CONTENTS

ABSTRA	ACT IN THAI	
ABSTRA	ACT IN ENGLISH	
ACKNO	WLEDGEMENTS	V
CONTE	NTS	VII
LIST OF	F TABLES	XI
LIST OF	F FIGURES	XIII
LIST OF	F ABBREVIATIONS	XXVIII
CHAPT	ER	
I	INTRODUCTION	
	1.1 Introduction and Motivation	1
	1.2 Objectives of this work	9
	1.3 Scope and limitations of the study	
	1.4 Location of research	
	1.5 Expected Impact	
	1.6 Overview of the thesis	
II	LITERATURE REVIEWS	
	2.1 Electrospinning	
	2.1.1 Fundamentals of electrospinning	
	2.1.1.1 Basics of electrostatics	
	2.1.1.2 Effect of electrospinning parameters	
	2.1.2 3D electrospun macrostructures	23
	2.2 Additive manufacturing or three-dimensional printing	41
	2.2.1 Types of 3D Printing	
	2.2.2 Delta Coordination	
	2.3 Surface Modification by using plasma treatment	
	2.4 Summary	

CONTENTS (Continued)

	Р	age
III	METHODOLOGY	. 49
	3.1 3D Electrospinning	49
	3.1.1 Electro-mechanical parts	54
	3.1.2 Design Calculation	55
	3.1.3 Firmware	55
	3.2 3D fibrous macrostructures	55
	3.2.1 The self-assembly of electrospun fibers	56
	3.2.2 The buildup and control of 3D fibrous macrostructures	56
	3.2.2.1 The study of solution preparation on the buildup	
	of 3D fibrous macrostructures	56
	3.2.2.2 The study of electrospinning process on the	
	buildup of 3D fibrous macrostructures	57
	3.3 In vitro cell culture on the fibrous graft	58
	3.4 Characterization Techniques	58
	3.4.1 Digital Camera	58
	3.4.2 Conductivity	59
	3.4.3 X-ray Diffraction	59
	3.4.4 Fourier transform infrared and Raman spectroscopy	61
	3.4.5 Scanning Electron Microscopy	62
	3.4.6 Plasma Treatment	63
	3.4.7 Synchrotron Radiation X-ray tomography	64
	3.4.8 Synchrotron Radiation Fourier transform infrared imaging	66
	3.4.9 Electric field simulation	70
IV	RESULTS AND DISSCUSION	.72
	4.1 3D Electrospinning setup	72
	4.1.1 Coordinate system	73
	4.1.2 Development of 3D Electrospinning	73
	4.1.2.1 From an extrusion system to a solution feed system	74
	4.1.2.2 Structural system	75

CONTENTS (Continued)

Page

	4.1.3	3D electrospinning Troubleshooting: All problems	
	č	and solutions	76
		4.1.3.1 Firmware	76
		4.1.3.2 Hardware	77
	4.2 3D fibrous	s macrostructures	78
	4.2.1	The self-assembly of 3D-fibrous structures	78
		4.2.1.1 Conductivity	82
		4.2.1.2 XRD Characterization	84
		4.2.1.3 FTIR-Raman Characterization	86
	4.2.2	The mechanism of buildup of 3D-fibrous macrostructures	90
		4.2.2.1 Observation	90
		4.2.2.2 The buildup and control of 3D-fibrous macrostructures	593
		4.2.2.3 Electric Field Simulation	131
	4.3 Biological	assessments	133
	4.3.1 /	n vitro cell culture of osteoblast cells	133
	4.3.2 /	n vitro cell culture of fibroblast cells	134
		4.3.2.1 Plasma treatment	134
		4.3.2.2 Synchrotron radiation Fourier transform	
		infrared Microspectroscopy imaging	138
		4.3.2.3 Synchrotron Radiation X-ray Tomography	144
V	CONCLUSION	۱	147
REFER	ENCE		154
APPEN	NDICES		175
	APPENDIX A	3D ELECTROSPINNING SETUP	176
	APPENDIX B	MORPHOLOGY AND DIAMETERS OF ELECTROSPUN FIBERS	178
	APPENDIX C	FTIR RESULTS AND MECHANICAL TESTS OF TREATED FIBERS	5.208
	APPENDIX D	SUPPLEMENTARY INFORMATION FOR SR-FTIR	211
	APPENDIX E	SUPPLEMENTARY INFORMATION FOR SRXTM	212

