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CHAPTER I

INTRODUCTION

The sophisticated dynamics of the strong interaction between quarks and

gluons are described by the SU(3) gauge theory, known as Quantum Chromo-

dynamics (QCD). Due to its non-Abelian nature, the strong interaction exhibits

distinct behaviors at low and high energy regimes. At high energies, the inter-

action weakens, enabling its investigation through perturbative QCD. Conversely,

perturbative QCD fails to hold in the low energy region, where the coupling con-

stant becomes large. Non-perturbative QCD introduces an alternative running

behavior for the strong coupling constant. Among the most remarkable non-

perturbative phenomena is color confinement, wherein quarks and gluons combine

to form observable colorless hadrons.

Physics of hadrons containing charm quarks, or in general heavy quarks

has been one of actively studied subjects in hadron physics since the first obser-

vations of J/ψ meson in 1974 (Augustin et al., 1974; Aubert et al., 1974) and of

the charmed baryon states (Σc,Λc) in 1975 (Cazzoli et al., 1975). Particularly,

various exotic hadrons have been observed by Belle, BABAR, BESIII, and LHCb

collaborations in the 21st century (Choi et al., 2003; Aubert et al., 2005a; Aubert

et al., 2005b; Abe et al., 2007; Choi et al., 2008; Hosaka et al., 2016; Ablikim

et al., 2013a; Liu et al., 2013; Ablikim et al., 2013b; Aaij et al., 2013; Aaij et al.,

2014). Accordingly, theoretical studies have been extensively performed in various

QCD inspired approaches such as the quark model (Micu, 1969; Godfrey and Is-

gur, 1985; Maiani et al., 2005; Ebert et al., 2006; Limphirat et al., 2010; Xu et al.,
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2020), models of chiral and heavy quark symmetries (Gupta and Johnson, 1995;

Ebert et al., 1998; Glozman, 2004; Nowak et al., 2004; AlFiky et al., 2006; Liu

et al., 2006), non-relativistic QCD (Brambilla et al., 2000; Braguta et al., 2005),

and the first principle calculations of lattice QCD (Isgur and Paton, 1985; Chen,

2001; Okamoto et al., 2002; Liao and Manke, 2002; McNeile et al., 2002; Chiu

and Hsieh, 2006; Chiu and Hsieh, 2007) (See Refs. (Swanson, 2006; Brambilla

et al., 2011) for reviews). Structure and decays are mostly focused while pro-

ductions are less investigated according to their inclusive nature. Physically, the

production mechanism of heavy quarks from the light quarks in the initial state

is an interesting and the least understood issue. Quantitative descriptions of such

heavy quark productions in exclusive processes provide a better understanding of

the non-perturbative dynamics of QCD and the structure of the hadrons.

As an example of an exclusive process, a pion induced reaction for charmed

baryon production was studied many years ago at Brookhaven (Christenson et al.,

1985), which reported only null results. An updated experiment is planned at

J-PARC and the construction of the facility is ongoing (Morino et al., 2012), and

the corresponding theoretical studies have been also carried out (Kim et al., 2015;

Kim et al., 2016; Shim et al., 2019; Shim et al., 2020). In this thesis, we study

another process induced by antiprotons. This is a planned experiment at GSI

as P̄ANDA project of FAIR, providing another promising reactions to produce

charmed baryons. At the same time, strange hyperons can also be produced, so

we can study systematically both strange and charm productions.

By now several models for charm productions have been proposed and

cross sections have been computed. In Ref. (Kroll et al., 1989), various charm

production cross sections have been estimated in the quark-diquark picture. In

this model, charmed hadrons are produced via the interaction between the active

 



3

constituents (quark or diquark) of the initial states. This approach has some sim-

ilarity to the handbag approach used in Ref. (Goritschnig et al., 2009). In this

case, the transition amplitude of the reaction pp̄ → ΛcΛ̄c is computed in terms

of the amplitude for the hard subprocess (i.e., uū → cc̄) and the soft hadronic

matrix elements for p → Λc and p̄ → Λ̄c transitions. Quark-Gluon String Model

(QGSM) and Regge approach are employed by several authors in Refs. (Kaidalov

and Volkovitsky, 1994; Titov and Kampfer, 2008; Khodjamirian et al., 2012).

In this model, the annihilation of qq̄ pair from the initial states is followed by

the formation of the intermediate string, then the observed charmed hadrons are

consequently produced from the string fission. Meson-exchange framework was

employed in Refs. (Haidenbauer et al., 1992; Haidenbauer and Krein, 2017) to

compute ΛcΛ̄c production cross sections. This model was developed from Jülich

meson-baryon model, which is originally employed to compute the cross sections

for the reaction pp̄ → ΛΛ̄ within the coupled-channel framework. Effective La-

grangian approach with coupling constants from SU(4) symmetry is employed in

Ref. (Shyam and Lenske, 2014) to compute various charm productions, which

are produced via D and D∗ meson-exchange processes. From these studies, the

strong model dependence is exhibited since the predicted charm production cross

sections are different by several orders.

This thesis focuses on the investigation of charm productions using the ef-

fective Lagrangian approach, incorporating constraints derived from heavy quark

symmetry and large-Nc analysis. Furthermore, we estimate various coupling con-

stants within the 3P0 quark model. Additionally, we introduce a second model

based on the Regge approach, enabling the analysis of strangeness productions

and the prediction of production rates for charmed baryons. Since the Regge

approach is applicable in the diffractive region, we also utilize the effective La-
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grangian method to examine the same processes. As a result, a description of the

production rates in the proximity of the threshold is also provided.

The content of this thesis is organized as follows: In Chapter II, effective La-

grangians for D-mesons, charmed, and light baryons are constructed, establishing

a theoretical framework for their description. Chapter III focuses on reducing the

number of independent model parameters through the application of heavy quark

symmetry and large-Nc analysis. In Chapter IV, the estimation of coupling con-

stants is conducted by investigating various decay modes of Λc and Σc baryons in

effective Lagrangian method and quark model. Chapter V investigates strangeness

and charm productions using effective Lagrangian and Regge approaches. Model

parameters will be determined through a fitting procedure, incorporating exist-

ing data on strangeness productions and utilizing the Quark Gluon String Model

(QGSM). Predictions for the production rates of various charmed baryons will

be generated and compared with those of strange baryons. Finally, Chapter VI

provides a comprehensive summary and conclusion for this thesis. By following

this systematic structure, we aim to advance the understanding of the properties

of charmed baryons, contributing to the broader field of hadron physics.

 



CHAPTER II

CONSTRUCTION OF THE EFFECTIVE

LAGRANGIANS

In this chapter, we present an overview of the fundamental principles gov-

erning the formulation of an effective Lagrangian method. The discussion com-

mences with a detailed examination of the symmetries of QCD, followed by a

concise review of the effective Lagrangian method. Next, we discuss the build-

ing blocks of the most general Lagrangian and their corresponding transforma-

tions. Subsequently, we construct the effective Lagrangians necessary for calcu-

lating charm production rates. For further insights into this subject, we refer the

interested reader to the Refs. (Koch, 1997; Machleidt and Entem, 2011; Scherer

and Schindler, 2012).

2.1 Symmetries of QCD and effective Lagrangian ap-

proach

The strong interaction between quarks and gluons is decribed by the QCD

Lagrangian,

L = −1
4F

a
µνF

aµν + ψ̄
(
i /D −M

)
ψ, (2.1)

with

Dµ = ∂µ − gs

2 G
a
µλ

a, (2.2)

F a
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν . (2.3)
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Here, ψ and M denote quark fields and the mass matrix, while Ga
µ are eight gluon

fields. The strengths of quark-gluon and gluon-gluon interactions are expressed by

the strong coupling constant gs. This Lagrangian exhibits C, P , and T symmetries

seperately as well as SU(3) color symmetry. In addition, different symmetries in

the flavor space are also held by strong interactions.

In this work, the physics of the two lightest quarks (u and d) and charm

quark (c) is mainly focused. Therefore, the corresponding Lagrangian of massless

two quark flavors (u and d) is given as

L0 = iψ̄k /∂ψk, (2.4)

where ψ =

ψ1

ψ2

 =

ψu

ψd

 and /∂ = ∂µγ
µ. Since gluon fields are not participate

in the chiral transformations, they can be neglected in our present discussion. By

utilizing the following transformations of the helicity eigenstates ψL and ψR (i.e.,

ψL,R = PL,Rψ = 1
2 (1 ∓ γ5)ψ),

ψL → ψ′
L = e− i

2 ·(τ ·θL)ψL,

ψR → ψ′
R = e− i

2 ·(τ ·θR)ψR, (2.5)

where τ are Pauli isospin matrices while θL,R are arbitrary parameters. We can

show that the Lagrangian L0 is invariant under these transformations, in which the

corresponding symmetry group is SU(2)L ×SU(2)R. The corresponding conserved

currents are

Jkµ
L,R = ψ̄L,Rγ

µ τk

2 ψL,R (k = 1, 2, 3) , (2.6)

From these currents, one can introduce the following combinations,

Jkµ
V = Jkµ

R + Jkµ
L , (2.7)
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Jkµ
A = Jkµ

R − Jkµ
L . (2.8)

As a result, the transformations for quark doublet under SU(2)V ×SU(2)A group

are written as,

ψ → ψ′ = e− i
2 τ ·θV ψ,

ψ → ψ′ = e− i
2 γ5τ ·θAψ. (2.9)

This concludes that massless QCD in the presence of the two light quark flavors

is invariant under SU(2)V × SU(2)A chiral symmetry. Compared to the typical

energy scales of QCD, the masses of u and d quarks are smaller. This means,

chiral symmetry is held only for those in the light quark sector. Therefore, if we

consider that charm quark is sufficiently heavy in the very low energy domain of

interest, only u and d quarks are involved.

