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This thesis proposes a new method for identifying patholosgical voice patterns by
utilizing Multi-Scale Convolutional Neural Network (MSConvNet) architectures. The aim
of the study is to detect abnormal voice characteristics from unprocessed speech data.
A new architecture, namely RS-MSConvNet, has been designed to detect abnormal voice
from raw speech. This model uses a multi-scale convolution block, a spatiotemporal
feature block, and a fully connected layer for classification, with the goal of capturing
differences between abnormal voice and normal voice.

Furthermore, the thesis proposes the RS-MSConvNet-SVM, a hybrid model that
combines the feature extraction capabilities of RS-MSConvNet with the classification
power of Support Vector Machine (SVM) to improve the accuracy of speech pathology
identification. In addition, it utilizes a feature selection mechanism that employs
Particle Swarm Optimization (PSO), a computational technique that enhances
performance. Thorough experimentation with the TORGO database, which includes
both normal and abnormal speech samples, revealed that the RS-MSConvNet, RS-
MSConvNet-SVM, and RS-MSConvNet-SVM with PSO achieved remarkable accuracies of
86.46%, 87.61%, and 88.09%, respectively. The outcomes show that our proposed

methods are useful for pathological voice detection.
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CHAPTER |
INTRODUCTION

1.1  Background and problem statement

Pathological voice detection is a vital technique used in voice healthcare
systems, including voice clinics and telemonitoring applications, to distinguish between
unhealthy or disordered voices and healthy voices. Voice clinics are specialized
facilities where individuals with voice disorders receive diagnosis and treatment, while
telemonitoring applications enable remote monitoring of patients' vocal health. By
analyzing provided utterance signals and detecting changes in speech patterns,
pathological voice detection serves as a valuable diagnostic tool for identifying the
onset of disabling physical symptoms. The obtained results are utilized to screen
patients at risk of specific diseases, enabling early intervention and treatment.
Additionally, it plays a crucial role as a pre-processing step in other applications, such
as dysphonic voice assessment for automatic speaker recognition. Dysphonia,
characterized by abnormal vocal production, quality, or pitch, can be evaluated to
determine the severity and type of voice disorder, aiding in appropriate treatment
planning. Moreover, the technique is relevant in dysarthric speech recognition, assisting
individuals with dysarthria, a motor speech disorder, to communicate more effectively
by converting their speech into text or other forms of communication. Pathological
voice detection falls within the domain of pattern recognition tasks in the field of
biomedical and health informatics, where vocal features and patterns are analyzed to
develop algorithms accurately distinguishing between healthy and pathological voices.
This interdisciplinary approach combines expertise from biomedical sciences,
informatics, and signal processing to advance the understanding and detection of vocal

pathologies, ultimately improving patient care and outcomes.



Pathological voice detection systems can be broadly classified into two
categories: traditional pipeline systems and modern end-to-end systems. Traditional
pipeline systems, employed in earlier studies, consisted of a front-end feature
extraction stage and a back-end classifier. The front-end stage involved converting
speech signals into parametric representations using handcrafted design features, while
the back-end classifier learned feature representations for classifying pathological and
healthy voices. In contrast, modern end-to-end systems leverage deep learning
techniques and eliminate the need for manual feature extraction. These systems
utilize deep learning-based classifiers trained on raw speech or spectrogram data to
predict the target classes. A comprehensive survey covering both traditional pipeline
systems and modern end-to-end systems provides an overview of existing
methodologies, techniques, and algorithms. It evaluates their strengths, limitations, and
performance in pathological voice detection, aiming to identify areas for further
improvement. The survey explores the historical development of feature extraction
methods in traditional systems and assesses the advancements made by modern end-
to-end approaches, facilitating the understanding and progress of pathological voice
detection research. By combining the strengths of both approaches, future
advancements can enhance the accuracy and efficiency of pathological voice
detection, ultimately improving the diagnosis and treatment of voice disorders.

The primary focus of pathological voice detection research has centered
around the traditional pipeline approach, which involves developing customized
feature extraction techniques and employing suitable classifiers. Numerous methods
for feature extraction have been introduced to enhance the identification of
pathological voice conditions. These include Mel-Frequency Cepstral Coefficients
(MFCCs), Linear Predictive Cepstral Coefficients (LPCC), Linear Prediction Coefficients
(LPQ), and features derived from the Multi-Dimensional Voice Program (MDVP)
(Mesallam et al., 2017). Additional features like harmonic-to-noise ratio, Jitter, Shimmer,

Kullback-Leibler Divergence (KLD) histogram, and KLD higher amplitude suppression



spectrum have also been proposed (Sabir, Rouda, Khazri, Touri, & Moussetad, 2017;
Vaiciukynas, Verikas, Gelzinis, Bacauskiene, Kons, Satt, & Hoory, 2014; Barreira & Ling,
2020). Explorations have been made into autocorrelation and entropy features across
different frequency regions (Al-Nasheri, 2018). Furthermore, efforts have been made to
integrate acoustic features with statistical function sets and combine frequency-
domain and time-domain glottal feature sets through the open-source Speech and
Music Interpretation by Large-space Extraction (openSMILE) set or glottal source set-
based fusion features. Researchers have even investigated the fusion of the openSMILE
set and Glottal source set-based features to leverage the strengths of different feature
types (Narendra & Alku, 2020). Support Vector Machines (SVM) have gained popularity
as the preferred choice of classifiers in pathological voice detection due to their
promising performance (Arjmandi & Pooyan, 2012; Sellam & Jagadeesan, 2014; Al
2016; Fang et al,, 2019). However, alternative classifiers like Artificial Neural Networks
(ANN), Linear Discriminant Analysis (LDA), Gaussian Mixture Model (GMM), and decision
trees have also been explored (Ritchings, McGillion, & Moore, 2002; Teixeira, Fernandes,
& Alves, 2017; Gomez-Vilda et al., 2009; El Emary, Fezari, & Amara, 2014; Hemmerling
et al., 2016). These classifiers have been employed in various traditional pipeline
approaches to effectively differentiate between pathological and healthy speech. The
success of pathological voice detection within the traditional pipeline approach heavily
relies on the effectiveness of handcrafted design feature extraction. Achieving accurate
detection outcomes necessitates expertise and domain knowledge in speech
processing, underscoring the significance of understanding speech processing
techniques and possessing feature engineering proficiency to develop high-
performance pathological voice detection systems.

When it comes to pathological voice detection using end-to-end systems,
previous studies (Harar et al., 2017; Doshi et al., 2021; Kourkounakis, Hajavi, & Etemad,
2021) have demonstrated that expert feature engineering is not necessarily due to the

capabilities of deep learning models to be trained using either the raw speech signal



or its spectrum. For instance, in Narendra and Alku (2020). combinations of
Convolutional Neural Network and Multilayer Perceptron (CNN-MLP) or Long Short-
Term Memory Networks (CNN-LSTM) were proposed, utilizing the raw speech signal as
input. The results showed that these models, CNN-MLP and CNN-LSTM, achieved
promising outcomes in pathological voice detection. However, using the raw speech
signal without any modifications proved to be less efficient when working with limited
training data. To address this limitation and further enhance the performance of the
end-to-end CNN-MLP and CNN-LSTM, researchers in Harar et al. (2017) introduced the
use of glottal flow signals as an alternative to the raw speech signal. The results
indicated that employing glottal flow signals in the end-to-end CNN-LSTM and CNN-
LSTM models yielded better performance compared to the conventional approaches
using raw speech signals. Despite the encouraging results obtained by the end-to-end
CNN-MLP and CNN-LSTM models with either raw speech or glottal source signals, there
remains an ongoing research challenge to design novel end-to-end models specifically
tailored for pathological voice detection. This research area offers opportunities for
developing innovative approaches that can further advance the field and enhance the

accuracy and efficacy of pathological voice detection systems.

1.2  Thesis objectives

The objectives of this thesis are as follows:

1.2.1 To study deep neural networks in the domain of pathological voice
detection, focusing on understanding the underlying processes and mechanisms
involved.

1.2.2 To design and propose a new end-to-end deep neural network model for
pathological voice detection that does not require expert knowledge in feature

engineering.



1.3  Scope and limitation of the thesis

1.3.1 The experimental results are based on the TORGO dataset (Rudzicz,
Namasivayam, & Wolff, 2012) to ensure reliability in the data used for training and
evaluating the model.

1.3.2 This thesis aims to propose a novel end-to-end deep neural network
model using raw speech for pathological voice detection.

1.3.3. The proposed method is compared to five existing systems in detecting
pathological voices. It outperforms their performance, thus confirming the substantial
effectiveness and usefulness of the proposed approach for pathological voice
detection.

1.3.4. In order to enhance the performance of the proposed approach, a hybrid
method by integrating the feature extraction ability of the proposed model and the
classifier of SYM method is implemented to further improve its effectiveness.

1.3.5. In order to improve the performance of the proposed approach, a feature
selection method is implemented as an additional step to further improve its

effectiveness.

1.4  Contributions

1.4.1 Propose RS-MSConvNet, a novel end-to-end multi-scale convolution
neural network model using raw speech for pathological voice detection.

1.4.2 Propose RS-MSConvNet-SVM, a novel hybrid detection model by
integrating the feature extraction ability of the RS-MSConvNet model and the classifier
of support vector machine.

1.4.3 Explore feature selection to improve the performance of the proposed

RS-MSConvNet-SVM method.



1.5  Organization of the thesis

The remainder of this thesis is outlined as follows: Chapter Il provides an
extensive exploration of the underlying theoretical framework, establishing the
fundamental principles associated with this research. It serves as the bedrock by
introducing the central concepts and principles of the thesis. Notably, it introduces the
innovative concept of optimization without feature extraction, which represents a
distinctive approach to deep learning for speech disorder prediction. Moreover, this
chapter critically examines relevant literature, delving into previous studies on speech
disorder prediction, deep learning methodologies, and optimization techniques.

Chapter Il concentrates on elucidating the methodology employed in
designing deep learning models for pathological detection. The chapter places
particular emphasis on end-to-end pathological detection techniques, which eliminate
the necessity for specialized knowledge in feature extraction. It delves into the diverse
methodologies and techniques used to train and construct these models, providing
insights into their implementation and deployment.

Chapter IV presents the results obtained from the experimental analysis of the
developed models. It begins with an introduction and explores various optimization
aspects of the RS-ConvNet model, including the impact of speech length, learning rate,
batch size, momentum dynamics, and decay rate. The chapter then examines the
effects of fully connected (FC) layers in the RS-MSConvNet model and the visualization
of features learned by RS-MSConvNet. It concludes with a thorough performance
analysis of RS-MSConvNet models, and a summary of the key findings presented in this
chapter.

Chapter V presents the outcomes of the developed models, accompanied by
comprehensive discussions. The model results are subdivided into three subsections,
enabling an in-depth analysis. The first subsection showcases the models' performance
when using different lengths of input speech, offering valuable insights into the

influence of input length on the model's accuracy. The second subsection compares



the models' performance when employing different layers, facilitating an examination
of the impact of layer configurations on detection outcomes. Lastly, the third
subsection conducts a comparative analysis of the models' performance against
baseline systems, specifically utilizing the TORGO database as a benchmark.

Chapter VI serves as the concluding chapter of the thesis, encapsulating the
key findings and presenting conclusions drawn from the research. Additionally, this
chapter provides valuable suggestions and recommendations for future studies,
identifying potential areas for further investigation and improvement within the field

of pathological detection.



CHAPTER Il
BACKGROUND THEORY

2.1  Introduction

This chapter gives a detail on the end-to-end pathological voice detection
model. It stresses how important it is to find and analyze abnormal voice patterns by
using @ mix of advanced methods and basic ideas. This chapter also goes into great
detail about the basic ideas that this thesis is based on, which are based on the idea

of proposed model.

2.2 Feedforward Neural Networks

First, learn how a basic feedforward neural network learns because it was the
first and most straightforward Artificial Neural Network (ANN) ever made. This will help
it make sense of more complicated recurrent neural network architectures

(Schmidhuber, 2015).

l F‘orwa;rd _J

N

: Output
Y

Qutput
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Hidden layers
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<, | Backward

Figure 2.1 Feed-forward back-propagation mechanism in artificial neural network



2.1.2 Forward Propagation
The input data should be fed in the forward direction to generate
output. The input data should not flow in reverse during output generation because it
would form a loop, and the result could never be developed. These network
configurations are feed-forward networks (Russell & Norvig, 2010). The feed-forward
network helps in forward propagation.

2(x)=b+) wx =b+w'x (2.1)

Where b is the bias, W' is the weight vector's transpose, and x is the input vector.
The activation or squash function permits neurons to turn their input

into an output within a specific range. The activation function of neural networks must

be non-linear to learn non-linear decision boundaries. Table. 2.1 Common activation

functions in artificial neural networks

Table 2.1 Common activation functions in artificial neural networks.

Name Equation Graph
Linear
5_
\\ VI
sigmoid
l.
Sigmoid o(z)= 1
1+e™” Y
4 2 o0 2 4
tanh
1.
Hyperbolic o(z)=tanh(z) _j _/
4 2 0 2 4
RelU
- 5-
Rel (z) A if z>0
O' =
o 0 ifz<0 N _~
2 2 o 2 4
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Table 2.1 Common activation functions in artificial neural networks (continued).

Leaky RelU
L eakv Rel. (z)— Z if z>0 °
Ay R 9N 0z if z<0 o
-4 -2 6 2 4
ELU
5.
Z if z>0
Z)= ]
B =) e )it c0 |0 .
-4 -2 0 2 4

2.2.2 Backward Propagation
The technique of minimizing the error between the predicted output
hW(X)and the intended output Y by modifying the weights using derivatives of a loss
function L(W) is known as backward propagation (sometimes referred to as back-
propagation or BP) (Russell & Norvig,2010). Therefore, the process entails propagating
the error from the output layer and iteratively propagating it back through the hidden
levels. When employing the Mean Squared Error (MSE) as the loss function, the

following equation holds for any weight W :

LWy W == S (n-a @) - T (n-a () @2

Where K pertains to the nodes located in the output layer, the
elements within the final summation comprise the gradient of the loss function for
each K output item. This approach allows us to decompose the overarching

challenge of learning M outputs. By aggregating gradients from each K output
element, it can effectively compute the overall error gradient % L(W). It should be

noted that both Y and hW(X) are vector gquantities. The back-propagation is distinct
for neurons in the output layer and the concealed layers.

2.2.2.1 Back Propagation for neurons in the output layer
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Since the parameters of the output layer directly affect the loss, it is relatively

simple to compute the loss gradients for those units. It defines the loss for each output

unit K as the difference between prediction hk and target Y\ . Applying the chain

rule results in the loss gradient expression:

0
ow,

L(w)=(oy (z)-Y)a ()0 (2) = A0y (2) 23)
where the modified error is defined as:
Ac=(o(z)-Y)ou (z) (2.9)
The initial term represents the discrepancy between the activation G(Z) of
the network's output layer and the target value y for each element K. The derivative
of the activation function of the output layer is referred to as the second term. The
activation output of the | node in the hidden layer is denoted as o;.
Subsequently, equation 2.3 is employed in the delta rule to iteratively update

weights using the learning rate 7.

Wy W, +77 L(w) (2.5)

ik
2.2.2.2 Back Propagation for neurons in the hidden layers
In the case of hidden layers, it applies a propagation rule that is similar.

However, it incorporates a modified error term of the output, considering that hidden

node | bears responsibility for a certain degree of the error A, in each output node

k.

A =0 (7)Y AW, (2.6)
k
Consequently, the loss gradient expression for hidden node | is obtained.
0
CL(w)=a,0(2) 20

n

And concludingly, the weight-update rule for hidden layers is identical to its

version in the output layer (equation 2.5).
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W <= W +f7i L(w) (2.8)

ij
Concludingly, the Back Propagation algorithm is responsible for the learning
process in neural networks. It involves the iterative computation of the error between
the predicted output value and the target output value, followed by the adjustment
of weights in a way consistent with gradient descent. A visual depiction can also
elucidate this concept, as shown in Figure 2.2. In this graphical representation, the

iterative process of approaching the global minimum of the loss function involves

following the gradient direction with step sizes denoted as 7.

L(w)

Figure 2.2 Gradient descent and the loss function L(W)

2.3 Convolutional Neural Network (CNN or Conv)

Convolutional Neural Network (CNN) are artificial intelligence that use multiple
layers of neural networks to identify, recognize, and group objects. They can also find

and separate objects in images. In reality, CNN or Conv is a well-known discriminative
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deep learning architecture that can learn from the input object without requiring
humans to extract features (Koushik, 2016; Bezdan & Dzakula, 2019; Bouchard, 2022).
This network is often used for visual identification, medical image analysis, image
segmentation, Natural Language Processing (NLP), etc. Because it is designed to work
with a wide range of 2D shapes, it works better than a standard network because it
can automatically pick out essential parts of the input without help from a person.

In CNN, the layer comprises filters or kernels that process data. Initially given
random weights, these kernels learn to extract features from input data through
training, turning random integers into meaningful weights. CNN understands multi-
channeled images, like RGB images with three color channels or single-channeled
grayscale images, while traditional neural networks work with vector data. Applying
these kernels to the input image and showing the results as N-dimensional metrics
makes the feature map. Within a high-dimensional, implicit feature space, the kernel
finds the inner products of all data pairs without knowing the coordinates of the data
in that space. This “kernel trick” turns a linear model into a non-linear model to make
CNN better at learning and pulling out complex features.