CONTENTS (Continued)

APPENDIX F	PUBLICATIONS AND PRESENTATIONS	213
CURRICULUM VITAE		214

Page

LIST OF TABLES

Table		Page
2.1	Conclusion of possible effects of electrospinning parameter	19
2.2	The overview approach of 3D macrostructures based on	
	electrospinning process	26
3.1	Components and supplies needed to assemble 3D electrospinning	
	setup	50
3.2	Summary of all solution preparations investigated to form 3D fibrous	
	structures with flow rates of 2, 4, and 6 ml/h at an initial distance of 6	
	cm and under an applied voltage of 16 kV via 3D electrospinning	57
3.3	Summary of all spinning parameters used to form 3D fibrous	
	macrostructures using PCL solution via 3D electrospinning	58
3.4	Electrospinning setup measurement for electric field simulation	71
4.1	The conductivity (μ S/cm) of PCL, PVDF, and PAN solution with	
	the existing H ₃ PO ₄ additives	83
4.2	The summarization of the height, the $C_{hh},$ the DW, the $D_{out},$ and wall	
	thickness of 3D structures obtained from various flow rates, including	
	2, 3, 4, 5, and 6 mL/h	115
4.3	The summarization of the height, the C_{hh} ,the DW, the D_{out} , and wall	
	thickness of 3D structures obtained from various flow rates, including	
	2, 3, 4, 5, and 6 cm	120
4.4	The summarization of the height, the C_{hh} , the DW, the D_{out} , and wall	
	thickness of 3D structures obtained from various voltages, including 12,	
	13, 14, 15, and 16 kV	124
4.5	The summarization of the height, the $C_{hh},$ the DW, the $D_{out},$ and wall	
	thickness of 3D structures obtained from various moving speeds of a	
	nozzle including 1, 2, 3, 4, and 5 mm/s	129

LIST OF TABLES (Continued)

Table		Page
4.6	The analytical results of hierarchical cluster based on the	
	integration and cluster index	144
5.1	The effect of electrospinning parameters on the	
	shape of 3D macrostructures	149

LIST OF FIGURES

Figu	ıre	Page
1.1	Schematic illustration of a conventional electrospinning setup and	
	nanofiber-formation processes: (a) a general setup; (b-d) the formation	
	of Taylor cones from the droplet; and (e) factors affecting the	
	formation of the jet	3
1.2	Examples of 3D electrospun constructs fabricated by self-assembly	
	using electrospinning	4
1.3	Comparative illustrations of (a) ranges of jets used in various	
	techniques and (b) their comprehensive concepts, including (i)	
	conventional electrospinning, (ii) 3D printer, (iii) near-field	
	electrospinning (NFES), (iv) melt electrowriting (MEW), and (v) 3D $$	
	electrospinning	6
2.1	Research progress of electrospinning based on the publication over the	
	years. Data was obtained from Scopus (Elsevier) beads on the searching	
	command "TITLE_ABS_KEY electrospinning OR electrospun OR	
	electrospin" on 23 November 2023	14
2.2	Schematic images of (a) transformation of solution to nanofiber under	
	the electric field, (b) the zoom image of the droplet transformation,	
	and (c) the formation of electrospun nanofiber	15
2.3	(a) Schematic image of parallel electrode used as collector in	
	electrospinning, (b) an electric field strength vectors calculated on	
	STUDENT'S QUICKFIELD software, and (c) basic model of electrostatic	
	on parallel collector consisting of two or more electrodes	18

Figure		Page
2.4	(a) Jet trajectories captured by high speed camera and (b) fiber mats	
	at different PS concentrations: (i) 10, (ii) 15, (iii) 20, (iv) 25, and (v) 30 $$	
	wt%, which operated by an applied voltage of 20 kV, a distance of 20	
	cm, and a flow rate of 1 ml/h	21
2.5	Schematic illustration of 2D, 3D, and 4D electrospun fibers	24
2.6	Examples of the multilayer: (a) the fabrication process of multilayered	
	electrospun nanocomposite membrane, (b) (i) schematic and (ii)	
	experimental electrospinning setup for the fabrication of multilayer	
	fibrous membranes, and (iii) schematic and (iv) cross-sectional SEM	
	images of the multilayer fibrous scaffolds, and (c) schematic and SEM	
	images of the 3D multilayer fabricated by electrospinning and	
	electrospray	25
2.7	Examples of fabrication procedure using post-processing after	
	electrospinning: (a) schematic diagrams of (i) a unique biological	
	structures of cotton fiber and (ii) the post-processing, which (iii) can	
	provide various structures and (iv) can be candidates in biological	
	applications, to obtain the (v) unique structures based on electrospun	
	fibers and (b) (i) a schematic diagram to fabricate 3D scaffolds with	
	controllable shapes using (ii) foaming process of 2D mat to 3D scaffold	
	and (iii-viii) the experimental results of the foaming process	33