Effective Lagrangian approach is by now an efficient method to investigate

the low-energy dynamics of the strong interaction. This method was firstly intro-

duced in the published article of Weinberg (Weinberg, 1979). And then, it was

consequently developed by Gasser and Leutwyler (Gasser and Leutwyler, 1984;

Gasser, 1987). In this framework, effective Lagrangians are constructed from the

chosen degrees of freedom in a particular low-energy domain of interest, where

the symmetries of the original theory are kept. Typically, relevant degrees of

freedom in low-energy hadron physics are mesons and baryons instead of quarks

and gluons. Then, one is able to calculate physical observables in terms of an

expansion in q/Λ. The cutoff parameter Λ is of the order 1 GeV and the param-

eter q denotes small energy, momenta, or masses. As q ≪ Λ, the most general

Lagrangian is only contributed by a finite number of terms, each of them is con-

sisted by relevant field operators and an unknown coupling constant. In principle,
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these coupling constants should be calculable from QCD inspired approaches (e.g.,

quark model, QCD sum rules). Otherwise, we need to determine them from the

fit with the experimental data. Once these parameters has been determined, the

predictive power of the effective Lagrangian theory is realized. Predictions from

this approach are mostly consistent with the data near the production thresholds.

For instance, if chiral symmetry of massless two-flavor QCD is sponta-

neously broken to SU(2)V group by the vacuum expectation value of quark bilin-

ears, three massless Nambu Goldstone bosons are subsequently created. In this

case, they are three isovector pions. This means, the spontaneous chiral sym-

metry breaking allows us to investigate various properties of Goldstone boson

interactions, which are described in the framework of chiral perturbation theory

(ChPT). The observables can be expanded in terms of q
Λχ , where the small mo-

menta of the Goldstone boson fields is denoted by q while Λχ ≡ 4πFπ ≈ 1.17 GeV

(Fπ = 93 MeV) is the chiral symmetry breaking scale.

2.2 Building blocks

In this section, we introduce relevant degrees of freedom required for

the construction of the effective Lagrangians: D-mesons (D(1868), D∗(2009)),

charmed baryons (Λc(2286), Σc(2455), Σc(2520)), and light baryons (N(939),

∆(1232)). In this notation, the average masses of these particles are displayed

in the brackets. The corresponding isospin multiplets for these degrees of freedom

are written as,

I = 0: Λc = Λ+
c , (2.10)

I = 1
2: N =

p
n

 , D̄ =

D̄0

D−

 , D̄∗ =

D̄∗0

D∗−

 , (2.11)
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I = 1: Σc =


Σ++

c

Σ+
c

Σ0
c

 ,Σ
∗
c =


Σ∗++

c

Σ∗+
c

Σ∗0
c

 , (2.12)

I = 3
2: ∆ =



∆++

∆+

∆0

∆−


, (2.13)

where we have used D∗ = D∗(2009) and Σ∗
c = Σc(2520). For the isotriplet state

Σc (as for Σ∗
c), one can construct SU(2) adjoint representations in terms of the

three dimensional basis composed by relevant isospin matrices. There are two

different representations of the Σc state (as for Σ∗
c): The 2 × 2 matrix Σ(t)

c and

the 4 × 2 matrix Σ(T )
c . The first representation is appropriate for the couplings

with the isodoublet states. On the other hand, the second one is used in those

contributed by the isobar state ∆. The explicit forms for Σ(t)
c and Σ(T )

c matrices will

be discussed in the Appendix B. The SU(2) isospin rotations for these multiplets

are summarized by

Λc → Λc,

N → e−iα·JN,

D̄ → e−iα·JD̄,

D̄∗ → e−iα·JD̄∗,

Σ(t)
c → e−iα·JΣ(t)

c eiα·J ,

Σ(T )
c → e−iα·J Σ(T )

c eiα·J ,
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Σ∗(t)
c → e−iα·JΣ∗(t)

c eiα·J ,

Σ∗(T )
c → e−iα·J Σ∗(T )

c eiα·J ,

∆ → e−iα·J ∆, (2.14)

where α = (α1, α2, α3) are three arbitrary constants while J and J are isospin-1
2

and isospin-3
2 representations of SU(2) generators respectively.

Under the spontaneous chiral symmetry breaking, the transformation rules

for these matter fields are not fixed, as they are related with each other by redef-

initions of the fields. For this reason, we introduce a field u as a unitarity square

root of the Goldstone boson field, i.e., u2 = U . The chiral transformation of the

effective field u is

u →
√
hRUh

†
L = hRuK†(hL, hR, U) = K(hL, hR, U)uh†

L, (2.15)

where hR ∈ SU(2)R and hL ∈ SU(2)L. The function K(hL, hR, U) denotes the

compensator field of the nonlinear chiral representation. The SU(2)L × SU(2)R

chiral transformations for the associated matter fields are therefore written as

Λc → Λc,

N → KN,

D̄ → KD̄,

D̄∗ → KD̄∗,

τ · Σc → Kτ · ΣcK†,

τ · Σ∗
c → Kτ · Σ∗

cK†,
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∆ijk → Ki
lKj

mKk
n∆lmn. (2.16)

These transformations will be employed to construct effective Lagrangians

for D-meson, charmed, and light baryons in the next section.

2.3 Effective Lagrangians

In this section, associated effective Lagrangians for D-meson, charmed, and

light baryons are constructed. The corresponding chiral power counting rules for

these degrees of freedom will be discussed in Appendix A. These Lagrangians are

demanded to be singlet under transformations in Eq. (2.14), Eq. (2.16), and those

of Lorentz and QCD discrete symmetries. As a result, the effective Lagrangians

for pseudoscalar D-meson, light, and charmed baryons are written as

LDΣcN = g1

mD

∂µDΣ̄(t)
c γµγ5N +H.c.,

LDΛcN = − g2

mD

∂µDΛ̄cγ
µγ5N +H.c.,

LDΣ∗
cN = g3

mD

∂µDΣ̄(t),µ
c N +H.c.,

LDΣc∆ = g4

mD

∂µDΣ̄(T )
c ∆µ +H.c.,

LDΣ∗
cN = − g5

mD

∂µDΣ̄(T ),ν
c γµγ5∆ν +H.c., (2.17)

while those for vector D-meson, light and charmed baryons are written as

LD∗ΣcN = f1DµΣ̄(t)
c γµN + ih1

2mD

DµνΣ̄(t)
c σµνN +H.c.,

LD∗ΛcN = f2DµΛ̄cγ
µN − h2

2mD

DµνΛ̄cσ
µνN +H.c.,
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LD∗Σ∗
cN = f3DµΣ̄(t),µ

c iγ5N − ih3

mD

DµνΣ̄(t),µ
c γνγ5N +H.c.,

LD∗Σc∆ = −f4DµΣ̄(T )
c γ5∆µ + h4

mD

DµνΣ̄(T )
c γµγ5∆ν +H.c.,

LD∗Σ∗
c∆ = −f5DµΣ̄(T ),ν

c γµ∆ν + h5

2mD

DµνΣ̄(T ),µ
c ∆ν +H.c., (2.18)

with

Dµν ≡ ∂µDν − ∂νDµ. (2.19)

Here, τ matrices operate on the isospin states of N and D (or D∗) while T matrices

operate on those of ∆ and D (or D∗). The coupling constants g, f , and h are those

of axial-vector, vector, and tensor couplings, respectively. The Lagrangians with

the coupling constants f3 and f4 are of the chiral order O(q), while the remaining

terms are of the order O(q0).

We have constructed the effective Lagrangians for D-meson, charmed, and

light baryons at the chiral orders O(q0) and O(q). As a consequence, the most

general effective Lagrangian is contributed by the fifthteen interacting Lagrangians

in Eqs. (2.17) to (2.18). The reduction of model parameters by using heavy quark

symmetry and large-Nc analysis will be discussed in the next chapter.

 



CHAPTER III

DETERMINATION OF COUPLING

CONSTANTS IN HEAVY QUARK

SYMMETRY AND LARGE-Nc ANALYSIS

In the previous chapter, we constructed effective Lagrangians for D-mesons,

charmed hadrons, and light baryons, introducing fifteen independent parameters

to our model. Since these Lagrangians involve charmed hadrons, it is appropriate

to investigate their properties in the heavy quark limit. By constructing the

most general heavy quark spin invariant effective Lagrangian and expanding our

effective Lagrangians in powers of 1
mQ

, the number of model parameters can be

reduced by the constraints of heavy quark symmetry. Additional details can be

found in Refs. (Yan et al., 1992; Wise, 1993; Neubert, 1994; Manohar and Wise,

2000). Furthermore, a spin-flavor symmetry of baryons emerges in the limit where

the number of colors Nc is large (Lebed, 1999). Baryon matrix elements can

then be systematically analyzed using 1
Nc

expansion, leading to constraints for the

model parameters.

In this chapter, we present the reduction of model parameters. First, we

reduce the number of free parameters by using heavy quark symmetry in the first

section, and then by large-Nc analysis in the second section. In this thesis, we

focus on deriving heavy quark constraints while briefly reviewing those of large-

Nc analysis. Subsequently, the two sets of constraints are combined into combining

heavy quark and large-Nc constraints.
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3.1 Heavy quark symmetry

3.1.1 Introduction

Compared to the typical scales of QCD (e.g., Λχ = 4πFπ ≈ 1.17 GeV),

quarks are commonly divided into two sets: light quarks q = {u, d, s} and heavy

quarks Q = {c, b, t}. The former set consists of quarks that are lighter than Λχ

while the heavier ones belong to the latter set. Since mq ≪ Λχ, the properties of

hadrons containing light quarks can be investigated by taking the limit mq → 0.