CNN needs a convolutional layer comprising different filters or kernels that
change the input data. At first, these kernels were given random weights. It gradually
changes based on training data to pull out features from the input, which are shown
as N-dimensional metrics. During training, each kernel, which comprises a set of
integers, learns how to pull out important features. This lets CNN work in a high-
dimensional feature space without having to compute data coordinates directly.
Instead, it figures out the inner products in the feature space. The kernel trick can be
used on a linear model to turn it into a non-linear model. CNN's input format is set
before convolution, which differs from traditional neural networks using vector format.
CNN can handle images with multiple channels.

Examples of the convolution process are RGB images with three channels or
grayscale images with one channel. Find patterns in a 4x4 grayscale image using a 2x2
kernel set up with random weights. Additionally, while the kernel moves across the

image horizontally, the dot product of the input image and the kernel is being
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calculated. Coordinate values are multiplied and added to get a single scalar value for
this calculation. After each iteration, this process is repeated until the kernel can't
move across the image anymore.

Transitioning from this practical example, it becomes evident that the
underlying parameters greatly determine the effectiveness of such convolution
operations. Parameters defining Convolution operations play a crucial role in shaping
the outcome of these processes. They are the backbone that dictates how the
convolution is executed, influencing everything from the precision of pattern detection
to the speed and efficiency of the operation. Understanding these parameters is key
to optimizing convolution processes for different applications and requirements.

Building further on the importance of these parameters, in the realm of CNN,
they take on an even more significant role. In the realm of CNN, the convolutional
layer serves as a fundamental building block, primarily utilized for feature extraction
and spatial analysis in multidimensional data. The efficacy and efficiency of these
layers are largely governed by a set of parameters that define their operational
behavior. These parameters not only influence the transformation of data within the
layer but also have far-reaching implications on the overall network architecture,
computational complexity, and the nature of features extracted. Understanding these
parameters is pivotal for designing effective CNN models. The primary parameters that
define the operations of a convolutional layer are (PyTorch,2023):

1) Input dimensions (N,C,,H. ,W.)): The input to a convolutional layer is

in
typically a four-dimensional tensor, characterized by the batch size (N ), the
number of input channels (C;, ), and the spatial dimensions - height (H,,) and
width (W, ). These dimensions represent the size and complexity of the input
data.

2) Kernel size: The kernel, or filter, is a small matrix used to apply the convolution

operation. The size of the kernel (height and width) determines the extent of

the local area in the input to which the convolution is applied. Larger kernels
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encompass more input units, capturing broader features, while smaller kernels
focus on finer, localized features.

3) Padding: Padding involves adding extra pixels around the edge of the input
tensor. This technique is used to control the spatial dimensions of the output
tensor, allowing for adjustments in feature map size, and is critical for handling
edge cases where the kernel overlaps the bounds of the input.

4) Stride: Stride defines the step size with which the kernel moves across the
input tensor. A larger stride results in broader spatial sampling, leading to
smaller output dimensions, whereas a smaller stride offers finer sampling,
preserving more spatial information in the output.

5) Dilation: Dilation refers to the spacing between the elements within the kernel.
This parameter allows the kernel to expand and cover a larger receptive field
without increasing the number of parameters. Dilation introduces an additional

level of flexibility in manipulating the field of view of the convolutional filters.

The output dimensions (N,C,,, H,W,,) of a convolutional layer are

influenced by its configuration. In this case, (C,,) is determined by the number of

filtters. The height (H,) and width (W, ) of the output are calculated as follows:

Mo - [ H. +2x padding [0]- diIa_tion[O]x (kernelsize[0]-1) -1 1 29)
i stride[0]

W, - "W, +2x padding[1] - dilat_ion[l] x (kernelsize[1] _1)_1+1 (2.10)
i stride[1]

Figure 2.3 shows the main calculations that were done at each stage. The kernel
is shown in the smaller square (2x2), and the input picture is shown in the larger square
(4xd). Then, a product is shown as a number multiplied by both. This sum is used as
an input value for the output feature map (Koushik, 2016; Bezdan & Dzakula, 2019;

Bouchard, 2022).



16

Image 4x4 Filter 2x2 Result

N
oo |o o
!
[S]
[
v

-2
1/lo0f[=2]0
2 |1
1o |11 ® 1 4,-
0|1]-2 1
0|1]-2

0
1 ® 0 1

>
-2 1 0

Figure 2.3 A picture that shows the main calculations

In the example mentioned before, the kernel works with a stride of 1, which
sets the step size across the input image in both the vertical and horizontal directions.
It is important to note that this example does not add padding to the input image.
Remember that this method is flexible; a different stride value can be chosen based
on specific needs. One of the best things about choosing a higher stride value is that
it makes the feature map less multidimensional. This change can be significant for
managing the feature map's size and complexity that the convolutional process

creates.
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However, padding dramatically affects the size of the picture's borders. It differs
from the border side, which changes significantly over time. When the picture gets
bigger, the feature map gets bigger, too. Each filter could stand for a feature. If the
filter moves over an image and does not find a match, it does not work. CNN uses
these steps to find the best object-description filters. Figure 2.4 shows how the matrix
can be set up to see the edges of a picture. These matrices are also called filters

because they work like the filters usually used in image processing.
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Figure 2.4 Effects of different convolution matrices
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But at CNN, these filters are used before the form filters that are better for the
job at hand and are used during training.

Stride: In fact, CNN gives it more choices that let it narrow down the settings
even more while also lowering some of the harmful effects. The word for one of these
is stride. From looking at the areas, the next-layer node overlaps with its neighbors in
the situation described above. It can change the overlap by altering the stride. Figure
2.5 shows a one-of-a-kind 6x6 picture. The most significant output size it can get is 4 x
4 because the filter can only be moved by one node at a time. The outputs of the
three left matrices, along with those of the three middle matrices and the three correct
matrices, can be seen in Figure 2.5. With a walk and counting each step as two, it will
be three times three. This means that the output's total size and the overlap amount

will go down (Koushik, 2016; Dhillon & Verma, 2019; Edureka, 2022).

L

v

Figure 2.5 Stride 1, the filter windows move only one time for each connection.

Equation 2.11 shows a simple that leads to the output size, as seen in Figure
2.6. The size of the image (DxD) and the size of the filter (KxK) are used to figure

this out.

D-K (2.11)

output =1+

where D is the input size, K is the filter size, and S is the stride size.
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Figure 2.6 The effect of stride

Padding: The loss of detail at the edges of the image is one of the problems
with the convolution step. It may not be able to see them because they are only
picked up when the filter is moved. Using zero padding is a simple and helpful
suggestion. When it uses zero padding, it can also change the output size.

For example, in Figure 2.6, the output will be 4 x 4, less than the input of 6 x
6. This is because D = 6, K = 3, and stride 1 were used. However, incorporating a
single layer of zero-padding results in a 6 x 6 output identical to the original input. In
this scenario, the actual dimension D becomes 9. This adjustment is reflected in the
modified formula, which accounts for the scenario without padding, as detailed in

Equation 2.12.

output :1+% (2.12)

Where P is the number of layers of zero-padding (for example, P = 1 in Figure 2.7),
this padding idea keeps the network output size from getting smaller as the depth

goes up.
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Figure 2.7 Zero-padding

2.4  Convolutional Neural Network for audio classification
In the expanding realm of deep learning applications, CNN have shown
remarkable efficacy in the field of audio classification. This capability extends the
versatility of CNN beyond visual data, enabling them to analyze and categorize
complex audio patterns.
2.4.1 Understanding audio data for CNN
Audio data differs significantly from image data in its structure and
representation. It is typically represented as a time series of amplitude values, often
transformed into spectrograms = or MFCCs  for effective processing. These
transformations convert audio into a 2D format (time vs frequency or cepstral
coefficients), making it analogous to image data and thus suitable for CNN analysis.
2.4.2 Preprocessing and feature extraction
The first step in audio classification using CNN is preprocessing and
feature extraction. This involves converting raw audio signals into a suitable format,

such as spectrograms or MFCCs. These representations capture essential features like
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frequency and time, allowing the network to identify patterns associated with different
audio classes.
2.4.3 CNN architecture for audio data

The architecture of a CNN for audio classification is similar to that for
image processing but tailored to the characteristics of audio data. The convolutional
layers learn to recognize patterns in the frequency and time dimensions of the input
features. Pooling layers reduce dimensionality and help in capturing invariant features.
Fully connected layers towards the end of the network aid in classifying the audio into
various categories based on the learned features.

2.4.4 CNN classification for pathological voice detection

CNN application for pathological voice detection represents a significant
advancement in medical diagnostics, leveraging the power of deep learning to identify
and classify voice disorders. This subsection delves into the specifics of using CNN for
this purpose.

Understanding pathological voice and characteristics: Pathological
voices are those affected by various disorders, such as nodules, polyps, or laryngeal
diseases, which alter the typical characteristics of a person's voice. These alterations
can manifest in various ways, such as pitch, volume, and quality changes. The
challenge lies in accurately detecting these subtle changes, which may be
imperceptible to the human ear but are critical for early diagnosis and treatment. This
chapter gives a detail on the end-to-end pathological voice detection model.

Data collection and preprocessing: The first step for CNN-based
pathological voice detection involves collecting a comprehensive dataset of healthy
and pathological voice recordings. These recordings are then converted into a suitable
format for analysis, like spectrograms or MFCCs, which effectively capture the unique

attributes of each voice sample.
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CNN architecture for pathological voice detection: The CNN architecture for
this task is designed to extract and learn the intricate patterns associated with
pathological voices. This involves:

1) Convolutional layers: These layers are adept at extracting local and global
features from the spectrograms or MFCCs, focusing on characteristics that
differentiate pathological voices from normal ones.

2) Pooling layers: They reduce the dimensionality of the data, enhancing the
model's ability to generalize and focus on the most relevant features.

3) Fully Connected and output layers: The final stages of the network, where
the learned features are used to classify the voice as either pathological or

healthy.

Based on this conceptual framework, the architecture will show how
convolutional, pooling, and fully connected layers are integrated to create a robust
model that can identify pathological voices. This figure highlights the interplay among
these layers as well as how they work together to improve the accuracy and
dependability of the model. Figure 2.8 shows an example of CNN architecture for the

detection of pathological voices.

Conv2D Layer Conv2D Layer = Conv2D Layer
- 3x3 kernel size - 3x3 kernel size - 3x3 kernel size

- same padding - same padding - same padding Max-pooling
- 16 filters - 32 filters - 64 filters LayeA
— ‘ L Flatten o FC Epc 0
Input image: 28x28x3  28x28x16
28x28x32 14x14x64 64
28x28x64 128

Figure 2.8 CNN architecture (Trinh & Darragh, 2019)
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2.5 End-to-End CNN for pathological voice detection

The introduction of the end-to-end CNN tailored for pathological voice
detection marks a transformative era in medical diagnostics. This pioneering CNN
model revolutionizes the diagnostic approach by directly processing raw audio data.
Figure 2.9 shows an example of the end-to-end CNN architecture for the detection of
pathological voices. This novel method contrasts conventional models, which typically
depend on extensive preprocessing. By directly handling raw data, this model
streamlines the diagnostic process and substantially improves the precision and
efficiency in identifying voice pathologies, offering a more direct and refined approach
to diagnostics. Comparing general CNN and end-to-end CNN in detecting pathological
voices

2.5.1 Core functionality

General CNN: These networks have been the backbone of visual data
analysis, adept in tasks such as object recognition, image segmentation, and natural
language processing. They shine in managing 2D image data, skillfully extracting vital
features from both RGB and grayscale images.

End-to-end CNN for pathological voice detection: This specialized
network is meticulously engineered for the complex realm of audio analysis,
concentrating on detecting and categorizing pathological voice patterns. It diverges
from general CNN's intrinsic ability to process unrefined audio data, seamlessly
converting it into analyzable formats for in-depth examination.

2.5.2 Input data handling

General CNN: These networks typically engage with well-structured,
multi-channeled image data, necessitating individualized processing of each channel,
such as RGB, relying heavily on pre-processed and formatted data.

End-to-end CNN for pathological voice detection: Uniquely designed to

manage raw, unstructured audio data directly, this network obviates the need for
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conventional preprocessing practices like spectrogram or MFCCs conversion, typically

indispensable in standard audio processing.
2.5.3 Architecture and feature extraction

General CNN: Composed of a diverse array of filters or kernels, each
calibrated to identify and learn patterns in image data, thereby facilitating the
classification of a wide range of objects within these images.

End-to-end CNN for pathological voice detection: Boasts an architecture
meticulously crafted to align with the specificities of audio data. Its convolutional
layers are fine-tuned to pinpoint unique voice patterns, mainly focusing on anomalies

and irregularities that signal voice pathologies.
2.5.4 Layers and operations

General CNN: Employ a variety of convolutional layers featuring
different filter sizes, padding, and stride configurations, enabling them to capture an
extensive range of features, from basic to highly intricate.

End-to-end CNN for pathological voice detection: It utilizes
convolutional, pooling, and fully connected layers but is focused on extracting features
relevant to vocal quality and specific auditory patterns, differing markedly from visual

feature extraction.
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Figure 2.9 End-to-End CNN Architecture (Rios-Urrego et al., 2022)
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2.6 End-to-End Multi-Scale Convolution Network for pathological

voice detection

This section delves deeper into the model's detailed features. The multi-scale
feature extraction, achieved through convolution operations at various scales, allows
for the extraction of both detailed and extensive features, ranging from fine-scale
detection of subtle voice irregularities to coarser scales assessing overall voice quality.
The multi-scale analysis enhances sensitivity, enabling the detection of minute voice
anomalies that single-scale analysis might overlook. This approach also facilitates a
more holistic understanding of the voice sample througsh comprehensive feature
mapping.

The advanced architecture and operations of the model are further explored,
particularly its layer structure and data processing mechanics. The model comprises
parallel convolutional pathways, each tailored to a specific scale, processing input data
to extract relevant features. For example, one pathway might be adept at capturing
the delicate nuances of voice tremors. These extracted features from different scales
are then integrated using a mathematical fusion strategy, which can be expressed as:

Feombined- = @ Ffinescate + B Fia_scaie T Fooarse-scale (2.13)

In the model's design, the weights «, £,y are assigned to features from each
scale, determining their contribution to the combined feature set. To ensure the
precise capture of scale-appropriate features, the model utilizes optimized
convolutional operations with customized kernel sizes for each scale. This attention
to detail is evident in the varied kernel sizes employed: smaller kernels in fine-scale
pathways focus on detailed aspects, while larger kernels in coarse-scale pathways are
designed to capture broader patterns, as shown in Figure 2.10. This nuanced approach

to feature extraction is vital for the model's accuracy and efficiency.
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Figure 2.10 Multi-scale Convolutional Neural Network

Transitioning from these architectural specifics, it's important to address the
overarching challenges the model faces, particularly in computational efficiency and
interpretability. Overcoming these challenges involves a multifaceted approach.
Strategies for computational management, such as network pruning and optimization,
play a crucial role in reducing the network's complexity. This is done without
compromising the model's ability to extract multi-scale features. In parallel, leveraging
advanced computational hardware like Graphics Processing Units (GPUs) and cloud
Tensor Processing Units (TPUs) is essential to manage the increased processing
demands.

Moreover, the model's effectiveness is further enhanced by a robust training
process. Utilizing expansive and diverse datasets is critical in improving the model's
generalizability and robustness across various voice pathology scenarios. Finally, the
model also prioritizes interpretability, especially in clinical settings. This is achieved
through layer-wise feature visualization techniques, which allow clinicians to interpret
the contributions of different scales to the final diagnosis. Such interpretability is crucial
for practical application, bridging the gap between sophisticated machine learning

techniques and real-world clinical utility.
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2.7  Tuning a Neural Network
2.7.1 Pooling

Typically, there is a subsampling or pooling layer next to each
convolutional layer. This combination lowers the resolution of the feature map, which
makes the output less likely to shift or become distorted. (LeCun & Bengio, 1995). The
following are the most commonly used pool pooling algorithms:

Max pooling: Max pooling chooses the pixels in the image that are
brighter. It helps only to want to see the lighter pixels in an image, and the background
is dark. Figure 2.11 shows that a pooling operation figures out the highest value for
each window range sends that neuron out, and then moves it on to the next layer.

Average pooling: The average pooling method smooths out the image,
and hence, the sharp features may not be identified when this pooling method is used.

The average pooling is shown in Figure 2.12.

2441234|140|153
200|255|150|130 255|153
143|203|145|127 203|224
150| 45 | 65 |224

Figure 2.11 Max pooling

244\234|140|153
200(255|150|130 233143
143|203 145|127 135|140
150| 45 | 65 224

Figure 2.12 Average pooling
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For example, Figure 2.13 shows a visual comparison between an original image
of a purple flower and two processed versions of the same image using different
pooling methods, which are techniques used in image processing to reduce the size of
the image while retaining important features. The Original Image at the top is a detailed
and clear photograph of the flower. To its bottom left, the image labelled “Average
pooling” appears as a diminished rendition, with a noticeable decrease in resolution
and a softened detail profile. This is indicative of the average pooling technique, where
pixel values within a designated area are combined, assigning the mean value to the
entire region, resulting in a more uniform but less detailed image. Conversely, in the
bottom right, the “Max pooling” image, despite its lower resolution, conspicuously
conserves more of the flower's intricate details and contours. This effect arises from
the max pooling method, which selects the peak value from a specified pixel cluster
to represent the whole area, thus maintaining more textural and edge clarity.

