at the Channel Capacity results that the 

researchers have studied, including data transmission rates. 
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