Figure

Page

Figure Page 2.11 Examples of self-assembly in the 3D electrospun formation: (a) conversion between a 3D fiber stack and a 2D thin film by changing (i) 3Dstack on Al foil to (ii) 2D fiber mat by using a lucite plate and then (iii) connecting the 2D mat to an electrostatic generator to get a 3D stack, and (d) 3D stack grown on the lucite plate, (b) growth evaluation of 3D PVP-based macrostructures, and (c) photography of fiber deposition processes for (i) 2D mat and (ii) 3D scaffolds and schematic 2.12 2.13 2.14 Coordinate systems of 3D FDM printer: (a) cartesian and (b) delta 2.15 (a) Anatomy of 3D delta printer, (b) location of towers, and (c) delta geometry with the definition in configuration.h of Marlin......45 2.16 A schematic illustration of typical plasma treatment used with many 2.17 The contact angle of glycerol droplet on the poly(dimethylsiloxane) film (a) without and with the oxygen plasma treatment using different exposure time that were (b) 6, (c) 12, (d) 18, and (e) 24 s......48 3.1 (a) Rostock mini and (b) parts of Rostock mini chosen to use in the 3D 3.2 Printed parts used in 3D electrospinning setup, including idler end, endstop switch mount, belt end, carriages, u-joints, needle holder,

Figure		Page
3.3	Schematic diagram of Ramp 1.4 board used in 3D electrospinning	
	setup: (a) the connect of motors, motor drivers endstop switch, and	
	power supply on the board, (b) the connect of variable resistor instead	
	of bed and hotend	54
3.4	Geometrical diffraction from lattice planes	60
3.5	Schematic illustration of the vibrational function and the energy level	
	transitions measured by infrared (IR), near infrared, and Raman	
	spectroscopy	61
3.6	Cryo-section of electrospun grafts using a Cryostat microtome	66
3.7	(a) Electrospinning process of PLA fibers at the flow rate of 1 ml/h, the	
	tip-to-collector distance of 6 cm, the voltage of 16 kV, (b) PLA	
	electrospun fiber on the \ensuremath{BaF}_2 window, and (c) photography of PCL fiber	
	obtained by optical microscopy	67
3.8	Example of data processing, including (a) a specific region chosen for	
	analysis and mapping using SR-FTIR in the range of 1682-1610 cm ⁻¹ , (b)	
	derivative spectra, (c) a hierarchical cluster map, and (d) an analytical	
	method	70
3.9	The configuration of a needle and a collector based on the actual	
	scale of 3D electrospinning setup: (a) a 20G needle positioned 4 cm	
	from a collector and at the collector's center as modeled in Fusion360	
	and (b) the configuration on CST studio	71
4.1	Development of 3D electrospinning setup which combined an	
	electrospinning and a delta printer: (a) Prototype 1.0, (b) Prototype 2.0,	
	(c) Prototype 3.0, (d) Prototype 3.1, and (e) Prototype 4.0 that is the	
	final prototype used in this work	74
4.2	Structural systems of tower in (a) Rostock mini and (b) the prototype	
	3.0, 3.1, and 4.0 of 3D electrospinning	75