The associated symmetry is the approximate SU(3)L × SU(3)R chiral symmetry.

On the other hand, the heavy quark limit where mQ → ∞ is appropriate to

investigate properties of hadrons containing a single heavy quark. In this limit,

the heavy quark behaves as a static color source while the light quarks are moving

around. The picture of the heavy-light system is similar to that of an atomic

system, where the nucleus remains stationary. The dynamics of an individual

atom is independent of the mass and spin orientation of its nucleus. Therefore,

if heavy quarks are treated in the same way as atomic nuclei, the dynamics of

heavy-light system is therefore independent of their masses and spin orientation.

The associated symmetry is SU(2)v heavy quark spin symmetry, in which its

direct consequences lead to the degeneracy states of the spin 0 and 1 for the heavy

mesons and of the spin 1/2 and 3/2 for the heavy baryons.

Generally, the four momentum pQ of the heavy quark with mass mQ and

velocity v can be expressed as

pQ = mQv + k, (3.1)

where the off-shell behavior of the heavy quark due to its interaction is described

by the residual momentum k. For heavy hadrons, the typical magnitude of k is
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of the same order as ΛQCD ∼ 200 MeV. Therefore, the momentum of the heavy

quark is mainly contributed by the on-shell component mQv in which v2 = 1.

It is convenient to parameterize the heavy quark field Q(x) in terms of the

velocity-dependent, rapidly varying phase, and slowly varying residual fields h(+)
v

and h(−)
v

Q(x) = e−i (v·x) mQ h(+)
v (x) + e+i (v·x) mQ h(−)

v (x), (3.2)

with

h(+)
v = e+i (v·x) mQ P+ Q(x) ,

h(−)
v = e−i (v·x) mQ P− Q(x) . (3.3)

The upper component h(+)
v (x) annihilates the heavy quark with velocity v while

the anti-heavy quark with velocity v is created by the lower component h(−)
v (x).

The projection operators P± can be defined as

P± = 1 ± v/

2 . (3.4)

The following identities are satisfied by the projection operator in Eq. (3.4)

(Manohar and Wise, 2000),

P 2
± = P±,

P±P∓ = 0,

P+ + P− = 1,

/vh(+)
v = +h(+)

v ,

/vh(−)
v = −h(−)

v . (3.5)
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In the heavy quark limit, the corresponding QCD Lagrangian up to the first order

in 1
mQ

is written as,

LHQS = ih̄(+)
v (v ·D)h(+)

v + ih̄(−)
v (v ·D)h(−)

v + O
(

1
mQ

)
, (3.6)

where v · D = vµD
µ denotes the inner product of heavy quark’s velocity and the

covariant derivative. From the leading order terms in LHQS, the fields h+
v and

h̄−
v are decoupled, which implies the decoupling between heavy quark-antiquark

at the leading order. This Lagrangian is invariant under the heavy quark spin

rotation, i.e., (Georgi, 1990; Neubert, 1994)

h±
v → e−iS·θh±

v , (3.7)

with

Sµ = 1
4γ5 [/v, γµ] ,Sµ†γ0 = γ0Sµ, [/v,Sµ] = 0, (3.8)

The generator and the infinitesimal parameters of the SU(2)v group are denoted

by Sµ and θµ respectively. In the rest frame of heavy quark where vµ = (1, 0⃗), the

spatial components of the heavy quark spin generator become

Sk = 1
4γ5

[
γ0, γ

k
]

= 1
2

σk 0

0 σk

 (3.9)

3.1.2 Building blocks of the heavy quark effective field the-

ory

In the heavy quark limit, the dynamics of heavy-light system is independent

of the spin orientation of the heavy quark. As a consequence, D- and D∗-mesons

are related by a spin flip of the charm quark as for Σc and Σ∗
c baryons. Therefore,

the following building blocks of heavy quark spin invariant effective Lagrangians

are introduced (Cho, 1992; Yan et al., 1992; Wise, 1993; Casalbuoni et al., 1997;
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Samart et al., 2016),

H =
(

1 + /v

2

)
(iγ5D+ + γµD

µ
+) ,

Hµ
T = 1√

3
(vµ + γµ) γ5

(
1 + /v

2

)
Σc,+ +

(
1 + /v

2

)
Σµ

c,+,

HS = 1 + /v

2 Λc,+. (3.10)

Under SU(2)v symmetry, these building blocks obey the following transformations,

H → e−iS·θH,

Hµ
T → e−iS·θHµ

T ,

HS → HS, (3.11)

In addition, the corresponding SU(2) isospin transformations for these building

blocks are summarized as,

H → e−iα·JH,

Hµ
T → e−iα·JHµ

T e
iα·J ,

Hµ
T → e−iα·JHµ

T e
iα·J ,

HS → HS, (3.12)

These transformation laws will be employed to construct heavy quark spin invari-

ant effective Lagrangians for D-meson, charmed, and light baryons in the next

subsection.
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3.1.3 Heavy quark spin invariant effective Lagrangians

Under SU(2)v heavy quark spin transformations in Eq. (3.11) as well as

those in Eq. (3.12) and Chapter II, the most general heavy quark spin invariant

effective Lagrangian is written as,

LHQS = c1
〈
HγµγνH̄

µ
Tv

νγ5N
〉

+ c2
〈
Hγµγνγ5H̄

µ
Tv

νN
〉

+ c3
〈
HγµH̄Sv

µN
〉

+ c4
〈
Hγ5H̄Sγ5N

〉
+ c5

〈
Hσµνγ5H̄

µ
Tγ5∆ν

〉
+ c6

〈
HσµνH̄

µ
T ∆ν

〉

+ c7
〈
Hγ5H̄

µ
Tγ5∆µ

〉
+H.c., (3.13)

where the coupling constants for the heavy quark spin invariant Lagrangians are

denoted by ci and the symbol < · · · > stands for the trace in the heavy quark spin

space. After evaluating the trace in Eq. (3.13), we can rewrite LHQS as

LHQS = c1

(
2D+,µΣ̄(t),µ

c,+ γ5N + 2√
3
D+,µΣ̄(t)

c,+γ
µN

)

+ c2

(
−D+,µΣ̄(t),µ

c,+ γ5N −
√

3D+Σ̄(t)
c,+iγ5N +

√
3

12 D+,µvνΣ̄(t)
c,+σ

µνN

)

+ c3
(
2D+,µΛ̄c,+γ

µN + 2D+,µvµΛ̄c,+iσ
µνN

)

+ c4
(
2iD+Λ̄c,+γ5N

)

− ic5
(
−D+,µΣ̄(T )

c,+γ5∆µ − 3iD+,µvνΣ̄(T ),µ
c,+ ∆ν − 2iD+,µΣ̄(T ),ν

c,+ γµ∆ν

)

+ c6

(
2iD+,µΣ̄(T ),µ

c,+ ∆νvν + 2i√
3
D+,µΣ̄(T )

c,+γ
µγ5∆νvν

)

+ c7

(
− 2i√

3
D+Σ̄(T )

c,+∆µvµ + 2iD+Σ̄(T ),µ
c,+ γ5∆µ

)
+H.c.. (3.14)
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3.1.4 1/mQ expansion

According to Eq. (3.2), the D-meson and charmed baryon fields can be

decomposed into such components:

D(x) = e−i (v·x) mc D+(x) + e+i (v·x) mc D−(x) ,

Dµ(x) = e−i (v·x) mc Dµ
+(x) + e+i (v·x) mc Dµ

−(x) ,

Λc(x) = e−i (v·x) mΛc Λc,+(x) + e+i (v·x) mΛc Λc,−(x) ,

Σc(x) = e−i (v·x) mΣc Σc,+(x) + e+i (v·x) mΣc Σc,−(x) ,

Σµ
c (x) = e−i (v·x) mΣ∗

c Σµ
c,+(x) + e+i (v·x) mΣ∗

c Σµ
c,−(x) , (3.15)

with a 4-velocity v normalized by v2 = 1. The mass of charm quark is denoted

by mc while mΛc , mΣc , and mΣ∗
c

are those of the isosinglet state Λc, the isotriplet

states Σc, and Σ∗
c respectively. In the heavy quark limit, the mass of Λc, Σc, and

Σ∗
c , can be replaced by that of charm quark. Therefore, Eq. (3.15) becomes

D(x) = e−i (v·x) mc D+(x) + e+i (v·x) mc D−(x) ,

Dµ(x) = e−i (v·x) mc Dµ
+(x) + e+i (v·x) mc Dµ

−(x) ,

Λc(x) = e−i (v·x) mc Λc,+(x) + e+i (v·x) mc Λc,−(x) ,

Σc(x) = e−i (v·x) mc Σc,+(x) + e+i (v·x) mc Σc,−(x) ,

Σµ
c (x) = e−i (v·x) mc Σµ

c,+(x) + e+i (v·x) mc Σµ
c,−(x). (3.16)
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According to the properties of P± in Eq. (3.5), the following identities of D+ ,

D+, µ , Σc,+ , Σ µ
c,+ , and Λc,+ are implied,

v/D+ = D+ ,

v/D+, µ = D+, µ ,

v/Σc,+ = Σc,+ ,

v/Σ µ
c,+ = Σ µ

c,+ ,

v/Λc,+ = Λc,+ . (3.17)

In addition, the following transverse relations of D∗-meson and Σ∗
c baryon are

given,

vµD
µ
+ = 0,

vµΣ µ
c,+ = 0,

γµ Σ µ
c,+ = 0. (3.18)