In conclusion, this set of images demonstrates the effects of two common
pooling operations used in image processing and machine learning, particularly in CNN.
Average pooling results in smoother but less detailed images, whereas max pooling
preserves more detail at the cost of losing some smoothness. These techniques are
critical in reducing computational load and extracting robust features for tasks such as

image classification and pattern recognition.
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Figure 2.13 Average pooling and Max pooling (Dhuma, 2019)

2.7.2 Dropout
In 2014, Srivastava et al. (2014) introduced a technique called Dropout

to prevent overfitting by randomly setting input units and dropping their related
connections in the network during training. This means that the neurons will adapt to
optimal weights that are less dependent on the weights and performance of other

neurons. Dropout as shown in Figure 2.14
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Figure 2.14 Dropout neural network model. (a) A standard neural network. (b) An

example of a thinned net produced by applying dropout

2.7.3 Batch Normalization

In 2015, Batch Normalization (BN) was proposed by loffe and Szegedy
(loffe & Szegedy, 2015). Batch Normalization is used to make training of neural networks
faster, more stable and to mitigate the problem of internal covariate shift.

It is called “batch” normalization because, during training, it uses the
mean and standard deviation (or variance) of the values in the current batch to level
the values coming in from each layer. During training time, a batch normalization layer
does the following:

Batch mean (u) = 1 >0 (2.14)
m

i=1

m

Batch variance (o) = \/5 +lZ(Oi -0 )2 (2.15)
m

i=1

Where O is the previous layer, m is the number of samples in the given
batch. o is the batch standard deviation. By 0 is a small number to make sure & > 0

i.e., to make sure O from becoming undefined when you divide it by zero.
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BN speeds up learning by letting people learn at much higher rates and
by making initial learning rates less important. BN also sets a feature along with other
features in each batch, which means that each normalized feature is not just a
deterministic value. This effect lowers overfitting and sometimes gets rid of the need
for other regularization methods (Srivastava, et al., 2014) like Dropout (loffe & Szegedy,
2015).

2.7.4 Softmax

In the final step of a neural network-based categorical classifier,
particularly when dealing with more than two truth classes (1 > 2), where K represents
the number of classes, a softmax layer is commonly employed. The softmax layer
plays a pivotal role in converting the model's raw output into a meaningful probabilistic
interpretation (Fayek, Lech, & Cavedon, 2017).

%
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Softmax (Z,) = fori=1,....,1 (2.16)

Where K is the number of classes in the output and Z; is the activation

output for class | (Bishop, 2006). So, the SoftMax function takes the logits as input and
performs a transformation that squashes the values between 0 and 1. Moreover, it also

makes sure that the sum of all class probabilities equals 1.

2.8 Machine Learning

Machine learning is a branch of artificial intelligence that focuses on developing
algorithms and models to learn from data and make predictions or decisions. The
algorithms used for training are typically categorized as follows:

Supervised Learning: Supervised learning is a type of learning where data is
provided with labelled examples and results. In this learning, the computer is trained
to learn from input data and corresponding desired results provided by a teacher or
supervisor. Next, the computer will link the data and generate a prediction model. In

this type of learning, the algorithm learns from the labelled examples to generalize
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patterns and relationships between input data and their corresponding outputs. Create
a purposeful model to accurately predict results for new input data based on its
learned knowledge. This learning is commonly used in tasks such as classification,
where the model learns to assign input data into predefined categories, and regression,
where the model learns to predict numerical values based on input features.
Supervised learning is a widely applied approach in machine learning due to its ability
to make accurate predictions with labelled training data (Nasteski,2017).

Unsupervised Learning: Unsupervised learning is where the computer receives
input data without corresponding desired outputs or labeled examples. It aims to
mimic the functioning of the human brain more closely. The learning process uses
statistical principles to analyze and group the data into different levels. This learning
doesn't rely on examples with labels but looks for information or patterns in the data
itself. Unsupervised learning is especially helpful when there is no labeled data. The
method is used in various domains, including exploratory data analysis,
recommendation systems, and anomaly detection (Celebi & Aydin, 2016).

Reinforcement Learning: Reinforcement learning is a learning approach that
involves trial and error to learn and determine the most effective course of action. It
is often used when an agent learns how to interact with an environment to maximize
a reward signal. Examples include learning to play games or optimizing product
recommendations, predicting customer behavior, etc. In reinforcement learning, the
agent learns through interactions with the environment. The model will receive
feedback through rewards or penalties based on its actions after the model learns and
improve to seek maximum overall reward to achieve an optimal solution. However,
this learning allows the agent to learn and improve without humans, even when the
data is complex and non-systematic data (Vidyasagar,2023).

While supervised learning, as discussed in the previous section, encompasses a
range of techniques and models, one of the most effective and widely used in this

category is the SVM (Kadiri & Alku, 2019). This method stands out for its unique
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approach in solving classification problems, leveraging the principles of supervised

learning to achieve high accuracy and efficiency.

2.9 Support Vector Machine (SVM)

The Support Vector Machine (SVM) technique is popularly applied to
classification problems (Wang,2005). It is built upon the foundations of linear models
and is particularly effective for grouping data. It finds the best-separating hyperplane
with a wide margin that touches the closest data points in the feature space. As a
result, the hyperplane with the most significant margin is regarded as the best-
separating boundary, and the data points that contact this margin are known as support

vectors, as depicted in Figure 2.15.

Support Vectors

Support Vectors

Margin

Figure 2.15 Support Vector Machine
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Building on the foundational concept, the SVM is renowned for its geometric
interpretation and adaptability. It is a potent supervised learning tool suitable for
classification and regression tasks (Shen, Changjun, & Chen, 2011). Central to its
adaptability are its hyperparameters, particularly Cand 7.

C parameter: The C parameter, colloquially known as the regularization
parameter, dictates the balance between the enlargement of the margin and the
reduction in classification error. It plays a pivotal role in harmonizing the objectives of
minimizing training error while striving for a lower test error, thereby impacting the
SVM's generalization potential. A lean towards a more minor C would inherently
maximize the margin, albeit at the risk of misclassifying certain data instances.
Conversely, escalating the value of C exhibits a determination to flawlessly classify
training samples, possibly at the cost of opting for a hyperplane with a reduced margin.
To encapsulate, C governs the penalty meted out for misclassification. An augmented
C enforces a stringent punishment, refining the decision boundary to envelop the data
points closely.

Gamma () Parameter: Kernel Coefficient for “rbf”, “poly”, and “sigmoid”. It
is intrinsically linked with the Radial Basis Function (RBF) kernel and finds relevance in
the “poly” and “sigmoid” kernels. It is the torchbearer for defining the contour of the
decision boundary. A subdued } value magnifies the influence of individual training
examples, paving the way for a malleable decision boundary. In stark contrast, an
elevated )Y confines the training example's impact to its immediate surroundings,
giving rise to a more undulating decision boundary. Viewed through the prism of the
RBF kernel, } inversely correlates with the sphere of influence wielded by the training

samples. The “scale” alternative for } calibrates it based on the equation 2.17.

scale = ! (2.17)
N xvar (X)

features

Wherein N (e represents the feature count and var(X) denotes the dataset's

variance. var(X) based on the equation 2.18
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Wherein X; is the ith observation in the dataset, ,U is the mean (average) of
all observations in the dataset and mrepresents the total number of observations or
data points in the dataset X

The judicious selection of C and ) holds the key to the SVM model's
performance. In real-world applications, practitioners often resort to methods such as
grid search or random search, dovetailed with cross-validation, to pinpoint the optimal
parameter values. Building on this understanding, when configuring our SVM with the
RBF kernel, it becomes evident that two hyperparameters are of primary importance:
Cand ).

The C parameter plays a crucial role in defining the balance between margin
width and misclassification in SVM. Specifically, a small value of C prompts the SVM
to prioritize a wide margin, possibly at the cost of some misclassifications in the training
data. This might result in a more generalized model with a smoother decision
boundary. On the flip side, a larger C value drives the SVM to reduce training
misclassifications, even if it means a narrower margin. This can produce a complex
decision boundary that fits the training data closely, but with a potential risk of
overfitting.

The 7 parameter in SVM. When set to low values, the influence of individual
training samples becomes more widespread, leading to a smoother decision boundary.
Such a configuration can often result in a model that is more generalized, capturing
broader patterns in the data. Conversely, hish gamma values create a contrasting
effect. A high gamma value means that the influence of the training samples is more
localized, potentially producing a more intricate, wavy decision boundary. This
configuration can fit the training data very closely, but it comes with a heightened risk

of overfitting. Delving deeper into its mathematical significance, in the context of the
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RBF kernel, gamma essentially determines the distance over which two samples are
considered “similar”. A high eamma, for instance, results in a narrower bell-shaped

curve for the RBF kernel, implying that samples need to be near to be deemed similar.

2.10 Deep Hybrid Learning for pathological voice detection.

In deep hybrid learning, various machine learning methodologies are integrated,
with the nuanced feature extraction capabilities of deep learning being combined with
the classification prowess of traditional algorithms like SYM (Khairandish et al., 2021).
This combination allows for a more nuanced and comprehensive understanding of
data, particularly when dealing with complex and layered datasets. The significance of
deep hybrid learning lies in its ability to capitalize on the strengths of its constituent
parts while mitigating their individual weaknesses. For example, deep learning models
excel at parsing and interpreting raw, unstructured data, but they often require
substantial data and computational power (Thuwajit et al., 2022). On the other hand,
traditional algorithms, while being more efficient with smaller datasets, might struggsle
with the high-dimensional data that deep learning thrives on. Hybrid learning models
aim to bridge this gap, offering a balanced and efficient approach to solving machine
learning problems.

One of the most notable applications of deep hybrid learning is in the field of
medical diagnostics, specifically in the detection of pathological voice disorders. Voice
disorders can be subtle and vary greatly among individuals, making them challenging
to diagnose accurately. Deep hybrid learning models can process and analyze the
nuanced variations in voice data, distinguishing between healthy and pathological
conditions with a high degree of accuracy. This intricate process of differentiation and
analysis is made possible by the unique architecture of deep hybrid learning systems,
which employ a combination of advanced neural networks and classification

algorithms.
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2.10.1 Architecture of Deep Hybrid Learning systems

1) Feature extraction using CNN: The first stage involves a CNN
architecture that processes raw voice data, represented as time-series frames. This
CNN, often with multiple convolutional layers, is adept at automatically extracting a
rich set of features from the raw input without the need for manual feature
engineering.

2) Enhancement with SVM classifiers: Extracted features from the CNN
are then fed into an SVM classifier. SVMs are known for their effectiveness in high-
dimensional spaces and their ability to find the optimal boundary between classes
with a maximum margin, which is crucial for medical diagnosis where the distinction
between healthy and pathological samples is often subtle.

2.10.2 Detailed workflow of a Deep Hybrid Learning model for voice
pathology

1) Input processing: Audio samples are first segmented into frames,
which are then transformed into a suitable form, such as spectrograms, for CNN
processing.

2) CNN feature learning: The CNN layers apply various convolution and
pooling operations to the input, progressively abstracting and enhancing salient
features. Each convolutional operation is defined by kernels of specific sizes, followed
by pooling operations that reduce dimensionality and focus on the most relevant
features.

3) Integration with SYM: The high-level features extracted by the CNN
undergo dimensionality reduction, typically through a global average pooling
operation. These condensed features, which retain the essential information, are then
presented to the SVM classifier.

4) Classification and decision making: The SVM classifier processes the
features to classify the voice as healthy or pathological. The decision is based on the

learned hyperplane that best separates the feature space into distinct classes.
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2.10.3 Implementation and training

1) Model training: The training process involves an initial phase where
the CNN layers are trained using a labeled dataset. This dataset consists of a variety of
voice recordings, including those from individuals with various voice disorders.

2) Integration and fine-tuning: Post-CNN training, the extracted features
are used to train the SVM classifier. This phase may include fine-tuning the CNN in
conjunction with SVM training to better align the feature extraction with the
classification goals.

3) Testing and validation: The fully trained hybrid model is then
validated and tested using separate datasets to ensure its diagnostic accuracy and

generalizability to unseen data.

2.11 Particle Swarm Optimization (PSO) as Feature Selection

Feature reduction is an essential preprocessing technique in the field of
classification. The primary objective of feature reduction is to decrease the
dimensionality of the dataset while maintaining or improving classification performance
compared to using the whole set of features. In general, feature selection aims to
identify a minimal subset of features that is sufficient for solving classification
problems. This is achieved by eliminating redundant and repetitive features from the
original dataset. By applying feature selection as a data preprocessing step, it is
anticipated that the less complex dataset will aid in training a classifier that is simpler,
more efficient, and more accurate than if all features were used. As seen from the
above definitions, feature selection has two main objectives: optimizing classification
performance and minimizing the number of selected features.

Among the various techniques employed for feature selection, Particle Swarm
Optimization (PSO) (Mallenahalli & Sarma, 2018) has emerged as a powerful and
efficient method. PSO is a computational technique that draws inspiration from the

collective behaviors observed in bird flocking (Kennedy,1995). Thus, this thesis also
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uses PSO for feature selection. Compared to Genetic Algorithms (GA), another popular
choice for feature selection, PSO offers several unique advantages and some
disadvantages, as detailed in Engelbrecht (2007) and Eberhart and Shi (2001):
Advantages:
1) Speed: PSO often finds a solution faster than GA because it requires fewer
parameter adjustments (Eberhart and Kennedy, 1995).
2) Simplicity: This method is easier to use as it does not involve operations like
crossover and mutation, which are necessary in GA (Engelbrecht, 2007).
3) Flexibility: PSO is easy to implement for various optimization problems without
significantly modifying its operational framework (Poli, 2008).

Disadvantages:

1) Local Minima: PSO can sometimes get trapped in local minima, especially in
highly complex search spaces (Kennedy, 1997).

2) Dependency on Parameters: While fewer, the parameters such as the number
of particles and inertia weight are critical and can significantly affect the
performance (Shi and Eberhart, 1998).

PSO is an optimization technique that involves the utilization of a population
of particles, collectively referred to as a swarm, to solve a given issue. Every particle
navigates across the search space to find the optimal solution by updating its position
and velocity. Specifically, the current position of a particle is represented by the vector
X Z(Xil,Xiz,...,XiD), where D is the search space's dimension. The locations are
updated by the utilization of an additional vector, referred to as velocity
Vv, = (Vil,Viz,---,ViD), which is subject to a predetermined maximum velocity, V.., and
Viy € [_Vmax’vmax] . Throughout the process of searching, every individual particle
retains a record of its optimal location, referred to as “ pbest,” as well as the optimal

113

position of its neighboring particles, referred to as “ nbest ”. In the scenario where

each particle exchanges information with all other particles, it can be shown that all
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particles possess an identical nNbest, commonly called gbest . The following equations

update the position and velocity of each particle:

Vg = WxVig +C, rilx( pbest,, — X )"‘Cz Ty x(gbeStid _Xitd) (2.19)

t+1 Lt t+1
Xig~ = Xig TVig (2.20)
where T represents the t" iteration in the search process, d is the d™

dimension in the search space, 1 is the particle index, W is the inertia weight, Cl and

(, are acceleration constants, l, and [, are uniformly distributed random values in
[0,1], pbest, and gbest, represent the position entry of pbest and gbest in the

d™ dimension, respectively. The general PSO procedure is depicted in Figure 2.16.

Initialize the positions and
velocities of the swarm

NO

Initialize the positions and
velocities of the swarm

Yes | Return
gbest

If the fitness of a particle is
better than pbest, update
pbest

If any pbest is better than Update velocity, position for
gbest, update gbest each paritlce

Figure 2.16 Flowchart of PSO

2.12 Confusion Matrix

When conducting experiments with various machine learning or deep learning
models, it is crucial to have the ability to compare the effectiveness of these models.
It will use three standard evaluation criteria suggested in Thuwajit et al. (2022) to

determine how well our proposed methods work. The Confusion Matrix stands out as
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a notable tool among the different methods employed to evaluate model
performance (Luque, Carrasco, Martin, & De Las Heras, 2019). It is a prevalent and
powerful tool that aids in evaluating accuracy and loss, providing valuable information
on how well the model is making predictions. This matrix can give us deeper insights
into the model's performance, making it a widely used technique. As seen in Figure
2.17, a confusion matrix is a 2x2 matrix. The model's performance and behavior
become evident through the organized confusion matrix, which offers a clear
understanding. Rows represent the predicted classes (the model output), and Columns

represent the actual classes (reference data).