F	igure		Page
Ĺ	1.3	The experimental results of electrospun fibers fabrication using the	
		PCL solution (a) without and (b) with the addition of $\rm H_3PO_4$ additives	
		under (i-v) the condition of a flow rate at 5 mL/h, a tip-to-collector	
		distance at 10 cm, and a voltage of 18 kV and (vi-x) a flow rate at 2	
		mL/h, a tip-to-collector distance at 5 cm, and a voltage of 14 kV	79
۵	1.4	The experimental results of electrospun fibers fabrication under the	
		condition of a flow rate at 2 mL/h, a tip-to-collector distance at 8 cm,	
		and a voltage of 16 kV by (a) non-moving which was used to test PVDF	
		solution (i) without and (ii) with the addition of $\rm H_3PO_4$ additives the	
		nozzle and (b) moving the nozzle	81
۵	1.5	The experimental results of electrospun fibers fabrication by (a) non-	
		moving nozzle under the condition of a flow rate at 2 mL/h, a tip-to-	
		collector distance at 8 cm, and a voltage of 18 kV and (b) moving	
		nozzle at 1 mm/s under (i-v) the condition of a flow rate at 2 mL/h, a	
		tip-to-collector distance at 8 cm, and a voltage of 18kV and (vi-x) the	
		condition of a flow rate at 3 mL/h, a tip-to-collector distance at 6 cm,	
		and a voltage of 18 kV	82
Ĺ	1.6	XRD patterns of (a) PCL series, including 2D PCL mat, 3D PCL stack and	
		PCL powder, (b) PVDF series, including 2D PVDF mat, 3D PVDF stack	
		and PVDF powder, and (c) PAN series, including 3D PAN stack and PAN	
		powder	84
Ĺ	1.7	Structural configuration of three phases of PVDF	86
Ĺ	1.8	FTIR spectra of PCL series, including PCL pellet, 2D PCL mat, 3D PCL	
		stack, PVDF, including PVDF pellet, 2D PVDF mat, 3D PVDF stack, and	
		PAN series, including PAN powder, and 3D PAN stack	88

Figure		Page
4.9	Raman spectra of PCL series, including PCL pellet, 2D PCL mat, 3D PCL	
	stack, PVDF, including PVDF pellet, 2D PVDF mat, 3D PVDF stack, and	
	PAN series, including PAN powder, and 3D PAN stack	
4.10	The buildup of 3D-fibrous macrostructures at a flow rate of 6 mL/h, an	
	initial distance of 6 cm, a voltage of 16 kV, and a nozzle speed of 1	
	mm/s by an in-house 3D electrospinning setup	90
4.11	Schematic images of parameters involving 3D printing, melt	
	electrowriting, and 3D electrospinning that are (a) the perimeters and	
	adhesion types in 3D printing, (b) the jet lag in melt electrowriting, and	
	(c) the electrospun structures obtained from 3D electrospinning	91
4.12	(a-b) Diagrams and (c-d) an example of parameters used to illustrate	
	3D-electrospun structures in this work	92
4.13	The top view of 2D mats and 3D constructs fabricated using various	
	concentrations of PCL solutions, namely 10, 12, and 14 wt%. These	
	concentrations were prepared in the DCM:DMF solvent of 6:1 with the	
	addition of 10% $\rm H_3PO_4.$ All experiments were conducted with a flow	
	rate of 2, 4, and 6 mL/h, an initial distance of 6 cm, a voltage of 16 kV,	
	and a nozzle speed of 1 mm/s via 3D electrospinning for 30 minutes	
	in the ambient environment	94
4.14	The side view of 3D formations fabricated using various concentrations	
	of PCL solutions, namely 10, 12, and 14 wt%. These concentrations	
	were prepared in the solvent of 6:1 DCM:DMF with the addition of 10%	
	$\rm H_3PO_{4^{\rm .}}$ All experiments were conducted with a flow rate of 2, 4, and 6	
	mL/h, an initial distance of 6 cm, a voltage of 16 kV, and a nozzle	
	speed of 1 mm/s via the 3D electrospinning for 30 minutes in the	
	ambient environment	96