By using the decompositions of charmed hadron fields in Eq. (3.16) and the

properties in Eqs. (3.17)-(3.18), the simplified effective Lagrangian is then written

as

L = g1D+Σ̄(t)
c,+γ5N + g2D+Λ̄c,+γ5N + g4vµD+Σ̄(T )

c,+∆µ

+ g5D+Σ̄(T ),ν
c,+ γ5∆ν + f1D+, µΣ̄(t)

c,+γ
µN + f2D+, µΛ̄c,+γ

µN

+ f3D+, µΣ(t),µ
c,+ γ5N + if4D+, µΣ̄(T )

c,+γ5∆µ + f5D+, µΣ̄(T ),ν
c,+ γµ∆ν
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− ih1vµ D+, νΣ̄(t)
c,+σ

µνN − ih2vµ D+, νΛ̄c,+σ
µνN + ih3 D+, µΣ̄(t),µ

c,+ γ5N

+ ih4(− vµ D+, ν + vν D+, µ)Σ̄(T )
c,+γ

µγ5∆ν + i

2 h5 vν D+, µΣ̄(T ),µ
c,+ ∆ν + H.c.. (3.19)

3.1.5 Results

By matching the Lagrangians from Eqs. (3.14) and (3.19), following heavy

quark sum rules are obtained,

g1 = 3h1, g3 = 0, g4 = 1√
3
g5, f2 = h2

f3 = h3 =
√

3f1 − 4
√

3h1, f5 = 2f4, h4 = −1
2f4 + 1

4
√

3
h5. (3.20)

From heavy quark sum rules, the number of free parameters is reduced down to

7. The corresponding set of free parameters is {g2, g5, f1, f4, h1, h2, h5}.

3.2 Large-Nc picture

3.2.1 Introduction

In the low-energy region, QCD is dominated by the non-perturbative dy-

namics where the strong coupling constant becomes large. As a result, the sys-

tematic expansion in terms of the strong coupling constant is no longer applicable.

In fact, there exists an additional expansion parameter for QCD which works in

both low and high energy domains, the number of color Nc.

Large Nc QCD is the SU(Nc) gauge theory which was introduced in Ref.

(’t Hooft, 1974a). In SU(Nc) group, a color index in the fundamental represen-

tation is carried by quarks. On the other hand, a color index in the fundamental

conjugate representation is carried by antiquarks. Gluons, which are represented
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in the adjoint representation of SU(Nc), carry two indices: color and anti-color.

Quarks and antiquarks are diagrammatically represented by arrowed lines. For

Gluons, they are visualised as two parallel lines whose arrows point in opposite

directions, this is called ’t Hooft’s double line notation (Lebed, 1999).

In the large-Nc limit, i.e., Nc → ∞, QCD is nontrivial if the following

scaling law for the strong coupling constant gs

gs ∝ 1√
Nc

, (3.21)

is held. By studying topology of various diagrams and renormalization group

equation, the scaling law in Eq. (3.21) is implied (Lebed, 1999). Relevant Nc

counting rule for a given diagram in the double line notation is determined from

the number of closed lines and gauge coupling constants in the original diagram.

One can show that the dominant Feynman graphs at the leading order in 1
Nc

are

planar, which can be drawn in a 2 dimensional plane so that color lines are crossed

only at the vertices. In contrast, the non-planar diagrams are suppressed in the

large-Nc limit. Here, we summarize the counting rules for the diagrams in large-Nc

QCD,

1. Three gluon and quark-gluon vertices scale with the factor N− 1
2

c

2. Four gluon vertices scale with the factor N−1
c .

3. Any closed quark line in a double line representation of a Feynman graph

scales with the factor Nc.

4. Non-planar diagrams are suppressed at least by the factor N−2
c .

In addition, we summarize the properties of mesons and baryons in the

large-Nc limit (’t Hooft, 1974b; Witten, 1979; Dashen et al., 1995; Lutz and

Semke, 2011). For mesons, their masses are finite (∼ N0
c ) and the vertex with

 



23

n mesons scales with a factor of N1−n
2

c . On the other hand, baryons are heavy

(∼ Nc), the vertex with two baryon fields and n meson fields scales with a factor

N
1−n

2
c .

3.2.2 1/Nc expansion

In the large-Nc limit, matrix elements of the physical baryon states |p, χ⟩

can be systematically expanded in terms of those for effective baryon states |χ),

which represent the spin and flavor structures of the baryons. We follow the

works in Refs. (Luty and March-Russell, 1994; Dashen et al., 1995; Jenkins, 1998;

Lutz and Semke, 2011), the expansion in 1
Nc

for the baryon matrix elements is

represented by

⟨p′, χ′| C̄i,a (q) |p, χ⟩ =
∑

n

cn (p, p′) (χ′|O(n)
i,a |χ) , (3.22)

where C̄i,a (q) stands for a correlation operator. The indices i and a denote the

spatial and isospin indices. The momenta p and p′ are those of the incoming and

outgoing baryons while the momentum of the incoming meson is denoted by q.

The spins of the incoming and outgoing baryons are respectively denoted by χ

and χ′. The effective operator O(n)
i,a are composed by spin, flavor, and spin-flavor

operators in SU(2) flavor symmetry.

The correlation operators in our case are derived by considering the follow-

ing baryon matrix elements of axial-vector current and vector current operators,

⟨p′, χ′|Aµ (x) |p, χ⟩ = δ

iδaµ(x)F (p′, χ′, p, χ; v, a) ,

⟨p′, χ′|Vµ (x) |p, χ⟩ = δ

iδvµ(x)F (p′, χ′, p, χ; v, a) , (3.23)
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with

F (p′, χ′, p, χ; v, a) = ⟨p′, χ′| T : ei
∫

d4x{LEFT (x)+Laux(x)} : |p, χ⟩ , (3.24)

where LEF T denotes the effective Lagrangians in Eqs. (2.17) to (2.18). The cou-

plings between D meson fields and the classical sources (aµ and vµ) are described

by the auxiliary Lagrangian,

Laux(x) = Laux
A (x) + Laux

V (x),

= fA

mA

(
aµ∂µD̄ + ∂µā

µ
)

+ fV

(
vµD̄µ +Dµv̄

µ
)
, (3.25)

with

āµ = aµ† and v̄µ = vµ†. (3.26)

The parameters fA and fV denote the coupling constants while the mass of the

classical source aµ is written as mA. In this auxiliary Lagrangian, the external

sources aµ and vµ transform as axial-vector and vector respectively. The operators

CA
µ (q) and CV

µ (q) are obtained from the following transformations

CA
µ (q) = i

∫
d4xe−iq·xAµ (q) ,

CV
µ (q) = i

∫
d4xe−iq·xVµ (q) . (3.27)

It is convenient to introduce the operator

C̄X
µ,a(q) = q2 −m2

X

fX

CX
µ,a(q), (3.28)

with X = V,A and mA and mV are the masses of the pseudoscalar and vector

D mesons. In the non-relativistic limit, the spatial components of the operator

C̄X
µ,a(q) are kept. Therefore, the Lorentz indices are replaced by the spatial indices,
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as we have already shown in Eq. (3.22).

The following effective operators in SU(2) flavor symmetry with their Nc

scaling laws are introduced to construct the operator O(n)
i,a which enters Eq. (3.22)

(Dashen et al., 1995),

J i = 1
2q

†
Aµσ

i
µνqAν ∼ 1/Nc, (3.29)

Ia = 1
2q

†
Aµτ

a
ABqBµ ∼ 1/Nc, (3.30)

Gia = 1
4q

†
Aµσ

i
µντ

a
ABqBν ∼ N0

c , (3.31)

Y iA = 1
2C

†
µσ

i
µνqAν ∼

√
Nc, (3.32)

tA = C†
µqAµ ∼

√
Nc, (3.33)

Nh = C†
µCµ ∼ N0

c , (3.34)

J i
h = 1

2C
†
µσ

i
µνCν ∼ 1/Nc. (3.35)

Therefore, the corresponding effective axial-vector and vector operators (at the

leading order of Nc) are written as,

Ai,E = cA
1 q

ikjY jE + cA
2 q

iqjY jE + cA
3 q

iqjJ jtE, (3.36)

and

V i,E = cV
1 q

itE + cV
2 ϵ

ijkqjY kE + cV
3 k

itE + cV
4 q

jJ jY iE, (3.37)

where p′ + p = k ∼ N0
c and p′ − p = q ∼ N0

c . According to the Nc scal-

ings of the effective operators, the scaling laws for the constants ci are given

by cA
1 , c

A
2 , c

V
1 , c

V
2 , c

V
3 ∼

√
Nc and cA

3 , c
V
4 ∼ N−1/2

c .
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3.2.3 Results

Here, we refer to the Ph.D. thesis of T. Suyuporn. By performing 1
Nc

expansion to the baryon matrix element of correlation operators in Eq. (3.28) and

effective operators in Eqs. (3.36) and (3.37), the following sum rules are derived,

g2 = − 3
2
√

3
g1, g3 = 0, g5 = −3

√
3

2 g1, f2 =
√

3f1,

f5 = −3
√

3
2 f1, h1 =

√
3

2 h2, h3 = h4 = 0, h5 = −
√

3f1. (3.38)

These large-Nc constraints reduces the number of free parameters down to 6, the

corresponding set of free parameters is {g1, g4, f1, f3, f4, h2}.

3.3 Combining heavy quark and large-Nc constraints

If the heavy quark and large-Nc constraints in Eqs. (3.20) and (3.38) are

combined, the combining heavy quark and large-Nc constraints are then given as

g1 = −2
3g4, g2 = −3

√
3

2 h1, g3 = 0, f1 = 4h1,

f2 = −h5 = 2√
3
h1, f3 = h3 = h4 = 0, f4 = 1

2
√

3
h5. (3.39)

where the set of free parameters from combining heavy quark and large-Nc con-

straints is {g5, f5, h1, h2, h5}.