Predicted Class
Positive Negative
Positive True Positive (TP)  |[False Negative (FN)
Actual Class
Negative False Positive (FP) |True Negative (TN)

Figure 2.17 Confusion Matrix for the binary classification

However, the most commonly used ones are accuracy (ACC), sensitivity (true

positive rate, TPR) and specificity (true negative rate - TNR). They are calculated as

follows:
Accuracy = Lihdls (2.21)
TP+TN +FP + FN
Sensitivity =L (2.22)
TP+FN
Specificity N (2.23)
TN +FP

When TP (True Positive) and TN (True Negative) are that, the fully trained
network correctly forecasts the pathological and healthy voice classes, respectively.
On the other hand, FP (False Positive) and FN (False Negative) are that the network

wrongly labels a healthy voice as pathological and a pathological voice as healthy.



42

2.13 The t-Distributed Stochastic Neighbor Embedding (t-SNE)

The t-Distributed Stochastic Neighbor Embedding (t-SNE) method gives each
data point a place in a two- or three-dimensional area so that high-dimensional data
can be seen. This method, which builds on Stochastic Neighbor Embedding (Hinton &
Roweis,2002), was made even better by Maaten and Hinton (2008), who made it t-
distributed. t-SNE successfully lowers the dimensions of high-dimensional data so that
it can be visualized. It does this by ensuring that similar data points are placed close
together in the low-dimensional space and points not similar are set farther apart.

There are two main parts to how the t-SNE method works. First, it creates a
probability distribution among the high-dimensional data points, giving points that are
similar a higher chance of being true and points that are not similar a lower chance.
Then, t-SNE makes a similar probability distribution in the low-dimensional space and
tries to keep the Kullback-Leibler divergence between these two distributions as small
as possible. The t-SNE has been used in many areas, such as genomics, computer
security (Gashi, Stankovic, Leita, & Thonnard, 2009), natural language processing, music
analysis (Hamel & Eck, 2010), cancer research (Jamieson et al., 2010), and biomedical
signal processing (Birjandtalab, Pouyan, & Nourani, 2016).

For example, t-SNE can turn the Modified National Institute of Standards and
Technology (MNIST) database of handwritten numbers into a two-dimensional map
where each number is shown as a point. This image shows groups of similar numbers,
showing how t-SNE effectively groups data points based on their similarity in a high-
dimensional space. The t-SNE embeddings of the MNIST dataset are shown in Figure
2.18.
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Figure 2.18 The t-SNE embeddings of MNIST dataset

2.14 Related work

This subsection gives an overview of state-of-the-art work on the datasets
TORGO. Next, literature relevant to constructing the proposed architecture is
presented, focusing on different types of artificial intelligence and the relationship
between pooling and kernel size. The concept of local feature learning blocks and
multi-scale convolution layers is also explored.

(Mesallam et al., 2017) This research presents a fully learnable audio front end
that combines time-domain filter banks and Per Channel Energy Normalization (PCEN).
This model is a pioneering approach to acquiring knowledge of extracting, compressing,
and normalizing features from unprocessed waveforms in conjunction with a classifier.
The model was applied to dysarthria detection and showed improved performance
compared with fixed features. Learning the filters, normalization, and compression
jointly with the architecture resulted in a 10% absolute accuracy improvement over
fixed features. Learning only the time-domain filter banks or the PCEN parameters

individually led to better results than fixed features. However, learning both jointly still
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provided similar or better performance, demonstrating the potential of fully learnable
audio front-ends.

(Narendra, Schuller, & Alku, 2021) This research investicates detecting
Parkinson's Disease (PD) from speech using voice source information and two classifier
architectures: the traditional pipeline approach and the end-to-end approach. In the
traditional pipeline approach, SVM classifiers were developed using baseline acoustic
features and glottal features extracted from speech utterances. The highest
classification accuracy (67.93%) was achieved by combining baseline and Quasi-Closed
Phase (QCP) based glottal features. Deep learning models were trained using raw
speech waveforms and voice source waveforms in the end-to-end approach. The
system trained using QCP-based glottal flow signals achieved the highest accuracy
(68.56%). The study found that extracting voice source information was most effective
in the traditional pipeline and end-to-end approaches. When voice source information
was merged with baseline features, the accuracy of the SVM-based detection system
trained with baseline features improved from 65 to 67.

(Sabir et al,, 2017) This research introduces a refined algorithm tailored to
detect and gauge the intensity of voice disorders in students by harnessing acoustical
metrics with neural networks. With an impressive accuracy of 97.9%, a sensitivity of
1.6%, and a specificity of 95.1%, the algorithm differentiates between regular and
abnormal voice patterns. It is a valuable tool for medical professionals and educators,
facilitating continuous tracking of voice disorder progression in students, anchored in
the acoustic characteristics of their speech. The algorithm can be applied in preventive
medicine for early detection of voice pathologies. Furthermore, by juxtaposing
observed parameters with benchmark values, the algorithm can reduce the severity
gradient of voice ailments. The validation dataset encompassing healthy and impaired
voice samples was sourced from a renowned German voice disorder repository.

(Vaiciukynas et al., 2014) This research introduces a new glottal inverse filtering

technique called Quasi-Closed Phase (QCP) analysis, which performs a closed phase
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type analysis over a time frame of multiple fundamental periods using Weighted Linear
Prediction (WLP). It attenuates the contribution of the (quasi) open phase, resulting in
an estimate of the vocal tract transfer function less influenced by the excitation. The
method outperforms other Glottal Inverse Filtering (GIF) methods in objective
measures obtained through inverse filtering synthetic vowel databases and subjective
listening tests. However, the proposed methods have two constraints. Firstly, it requires
accurate information about the Glottal Closure Instants (GCls) to form the appropriate
weight function, which may degrade its performance in real-world situations where
accurate GCl data is unavailable. Secondly, the proposed method does not guarantee
filter stability, which adds computational cost in GIF applications where all-pole
synthesis is needed.

(El Emary, Fezari, & Amara, 2014) This research focuses on developing a voice
pathologies detection system using acoustic voice analysis methods based on adaptive
features, such as MFCCs with different Jitter and Shimmer. The research aims to identify
different sound patterns of diseases, improve the capacity of voice features, and
classify pathological voices using known techniques. The results show that a good
classification rate is achieved with 39 coefficients, including lJitter and Shimmer,
indicating that the difference between normal and abnormal becomes noticeable with
the second derivative of MFCCs and energy. The number of Gaussians in the Gaussian
Mixture Model (GMM) used as a classifier also affects the system's accuracy. The paper
suggests the need for multivariate analysis of parameters and the importance of finding
and sorting features that provide more information.

(Alhussein & Muhammad, 2018) This research investigates a voice pathology
detection system using deep learning on a mobile healthcare framework. Voice
samples are recorded via intelligent mobile devices, subsequently undergoing
processing, and then channeled into a CNN. This research employs the transfer learning
approach, harnessing the strengths of established CNN architectures, notably the VGG-

16 and CaffeNet. Experiments utilize the Saarbrucken voice disorder dataset.
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Experimental results show that the voice pathology detection accuracy reaches up to
97.5% using the transfer learning of CNN models.

(Harar et al.,, 2017) This research presents a preliminary investigation of voice
pathology detection using deep neural networks and achieved promising results. The
experiment used voice recordings of sustained vowel /a/ produced at normal pitch
from the German corpus Saarbrucken voice disorder dataset, which contains voice
recordings and electroglottograph signals of more than 2,000 speakers. The trained
model achieved an accuracy of 71.36% with 65.04% sensitivity and 77.67% specificity
on the validation files and an accuracy of 68.08% with 66.75% sensitivity and 77.89%
specificity on the testing files.

(Janbakhshi, Kodrasi, & Bourlard, 2021) This research proposes a novel
automatic dysarthric speech detection approach based on pairwise distance matrices
and CNN. This method demonstrates enhanced performance compared to previous
CNN-based models, but it also functions as an effective and dependable tool for
diagnosing and managing clinical dysarthria. The effectiveness of this technique is
additionally bolstered by experimental results obtained from databases that include
healthy individuals and those with dysarthria, including a range of languages and
situations. The proposed integrated framework improves feature extraction, distance
matrix calculations, and the CNN classifier, providing a comprehensive solution for
dysarthric speech.

(Narendra & Alku, 2020) research explored the role of glottal source information
in identifying pathological voices by contrasting the traditional pipeline approach to
the end-to-end approach. Employing glottal characteristics alongside openSMILE
features, the conventional pipeline yielded promising results in pinpointing
pathological voices. On the other hand, the end-to-end approach, leveraging deep
learning models trained on glottal flow waveforms, outperformed models using mere

raw speech. Within the conventional pipeline, merging glottal and acoustic features
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enhanced the classification outcomes. The findings emphasize the significance of

glottal source attributes in distinguishing pathological voices from typical ones.

2.15 Summary

The content mentioned above in this chapter delves into the basic neural
network’s theory. It also explores the essential concepts of feature selection. It
emphasizes the importance of shared information as a metric to measure the
connection between random variables. At the same time, it emphasizes the courage
to distinguish non-linear feature interactions. The main aim of feature selection is to
identify features closely associated with class labels. This discourse covers feature
selection metrics such as distance, correlation, and consistency measures to ensure
that duplicate information is excluded. It improves the quality of feature collection by
factoring in differences such as variable dependencies. And identifying the optimal
feature subset. Additionally, this chapter discusses the application of probability
distributions and prediction sequences in the area of output labels. Including empty It
describes in detail the calculation of output probabilities for every time step and the
summarized output sequence.

Finally, several research papers have been conducted to investigate detecting
dysarthric speech using machine learning and deep learning techniques. Thus, this
thesis introduces a sophisticated methodology for identifying dysarthric speech. The
forthcoming chapter will provide a comprehensive explanation of the intricate self-

optimization process.



CHAPTER IlI
METHODOLOGY

3.1 Introduction

Voice analysis, especially pathological voice detection, has witnessed
significant advancements in deep learning methodologies. While traditional methods
have provided substantial insights, the increasing complexity of voice data and the
need for more accurate for more innovative approaches. Recent literature has
underscored the successes of the Multi-Scale Convolution Neural Network
(MSConvNet) in various classification tasks. Its ability to explore multi-scale convolution
blocks and extract multi-dimensional representations from data sets it apart. However,
its potential in pathological voice detection remained, until now, an untapped area of
research.

The steps in this section explain how to use the RS-MSConvNet model, a
complete system designed to use the MSConvNet for finding pathological voices. This
model diverges from traditional methods by processing raw speech data, eliminating
the need for feature extraction, which often acts as a bottleneck in voice analysis tasks.
The foundational principles behind MSConvNet, the rationale for its adoption, and the
specifics of how the RS-MSConvNet model was architected will be elucidated in this
section. This includes exploring the multi-scale convolution blocks, integrating spatial-

temporal feature blocks, and the final classification layers. Each choice is

backed by rigorous theoretical underpinnings, which this chapter aims to illuminate.
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3.2 RS-MSConvNet design

This subsection proposes a model tailored explicitly for the challenges of
pathological voice detection. Rooted in the principles of multi-scale convolution, the
RS-MSConvNet aims to harness the power of convolutional networks to scan voice
data across various scales. By doing so, it aspires to capture a rich array of features,
thus providing a comprehensive representation of voice patterns that could hint at
pathology. The significance of this approach lies in its potential to detect features at
different resolutions, acknowledging the fact that vocal patterns manifest across
diverse temporal scales. Furthermore, the end-to-end nature of the RS-MSConvNet
ensures that raw voice data can be processed directly, eliminating the need for manual
feature engineering. The proposed model also envisages integration with a SVM
classifier, culminating in a hybrid solution that seeks to merge the strengths of both
techniques. This portion introduces the architectural subtleties and design decisions of

the RS-MSConvNet, as seen in Figures 3.1 and 3.2.
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Figure 3.2 RS-MSConvNet-SVM

The RS-MSConvNet framework, which is suggested for the identification of
pathological speech, comprises many components, including a pre-processing block, a
multi-scale convolution block, a spatial-temporal feature extraction block, and a
classifier block. These components are illustrated in the flowchart depicted in Figures

3.1 and 3.2. The setup of the RS-MSConvNet model is concisely outlined in Table 3.1.

Table 3.1 Configuration of RS-MSConvNet architecture, where (H,W) are the

dimension of input representation and k denotes the order of layer in

block b
Block Layer Kernel Output Activation | Parameters
Input LHW )
Conv2D (2,2) Stride = 2 l,%,v% Linear 5
b Conv2D (2,2) Stride = 2 l,ﬂ,vl Linear 5
4 4
Conv2D (2,2) Stride = 2 1,%,\%/ Linear 5
Conv2D (2,2) Stride = 2 1,H,V—v Linear 5
16 16
H W
C Input 1’27127
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Table 3.1 Configuration of RS-MSConvNet architecture, where (H,W) are the
dimension of input representation and k denotes the order of layer in

block b (continued).

Block | Layer Kernel Output Activation | Parameters
Conv2D 32x% (ﬂk ,1] (32,1, V—\ij 416
2 2
Activation Relu
W
Conv2D 16x(1,4) (16,1, > 3) 2064
C
Activation Relu
Activation Dropout
Global average
16
pooling
Input 48
J FC 128 Relu
FC 2 Linear
Classifier 1 Softmax

3.2.1 Pre-Processing block

This section describes the systematic approach to generating suitable input
data for training the RS-MSConvNet model. The process is initiated by implementing a
pre-emphasis technique as the preliminary step to compensate for the high-frequency
component of the speech signal's input. Next, the framing procedure is executed to
structure the input data further. The raw speech signals are broken up into separate
pieces called speech frames. Each frame has a frame length of 20 ms and a frameshift
of 10 ms. A Hamming window is then used to improve the accuracy and consistency
of these speech frames. This windowing process does two things: it strengthens the
harmonics in each frame and smooths out the edges of each frame. The Hamming
window has a transformative effect on the data, reducing possible distortions and flaws
that could hurt the accuracy and general quality of the data. Finally, the raw

information is transformed by arranging the segmented speech frames, which results
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in a 2-dimensional (2D) arrangement. This organized dataset has been assembled to
be the base for training the suggested RS-MSConvNet model. By setting things up this
way, the model gets a full picture of the time order and the underlying differences in
the data it uses. This big-picture view helps the model find and understand complex
patterns and connections important to its learning process.

3.2.2 Multi-scale Convolution block

In this section, there has been a notable motivation derived from the
works presented in references (Li et al., 2020; Ko et al., 2021; Janbakhshi et al., 2021).
These works emphasize the importance of feature pyramid networks, especially when
they are built upon the framework of a multi-scale convolution block. The Multi-scale
convolution block is designed to extract semantic information across various scales.
This feature is paramount because, in many scenarios, data carries different semantic
values at different scales. The network can gather a more robust and comprehensive
understanding of the data's semantic content by tapping into this multi-scaled
information. Consequently, this enables the network to make predictions with greater
precision. In essence, the system can achieve improved results across different
application areas by harnessing the power of more robust semantic information
obtained from scaled features.

The multi-scale convolution block is a cutting-edge approach tailored
to handle 2D-input data. The primary purpose behind this implementation is to
transform this 2D data into features that exist across a diverse range of scales. This kind
of change is very important for giving the detection model the ability to see and learn
about objects of all sizes, from very small to very large. Delving into the architectural
specifics of our model, each multi-scale convolution block has been intricately crafted
to extract and process input data. A notable aspect of this design is that every block
operates at half the resolution scale of its preceding layer. This systematic downscaling
ensures that the model can consistently capture finer details at each progressive layer,

thus reinforcing its ability to comprehend data across a vast scale spectrum.
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Moreover, an inherent intelligence has been built into these blocks. They are
not just passive filters but are capable of active learning. Each block can autonomously
determine the optimal weights during the training phase. This adaptive weight
determination aids the block in sifting through the plethora of input data and pinpoints
the most valuable level features. Doing so reduces the input signal by half, optimizing
the process and ensuring that only the most crucial data characteristics are retained
and emphasized in subsequent layers. This dual ability to discern the importance of
features and reduce redundancy empowers our model to deliver exceptional
performance in its tasks. This block defines the input data with a specific shape as (C,
H, W). Here, each of these dimensions is characterized by:

C: This represents the number of channels in the input data.

H: This stands for the number of frames, signifying the sequential temporal
chunks of the data.

W: This indicates the number of samples present within each frame.

Within this block, there's a series of 2D-convolution layers. Each of these layers
performs a convolution operation on its input. The operation is standardized across all
these layers, where the convolution is carried out using a kernel size of (2,2). Further
specifications of this operation include a stride set at two and the absence of any
padding. Such a configuration ensures that the convolution operation consistently
reduces the input size. A direct implication of this desien choice is witnessed in the
relationship between consecutive convolution layers. Observing any given K
convolution layer, the number of rows representing frames (H) and columns
representing the samples in each frame (W) is precisely half of what they were in the

k—1 convolution layer. The output size derived from the k layer is mathematically
. H W . : 4
determined as 1,?,7 . An essential aspect to note is the utility of the outputs from

these convolution layers. Specifically, the outputs generated from the second to the
fourth layers are channeled into the subsequent block. This deliberate design allows

for a deeper and more intricate extraction of spatial and temporal representation. The
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rationale behind this choice is to leverage varying fields of view, enabling the
architecture to discern features and patterns from multiple perspectives, thereby
enriching its understanding of the input data.
3.2.3 Spatial-Temporal feature extraction block

In this block, the objective is to extract spatial-temporal features. These
attributes arise from every individual scale of the output generated by the multi-scale
convolution block. To facilitate this extraction, the design intricately employs two
dedicated 2D-convolution layers. It is geared towards intercepting the last trio of scaled
outputs that emanate from the block.