Figure		Page
4.15	SEM images and diameter histograms of fibers fabricated using 10 wt%	
	concentration solutions prepared in 6:1 DCM:DMF solvent and 10%	
	$\rm H_3PO_4$ additives with various flow rates, including (a) 2, (b) 4, and (c) 6	
	mL/h, under contants of initial distance, voltage, and nozzle speed at	
	6 cm, 16 kV, and 1 mm/s, respectively	98
4.16	SEM images and diameter histograms of fibers fabricated using 12 wt%	
	concentration solutions prepared in 6:1 DCM:DMF solvent and 10%	
	$\rm H_3PO_4$ additives with various flow rates, including (a) 2, (b) 4, and (c) 6	
	mL/h, under contants of initial distance, voltage, and nozzle speed at	
	6 cm, 16 kV, and 1 mm/s, respectively	99
4.17	SEM images and diameter histograms of fibers fabricated using 14 wt%	
	concentration solutions prepared in 6:1 DCM:DMF solvent and 10%	
	$\rm H_3PO_4$ additives with various flow rates, including (a) 2, (b) 4, and (c) 6	
	mL/h, under contants of initial distance, voltage, and nozzle speed at	
	6 cm, 16 kV, and 1 mm/s, respectively	100
4.18	The side view of 3D formations fabricated by using various solvent	
	ratios of DCM:DMF, namely 4:1, 6:1, and 8:1. These solvents were	
	employed in the preparation of 12 wt% PCL solutions with the addition	
	of 10% $\rm H_3PO_4.$ All experiments were conducted with a flow rate of 2,	
	4, and 6 mL/h, an initial distance of 6 cm, a voltage of 16 kV, and a	
	nozzle speed of 1 mm/s via the 3D electrospinning for 30 minutes in	
	the ambient environment	101

Figure		Page
4.19	The top view of 2D mats and 3D constructs fabricated by using various	
	solvent ratios of DCM:DMF, namely 4:1, 6:1, and 8:1. These solvents	
	were employed in the solution preparation of a 12 wt% PCL	
	concentration with the addition of 10% $\rm H_3PO_4.$ All experiments were	
	conducted with flow rates of 2, 4, and 6 mL/h, an initial distance of 6	
	cm, a voltage of 16 kV, and a nozzle speed of 1 mm/s via 3D	
	electrospinning for 30 minutes in the ambient environment	102
4.20	SEM images and diameter histograms of fibers fabricated using 12 wt%	
	concentration solutions prepared in 4:1 ratio of DCM:DMF solvent and	
	10% H_3PO_4 additives with various flow rates, including (a) 2, (b) 4, and	
	(c) 6 mL/h, under contants of initial distance, voltage, and nozzle	
	speed at 6 cm, 16 kV, and 1 mm/s, respectively	103
4.21	SEM images and diameter histograms of fibers fabricated using 12 wt%	
	concentration solutions prepared in 8:1 ratio of DCM:DMF solvent and	
	10% H_3PO_4 additives with various flow rates, including (a) 2, (b) 4, and	
	(c) 6 mL/h, under contants of initial distance, voltage, and nozzle	
	speed at 6 cm, 16 kV, and 1 mm/s, respectively	104
4.22	The top view of 2D mats and 3D constructs fabricated by using various	
	amounts of $\rm H_3PO_4$ additives, including 0, 5, 10, 15, and 20%. These	
	additives were employed in the solution preparation of 12 wt% PCL	
	concentrations in the DCM:DMF solvent ratio of 6:1. All experiments	
	were conducted with a flow rate of 2, 4, and 6 mL/h, an initial distance	
	of 6 cm, a voltage of 16 kV, and a nozzle speed of 1 mm/s via the 3D	
	electrospinning for 30 minutes in the ambient environment	105

Figure

Page

Figure

Page

- 4.28 (a) The top and (b) side views of comparative 3D PCL-electrospun constructs by varying the values of a flow rate. The flow rate of solution, 12% wt PCL solution in 6:1 DCM:DMF + 10% H₃PO₄, is increased from 2 to 6 mL/h, with each increment being 1 mL/h. The 3D PCL formations were performed at an initial distance of 6 cm, a voltage of 16 kV, and a nozzle speed of 1 mm/s for 30 minutes......112