 



CHAPTER IV

ESTIMATION OF COUPLING CONSTANTS

IN QUARK MODEL

In this chapter, we estimate the coupling constants for the effective La-

grangians of D-meson, charmed, and light baryons through various decay processes

of Λc and Σc baryons. First, we calculate the decay widths for the following pro-

cesses: Λc → D∗N , Λc → DN , Σc → DN , Σc → D∆, and Σc → D∗∆, using the

effective Lagrangian method and quark model picture with the 3P0 model. Next,

we use coupling constants for D∗ΛcN interaction from various literature to fix the

strength parameter λ for the 3P0 model in the decay process Λc → D∗N . Then,

we estimate the coupling constants for the effective Lagrangians of DΛcN , DΣcN ,

DΣc∆, and D∗Σc∆ interactions in the decay channels Λc → DN , Σc → DN ,

Σc → D∆, and Σc → D∗∆, respectively. Finally, we use the combining heavy-

quark and large-Nc sum rules derived in Chapter III to calculate the coupling

constants for DΣcN , D∗ΣcN , and D∗Σ∗
c∆ interactions.

4.1 Feynman amplitudes

In this section, we calculate decay widths of charmed baryons in effective

Lagrangian method. The decay of an initial charmed baryon Bc into an outgoing

light baryon B and a charmed meson ϕc is displayed by the diagram in Figure 4.1.
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Bc(p)

φc(q)

B(k)

Figure 4.1 Feynman diagram for the decay process Bc (p, s) → B (k, s′)ϕc(q, s′′).

Here, the momentum of the initial charmed baryon (Λc(2286) or Σc(2455))

is denoted by p, while k and q are those of the outgoing light baryon

(N(939) or ∆(1232)) and charmed meson (D(1868) or D∗(2009)) respectively.

The spin projections of the initial charmed baryon, outgoing light baryon and

charmed meson are respectively denoted by s, s′, and s′′.

To compare our results with those in Refs. (Khodjamirian et al., 2012; Azizi

et al., 2014; Azizi et al., 2015b), we introduce the following additional Lagrangians:

L(P )
DΣcN = g′

1DΣ̄(t)
c iγ5N +H.c., (4.1)

L(P )
DΛcN = g′

2DΛ̄ciγ5N +H.c., (4.2)

where g′
1 and g′

2 are pseudoscalar coupling constants for the corresponding inter-

action vertices. By employing Lagrangians in Eqs. (2.17) to (2.18) and Eqs. (4.1)

to (4.2), Feynman amplitudes for the decay processes Σc → DN , Λc → DN ,

Σc → D∆, Λc → D∗N , and Σc → D∗∆ are written as

M(P )
Σc→DN = −g′

1ūN (k, s′) γ5uΣc (p, s) , (4.3)

M(A)
Λc→DN = g2

mD

ūN (k, s′) /qγ5uΛc (p, s) , (4.4)
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M(P )
Λc→DN = −g′

2ūN (k, s′) γ5uΛc (p, s) , (4.5)

MΣc→D∆ = − g4

mD

qµū
µ
∆ (k, s′)uΣc (p, s) , (4.6)

MΛc→D∗N = if2ūN (k, s′) ΓµuΛc (p, s) ϵ∗
µ (q, s′′) , (4.7)

MΣc→D∗∆ = if4ū
µ
∆ (k, s′) γ5uΣc (p, s) ϵ∗

µ (q, s′′) , (4.8)

where

Γµ =
[
γµ + i

mD

(
h2

f2

)
σµνqν

]
. (4.9)

The decay width of the initial charmed baryon Bc is then computed from

ΓEFT = 1
32π2

|q⃗|
mBc

∫ 〈
|M|2

〉
dΩ, (4.10)

where

〈
|M|2

〉
=



1
2
∑

s′ |M|2 if ϕc = D,

1
2
∑

s′,s′′ |M|2 if ϕc = D∗.

(4.11)

The mass of the initial charmed baryon and the magnitude of outgoing 3-

momentum in the center of mass frame of the initial charmed baryon are denoted

by mBc and |q⃗|.

By expanding the decay width with respect to the outgoing 3-momentum

q near the threshold, the following expressions for the decay widths are obtained

Γ(P )
Σc→DN = g′2

1
8πmNmΣc

q3, (4.12)

Γ(A)
Λc→DN = g2

2 (mD + 2mN)2

8πm2
DmNmΛc

q3, (4.13)

Γ(P )
Λc→DN = g′2

2
8πmNmΛc

q3, (4.14)
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ΓΣc→D∆ = g2
4 (mD +m∆)2

3πm2
Dm∆mΣc

q3, (4.15)

ΓΛc→D∗N = A
8πm2

Dm
2
D∗mNmΛc

q3, (4.16)

ΓΣc→D∗∆ = f 2
4

4πm∆mΣc
q3, (4.17)

where

A =f 2
2

(
3m2

D∗m2
D + 4mD∗mNm

2
D + 4m2

Nm
2
D

)
− 6f2h2

(
m3

D∗mD + 2m2
D∗mNmD

)

+ h2
2

(
3m4

D∗ + 8m3
D∗mN + 8m2

Nm
2
D∗

)
. (4.18)

We note that the decay widths in Eqs. (4.12) to (4.17) are held for real and

imaginary outgoing momenta.

4.2 Quark model

In this section, decay widths of the same decay processes as in Section 4.1

are calculated in a quark model picture with the 3P0 model. The corresponding

diagram is displayed in Figure 4.2. Here, the decay process Bc → Bϕc may arise

from the qq and c of the initial state Bc which are directly dressed by two additional

quark-antiquark pair pumped out of the vacuum to form B and ϕc in the final

state. The transition amplitude derived in the 3P0 model is written as

T = ⟨Bϕc|Vqq̄ |Bc⟩ , (4.19)

where Vqq̄ corresponds to the effective quark-antiquark vertex. The 3P0 model

defines the quantum states of quark-antiquark pair that are destroyed into or

created from vacuum (3P0, isospin I = 0, and color singlet). The effective quark-

antiquark vertex in the 3P0 model is defined according to Refs. (Yan et al., 2005;
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Figure 4.2 Schematic diagram for the decay process Bc → Bϕc in 3P0 quark

model. The bottom quark line is that of charm quark while the rest are those of

u and d quarks.

Kittimanapun et al., 2009):

V ij
qq̄ = λ σ⃗ij · (p⃗i − p⃗j)F̂ijĈijδ(p⃗i + p⃗j)

= λ
∑

µ

√
4π
3 (−1)µσµ

ijY1µ(p⃗i − p⃗j)F̂ijĈijδ(p⃗i + p⃗j) (4.20)

where the parameter λ denotes the effective coupling strength of the 3P0 vertex.

The spin operator that creates (or annihilates) the spin-1 qq̄ pair is denoted by σµ
ij

and Y1µ(p⃗) corresponds to the spherical harmonics in the momentum space. The

flavor and color unit operators are denoted by F̂ij and Ĉij.

In this work, the baryon and meson spatial wave functions are approximated

with the Gaussian form Ref. (Faessler et al., 2010). The flavor and spin parts are

constructed in the framework of the SU(2) flavor and SU(2) spin symmetries.

The transition amplitude is obtained as

T = λ

√
4π
3 Ci fe

−Qq2
C(Sisi; 1µ;Sf , si + µ), (4.21)
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with

f = − 6
√

3a3b3/2(b2mr + 2a2(1 +mr))|q⃗|
(3a2 + b2)5/2(1 +mr)π3/4 ,

Q =a
2(3a2(1 +mr)2 + b2(5 − 2mr + 2m2

r))
6(3a2 + b2)(1 +mr)2 ,

Ci = 2√
3

(
1√
2

)δ
S′, 1

2

√
(2S ′ + 1)(2S ′′ + 1)(2Si + 1)(3)

√
(2T ′ + 1)(2T ′′ + 1)(2Ti + 1)(1)



Ti (6) S ′

(8) (7) S ′′

Si 1 Sf





Ti (6) T ′

0 (7) T ′′

Ti 0 Tf


, (4.22)

where (Si, Ti), (S ′, T ′), and (S ′′, T ′′) denote the spin-isospin of the states Bc, B,

and ϕc, respectively. The spin Sf and isospin Tf are defined by Sf = S ′ ⊗ S ′′

and Tf = T ′ ⊗ T ′′. The spin projections of the qq̄ pair in the 3P0 model and

the initial charmed baryon Bc are denoted by µ and si. C is the Clebsch-Gordan

coefficient. The parameter mr = mq/mQ is the ratio between the light quark mass

mq and heavy quark mass mQ. The value of mr in this study is 300/1270. δ is the

Kronecker delta and the brackets { } in Ci are the 9-j symbols. The flavor-spin-

color factors Ci for the decay processes in this study are summarized in Table 4.1.

The baryon and meson length parameters a and b are respectively 3.0 GeV−1 and

2.28 GeV−1 (Isgur and Karl, 1979; Sreethawong et al., 2015; Dover et al., 1992;

Muhm et al., 1996; Limphirat et al., 2014).
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Table 4.1 The flavor-spin-color factors Ci corresponding to the decay processes

Bc → Bϕc.

Processes Ci

Sf = 1/2 Sf = 3/2
Λc(2286) → ND 1√

2

Λc(2286) → ND∗ − 1√
6

√
2
3

Σc(2455) → ND 1
3
√

6

Σc(2455) → ∆D −2
3

√
2
3

Σc(2455) → ∆D∗ 4
9

2
√

10
9

The decay width of the charmed baryon Bc is calculated from

ΓQM = 2πE ′E ′′ |q⃗|
mBc(2Si + 1)

∑
si,µ,Sf

|T |2 , (4.23)

where E ′ and E ′′ denote energies of the outgoing light baryon B and charmed

meson ϕc while |q⃗| and mBc are similar to those in Eq. (4.10).