The first 2D-convolution layers utilize a trio of distinct kernel sizes of

[%,1},(%,1}, and (F—G ,lj. Each kernel is configured with a uniform stride of 2 and

no padding. These kernels have been optimized to churn out 32 output channels.
Their purpose is primarily to target and process outputs relayed from the second, third,
and fourth layers. As for the second 2D-convolution layer in the sequence, it's uniquely
characterized by a consistent kernel size of (1,4). Operating at a stride of 2 and no
padding, it's designed to produce 16 channel outputs. Its main role is centered around
gleaning and processing diverse outputs stemming from the block's introductory layer.

Finally, the global average pooling is applied to the output from the
two regular 2D-convolution layers. This process results in-a collection of 48 unique
features, which can be broken down into 16 distinct features for every individual scale
for easier understanding.

3.2.4 Fully Connected (FC) layer block

In the proposed model architecture, the Fully Connected (FC) Layer
Block comes into play after applying two convolutional layers and a subsequent global
average pooling operation. The spatial feature module's outputs, derived from various
scales, are enhanced and channeled to the FC layers. A notable aspect of this
architecture is the utilization of the Log softmax function, which serves as the activation

function for these layers.
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3.2.5 RS-MSConvNet: A detailed overview

In the evolution of CNN, the architecture and design of the model play
an imperative role in its performance. This subsection delves into the architecture of
the RS-MSConvNet, as delineated in Figure 3.3. A systematic will present each layer
integral to the model's structure. The discussion will cover the distinct types and
features of these layers, delve into their dimensional attributes, and enumerate both
trainable and non-trainable parameters. Such an in-depth exploration is instrumental
in comprehending the underlying mechanisms of the RS-MSConvNet and its potential

implications in the broader realm of neural network research.
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3.3 Resources

The models were built and implemented using Python 3.9.10, and the PyTorch
v1.10.1 framework. The models were run using the following machine:

CPU: AMD Ryzen Threadripper 3970X (32 Cores, 64 Threads, 3.7 GHz)

GPU: NVIDIA RTX3090 (24 GB)

RAM: ZADAK Twist DDR4 (3200MHz, 4x32GB)

3.4  Experimental setup
3.4.1 Database

The TORGO database (Rudzicz, Namasivayam, & Wolff, 2012), utilized
prominently in this study, stands out due to its challenges. One primary hurdle
associated with TORGO is its comparatively limited dataset, especially when
juxtaposed against other available databases. As demonstrated in reference (Narendra
& Alku, 2020), models designed end-to-end on the TORGO database often find it
challenging to surpass or even match the accuracy rates of those constructed on other
databases.

The TORGO corpus is a remarkable outcome of a synergistic
collaboration between two distinguished departments of the University of Toronto:
Computer Science and Speech-Language Pathology. This partnership was further
strengthened with the involvement of the Holland-Bloorview Kids Rehab Hospital, a
renowned institution based in Toronto. The result of this alliance is a comprehensive
public database that serves as a gold mine for researchers and professionals alike.

This rich database isn't just a mere collection of voice recordings; it's a
carefully curated assortment representing various voice types and conditions. The
participants whose voices have been captured in the database come from diverse
backgrounds and health conditions. This includes three females diagnosed with
dysarthria, labeled as FO1, FO3, and FO4. In contrast, three other females, FC01, FC02,
and FC03, have no such diagnosis and are considered to have typical voice patterns.
The male participants add further depth to the database. Five of them, identified as
MO1 through MO5, have been diagnosed with dysarthria. Meanwhile, five others, MCO1
through MC04, exhibit standard voice characteristics.
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Delving deeper into the technical aspects of the TORGO corpus reveals a
consistency that underscores the meticulous planning and execution that went into
its creation. Every voice utterance in the database has been sampled at a rate of 16
kHz, ensuring uniformity in the quality of recordings. The contributions from
participants are equally noteworthy. Those without voice disorders, often called non-
dysarthric participants, have made a significant contribution, averaging about 900
utterances each. On the other hand, despite their voice challenges, the dysarthric
participants have been close behind, contributing an average of approximately 400
utterances each. This balance showcases the database's commitment to providing a
holistic view of voice patterns, ensuring that typical and atypical voices are adequately
represented, thereby enriching the depth and diversity of the corpus. The recorded
utterances in this database encompass a diverse range:

1) Non-words: These non-words provide a baseline for evaluating the
articulatory capabilities of dysarthric speakers, especially concerning plosive
consonants and prosody. Examples include repetitions of phonetic patterns
like /iy-p-ah/, /ah-p-iy/, and /p-ah-t-ah-k-ah/.

2) Short words: These are particularly beneficial for acoustic speech studies,
eliminating the need for word boundary detection.

3) Restricted sentences: These are used in Automatic Speech Recognition
(ASR) to harness lexical, syntactic, and semantic processing.

4) Unrestricted sentences: Participants were encouraged to spontaneously
describe intriguing scenarios depicted on cards from the Webber Photo
Cards: Story Starters collection. These sentences reflect the intricacies of
genuine spoken language, including natural disfluencies and diverse

syntactic structures.

Considering the unique structure of the TORGO database, it was observed that
a significant portion of the recordings was dominated by silence. This necessitated the
removal of these silent patches before proceeding with the training and testing of the
classification model. In terms of data division for speaker-independent pathological

voice detection, the database was categorized into three subsets:
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1) Training Subset: Consisting of 3,125 healthy and 1,491 pathological
utterances, totaling 3.5 hours.

2) Validation Subset: Comprising 944 healthy and 795 pathological utterances,
cumulating to 2 hours.

3) Testing Subset: With 2,087 healthy and 861 pathological utterances, to 3

hours.

Table 3.2 comprehensively summarizes these subsets, highlighting their integral
role in our experiments. Furthermore, the study's findings were meticulously

contrasted against the experimental conditions detailed in (Narendra & Alku, 2020).

Table. 3.2 Details about three subsets of the TORGO database.

Training Validation Testing
MCO03, MCO04 MCO02 MCO1
FC02 FCO1 FCO3
MO02, M05 MO1, M0O3 MO4
FO1, FO3 - FO4

3.4.2 Parameter tuning

In the pursuit of improving model performance and efficiency, selecting
an appropriate learning rate plays a crucial role in the training process of models.
Determining the optimal initial learning rate involves conducting initial experimentation
with a range of values, typically from 0.1 to 0.00001. Through this experimentation, the
goal is to identify the best learning rate. In this study, after thorough exploration and
experimentation, it was concluded that our model's most effective initial learning rate
is 0.0001. The learning rate of 0.0001 has emerged as the optimal choice, carefully
evaluated based on its impact on both the attained accuracy and convergence time.

In the following step, preliminary experimentation was conducted to
analyze the performance of several optimizers, such as Stochastic Gradient Descent
(SGD) and Adam. The objective was to identify the optimal optimizer for our model.

SGD was the optimal optimizer due to its high initial experimentation precision.
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In the final step, During the model training process, two essential
techniques, Dropout Rate and Early Stopping, were used as preventative steps to lower
the risk of overfitting. Dropout helps make the network more stable by randomly
turning off some neurons during each cycle. At the same time, early stopping ensures
that training stops after a certain number of iterations when the validation loss stops
improving. The model will improve its performance and prevent overfitting by taking

these steps.

Table 3.3 Summarizes the model parameters for the RS-MSConvNet, RS-MSConvNet-
SVM and RS-MSConvNet-SVM with PSO models.

RS-MSConvNet- SVM
Parameters RS-MSConvNet | RS-MSConvNet-SVM
with PSO

Optimizer SGD SGD SGD
Batch Size 256 256 256
Learning Rate 0.0001 0.0001 0.0001
Decay 0.0001 0.0001 0.0001
Momentum 0.9 0.9 0.9
Dropout 0.5 0.5 0.5
Epoch 1000 1000 1000
SVM (C) N/A 1 1
SVM (gamma) N/A 0.1 0.1
PSO (W) N/A N/A 0.7
Pso (C,) N/A N/A 1
Pso (C,) N/A N/A 3

3.5 Summary

In this chapter, the RS-MSConvNet model represents a significant advancement
in pathological voice detection, leveraging the strengths of deep learning and the
innovative use of multi-scale convolution neural networks. By integrating a range of

techniques, from pre-processing methods to spatial-temporal feature extraction, this
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model offers a comprehensive and nuanced approach to analyzing voice patterns. Its
design, which combines multi-scale convolution with a support vector machine
classifier, showcases a unique and potentially highly effective method for detecting
voice pathologies. Furthermore, a detailed experimental setup, including the TORGO
database and sophisticated parameter-tuning strategies, underscores the model's

robustness and applicability in real-world scenarios.



CHAPTER IV
RESULTS

4.1 Introduction

Voice detection and analysis is an evolving field, particularly notable for its
advancements in pathological voice detection. The accuracy of this area is crucial,
considering its significant clinical implications and potential to revolutionize voice
pathology diagnosis. Recent research highlights the effectiveness of convolutional
neural network, especially MSConvNet, in diverse classification tasks. Yet, the
application of MSConvNet in identifying abnormal voice patterns remains an area ripe
for exploration.

This section presents the results of the proposed RS-MSConvNet model, a
novel end-to-end solution built on the MSConvNet model, designed specifically for
using raw speech data to find voices that are not normal. The model's unique building
blocks, such as multi-scale convolution blocks, spatial-temporal feature blocks, and a
fully connected classification layer, are tested to see how well it's effective at finding
pathological voices. This part of the thesis will look at the RS-MSConvNet's complex
performance metrics, comparing them to current state-of-the-art models and pointing

out the big steps forward in improving the detection of pathological voices.
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4.2 Speech length optimization in RS-ConvNet

Finding the best segment length for fixed-length segments is a crucial part of
speech recognition and processing that can significantly affect how well end-to-end
networks work (Tirronen, 2022). It is important to stress this factor is essential since the
segment length selected for processing can determine how well the network works.
The main goal of this study is to thoroughly look into different fixed-length segments
to find the segment lengths that produce the best results. Specifically, this thesis has
chosen to delve into segment durations of 240 ms, 250 ms, 500 ms, 1 second, and 3
seconds. Fig 4.1 shows the results derived from the RS-ConvNet model's

experimentation to aid in visualizing and understanding our findings.
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Figure 4.1 The RS-ConvNet classifier performance with different speech lengths

In Figure 4.1, It can be seen the results of tests that show how different fixed-
length segments affect how well end-to-end networks work. When the tested features
were compared, the one with a length of 500 ms showed the best performance,
outperforming the others in terms of how well it worked. One problem was that
segments with shorter distances, like 240 or 250 ms, had some issues. These shorter
lengths make it harder for the network to process raw speech signals correctly. It might
be harder for the network to learn from these short parts because they need to give

more detailed information to pick out the subtleties of speech patterns that need to
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be clarified. These limits could be bad, especially when trying to understand and tell
the difference between the complicated changes in disordered speech patterns.

On the other end of the bandwidth, segments that last longer than 500 ms
bring their problems. Significantly, these longer segments can be limiting, especially
when considering how short some vowels are by nature, which has been talked about
a lot (Tirronen, 2022). After looking at all of these points and, more importantly, in the
context of our RS-MSConvNet model, it is clear that the 500 ms segment, which has a

resolution of 49x320 pixels, is the best option.

4.3 Learning rate impact on RS-ConvNet

The learning rate is a hyperparameter that has a big effect on the complicated
framework of deep learning (Shi,2020). The amount of the weight adjustment is
significant because it controls how much the model weights are changed during
training. An excellent way to think about optimizing this hyperparameter is as if it were
walking carefully on a tigshtrope. Finding the right balance can help models come
together faster and improve overall performance. On the other hand, making the wrong
choices can cause training to go wrong and results not to be up to par. This study
starts a planned investigation by looking at what happens when the learning rate for
the RS-MSConvNet classifier changes. This will help to comprehend the subtleties of
this delicate balance. By looking at a variety of learning rates, this thesis hopes to find
information that will help it pick the best learning rate, which will make the model

work better overall. The results are shown in Figure 4.2.
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Figure 4.2 The RS-ConvNet classifier performance with different learning rates

As seen in Figure 4.2, it divides learning rates into three separate groups, each
with its own set of values. To properly calibrate deep learning models, it's necessary
to know the specifics of each layer, which represents a different level of learning speed.

This tier-based approach makes it clear what each learning rate category means so
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that one can make an informed decision that can improve the accuracy and efficiency
of the model. The differences between these three groups, shown visually in Figure
4.2, are explained below.

Low learning rates: It was clear that the model was convergent slowly when
very small learning rates like 0.0001, 0.00001, 0.000001, and 0.0000001 were examined.
Over many epochs, the model's performance measures got better over time. Still, the
model had to be trained for too long before it was as good as other configurations.
One interesting thing about these very low learning rates is that they move carefully
through the lost environment. This in-depth research could lead to better model
generalization. However, this possible benefit is cancelled because it makes computing
more difficult.

Moderate learning rates: Learning rates between 0.01 and.001 were the best
fit for the model's training in the middle range. The convergence time was faster than
the lower level, and the model had the highest level of accuracy among the rates that
were looked at. This balance encourages effective learning while also building
protections against the risks of skipping over the best points in the loss landscape.

High learning rates: The training experience became less stable as the learning
rate went from 0.1 to 1.0. There were big changes in the model's loss graph, which
showed that it often strayed from the best weight configurations. At the start of the
training process, performance quickly improved, but this momentum was quickly cut
short by the unpredictable environment of the training, leading to a negative
conclusion.

The experiment and the subsequent analytical discussion show how important
the learning rate is when deep learning models are being trained. The observations
support the principle of moderation, which says that learning rates between 0.01 and

0.001 are good.
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4.4 Batch size effects in RS-ConvNet

Within the complicated field of deep learning, picking the right batch size is a
critical factor that affects many aspects of training the model. Although the learning
rate is vital for model calibration, it is impossible to overstate how important the batch
size is (De,2016). The convergence trajectory can be changed, model performance can
be affected, and training efficiency can be controlled. Using the RS-MSConvNet
classifier as an example, this section starts a detailed investigation into the complex
relationships between batch size and model performance. It is known that both small
and large batch sizes have advantages and disadvantages. The experiment includes a
lot of different batch sizes and carefully studies how they impact the RS-MSConvNet
classifier both by itself and as a whole. Extensive tests reveal a wealth of information
about the complex relationship between batch size and model performance. This
deep look has revealed clear patterns and trends through this meticulous investigation.
The RS-MSConvNet classifier's performance with different batch sizes is better

understood with these results. Figure 4.3 shows information on batch sizes.
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Figure 4.3 The RS-ConvNet classifier performance with different batch sizes

As depicted in Figure 4.3, the comprehensive analysis evaluated the model's
performance across an array of batch sizes: 16, 32, 64, 128, 256, and 512. The empirical
results underscore batch size's paramount significance in influencing model
performance. The experimental findings show that batch size has the most significant
effect on model performance. The data shows a clear link between batch size and the
subtleties of how training works. Of all the batch sizes that were looked at, batch size
256 stepped out because its performance metrics were much better than its
competitors. There are many good reasons to choose this particular batch size. It strikes
a good balance between making sure that computations are quick and that the models
are correct. This optimal size makes good use of computing power without weakening
the reliability of model results. At the other end of the spectrum, smaller batch sizes

have a catch, even though they offer stable and consistent convergence. Its
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computational needs are higher, so they often have to be trained for longer periods,
which may only be practical in some situations. It was the model's performance that
got worse as batch sizes got bigger, especially when they went over 256. It's nice to
have shorter computation times, but these bigger batch sizes have trouble applying to

data they have yet to see.