XXIII

Figure		Page
4.33	SEM images and histograms of fiber diameter fabricated with various	
	initial distances, including (a) 2, (b) 3, (c) 4, (d) 5, and (e) 6 cm, under	
	contants of flow rate, voltage, and nozzle speed at 4 mL/h, 16 kV, and 1	
	mm/s, respectively	121
4.34	(a) The top and (b) side views of comparative 3D PCL-electrospun	
	constructs by varying the values of an initial distance. The voltage	
	applied to run the formation procedure of a 12% wt PCL solution in	
	6:1 DCM:DMF + 10% $\rm H_3PO_4$ is increased from 12 to 16 kV, subsequently	
	raised in increments of 1 kV. The 3D PCL structures were formed at a	
	flow rate of 4 mL/h, an initial distance of 4 cm, and a nozzle speed of	
	1 mm/s for 30 minutes	122
4.35	Various situations of 3D buildups via 3D electrospinning, which	
	were run with various voltages of (a-b) 12, (c-d) 13, (e-f) 14, (g-h) 15,	
	and (i-j) 16 kV at a flow rate of 4 mL/h, an initial distance of 4 cm, and	
	a nozzle moving speed of 1 mm/s for 30 minutes in an ambient	
	environment	123
4.36	SEM images and histograms of fiber diameter fabricated with various	
	voltages, including (a) 12, (b) 13, (c) 14, (d) 15, and (e) 16 kV, under	
	contants of flow rate, initial distances, and nozzle speed at 4 mL/h, 4	
	cm, and 1 mm/s, respectively	126
4.37	(a) The top and (b) side views of comparative 3D PCL-electrospun	
	constructs by varying the values of an initial distance The nozzle speed	
	applied to run the formation procedure of a 12% wt PCL solution in	
	6:1 DCM:DMF + 10% H_3PO_4 is increased from 1 to 5 mm/s,	
	subsequently raised in increments of 1 mm/s. The 3D PCL structures	
	were formed at a flow rate of 4 mL/h, an initial distance of 4 cm, and	
	a voltage of 14 kV for 30 minutes	127

	Figure		Page
	4.38	Various situations of 3D buildups via 3D electrospinning, which	
		were run with various moving speeds of a nozzle, including (a-b) 1, (c-	
		d) 2, (e-f) 3, (g-h) 4, and (i-j) 5 mm/s at a flow rate of 4 mL/h, an initial	
		distance of 4 cm, and a voltage of 14 kV for 30 minutes in an ambient	
		environment	128
4.39		SEM images and histograms of fiber diameter fabricated with various	
		nozzle moving speeds, including (a) 1, (b) 2, (c) 3, (d) 4, and (e) 4 mm/s,	
		under contants of flow rate, initial distances, and voltage at 4 mL/h, 4	
		cm, and 14 kV, respectively	130
	4.40	(a) The vector distribution of the electric field strength between the	
		nozzle and collector under the applied voltage of 16 kV and an initial	
		distance varying (i) 2, (ii) 3, (iii) 4, (iv) 5, and (v) 6 cm when the nozzle	
		located at the center ((X, Y) = (0, 0)) which was also illustrated by a	
		graph of electric field on (b) X, (c) Y, and (d) Z axis	132
4.41		The vector distribution of the electric field strength under the applied	
		voltage of 16 kV and an initial distance of 4 cm when the nozzle	
		located at (a) (X, Y) is (-30,-30), (b) (X, Y) is (30,30), and (c) (X, Y) is (30,0)	133
	4.42	The morphology of (a) PCL fiber cut from a 3D electrospun structure	
		which was fabricated by a flow rate of 4 mL/h, an initial distance of 4	
		cm, and a voltage of 16kV, (b) PCL fiber treated by O_2 plasma power	
		of 10 W for 5 minutes, (c) Saos-2 cells seeded on the glass slide	
		(control) after 3 days of culture, and (d) Saos-2 cells seeded on treated	
		PCL fiber after 3 days of culture	134
	4.43	SEM images of morphological fibers with various powers of plasma	
		treatment, namely (a) no plasma treatment, (b) 10, (c) 30, (d) 50, and	
		70 W, for 5 minutes	135