4.3 Results

In this section, we estimate the coupling constants from the decay widths

calculated in Sections 4.1 and 4.2. Considering that the decay width formulas

in Eqs. (4.12) to (4.17) and Eq. (4.23) hold for both the real and imaginary

values of the outgoing momentum q, one may estimate the coupling constants by

applying the near threshold off-shell decay processes of Λc and Σc baryons under

consideration. In the low q region, one requires

ΓEF T = ΓQM . (4.24)

The coupling constants determined from Eq. (4.24) are those at q2 = 0. For

comparison, we employ as inputs five different sets of the coupling constants fD∗ΛcN

and hD∗ΛcN from Refs. (Kim et al., 2015; Sangkhakrit et al., 2022; Khodjamirian
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et al., 2012; Titov and Kampfer, 2008; Azizi et al., 2015a) for the decay process

Λc → D∗N . From Eq. (4.24), we fix the 3P0 strength parameter λ in Eq. (4.21)

for each input set and then use its value to estimate the coupling constants g(P )
DΛcN ,

g
(A)
DΛcN , gDΣc∆, fD∗Σc∆, and g(P )

DΣcN of the effective Lagrangians. Then, these results

are used to determine the coupling constants g(A)
DΣcN , fD∗ΣcN , hD∗ΣcN , and hD∗Σ∗

c∆

from the combining heavy quark and large-Nc sum rules in Eq. (3.39). In our

case, we assume that all coupling constants are positive and they are displayed in

Table 4.2.

Table 4.2 Coupling constants of D-meson, charmed, and light baryons from our

estimation. The numbers in the brackets denote the magnitudes of the original

coupling constants used in the cited literature ([a] (Kim et al., 2015), [b]

(Sangkhakrit et al., 2022), [c] (Khodjamirian et al., 2012), [d] (Titov and

Kampfer, 2008), [e] (Azizi et al., 2015a), [f] (Azizi et al., 2014), [g] (Fontoura

et al., 2017), [h] (Azizi et al., 2015b), [i] (Yu et al., 2019)), if available.

Input Results(
fD∗ΛcN , hD∗ΛcN

)
g

(P )
DΛcN

g
(A)
DΛcN

gDΣc∆ fD∗Σc∆ g
(P )
DΣcN

g
(A)
DΣcN

fD∗ΣcN hD∗ΣcN hD∗Σ∗
c ∆

(−4.26, −12.4) [a] 17.57 15.12 9.28 26.05 3.38 11.22 13.5 6.12 3.89
(13.4 [a]) (2.46 [a]) (1.31 [a])

(−5.11, −10.4) [b] 16.65 14.33 8.79 24.68 3.2 10.63 12.7 5.8 3.69
(13.5 [b]) (2.5 [b]) (4.182 [b]) (2.87 [b])

(5.8, 3.6) [c] 11.1 9.55 5.86 16.45 2.13 7.08 8.52 3.86 2.46
(10.7 [c]) (1.3 [c]) (1.0 [c]) (2.1 [c])

(−5.18, −14.4) [d] 20.66 17.78 10.9 30.62 3.98 13.18 15.87 7.2 4.58
(3.29 [d]) (2.99 [d])

(2.21, 7.26) [e] 9.86 8.49 5.21 14.62 1.89 6.3 7.58 3.44 2.19
(11.14 [e] (5.40 [e])

(0.91 [f]) (15.25 [g]) (3.78 [h])
(13.7 [i]) (15.3 [i])

(7.28 [f])

Here, we have used g
(P )
DΣcN = g′

1, g
(P )
DΛcN = g′

2, gDΣc∆ = g4, and fD∗Σc∆ = f4.

The coupling constants g(A)
DΛcN , fD∗ΛcN , and hD∗ΛcN are obtained by rescaling the

coupling constants g2, f2, and h2 to those in Refs. (Kim et al., 2015; Sangkhakrit
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et al., 2022; Titov and Kampfer, 2008). Note that the expressions for the coupling

constants resulted from Eq. (4.24) are independent of the corresponding initial

masses.

From our study, we have found that the magnitudes of the coupling con-

stants are of the same orders as those in the cited literatures. As the original

values of gDΣc∆, fD∗Σc∆, and hD∗Σ∗
c∆ are not presented anywhere, we only display

the results from our estimation.

 



CHAPTER V

PRODUCTIONS OF STRANGE AND

CHARMED BARYONS IN EFFECTIVE

LAGRANGIAN AND REGGE APPROACHES

The effective Lagrangian method is a well-established tool for describing

the low-energy behavior of experimental production rates. However, this approach

encounters challenges when applied to the high-energy regime due to the violation

of unitarity, leading to incorrect predictions. To address this issue, we propose

a second model based on the Regge approach, which is capable of reproducing

both the forward and backward peaks observed in high-energy scatterings. The

fundamental principle of unitarity is preserved in this model, ensuring the correct

asymptotic behavior of production rates in the high-energy region.

In this chapter, we first present an overview of the Regge approach, which

is based on the exchange of particles with non-zero spin and is particularly suited

for the high-energy regime. We then apply the effective Lagrangian method and

the Regge model to study various strangeness productions, and determine the

model parameters through a rigorous fitting procedure to experimental data. The

scaling parameters for Regge amplitudes is evaluated using Kaidalov’s Quark-

Gluon String Model (QGSM) (Kaidalov and Volkovitsky, 1994), which is a well-

established theoretical framework for describing high-energy hadronic interactions.

Finally, we use the established models to predict the production rates of

various charmed baryons. Specifically, we replace the kinematical parameters for
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strange hadrons with those for charm hadrons to obtain the corresponding cross-

sections. The predicted results from both the effective Lagrangian and Regge

models are compared and analyzed in detail to gain insights into the underlying

mechanisms of these productions.

5.1 Introduction

In most scattering processes, there exists a tendency for a strong forward

peak, which becomes obvious in the high-energy region. The magnitude of the

cross section for a particular process depends on whether a t-channel process is

included or not. These observations are also held for the presence of a backward

peak and the inclusion of a u-channel process. For these reasons, there is a corre-

lation between the presence of a forward (backward) peak in s-channel processes

and the exchange of particles or resonances in the t-channel (u-channel) (Collins,

1971; Donnachie et al., 2004).

Regge theory is applicable to reproduce the forward angle behavior in the

region with large s and small t. It is also applicable for the backward angle

behavior in the one with large s and small u. To derive the transition amplitude in

Regge representation, we first consider the partial-wave expansion of the amplitude

A(s, t) in the physical region of the t-channel (s < 0 and t > 4m2)

A (s, t) = 16π
∞∑

l=0
(2l + 1)Al(t)Pl(zt), (5.1)

with

zt = cosθt = 1 + 2s
t− 4m2 , (5.2)

in the equal-mass case. At large s, the series expansion in Eq. (5.1) diverges

because Pl(zt) ∼ sl. If we consider the contribution of only one partial wave,

this divergence problem is therefore avoided. However, the energy dependence of
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a corresponding cross section contradicts with that of an observed experimental

data. Instead of a single particle exchange, ground states and the series of excited

states in the t-channel exchange process must be combined in such a way that the

observed energy dependence is reproduced. For this reason, we shall terminate

the summation in Eq. (5.1) at a certain maximum value of angular momentum

lmax. Then, we rewrite it as a coutour integral in the complex angular momentum

plane and perform the analytical continuation to the physical region of s-channel

(s > 0 and t < 4m2).

To do this, we introduce the amplitudes with even-signature A+
l (t) and

odd-signature A−
l (t) as

Al(t) =


A+

l (t), l even,

A−
l (t), l odd.

(5.3)

Then, the partial wave expansion in Eq. (5.1) can be rewritten in terms of these

signatured amplitudes:

A± (s, t) = 8π
∞∑

l=0
(2l + 1)A±

l (t) (Pl(zt) ± Pl(−zt)) . (5.4)

By using Cauchy’s theorem, one can rewrite the partial wave amplitude into the

contour integral of the complex angular momentum l as

A±(s, t) =
∫

C
dl (2l + 1)A±(l, t)Pl(zt) ± Pl(−zt)

sinπl , (5.5)

where the real axis is surrounded by the contour C from 0 to ∞. The correspond-

ing poles are located at the points l = 0, 1, 2, .... We finally obtain the Regge

representation of the transition amplitudes A±(s, t):

A±(s, t) ∼
∑

j

β±
j (t)Γ(−α±

j (t))ξ±
α

(
s

s0

)α±
j (t)

, (5.6)
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where the positions of the poles and their residues are identified by α±
j (t) and

β±
j (t), respectively. The signature factor ξ±

α is written as

ξ±
α = 1 ± e−iπα±

j (t), (5.7)

and the scale parameter is denoted by s0. The direct observation from Eq. (5.6)

is that, the poles of the transition amplitude in the complex angular momentum

space are related to bound or resonance states. These poles are also known as

Regge poles or Reggeons. The exchanges of families of hadrons, which contain the

same quantum numbers, are described by Regge trajectories α(t). The spin J and

mass m of the corresponding hadron are related by α(m2) = J .