4.5 Momentum dynamics in RS-ConvNet

There are many ways that momentum affects how models are trained and how
well it does. Momentum is a key part of many optimizations’ algorithms because it
powers convergence and helps you find your way through the complicated parameter
space (Shi,2021). Different optimization algorithms use momentum all the time, yet it
still need to gain knowledge of how changing momentum values affect model
performance. This is an area that needs more research. The main goal of this section
is to make it clear what changing the momentum value means for the performance of
a certain model. There are a lot of tests and evaluations done to find the best setting
for momentum and to show how different values for momentum can change how
well, accurately, and naturally a model works.
Finding the best model performance is like a complicated dance where it has to fine-
tune many parameters. Momentum is one of the most important parts of this dance.
The momentum value it chooses has a big effect on the learning algorithm. It
determines how quickly it converges, how stable the training becomes, and whether
it avoids problems at local minima. For the best model performance, it is important
to find the momentum value that strikes the perfect balance between fast

convergence and unwavering strength. Figure 4.4 provides insights into Momentum.
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Figure 4.4 The RS-ConvNet classifier performance with different Momentums

Figure 4.4 shows that the values of momentum it looked at were all over the
place: 0.0, 0.5, 0.9, and 0.99. The range of this bandwidth, from no momentum to very
high momentum, was chosen to show the effects of momentum as a whole. The in-
depth testing process made momentum's effect on the model's performance
dynamics clear and noticeable. Out of all the values, a momentum of 0.9 came out
because it had performance metrics miles ahead of the others. This shows that it is
good at making the model's learning process run more smoothly and efficiently. As
the group looked more closely at the data, a momentum value of 0.9 stood out as a
sign of stability and effectiveness. It pushed for improvements in both the speed of
convergence and the accuracy of the models. Lower momentum values, like 0.0 and
0.5, had a more leisurely convergence trajectory and training dynamics that were not
as stable. Looking the other way, a momentum of 0.99 looked like it would lead to
fast initial convergence. However, it showed signs of instability later in the training

process, making it a potentially risky choice for the model being looked at.
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4.6 Decay rate influence on RS-ConvNet

The decay rate is one of the most important factors for finding the best learning
rate among all the others (You,2019). It is one of the most important parts of ensuring
the training plan is stable and effective. Choosing the right decay rates can affect the
rate at which deep learning models can converge, and it can generalize. It can improve
model performance if it is adjusted correctly, making sure that the models are reliable
and strong in a wide range of situations. Given how important decay rates are for
training models, this section starts a thorough, organized look at how the selected
model works with a wide range of decay rates. It is the goal of this in-depth study to
learn more about how the different decay rates change the learning path, the speed
at which the model converges, and its overall performance metrics. Figure 4.5 shows

the decay rates of the impact.
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In Figure 4.5, the effects on performance of different decay rates (0.1, 0.01,
0.001, and 0.0001). The research's careful analysis has revealed several important
insights that are very helpful for finding the best decay parameter for the best model
performance. Out of all the decay rates that were looked at, the rate of 0.01 stood
out as the best for training the model. This discovery shows how important it is to
improve the model's ability to learn quickly and well. Researchers found that a decay
rate 0.01 was the best compromise between learning speed and stability. As the move
towards the edges, a higher decay rate of 0.1 speeds up the learning process, but it
did so at a price of model stability and its ability to generalize. This quick method
resulted in less-than-ideal performance metrics, particularly as the model went
through datasets it had never seen before. However, the less dangerous decay values
(0.001 and 0.0001) slowed down the learning process while keeping the model stable,
which is a good thing. The model could be better at working in real-life situations

where things change quickly because it has a very slow learning rate.

4.7 FC layer effects in RS-MSConvNet

The FC layers have a significant effect on the way a neural network works for
classification. The FC layer is the last part of the network. It is where all the extracted
features are combined and processed to make the final result. This section goes into
this vital detail and looks into how the number of FC layers affects the network's ability
to identify pathological voices. It looked at how changing the number of FC layers in
a neural network can change how well it can find and label voices that are not normal.
These tests aimed to carefully check how well neural network models worked with
various sets of FC layers. It tried combinations of one to five FC layers and looked at
how each affected the network's ability to diagnose problems. It was able to see the
subtleties of network behavior at different levels of complexity by using this method.
The first model made had a neural network with only one FC layer. As the process

went on, more and more layers were added. Each model underwent the same rigorous
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testing process, ensuring our results were consistent and reliable. The results are

shown in Figure 4.6.
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Figure 4.6 The RS-ConvNet classifier performance with different layers

In Figure 4.6, the model became less accurate when there were more than two
FC layers. This exciting observation comes from sorting things into groups. The objective
is to distinguish between two groups. For best performance, an FC layer configuration
that is simpler and more streamlined, ideally only one layer, is recommended. Simpler
architectures often do better than more complex ones when no training data exists,

according to studies (Wang,2017; Phapatanaburi,2017)

4.8 Feature visualization in RS-MSConvNet

This section gives a detailed visual analysis of the features that can tell the
difference between healthy and unhealthy voices using the best-conficured RS-
MSConvNet model. It includes the convolution layer outputs and the t-SNE method

for a complete picture of voice signal properties.
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4.8.1 Analyzing Convolution layers.

The RS-MSConvNet model was utilized to process both healthy and
pathological voice signals. By examining the output representation from the second to
the fourth convolution layers, it could visualize the differences in feature information.
These layers offered varying resolutions 10x80 pixels, 5x40 pixels, and 2x20 pixels,
respectively - each providing unique insights:

1) Second layer analysis (10x80 pixels): This layer began to show the
basic structure of the voice signals, telling the difference between
healthy and pathological voices.

2) Third layer analysis (5x40 pixels): More specific features started to
show in this layer, making it easier to tell the difference between
the two voices.

3) Fourth layer analysis (2x20 pixels): The most detailed layer
highlights minor differences necessary for accurately detecting
pathological voices.

Ficure 4.7 shows the different images these layers create, highlighting
the model's ability to distinguish between healthy and unhealthy voices with similar
amplitude signatures. Using the matplotlib function (Hunter, 2007), the finer features

of these representation images become even more transparent.
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Figure 4.7 The outputs from the second to the fourth convolution layer are shown

next to each other. Both come from patient #4, who is speaking “Train.”

In Figure 4.7, the model can tell the difference between healthy and
unhealthy voices, even when the signals amplitude signatures are similar. The different
representations seen across the convolution layers prove that there are unique

features and that the RS-MSConvNet model's multi-scale convolution block works well.

4.8.2 t-SNE in Spatial-Temporal Analysis
The t-SNE (Van der Maaten,2008) technique was used to reduce the
number of dimensions, focusing on the voice category distributions, so that the
model's ability to tell the difference between categories could be better evaluated.
The analysis used two hundred samples of unhealthy and two hundred samples of

healthy voices to make it easier to see how the classes were distributed.
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1) Distribution of raw speech signals (Figure 4.8a): The first used raw speech signals
without feature extraction. It shows a lot of overlap in the data distributions,
which made it hard to tell the difference between the voices.

2) Spatial-Temporal feature distribution (Figure 4.8b): The RS-MSConvNet model's
spatial-temporal feature, on the other hand, had more precise edges and
shorter distances between classes. This comparison showed that the proposed
feature did much better than the raw speech signal analysis regarding clarity

and class distinction.
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Figure 4.8 Views of t-SNE feature distributions (a) raw speech signals, (b) spatio-temporal

features

Figure 4.8 shows the t-SNE analysis, which shows that the spatial-temporal
features based on the RS-MSConvNet model are a better way to find voices that are
not normal. The transparent edges and clear separation between classes suggest that
this feature extraction method can make voice pathology diagnosis much more

accurate.
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4.9 Performance analysis of RS-MSConvNet models
This section gives a full breakdown of how well the RS-MSConvNet model
works. This model was carefully created to find voices that are not normal. In this
section, two different model versions were looked at: RS-MSConvNet-SVM and RS-
MSConvNet-SVM with Feature Selection. Each of these models aims to improve the
accuracy and reliability of pathological voice detection even more by using its unique
architectural design and methods. The TORGO database was chosen to ensure the
models would be evaluated fairly and thoroughly (Rudzicz,2008). This proves that the
results can be trusted and used in other situations. The main goal is to thoroughly test
and comprehend the detection abilities of the RS-MSConvNet and its variations. This
will help determine what works best and what needs fixing.
4.9.1 Assessing RS-MSConvNet-SVM

The SVM hyperparameter tuning is very complicated to get the best
performance, especially when using the RS-MSConvNet-SVM and RS-MSConvNet-SVM
with Feature Selection. Because of the variety of multispectral data from remote
sensing and the complexity of the RS-MSConvNet-SVM architecture, it is imperative to
know how different hyperparameters affect how well the model works. This helps to
better comprehend the model's behavior and lets it make better choices during the
model deployment phase. This study conducted experiments with various
combinations of hyperparameters, focusing on important parameters like the
regularization parameter, kernel type, and kernel parameters. Many optimization
techniques were also used to improve the tuning process and ensure the results were
correct.

The most important results of our hyperparameter tuning experiments
are shown in Table 4.1. A comparison of the model's performance with different
hyperparameter settings and information on the settings that led to the best results is

given.



Table 4.1 SYM hyperparameter adjustment for the RS-MSConvNet-SVM model.
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C Gamma (}) Score
scale 0.916
0.01 0.766
0.05 0.859
0.1 0.891
0.1
0.5 0.909
1 0.920
5 0.933
10 0.936
scale 0.923
0.01 0.816
0.05 0.893
0.1 0.905
0.5
0.5 0.919
1 0.925
5 0.938
10 0.946
scale 0.926
0.01 0.837
0.05 0.901
0.1 0.950
: 0.5 0.945
1 0.930
5 0.923
10 0.910
scale 0.875
0.01 0.883
° 0.05 0.913
0.1 0.918
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Table 4.1 SVM hyperparameter adjustment for the RS-MSConvNet-SVM model

(continued).

C Gamma (J) Score
0.5 0.873
1 0.876
5
5 0.888
10 0.882
scale 0.875
0.01 0.892
0.05 0.917
0.1 0.922
10
0.5 0.873
1 0.878
5 0.885
10 0.879

In Table 4.1, analysis of the RS-MSConvNet-SVM model shows how its
settings for hyperparameters and how well it works are closely linked. The best
configuration was found when C = 1 and } = 0.1. It got a performance score of 0.950,
beating all the other tested configurations. The parameters should work together to

make the model as accurate as possible.

4.9.2 Enhancing RS-MSConvNet-SVM with PSO
This section improves the results of applying PSO for hyperparameter
tuning in the RS-MSConvNet-SVM with PSO Feature Selection model (Shami, 2022). The
experimental setup, choice of hyperparameters for tuning, and the subsequent results
are presented in detail. Additionally, an analysis of the importance and impacts of the

results is provided.
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Table 4.2 PSO hyperparameter adjustment for the RS-MSConvNet-SVM with PSO

feature selection model.

W

C,

Score

0.1

79.17

79.99

W [N

79.58

—_

79.14

81.17

W [N

80.22

[EN

81.14

80.39

W N

80.60

0.2

—_

78.43

79.95

W N

79.27

—_

78.43

81.45

W | N

80.26

[N

80.16

80.22

LN

80.60

0.3

[N

80.26

78.56

W [N

80.60

—_

79.44

81.04

W [N

79.24

80.63

79.85

79.58
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Table 4.2 PSO hyperparameter adjustment for the RS-MSConvNet-SVM with PSO

feature selection model (continued).

W

C,

C,

Score

0.4

1

80.22

79.44

W [N

80.12

—_

79.65

79.14

W [N

81.07

[EN

80.09

79.58

W N

81.41

0.5

—_

79.48

79.04

W N

79.27

—_

79.85

81.07

W | N

80.29

[N

80.50

80.73

LN

81.04

0.6

[N

79.27

79.55

W [N

79.85

—_

80.36

79.65

W [N

79.75

79.85

80.12

80.46
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Table 4.2 PSO hyperparameter adjustment for the RS-MSConvNet-SVM with PSO

feature selection model (continued).

W C, C, Score
1 78.80

1 2 79.75

3 81.48

1 80.16

0.7 2 2 79.75
3 80.63

1 81.11

3 2 81.21

3 79.95

1 80.43

1 2 80.33

3 79.55

1 79.72

0.8 2 2 79.14
3 79.99

1 80.70

3 2 80.53

3 79.92

1 79.88

1 2 80.05

3 80.05

1 80.39

0.9 2 2 80.43
3 80.02

1 80.16

3 2 80.22

3 81.00
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Table 4.2 PSO hyperparameter adjustment for the RS-MSConvNet-SVM with PSO

feature selection model (continued).

W

C,

C,

Score

1

80.16

79.41

W [N

79.21

—_

80.36

80.46

W [N

79.72

[EN

81.00

79.61

W N

79.78

—_

80.90

79.61

W N

79.38

—_

80.29

79.75

W | N

79.41

[N

79.92

81.31

LN

80.70

[N

78.73

79.10

W [N

80.29

—_

78.43

79.72

W [N

79.27

79.00

80.80

81.00
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Table 4.2 PSO hyperparameter adjustment for the RS-MSConvNet-SVM with PSO

feature selection model (continued).

W C, C, Score
1 78.90

1 2 80.26

3 80.22

1 78.56

4 2 2 18.77
3 79.51

1 78.09

3 2 79.82

3 79.78

1 78.56

1 2 79.48

3 78.70

1 78.63

5 2 2 78.63
3 79.34

1 78.43

3 2 78.63

3 80.09

In Table 4.2, the PSO hyperparameters W, C,, and C, settings

significantly affect how well the RS-MSConvNet-SVM with PSO Feature Selection model

works. These hyperparameters are very important for fine-tuning the model to perform

at its best. The combination of W = 0.7, C1 =1, and C2 = 3 stood out from the others

tested because it got the best score of 81.48. This shows the importance of carefully

changing the hyperparameters to get the most out of the RS-MSConvNet-SVM with PSO

Feature Selection model.
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4.9.3 Comparing RS-MSConvNet model variants

In the final analysis, raw speech data are used to test how well different
proposed models can tell the difference between healthy and unhealthy voices. The
three versions of the RS-MSConvNet model are looked at closely and judged on their
accuracy, sensitivity, and specificity. The RS-MSConvNet-SVM model uses a Support
Vector Machine to clarify decision-making processes. RS-MSConvNet-SVM with PSO
Feature Selection, on the other hand, improves the current model by adding Particle
Swarm Optimization to make classification work better. All models were tested using
the same methods, ensuring that comparing their voice data classification abilities was

fair and transparent. The full results can be found in Table 4.3.

Table. 4.3 Comparison performance of the proposed model

Accuracy Sensitivity | Specificity
Classifier Input
(%) (%) (%)
RS-MSConvNet Raw speech 86.46 83.04 87.88
RS-MSConvNet-SVM Raw speech 87.61 78.86 91.23
RS-MSConvNet-SVM
Raw speech 88.09 80.49 91.23
with PSO

Table 4.3 shows that out of the three models offered, the RS-MSConvNet-SVM
with PSO Feature Selection model is the most accurate overall. In other words, this
model would be the best choice for tasks or uses where getting the highest percentage
of correct classifications is very important. But subtleties start to show up by looking
more closely at the details of performance metrics. Sensitivity, called the True Positive
Rate, measures how well a model can find positive samples. Sensitivity becomes an
important metric when missing positive classifications can have significant effects, like
when trying to diagnose a medical condition, and not seeing the need can be harmful.

The RS-MSConvNet model does better in this situation than the others, though only
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by a small amount. It has shown that it can find positive samples more accurately than
the other two models.

On the other hand, specificity is another important metric that shows how well
the model can classify negative samples. This metric is vital when false positives can
cause actions or costs that are not needed. For example, if a screening test has a lot
of false positives, it could lead to more tests or even treatments that are not required.
Regarding specificity, both the RS-MSConvNet-SVM and RS-MSConvNet-SVM with PSO
Feature Selection models do a great job. Since avoiding false positives is very important

in these situations, either of these models might be the best choice.

4.10 Summary

This chapter's comprehensive analysis of the RS-MSConvNet models,
specifically the RS-MSConvNet-SVM and its variant with Feature Selection, underscores
the significance of meticulous hyperparameter tuning and architectural design in
enhancing pathological voice detection. The study reveals that optimal performance
is achieved through precise adjustments in model parameters, with the RS-MSConvNet-
SVM model attaining its highest efficiency at specific settings. Integrating Particle Swarm
Optimization in the RS-MSConvNet-SVM with the Feature Selection model further
elevates its accuracy, showcasing the effectiveness of this approach. Comparative
evaluation of the different RS-MSConvNet models indicates the superior accuracy of
the RS-MSConvNet-SVM with PSO Feature Selection model while also highlighting each
model's nuanced strengths in sensitivity and specificity. This research demonstrates
the advanced capabilities of these models in voice pathology detection and provides

valuable insights into the critical aspects of model optimization.



CHAPTER V
CONCLUSIONS

5.1  Conclusions

Voice healthcare is constantly changing, but one of the most essential things
that can be done immediately to help people is finding voices that are not working
directly. The idea for the RS-MSConvNet came from this thesis, which went into great
detail about how to find different voices. This new design includes a multi-scale
convolution neural network, spatial-temporal features, and an FC layer for sorting
things into groups. Different fixed-length segments were looked at until the best one,
500 ms, was found. This was very important for the model's performance. By creating
the RS-MSConvNet-SVM hybrid model, The RS-MSConvNet made progress. The RS-
MSConvNet's trainable feature representation in this model is combined with an SVM's
strong classification abilities. Testing the suggested models on the TORGO database
revealed that they worked well: the RS-MSConvNet model achieved an impressive
86.46% accuracy, which was higher than other baseline systems; the hybrid RS-
MSConvNet-SVM with PSO feature selection model did even better, reaching 87.61%.

This thesis adds a new structure to finding voices that are not normal and
shows how essential hybrid models are for improving performance. These results
indicate that neural networks and regular machine learning models can work together,
which opens the door for new voice detection methods in the future. These models
could be used in many ways in voice clinics and telemonitoring systems in the real
world. The potential applications of these models in real-world voice clinics and
telemonitoring systems are vast, promising transformative changes in the early

detection and management of voice-related pathologies.
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5.2 Future works

The RS-MSConvNet and hybrid RS-MSConvNet-SVM models, which are better
at finding pathological voices and have added PSO feature selection, have set new
standards in the field. The accuracy of these models shows how useful they could be,
but deep learning models can continually be improved. To make models even more
reliable, this includes improving neural network layers and using a variety of activation
functions to make the models work better. It is also essential to do more research that
uses datasets other than the TORGO database to see how well the models work with
people who speak different languages and belong to various groups.