Figure		Page
4.44	Contact angles of untreated and treated PCL-fibrous structures with	
	10, 30, 50, and 70 W for 5 minutes, named as 10W5MIN, 30W5MIN,	
	50W5MIN, and 70W5MIN, respectively	136
4.45	SEM images of cell morphology and adhesion on 3D PCL-electrospun	
	structures, which were fabricated by the 3D electrospinning with	
	conditions of 16 kV of a voltage, 4 cm of an initial distance, and 4 mL/h	
	of a solution flow rate, viewed at 500 magnifications	137
4.46	SEM images of fiber morphology with the magnification of 2000X and	
	histograms of fiber diameter distribution as follows: (a, b) pure PCL	
	fiber, (c, d) PLA fiber with 1 wt% of cellulose, (e, f) PLA fiber with 5	
	wt% of cellulose, and (g, h) PLA fiber with 10 wt% of cellulose	139
4.47	SEM images of NIH3T3 cells on (a) the control, (b) pure PLA fiber, and	
	(c-d) PLA-based fiber with the addition of cellulose: 1, 5, 10 wt%,	
	respectively	141
4.48	Representative FTIR spectra of pure PLA fiber, PLA/cellulose fiber,	
	NIH3T3 cells, and NIH3T3 cells on the PLA/cellulose fiber with the	
	spectra resolution of 6 cm ⁻¹ and the scan time of 64 scans	142
4.49	(a-b) SEM and (d, c, e, f) SRXTM images of (a-c) pristine PCL fiber and	
	(d-f) PCL fiber stained with $OsO_4.$ To be detailed, the SRXTM images	
	were identified by (b, e) the intensity region of PCL polymer and $OsO_{4^{\text{-}}}$	
	stained cells, and (c, f) the intensity region of OsO_4 -stained cells	145
4.50	SEM and SRXTM images of NIH3T3 cells seeded on PCL-fibrous structures	
	for 1 and 3 days of the culture, which are (a) SEM image showing the surface	
	of the cell on the fibrous structures after seeding the cells into the scaffolds	
	for (a) 1 and (d) 3 days, SRXTM image of the NIH3T3 cells (red area) seeded	
	into the scaffolds (a grey area) for (b) 1 and (e) 3 days, and SRXTM image of	
	the NIH3T3 cell distribution after seeding the cell into the scaffold for (c) 1	
	and (f) 3 days	146

Figure		Page
5.1	The current version of 3D electrospinning setup in this work	148
5.2	Photographs of 2D mat and 3D stack electrospun (a) using PCL solution	
	without and with the ${\rm H_3PO_4}$ additives, (b) using PVDF solution without	
	and with the H_3PO_4 additives, (c) 3D stack using PAN solution, and (d)	
	the influence of electrospinning parameters on the 3D fibrous	
	macrostructures	150
5.3	SRXTM images of NIH3T3 cells (shown by red spots) cultivated on PCL	
	fiber structures (represented by gray region). The imaging was	
	performed from (a) the top view, (b) cross section, and (c) bottom view	152

LIST OF ABBREVIATIONS

2D	= Two-dimensional
3D	= Three-dimensional
AM	= Additive manufacturing
BJ	= Binder Jetting
CA	= Cellulose acetate
CAD	= Computer-aided design
C _{hh}	= Convergence at half height
CS	= Chitosan
DLP	= Digital light processing
D _{in}	= Inside diameter
DMEM	= Dulbecco's modified eagle medium
DMF	= Dimethylformamide
D _{out}	= Outside diameter
DW	= Width of deposition
EOT	= 3,4-ethylenedioxythiophene
FBS	= Fetal bovine serum
FDA	= Food and Drug Administration
FDM	= Fused deposition modeling
FFF	= Fused filament fabrication
FT-Raman	= Fourier transform Raman
FTIR	= Fourier transform infrared
HCA	= Hierarchical clustering analysis
HV	= High voltage
HFIP	= Hexafluoroisopropanol
IR	= Infrared
LA	= Lactic acid
MEW	= Melt electrowriting

LIST OF ABBREVIATIONS (Continued)

MJ	= Material jetting
NFES	= Near-field electrospinning
PAN	= Polyacrylonitrile
PBS	= Phosphate buffered saline
PCL	= Polycaprolactone
PEDOT	= Poly(3,4-ethylenedioxythiophene)
PLA	= Polylactic acid
PET	= Polyethylene terephthalate
P/S	= Penicillin/streptomycin
PPy	= Polypyrrole
PS	= Polystyrene
PSS	= Poly(styrenesulfonate)
PVA	= Polyvinyl alcohol
PVDF-HFP	= Poly(vinylidene fluoride-co-hexafluoropropene)
PVDF	= Poly(vinylidene fluoride), polyvinylidene fluoride
PVP	= Poly(vinylpyrrolidone)
SA	= Sodium alginate
SEM	= Scanning electron microscope
SLA	= Stereolithography
SLRI	= Synchrotron Light Research Institute
SLS	= Selective laser sintering
SR-FTIR	= Synchrotron radiation Fourier transform infrared
SRXTM	= X-ray tomographic microscopy
THF	= Tetrahydrofuran
VDP	= Vapor deposition polymerization (VDP)
XRD	= X-ray diffraction analysis