5.2 Unitarity

In the case where only one partial wave is contributed, the transition ampli-

tude is therefore written as A(s, t) ∼ g(t)sJ . By doing this, the divergence of the

partial wave expansion is temporarily avoided. However, the consistency between

this transition amplitude and the unitarity is demanded. Otherwise, one may

not be able to correctly reproduce the high-energy behavior of the observed cross

sections. To start with, the total cross section and the forward elastic scattering

amplitude of the reaction A + B → A + B are related by the following optical

theorem

σtotal
AB = 1

2 |p1|
√
s

Im A(s, t = 0), (5.8)

where |p1| denotes the magnitude of the initial three-momentum in the center of

mass frame while A(s, t) is the corresponding elastic scattering amplitude. In the

region where s is large, the total cross section behaves as σtotal ∼ sJ−1. When

particles with higher spins are exchanged, i.e., J ≥ 2, the unitarity is violated.
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From the Froissart bound, the behavior of σtotal in this region is

σtotal ≤ constant ×
(
log

(
s

s0

))2
. (5.9)

Therefore, we are demanded to include all possible hadrons which belong to the

same trajectory such that the unitarity is conserved.

According to the consistency between Regge model and unitarity, the high-

energy behavior of differential cross sections is therefore well reproduced, especially

in the forward angle region. As s → ∞, the following asymptotic behavior of

differential cross sections

dσ

dt
(s → ∞, t → 0) ∝ s2(α(t)−1), (5.10)

is given.

Since Regge model is mostly applicable in the diffractive region, the behav-

ior of the production rates near the threshold may not be reproduced well. On the

other hand, effective Lagrangian approach is applicable at reproducing low-energy

behavior of various cross sections. Therefore, it is appropriate to investigate pro-

duction rates of strange and charmed baryons within these two approaches. By

doing this, the low- and high-energy behaviors of the production rates are pro-

vided at the same time. First, various strange and charm production rates in pp̄

collisions will be studied in effective Lagrangian method. Then, the same reaction

processes will be discussed in Regge model.
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5.3 Effective Lagrangian approach

5.3.1 Feynman amplitudes

In this section, strangeness and charm productions will be studied in ef-

fective Lagrangian approach. First, we consider strangeness productions from

proton-antiproton interactions. The corresponding tree-level diagram is displayed

in Figure 5.1, where Y and Ȳ ′ denote a produced hyperon (Λ0 or Σ0) and its

antiparticle (Λ̄0 or Σ̄0). An exchanged strange meson (K+ or K∗+) is denoted by

ϕ. The momenta of the incoming proton and antiproton are denoted by p1 and

p2 while q, p3, and p4 are those of the exchanged strange meson, outgoing hy-

peron, and antihyperon, respectively. Here, we assume that cross sections for such

processes are dominated by t-channel exchanges, this assumption is reasonable

for the scattering at energy that are sufficient above the threshold. The effective

φ(q)

p(p1) Y (p3)

p̄(p2) Ȳ ′(p4)

Figure 5.1 Tree-level diagram for the reaction pp̄ → Y Ȳ ′

Lagrangians for KNY and K∗NY vertices are (Kim et al., 2015)

LKNY = gKNY

mN +mY

N̄γµγ5Y ∂µK + H.c., (5.11)

LK∗NY = −gK∗NY N̄
[
γµY − κK∗NY

mN +mY

σµνY ∂ν

]
Kµ + H.c., (5.12)

where Y stands for the isoscalar state Λ or isotriplet state Σ · τ . Here, the τ

matrices operate to the isospin states of the nucleon and K or K∗. The follow-

 



42

ing axial-vector coupling constants involving K meson are derived from SU(3)

symmetry relations:

gKNΛ = −13.5, gKNΣ = 2.5, (5.13)

where the coupling constants of baryon-baryon-meson vertices are represented in

terms of the πNN coupling constant and the parameter α (Rijken et al., 1999):

gKNΛ

gπNN

= − 1√
3

(3 − 2α) , (5.14)

gKNΣ

gπNN

= −(1 − 2α). (5.15)

Here, gπNN = 13 denotes the coupling constant for the πNN vertex. The parame-

ter α = D

F +D
∼ 3

5 is determined from the analysis of baryon-baryon interactions

in a one-boson-exchange-potential approach (Nagels et al., 1979). The resulting

numerical value is consistent with the results from the SU(6) symmetry (Pais,

1966) and large-Nc analysis (Dashen et al., 1995). To express the finite size of

hadrons, following form factors are included in our calculations:

F (t) = a2 Λ4

Λ4 +
(
t−m2

ϕ

)2 , (5.16)

Fn (t) = a

(
Λ2

Λ2 − t

)n

, (n = 1, 2) , (5.17)

where t = q2 and mϕ is the mass of the exchanged meson. Here, the form factor

in Eq. (5.16) is multiplied to the whole Feynman amplitude (Kim et al., 2015;

Nam et al., 2005; Haberzettl et al., 1998), while the second one in Eq. (5.17) is

at each vertex. Therefore, in the Feynman amplitude, the normalization constant

appears in a2 for both cases. Because there is always ambiguities in the use of

form factors for such reaction processes, we will compare the results by using the
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three different form factors.

The free model parameters are the vector coupling constant gK∗NY , ten-

sor coupling constant κK∗NY , normalization constant a, and cutoff parameter Λ.

These parameters will be fixed by the existing observed data of relevant strangeness

production cross sections. By applying Feynman rules to the effective Lagrangians

in Eqs. (5.11) and (5.12), Feynman amplitudes of strangeness productions with

K and K∗ exchanges in the t-channel are given by

MK = gKNY gKNY ′

(mN +mY ) (mN +mY ′)ΓNPK (t) ΓN̄ , (5.18)

MK∗ = gK∗NY gK∗NY ′ΓN,µP
µν
K∗ (t) ΓN̄,ν , (5.19)

where

ΓN = iūY /qγ5uN , (5.20)

ΓN̄ = −iv̄N̄/qγ5vȲ ′ , (5.21)

ΓN,µ = ūY

[
(1 + κK∗NY ) γµ − κK∗NY

(p1 + p3)µ

mN +mY

]
uN , (5.22)

ΓN̄,ν = v̄N̄

[
(1 + κK∗NY ′) γν + κK∗NY ′

(p2 + p4)ν

mN +mY ′

]
vȲ ′ . (5.23)

The Feynman propagators for K and K∗ mesons are defined by

PK (t) = i

t−m2
K

, (5.24)

P µν
K∗ (t) = i (−gµν + qµqν/m2

K∗)
t−m2

K∗
. (5.25)

 



44

The total Feynman amplitude is therefore written as

Mpp̄→Y Ȳ ′ =


MKFK + MK∗FK∗ ,

MKF
2
n,K + MK∗F 2

n,K∗ .

(5.26)

Here F(K,K∗) and Fn,(K,K∗) are form factors in Eqs. (5.16) and (5.17) with K or

K∗, respectively. Differential cross section as a function of a momentum transfer

t is computed from

dσ

dt
= 1

64π (pcm)2 s

〈
|M|2

〉
, (5.27)

where
〈
|M|2

〉
= 1

4
∑

s3,s4 |M|2 and pcm is the relative momentum of the proton

and antiproton in the initial state in the center of mass frame. The spin projections

of the outgoing hyperon and antihyperon are respectively denoted by s3 and s4.

Now, we proceed to charm productions in pp̄ collisions. In principle, the

coupling constants for charm and strange hadrons should be different. However, if

strange and charm quarks are sufficiently heavy, the same set of coupling constants

can be applied to charm productions. Therefore, the relevant Feynman amplitudes

for the diagram in Figure 5.2 are obtained by replacing strange hadrons Y , Ȳ ′, ϕ

by charmed hadrons Yc, Ȳ ′
c , ϕc,

(
Yc = Λ+

c ,Σ+
c , ϕc = D̄0, D̄∗0

)
.

φc(q)

p(p1) Yc(p3)

p̄(p2) Ȳ ′
c (p4)

Figure 5.2 Tree-level diagram for the reaction pp̄ → YcȲ
′

c
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5.3.2 Results for strangeness productions

In the following subsection, differential cross sections for strange baryons

as functions of tmax − t are presented. In the observed differential cross sections

of the reactions pp̄ → ΛΛ̄ and pp̄ → ΣΛ̄ (Becker et al., 1978), which exist only

for plab = 6 GeV, are composed of two distinct components: the steep component

near the forward angle region and the less steep component in a finite angle region.

In our case, the first component of the data is mainly focused due to the t-channel

dominance. For a given energy, the value of t varies from tmin and tmax(i.e., tmax−t

varies from 0 to tmax − tmin),

tmin
max = m2

N +m2
Y − 1

2s

[
s
(
s+m2

Y −m2
Y ′

)
±
√
s (s− 4m2

N)
(
s− (mY +mY ′)2

)

×
√(

s− (mY −mY ′)2
)]
. (5.28)

First, we try to fix the model parameters by comparing differential cross

sections with the observed data for the reactions pp̄ → ΛΛ̄ and pp̄ → ΣΛ̄. Then,

differential cross sections for the reaction pp̄ → ΣΣ̄ will be predicted. In each case,

differential cross sections contributed by K, K∗, and (total = K +K∗) exchanges

are displayed separately. Three distinct sets of results will be independently pre-

sented to demonstrate the influence of form factor dependency.