The demand for real-time pathological voice detection is growing. This shows
how important it is to use these models in real-life situations. Also, combining these
models with more advanced diagnostic methods, like medical imaging, could create a
more complete diagnostic platform that would make it easier to find voice pathologies.
Making these models easy to understand is essential, especially regarding healthcare
decisions that have significant effects. Including more types of voice and speech
disorders in research could make these studies more useful. Lastly, to make these
models work in real life, more work must be done to make them work with medical
equipment and in places with few resources. Models that work well on low-power

devices should be given priority.

5.3  Thesis suggestions

Deep learning has changed healthcare in the past few years. Researchers are
very excited that pathological voice detection is a promising new field. The main goal
of this thesis is to create more advanced neural network architectures. The goal is to
make models that can effectively and accurately detect pathological voice problems.
These are thesis suggestions. Advanced architectural enhancements for pathological

voice detection: Dive deeper into the intricacies of neural network architectures to
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develop more advanced and efficient models for pathological voice detection. Explore

novel neural network structures, attention mechanisms, and more.

1)

Voice and medical imaging data for mixed evaluation: Combining RS-
MSConvNet features with medical imaging data creates a complete
diagnostic platform. Analyze the advantages and disadvantages of using
speech and video data to assist doctors in their medical choices.
Real-time deployment and edge computing for voice diagnostics: Look into
the difficulties of using voice detection models in real-time situations,
especially on edge devices. Find out how model complexity, accuracy, and
computational limits affect each other.

Deep learning that can be understood in healthcare: Study and develop
methods to make healthcare deep learning models without compromising
accuracy.

Diagnostics for voice and speech disorders: The study should examine a
broader range of voice and speech disorders. Learn about the problems
and possible solutions for finding and diagnosing various diseases.
Developing hardware and software for voice detection models: Because of
the need for practicality, it is essential to look into how developing
hardware and software can improve voice detection models' performance,

especially when resources are limited.
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ABSTRACT Recent studies have reported the success of multi-scale convolution neural network
(MSConvNet) model for many classification applications due to its powerful ability of exploring multi-scale
convolution block to extract multi-scale representations to make a detection. However, a new design
based on MSConvNet for pathological voice detection has not been explored. In this paper, we propose
RS-MSConvNet, a novel end-to-end MSConvNet model using raw speech for pathological voice detection.
The main contribution of the proposed RS-MSConvNet method is to exploit the multi-scale convolution
block, followed by spatial-temporal feature block, and fully connected layer as classification. In addition,
to further improve accuracy performance, we propose a novel hybrid detection model by integrating the
feature extraction ability of the RS-MSConvNet model and the classifier of support vector machine (SVM)
method, called RS-MSConvNet-SVM model. The effectiveness of our proposed models is investigated using
the TORGO database. The experimental results reveal that the RS-MSConvNet model outperforms other
baseline methods in the speaker-independent task. Moreover and as compared to the RS-MSConvNet-SVM
model, a further improved accuracy is obtained using the RS-MSConvNet-SVM model. These outcomes
exhibit that our proposed models are useful for pathological voice detection.

INDEX TERMS Pathological voice detection, end-to-end architecture, multi-scale convolution, spatial-
temporal feature, hybrid model.

I. INTRODUCTION step for automatic speaker recognition for dysphonic voice

Pathological voice detection is a technique of determining
pathological voice or healthy voice from a provided utter-
ance signal. It plays an important role in voice healthcare
systems [1] such as voice clinics [2] and telemonitoring
application [3], [4], [5] because the detection of changed
speech is a diagnostic tool to identify the onset of disabling
physical symptoms [6], where the results are exploited to
screen patients at risk of having certain diseases. Moreover,
the pathological voice detection is an essential pre-processing
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assessment [7] and dysarthric speech recognition [8]. In this
study, we focuse on a pathological voice detection, which is
a subject area of the pattern recognition task in the field of
biomedical and health informatics.

Typical pathological voice detection system can be divided
into two groups: traditional pipeline system [9] and mod-
ern end-to-end system [10]. In the earlier studies [11], the
systems usually consist of the front-end feature extraction
and the back-end classifier. Based on traditional pipeline
systems, the handcrafted design feature extraction con-
verts speech signal into parametric representation while the
back-end classifier learn feature representation for predicting
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pathological/healthy voice class. For modern end-to-end sys-
tems that can extract features without using the handcrafted
design feature extraction, a deep learning-based classifier
used for predicting target classes is learned using a raw
speech or its spectrogram. A brief survey based on exist-
ing traditional pipeline systems and modern end-to-end sys-
tems approaches for pathological voice detection is reviewed
below.

Based on the traditional pipeline approach, most exist-
ing studies in pathological voice detection have focused
on exploring effective hand-crafted design feature extrac-
tion with effective classifiers. Researchers have introduced
various feature extraction methods for pathological voice
detection. Mel-frequency cepstral coefficients (MFCC), Lin-
ear Predictive Cepstral Coefficients (LPCC), Linear Predic-
tion Coefficients (LPC), Multi-Dimensional Voice Program
(MDVP)-based features were proposed in [12]. Harmonics-
to-noise ratio [13], Jitter [13], Shimmer [14], Kullback-
Leibler divergence (KLD) histogram [15] and KLD higher
amplitude suppression spectrum [15] were proposed for
pathological voice detection. Autocorrelation and entropy
features in different frequency regions were proposed in [16].
In addition to using the above mentioned individual features,
the openSMILE set or Glottal source set-based fusion fea-
ture were introduced in order to combine acoustic features
with statistical function sets or combine frequency-domain
glottal and time-domain glottal feature sets with statistical
function sets, respectively. Moreover, the combination of the
openSMILE set and Glottal source set-based feature fusion
was introduced [17] to fuse two merits based on different fea-
tures. For the classifier, support vector machine (SVM) have
been utilized as popular classifier in most previous studies
[18], [19], [20], [21] because it can provide promising result
for pathological voice detection. In addition to using SVM,
researchers have applied various classifiers such as artificial
neural networks [22], [23], linear discriminant analysis [24],
Gaussian Mixture Model [25], and decision trees [26]. In all
these traditional pipeline approaches, the ability of detecting
pathological speech from healthy speech is strongly depen-
dent on the effectiveness of effective handcrafted design fea-
ture extraction. This suggests that the detection performance
requires expert knowledge in speech processing to devise
relevant features.

Regarding pathological voice detection using end-to-end
systems, previous works [11], [27], [28] have shown that they
do not require expert feature engineering because deep learn-
ing models can be trained using either raw speech signal or
its spectrum. For example, the combinations of convolutional
neural network and multilayer perceptron (CNN-MLP)/long
short-term memory (CNN-LSTM) using raw speech sig-
nal were proposed in [17]. The results showed that the
CNN-MLP and CNN-LSTM could provide good results for
pathological voice detection. However, using raw speech sig-
nal with any modification was not efficient enough as an
input for training the end-to-end model under small train-
ing data. To further improve the end-to-end CNN-MLP and

VOLUME 10, 2022

CNN-LSTM, the authors of [11] proposed to use glottal
flow signal to replace raw speech signal as the input. The
results showed that end-to-end CNN-LSTM and CNN-LSTM
using glottal flow signal performed better than conventional
CNN-MLP and CNN-LSTM using raw speech signal. Even
though the end-to-end CNN-MLP and CNN-LSTM using
either raw speech or glottal source signals could provide
encouraging results, there is still an open research subject
to design a new end-to-end model for pathological voice
detection.

In this paper. a new end-to-end multi-scale convo-
lution neural network architecture using raw speech,
RS-MSConvNet is proposed for pathological voice detec-
tion. The main idea of the proposed architecture is to
exploit multi-scale convolution block to scale the input
information into different scaled representation, followed
by spatial-temporal feature block and fully connected (FC)
layer as a classifier block. In addition, to further improve
detection accuracy, we propose a hybrid of RS-MSConvNet
and SVM (RS-MSConvNet-SVM) models. Here, SVM clas-
sifier was explored to learn the automatically extracted
features derived from fully trained RS-MSConvNet model.
RS-MSConvNet and RS-MSConvNet-SVM provide promis-
ing results for speaker-independent pathologcal voice
detection.

The contributions of this article can be summarized as
follows:

1 A novel end-to-end model architecture,
RS-MSConvNet is proposed to learn raw speech. The
proposed RS-MSConvNet architecture which is end-
to-end does not require expert knowledge in feature
engineering.

2) We investigate our model on TORGO dataset. Here, the
proposed RS-MSConvNet model performs compara-
bly to other baseline systems in a speaker-independent
approach.

3) The RS-MSConvNet is also modified using SVM
method to replace FC layer as classification to
learn the automatically extracted features derived
from fully trained RS-MSConvNet model. The mod-
ified RS-MSConvNet is referred to as a hybrid
RS-MSConvNet-SVM model architecture. The RS-
MSConvNet-SVM model provides improved accuracy
result, compared to the RS-MSConvNet classifier.

The rest of this paper is organized as follows: Our proposed

methods are introduced in Section II. Section IIT describes
pathological voice detection setup including the details of the
database, network training, baseline method, and experimen-
tal evaluation. In Section IV, the results and discussions are
presented. Section V presents our conclusion.

Il. PROPOSED METHOD
A. R5-MSConvNet

The proposed RS-MSConvNet framework for pathological
voice detection consists of pre-processing block, multi-scale
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(a) Pre-processing

16x(1x4) Global o
Average

FIGURE 1. Overall visualization of the RS-MSConvNet architecture (a) Pre-processing (b) Multi-scale convolution block,
(c) Spatial-temporal feature extraction block, and (d) Classifier block for two-class classification.

TABLE 1. Configuration of RS-MSConvNet architecture, where (N.T) are the di of input rep and k denotes the order of layer in block b.
Block | Layer Kernel Output Activation Parameters
b Input (1, N, T)

Conv2D (2.2)stride=2 | (1, 5, 1) Linear 5
Conv2D 2stride=2 | (1, 5. D) Linear 5
Conv2D (22)stride=2 | (1, ¥, T) Linear 5
Conv2D (22)stride=2 | (1, &, L) | Linear 5
c Input (L, 5, %)
Conv2D 32x(56,1) (32,1, 1) 416
Activation Relu
Conv2D 16x(1.4) (16, 1, 2%—3) 2064
Activation Relu
Activation Dropout
Global average pooling 16
d | Input 48
FC 128 Relu
| FC 2 Linear
| Classifier 1 Log Softmax

convolution block, spatial-temporal feature extraction block,
and classifier block as shown by the flowchart in Fig. 1.
The configuration of the proposed RS-MSConvNet model is
summarized in Table. 1.

1) PRE-PROCESSING BLOCK

This subsection describes how to form input data for train-
ing the RS-MSConvNet model. Pre-emphasis is initially
employed to compensate the high-frequency component of
the input speech signal. Next, the framing operations is used.
In this paper., a 20 ms frame length and 10 ms frameshift of
raw speech signals were divided into several speech frames
and then a Hamming window is applied to enhance the
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harmonics and smooth the edges of the framed speech sig-
nals. Finally, a 2 dimension (2D) input data for training the
proposed RS-MSConvNet model is formed by stacking the
speech frames.

2) MULTI-SCALE CONVOLUTION BLOCK

Motivated by [29]. [30], and [31], the feature pyramid net-
works based on Multi-scale convolution block has been
proven to be effective feature technique in the built-up
areas detection using synthetic aperture radar images [32]
and electroencephalography seizure detection [33] because
Multi-scale convolution block can extract multi-scale seman-
tics information and make a more precise prediction by mean

VOLUME 10, 2022




102

W. Pathonsuwan et al.: RS-MSConvNet: A Novel End-to-End Pathological Voice Detection Model

IEEE Access

of gathering more robust semantics information of scaled fea-
tures. In this paper, Multi-scale convolution block was imple-
mented to extract the 2D-input data into multi-scale features,
making the designed detection model able to learn objects
across a large range of scales. Each block was designed to
extract the input fixed information in half the scale of the
previous layer’s resolution. The block could automatically
learn the weight to effectively distinguish the valuable level
features while reducing the signal to half.

In this block, the input data are shaped as (C, N, T') where
C, N and T are defined as the number of channel, number of
frames, and number of samples in each frame, respectively.
Next, as seen in block (b), each 2D-convolution layer per-
forms a convolution to reduce the input size with the same
kernel size of (2, 2), a stride of 2, and no padding. By this
configuration, the number of rows (frames) and columns (its
samples) from k convolution layer become half of £ — 1 con-
volution layer providing the output size from the £ layer to be
a{, g’;; ET,;). Here, outputs from the second to forth layers are
used as the input for the next block for further extraction of
spatial and temporal representation based on different field of
views.

3) SPATIAL-TEMPORAL FEATURE EXTRACTION BLOCK

In this block, the objective is to extract spatial-temporal fea-
tures from each output’s scale of the Multi-scale convolution
block. Here, two regular 2D-convolution layers are used to
capture three last scaled output of the block. For the first
2D-convolution layers, three kernel sizes of (%, 1), (&, 1),
(%, 1) with a stride of 2, no padding, and output channels of
32 are used to capture the outputs from the second layer, third
layer and forth layer of previous phase, respectively. For the
second 2D-convolution layers, the same kernel size of (1,4)
with a stride of 2, no padding, and channel outputs of 16 are
used to extract the different output of the first layers. Finally,
global average pooling is applied to the output passed from
the two regular 2D-convolution layers. By this configuration,
a total of 48 features (16 representations per each scale) are
obtained to be the input for next block.

4) FULLY CONNECTED LAYER BLOCK

After two convolutional layers and global average pooling,
the spatial feature module s* outputs of different scales are
augmented and fed to FC layers. Log softmax is used as
our last layer for predicting binary classes. Based on Log
softmax, the logarithm of the prediction probability of binary
classes is computed as follows:

exp(x;)

Y exply) M

I = log(

where x; is the input vector with the i element and j is the
number of classes (possible outcomes).

To calculate classification loss, cross entropy is imple-
mented in this study. This loss function calculates the sim-
ilarity between the label and predicted probability values
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as follows:

|class|

Lep(y, $) =~ Y wilog . @)
k=1

where ¥ and y are the predicted probability and the true label,
respectively.

B. RS-MSConvNet-SVM

SVM-based method has been proven to be effective for
both classification and regression problems, so it has been
utilized for many applications [34] such as face recogni-
tion [35]. electroencephalography seizure detection [36], and
automatic emotion speech recognition [37]. Moreover, most
previous studies have used SVM-based method as baseline
classifier for pathological voice detection because it can
deal with two-class classification problem. In this paper, the
SVM-based method is applied to learn automatically opti-
mized features based on the RS-MSConvNet model.

Motivated by [38] which integrated CNN as a trainable
feature representation and SVM as a classifier, a hybrid CNN
and SVM (CNN-SVM) provided better accuracy results than
CNN model for tumor detection. This was attributed to the
fact that the developed model combined the advantages of
CNN and SVM models. Similarly, hybrid RS-MSConvNet
and SVM (RS-MSConvNet-SVM) as shown in Fig. 2 is
proposed by using SVM as the classification to replace the FC
layers after the RS-MSConvNet classifier was fully trained
as shown in Fig. 2 (a). In this paper, to construct the SVM
in a hybrid model, we adopt radial basis function (RBF)
and determined penalty parameter C and the optimal kernel
parameter ¥ by investigating the validation data on the hybrid
model learmned by training data. Both training and validation
data are explained in next section.

The implementation process of the RS-MSConvNet-SVM
model is shown in Fig. 2 (b) and can be summarized as
follows:

1) For the training process, the samples of training set were
fed to RS-MSConvNet model.

2) After the RS-MSConvNet classifier was fully trained,
the corresponding feature information could be automatically
extracted for each input map.

3) The FC layers were replaced with SVM-based classifier
to learn the automatically extracted feature vectors derived
from the fully trained RS-MSConvNet classifier.

4) For the test process, the samples of test set were fed to
the fully trained RS-MSConvNet classifier to obtain the auto-
matically extracted features as the test feature representation.

5) The test feature data was fed to the well-trained SVM
for predicting healthy or pathological class.

Ill. EXPERIMENTAL SETUP

A. DATABASE

TORGO [39] and UA-Speech [40] are commonly used
databases for pathological voice detection. In this paper,
TORGO database is used to investigate our RS-MSConvNet
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FIGURE 2. Implementation process of the RS-MSConvNET-SVM model.

TABLE 2. Details of the TORGO database.

Training Validation | Testing
MCO03, MC04 | MCO02, MCO1,
FCO02, FCO1, FCO03,
MO02, MO05, MO1, M03 | M04,
FO1, FO3 F04

and RS-MSConvNet-SVM models. The main reason for
using this database is that the database is more challenging
than UA-Speech database due to the limited data, which
makes the end-to-end models based on the TORGO database
difficult to achieve better accuracy than the end-to-end mod-
els based on the UA-Speech database as seen in [17].
Moreover, the results are also directly compared with the
experimental settings as in [17]. The publicly available
TORGO corpus was produced by three females (FO1, FO3,
F04) with dysarthria, three healthy females, five males (MO1,
MO02, M03, M04, M05) with dysarthria, and five healthy
males (MCO1, MC02, MCO03, MCO04). In this database, partic-
ipants without dysarthria recorded approximately 900 utter-
ances on average while participants with dysarthria recorded
approximately 400 utterances on average. Further details
of the TORGO database can be seen in [39]. All speech
utterances were sampled at 16 kHz. In this study, since a
substantial amount of silence was contained in the TORGO
database, it need to be removed for training/testing classifica-
tion model. To conduct the speaker-independent pathological
voice detection as advised in [17] and [41], the database is
divided into three sets: training subset (3,125 healthy and
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TABLE 3. Model parameters of the RS-MSConvNet and
RS-MSConvNet-SVM models.

Parameters RS-MSConvNet | RS-MSConvNet-SVM
Batch Size 256 256

Learning Rate | 0.0001 0.0001

Dropout Rate | 0.5 0.5

Epoch 1000 1000

SVM (C) N/A 1

1,491 pathological utterances with 3.5 hr), validation subset
(944 healthy and 795 pathological utterances with 2 hr), and
testing subset (2,087 healthy and 861 pathological utterances
with 3 hr). Table. 2 summarizes all three subsets of TORGO
database used for our experiments.

B. NETWORK TRAINING

In this paper, we used the PyTorch v1.10.1 framework to
build the proposed method. NVIDIA RTX3090 with 24 GB
memory was used to train the networks. Adam optimizer
was exploited to optimize the loss function in each iteration
of training process. The model parameters for training the
RS-MSConvNetand RS-MSConvNet-SVM models are listed
in Table. 3.

C. BASELINE SYSTEMS
Based on the same database and training/testing condi-
tion, the effectiveness of the proposed RS-MSConvNet
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and RS-MSConvNet-SVM methods are compared with the
results of five baseline system groups: OpenSMILE+SVM,
Glottal+SVM, OpenSMILE-Glottal+SVM, and conven-
tional end-to-end methods, modified end-to-end methods
using glottal flow signal.

1) OpenSMILE+SVM methods: two acoustic feature
extraction sets obtained using the OpenSMILE toolkit were
used as the input feature information for the classifier. First
OpenSMILE s” acoustic feature sets (OpenSMILE-1) with
a total of 384 dimensions ((16 dimensions of the cho-
sen acoustic features + 16 A dimensions) x 12 statistical
functions) and second OpenSMILE s’ acoustic feature
sets (OpenSMILE-1) with a total of 6552 dimensions
(56 dimensions of the chosen acoustic features + 56 A
dimensions) x 39 statistical functions) were used as the
input for the SVM classifier. The lists of OpenSMILE-1
set and OpenSMILE-2 set with its statistical information
are summarized in Table. 4. For this baseline system,
the SVM-based classifiers using the OpenSMILE-1 and
OpenSMILE-2 sets are referred to as OpenSMILE-14+SVM
and OpenSMILE-2+4SVM, respectively.

2) Glottal+SVM methods: two glottal feature sets were
used as the input feature for the SVM-based classifier.
First glottal feature set (Glottal-1) with 192 feature vectors
((12 dimensions of the chosen acoustic features + 12 A
dimensions) x 8 statistical functions) was obtained by cap-
turing glottal flow signal using several time-and frequency-
domain feature extraction method as listed in Table. 5.
For second glottal feature set (Glottal-2), the principal
component analysis (PCA) with 30 principal component
weights was applied to the normalized Glottal-1 to calculate
480-dimension features ((30 dimensions of the chosen acous-
tic features + 30 A dimensions) x § statistical functions).
For this baseline system, the SVM-based classifiers with the
Glottal-1 and Glottal-2 sets are referred to as Glottal-1+SVM
and Glottal-2+SVM, respectively.

3) OpenSMILE-Glottal+SVM methods: To take the
advantages of two types of feature extraction sets
mentioned above, the OpenSMILE-1/OpenSMILE-2 and
Glottal-1/Glottal-2 sets were joined as the input for fur-
ther improving the SVM-based classifier. Here, SVM using
joint OpenSMILE-1 and Glottal-1 sets, joint OpenSMILE-1
and Glottal-2 sets, joint OpenSMILE-2 and Glottal-1
sets, and joint OpenSMILE-2 and Glottal-2 sets were
referred to as OpenSMILE-1-Glottal-14+SVM, OpenSMILE-
1-Glottal-24+SVM, OpenSMILE-1-Glottal-14+SVM, and
OpenSMILE-1-Glottal-24+SVM, respectively.

4) Conventional end-to-end methods: the CNN-MLP and
CNN-LSTM methods were used as baseline end-to-end
method using raw speech.

5) Modified End-to-end methods using glottal flow: In sim-
ilar way as conventional end-to-end methods, the CNN-MLP
and CNN-LSTM methods were also used. Unlike conven-
tional end-to-end methods, the glottal flow signals were used
to replace raw speech signals as the input for CNN-MLP and
CNN-LSTM-based classifier.
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Further details of five baseline methods compared with our
proposed methods can be seen in [17].

D. EXPERIMENTAL EVALUATION
In order to investigate the effectiveness of our proposed
methods, three common evaluation criteria suggested in [42]
are used: classification accuracy, sensitivity, and specificity.
Accuracy is computed as:
TP + 1N

TP+ FP+TN + FN~
where TP and TN are the true pathological voice and true
healthy voice where the fully trained network correctly pre-
dicts the pathological voice and healthy voice classes. FP
and FN are the true pathological voice and true healthy voice
which are incorrectly classified.

The sensitivity and specificity are calculated as follows:

Accuracy =

(3)

Sensitivity = " )
ensitivity = N

e TN
Specificity = N —- (5)

IV. RESULTS AND DISCUSSIONS

A. RESULTS ON RS-MSConvNet

This subsection reports the performance of RS-MSConvNet.
The following conclusions based on varying the configura-
tion of parameters can be drawn:

e Since the fixed-length segments has an effect on the
performance of end-to-end network, it is important to find
out suitable fixed-length segments. In this paper, different
fixed-length segments of 240-ms, 250-ms, 500-ms, 1 s and
3 s were first investigated to find out the optimal fixed-length
segment, Table. 6 reports the results of RS-MSconvnet model
using different fixed-length segments.

It can be seen that the fixed-length segment of 500 ms
provided the best performance compared with the others.
The reasons were that the network could not sufficiently
learn the overly short data of raw speech signals (240 or
250 ms), which might have not contained enough patholog-
ical information while a fixed-length speech segment longer
than 500 ms could not be exploited due to the short durations
of some of the vowels as summarized in [47]. Moreover,
the fixed-length segment longer than 500 ms might have led
to overly small training data making the fully trained net-
work incompetent to detect pathological speech from healthy
speech. The results indicate that the fixed-length segment
of 500 ms (49 x 320 pixels) was the most suitable for the
RS-MSConvNet model.

e Many trials. which is not reported in this section (data
not shown), were conducted by adding/reducing the con-
volution layers and changing the parameters in Multi-scale
convolution block and spatial-temporal feature extraction
block but they did not achieve better results. Moreover, batch
normalization was also applied to spatial-temporal feature
extraction block and it could not improve the detection per-
formance. This outcome means that changing Multi-scale
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TABLE 4. Two acoustic feature sets with their ical functions c

p

Feature sets Acoustic features

d with the openSMILE toolkit.

Statistical functionals

openSMILE-1 | zero-crossing rate, RMS-energy, pitch,

MFCCs (12 coefficients), voicing probability

min (or max) value and its relative position, range,
median,kurtosis, skewness, standard deviation, 2
linear regression coeff, and quadratic error

openSMILE-2 | log-energy, zero-crossing rate, pitch,

MFCCs (13 coefficients), Mel-spectrum

(26 coefficients), jitter, shimmer, spectral flux,
voicing probability, roll-off points, spectral

centroid, position of spectral minimum and

min (or max) value and its relative position, range,
median, kurtosis, skewness, standard deviation, 2
linear regression coeff., linear and quadratic errors,
3 quartiles, 2 percentiles (95% & 98%), 3 inter-
quartile errors, number of peaks, mean of peaks,

maximum mean distance between peaks, geometric,
arithmetic and quadratic means
TABLE 5. Time- in glottal s, freq Y in glottal features, and statistical functions used for Glottal-1 feature set.

Time-domain glottal features
Amplitude quotient, Closing quotient,
Speed quotient computed from the primary glottal
opening, Speed quotient, computed from the
secondary glottal opening, Normalized

Frequency-domain glottal features
Difference between the lowest two
glottal harmonics, Harmonic
richness factor, and Parabolic
spectrum parameter

Statistical functionals
Skewness, Standard
deviation, Kurtosis,
Maximum, Minimum,
Median, Mean,

amplitude quotient, Open quotient, extracted and Range
from the LF model, Open quotient obtained
from the primary glottal opening, and Open
quotient obtained from the secondary glottal
opening
TABLE 6. Performance of the proposed RS-ConvNet classifier using different input speech lengths.
Input speech length | Accuracy(%) | Sensitivity(%) | Specificity(%)
240 ms | 79.44 72.36 82.37
250 ms 82.19 71.89 | 86.44
500 ms | 86.46 $3.03 | 87.88
Is | 82.87 82.22 | 83.13
3s | 80.08 70.15 | 87.01

convolution block, spatial-temporal feature extraction block,
and the parameter was unsuitable for our RS-MSConvNet
method.

e Finally, since the number of FC layers has an effect on
the detection performance of pathological voice, the numbers
of FC layers was varied from 1 to 5 layers. Table. 3 shows
the comparison among different FC layers. It was found that
the detection performances decreased while using more than
two layers, This is because one FC layer is suitable for the
classification based on two classes and the limited training
data suggested in [43] and [44]. This suggested that using one
FC layer as classification was suitable for our RS-ConvNet
model.

To visualize discriminating information using the scaled
feature representation for pathological voice detection,
a healthy voice and a pathological voice signal were chosen to
be fed into a fully trained RS-ConvNet model. The output rep-
resentation derived from second convolution layer to fourth
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layers were then compared to show discriminating feature
information of healthy and pathological voices. In this paper,
the representation images are displayed using the matplotlib
function based on bilinear interpolation method [45]. Here,
since the fixed-length segment of 500 ms which provided
the best results mentioned above was used as the input for
RS-MSConvNet, the output sizes of second layer, third layer,
fourth layer are 10 x 80 pixels, 5 x40 pixels, and 2 x 20 pixels,
respectively. Fig. 4 shows a comparison of feature represen-
tation between healthy voice and a pathological voice signals
with a similar amplitude signature. We can observe from
Fig. 4 that the convolution layers provided different repre-
sentation between healthy voice and pathological voice. This
indicated that the proposed Multi-scale scale convolution
block could give discriminative features for the pathological
voice detection.

Next, to observe discriminating ability using the spatial-
temporal features derived from the trained RS-MSConvNet

VOLUME 10, 2022




106

W. Pathonsuwan et al.: RS-MSConvNet: A Novel End-to-End Pathological Voice Detection Model

IEEE Access

100.00%

86.46%  87.88%

83.03%
80.00%
60.00%
40.00%
20.00%
0.00%

1 Layer

88.88%

85.11%
| |

2 Layers

FIGURE 3. Perf e of the prop

model for detecting pathological voices, the t-distributed
stochastic neighbor embedding (t-SNE) [46] which is a
commonly used method for dimensionality reduction was
exploited to consider the distributions between healthy voice
and pathological voice categories. Here, 200 pathological
and 200 healthy voice samples were selected to show the
distributions of the two classes based on the t-SNE analy-
sis. Fig. 5 shows visual distribution of the spatial-temporal
feature derived from the trained RS-MSConvNet model.
As seen in Fig. 5 (a). the data distributions of the differ-
ent classes using raw speech signals without any feature
extraction were significantly overlapped. This caused diffi-
culty in distinguishing the different voices. By comparing
Fig. 5 (a) with (b), it can be seen that the data distribution
of the proposed spatial-temporal feature performed better
than using raw speech signals without any processing method
because it provided clear contours and small inter-class dis-
tances, This suggested that the spatial-temporal feature based
on the RS-MSConvNet could be useful for pathological voice
detection.

B. RESULTS ON RS-MSConvNet-SVM

This subsection presents the results of RS-MSConvNet-
SVM. Because the y value directly affects the SVM-based
detection performance, it is important to find out the opti-
mal y. Here, the y values varied from 0.1 to 30 by the step size
of 0.1, with the optimal 3 at 0.1 which provided the highest
accuracy by investigating the validation set on the hybrid
model trained by training set. Therefore, the fully trained
RS-MSConvNet model using the optimal y at 0.1 was used
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to evaluate the testing set because the decision ranked by the
distance between the RS-MSConvNet based-automatically
extracted features and the hyperplane of the trained SVM
model achieved the highest number of correct predictions.
Fig. 6 shows the result of the RS-MSConvNet-SVM model
compared with the results of the RS-MSConvNet model.

As seen in Fig.6, improved accuracy performance was
obtained using the hybrid model. The accuracy was
improved from the RS-MSConvNet with 86.46 % to the
RS-MSConvNet-SVM with 87.61 %. This can be attributed
to the decision ranked by the distance between the RS-
MSConvNet based-automatically extracted features and the
hyperplane of the trained SVM model performing higher
specificity compared with the RS-MSConvNet classifier,
which led to directly improving the detection accuracy. This
result indicated that the RS-MSConvNet-SVM seems useful
for detecting pathological voice from healthy voice.

C. COMPARISON WITH BASELINE SYSTEMS

In this subsection, the performances of our proposed methods
are compared to those of some known systems. As men-
tioned in the introduction section, some systems may
not be discussed due to the experiments being based on
speaker-dependent approach and different database from our
experiments. Here, the results based only on the TORGO
database for a speaker-independent approach, which is the
same condition as our experiments, were compared. Table. 7
shows the results of some known systems compared to our
proposed methods.
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FIGURE 5. Visual distributions of the different features based on t-SNE. (a) raw speech signals, (b) spatio-temporal features.

TABLE 7. Comp with & i y on the TORGO database.

Systems (results in [17]) | Feature sets Classifier Accuracy (%) | Sensitivity (%) | Specificity (%)

Conventional pipeline openSMILE-1 SVM 78.24 72.94 83.54
openSMILE-2 SVM 80.62 73.73 87.52
Glottal-1 SVM 67.17 71.22 63.12
Glottal-2 SVM 66.93 71.55 62.17
openSMILE-1 + Glottal-1 | SVM 79.62 73.21 86.03
openSMILE-2 + Glottal-1 | SVM 82.12 79.02 85.22
openSMILE-1 + Glottal-2 | SVM 80.63 72.59 88.68
openSMILE-2 + Glottal-2 | SVM 81.35 76.83 85.87

Systems (results in [17]) | Input | Classifier Accuracy (%) | Sensitivity (%) | Specificity (%)

Conventional end-to-end | Raw speech CNN-MLP 78.83 82.85 76.24
Glottal flow CNN-MLP 81.12 85.88 75.26
Raw speech CNN-LSTM 71.15 78.45 66.17
Glottal flow CNN-LSTM 75.41 81.32 69.68

Our proposed Raw speech RS-MSConvNet-FC 86.46 83.04 87.88
Raw speech RS-MSConvNet-SVM (y = 0.1) | 87.61 78.86 91.23

As seen in Table. 7, the results obtained with the
RS-MSConvNet and RS-MSConvNe models outperformed
all known systems in terms of accuracy and specificity per-
formances. For the specificity result, it was observed the
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end to end system approach (CNN-MLP) using glottal flow
information performed better than the proposed methods
because the glottal flow signal gave better discriminative
information than raw speech signal as summarized in [47]
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making the detection of pathological voice more specific.
However, accuracy and specificity of the CNN-MLP using
glottal flow information was worse than those of the proposed
systems. This indicated that the proposed methods could give
more reliable classification performance without requiring
expert knowledge in pre-processing for computing alternative
efficient signal to replace raw speech signal.

V. CONCLUSION

In this paper, we proposed a new RS-MSConvNet archi-
tecture for pathological voice detection. The main contri-
bution of the proposed RS-MSConvNet method is to use
Multi-scale convolution neural network, followed by spatial-
temporal feature, and FC layer as classification. In addition,
we proposed a hybrid model by integrating RS-MSConvNet
as trainable feature presentation and support vector machine
(SVM) as a classifier and referred to it as RS-MSConvNet-
SVM model. The performances of our proposed models were
evaluated using the TORGO database. From the experimen-
tal results, it was observed that the RS-MSConvNet gave
the discriminating feature information between healthy and
pathological voice via the (-SNE method and provided an
accuracy of 86.46 %, which outperformed other baseline
systems. In addition, improved accuracy performance was
obtained using RS-MSConvNet-SVM model.The accuracy
was improved from the RS-MSConvNet with 86.46 % to
the RS-MSConvNet with 87.61 %. The results indicated that
our proposed RS5-MSConvNet and RS-MSConvNet-SVM
approaches could be useful for pathological voice detection.
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In the future, the effectiveness of using the attention mech-
anism will be explored to further improve our proposed
RS-MSConvNet and RS-MSConvNet-SVM  approaches.
We will also use Glottal flow signal [48] to replace raw speech
signal as the input of our proposed methods.
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