We start our discussion with the reaction pp̄ → ΛΛ̄. Since the coupling

constants with K exchange in Eq. (5.13) have already been fixed by the SU(3)

symmetry relations, the consistency between our results and the experimental data

is established by appropriately determining the strengths of the unknown model

parameters. To attain a satisfactory agreement with the data, we determine the
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following parameters,

gK∗NΛ = −5.112, κK∗NΛ = 2.037,

F (t) : a = 0.46, Λ = 0.63 GeV,

F1 (t) : a = 0.285, Λ = 0.7 GeV,

F2 (t) : a = 0.285, Λ = 0.99 GeV. (5.29)

By using these parameters, differential cross sections for the reaction pp̄ →

ΛΛ̄ are displayed in Figure 5.3. In Figures 5.3a to 5.3c, we can observe the influence

of the form factor dependency from the increasing steepness. The results shown in

Figure 5.3b are in overall agreement with the data, whereas those in Figures 5.3a

and 5.3c exhibit clear deviations from the data in the finite angle region. However,

these results are consistent with the data near the forward angle region, where the

dominance of t-channel dynamics is realized. Additionally, the strengths of the

differential cross sections contributed by K exchange are approximately 10−2 to

10−3 times those of K∗ exchange. Indeed, the dominance of K∗ exchange over

K exchange can be observed, and this tendency remains independent of the form

factor.

Now, let us consider the reaction pp̄ → ΣΛ̄. To fit the existing experimental

data, we have determined the following parameters:

gK∗NΣ = −4.182, κK∗NΣ = −0.688. (5.30)

The resulting differential cross sections are presented in Figure 5.4, where we

depict the outcomes obtained using different form factors: Figure 5.4a illustrates

the results with the form factor F defined in Equation (5.16), which demonstrate
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Figure 5.3 Differential cross sections for the reaction pp̄ → ΛΛ̄ at plab = 6 GeV

in the effective Lagrangian model. The circles denote the experimental data from

Ref. (Becker et al., 1978).

an overall consistency with the data. However, noticeable deviations from the data

are observed when the form factors F1 and F2 are utilized, as depicted in Figures

5.4b and 5.4c. Furthermore, it is worth noting that the cross sections involving

K exchange are suppressed compared to those involving K∗ exchange, by a factor

similar to that observed in ΛΛ̄ production.
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Figure 5.4 Differential cross sections for the reaction pp̄ → ΣΛ̄ at plab = 6 GeV

in the effective Lagrangian model. The circles denote the experimental data from

Ref. (Becker et al., 1978).

By employing the model parameters determined from the two previous

reactions, we can predict the differential cross sections for the reaction pp̄ → ΣΣ̄,

as shown in Figure 5.5. In this case, the results contributed by K exchange are

significantly smaller, approximately 10−5 times, compared to those ofK∗ exchange.
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This suppression is larger than those of ΛΛ̄ and ΣΛ̄ productions. When comparing

the three cases of ΛΛ̄, ΣΛ̄, and ΣΣ̄ productions, we observe that the magnitudes

of the strange production cross sections decrease as the total mass in the final

state becomes larger.
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Figure 5.5 Differential cross sections for the reaction pp̄ → ΣΣ̄ at plab = 6 GeV

in the effective Lagrangian model.

5.3.3 Predictions for charm productions

In this subsection, we discuss differential cross sections for various charm

productions. The results for the reactions pp̄ → ΛcΛ̄c, pp̄ → ΣcΛ̄c, and pp̄ → ΣcΣ̄c

at plab = 15 GeV are presented in Figures 5.6 to 5.8.

According to our predictions, the charm production differential cross sec-

tions are mainly contributed by vector D∗ exchange, as their magnitudes are al-

most similar to those of D+D∗ exchange. Different types of form factors result in

different slopes and absolute values of charm production cross sections, as depicted

in Figures 5.6 to 5.8. The slopes of charm production rates exhibit similar ten-

dencies as those of strangeness productions, since only the kinematic parameters

for strange hadrons have been replaced by those of charm, while other parameters

such as coupling constants and those of form factors remain unchanged.
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Figure 5.6 Differential cross sections for the reaction pp̄ → ΛcΛ̄c at

plab = 15 GeV in the effective Lagrangian model.
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Figure 5.7 Differential cross sections for the reaction pp̄ → ΣcΛ̄c at

plab = 15 GeV in the effective Lagrangian model.
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Figure 5.8 Differential cross sections for the reaction pp̄ → ΣcΣ̄c at

plab = 15 GeV in the effective Lagrangian model.

In the reaction pp̄ → ΛcΛ̄c, the absolute values of the production rates

depicted in Figures 5.6b and 5.6c are roughly at the same order, whereas those in

Figure 5.6a are significantly suppressed. This indicates that the largest suppression
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is observed when using the form factor F , while the form factors F1 and F2 result

in lower suppressions of the production rates. This behavior can also be observed

in the reactions pp̄ → ΣcΛ̄c and pp̄ → ΣcΣ̄c. The cross section values range from

10−2 to 10−4 µb/GeV2, and they are approximately 10−2 to 10−4 times those of

the reaction pp̄ → ΛΛ̄.

In the reaction pp̄ → ΣcΛ̄c, the form factor dependence displayed in Figure

5.7 is similar to that observed in the pp̄ → ΣΛ̄ reaction, as compared to Figure

5.4. The predicted cross section values range from approximately 10−3 to 10−5

µb/GeV2, and they are about 10−2 to 10−5 times those of the reaction pp̄ → ΣΛ̄.

Regarding the reaction pp̄ → ΣcΣ̄c, as shown in Figure 5.8, the predicted cross

section values are approximately 10−3 to 10−6 µb/GeV2, and they are suppressed

compared to the cross sections of the pp̄ → ΣΣ̄ reaction by a factor similar to that

observed in the pp̄ → ΣcΛ̄c reaction.

Indeed, the predicted charm production cross sections obtained from the

effective Lagrangian approach exhibit magnitudes ranging from 10−2 to 10−6

µb/GeV2, with corresponding suppression factors ranging from 10−2 to 10−5.

These magnitudes are consistent with the results obtained in previous studies,

such as those presented in Refs. (Titov and Kampfer, 2008; Khodjamirian et al.,

2012), which were performed within the Regge approach. The Regge theory is

well known for its ability to reproduce the energy dependence of differential cross

sections at high energies. Therefore, in order to ensure that the magnitudes of

the production rates obtained from the effective Lagrangian calculations are of the

same order as those implied by Regge theory, the form factor F is included in the

entire amplitude, rather than at each vertex. A similar treatment for the form

factor F was employed in Ref. (Kim et al., 2015) to investigate charm productions

from pion-induced reactions within the effective Lagrangian approach.
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5.4 Regge approach

5.4.1 Amplitudes

The Regge amplitudes are obtained by replacing the propagator in the

Feynman amplitudes by the Regge propagator,

MKR
= MK

(
t−m2

K

)
PR

K (s, t) , (5.31)

MK∗
R

= MK∗

(
t−m2

K∗

)
PR

K∗ (s, t) , (5.32)

where PR
K (s, t) and PR

K∗ (s, t) are the Regge propagators for K and K∗ Reggeons,

respectively. These Regge propagators are written by (Kim et al., 2015)

PR
K (s, t) = Γ [−αK (t)]α′

K

(
s

sK

)αK(t)
, (5.33)

PR
K∗ (s, t) = Γ [1 − αK∗ (t)]α′

K∗

(
s

sK∗

)αK∗ (t)−1
. (5.34)

Here the Regge trajectories for αK and αK∗ are given by (Brisudova et al., 2000)

αK (t) = −0.15 + 0.62t, (5.35)

αK∗ (t) = 0.41 + 0.71t. (5.36)

In Eqs. (5.33) and (5.34), the scaling parameters for K and K∗ Reggeon exchanges

are SK = 2.42 GeV2 and SK∗ = 2.45 GeV2. At high energies, the imaginary part of

the inelastic scattering amplitude can be factorized into a product of two elastic

scattering amplitudes. This factorization property allows for the evaluation of

scaling and Regge parameters for different inelastic scatterings. Near the Regge

pole of the ground state on a specific trajectory, the behavior of the Feynman

propagator can be approximated by the corresponding Γ-function in the Regge
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propagator, i.e.,

Γ (1 − αK∗(t)) ≃ − 1
α′

K∗ (t−m2
K∗) . (5.37)

In addition to the above prescription, the following overall residual fac-

tor which accounts for the non-point-like nature of hadrons and incorporates the

effects of their internal structure,

C (t) = b(
1 − t

Λ2

)2 , (5.38)

is introduced to improve t-dependences of the Regge amplitudes. There are two

unknown parameters in this residual factor: overall constant b and cutoff parame-

ter Λ. These parameters will be fixed by comparing differential cross sections with

the experimental data for strangeness productions. The total Regge amplitude of

the reaction pp̄ → Y Ȳ ′ is written by

MR
pp̄→Y Ȳ ′ = C (t)

(
MR

K + MR
K∗

)
. (5.39)

To predict production rates of the reaction pp̄ → YcȲ
′

c , the following Regge

propagators and scaling parameters for D and D∗ Reggeons are used (Brisudova

et al., 2000)

PR
D (s, t) = Γ [−αD (t)]α′

D

(
s

sD

)αD(t)
, (5.40)

PR
D∗ (s, t) = Γ [1 − αD∗ (t)]α′

D∗

(
s

sD∗

)αD∗ (t)−1
, (5.41)

where

αD (t) = −1.61 + 0.44t, (5.42)

αD∗ (t) = −1.02 + 0.47t. (5.43)
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In Eqs. (5.40) and (5.41), the scaling parameters for D and D∗ Reggeon exchanges

are SD = 5.46 GeV2 and SD∗ = 6.01 GeV2. The Regge formalism is consistent

with the conservation of unitarity, allowing for the reproduction of the tendencies

observed in scattering cross sections, particularly in the forward angle region. As

s → ∞, the asymptotic behavior of the differential cross sections, as given in Eq.

(5.10), is guaranteed.

However, in our construction of the Regge amplitudes using the vertex

structure of the Feynman amplitudes, the asymptotic behavior at s → ∞ may not

be automatically satisfied. To address this issue, we introduce a normalization

factor in accordance with the approach presented in Ref. (Titov and Kampfer,

2008).

N (s, t) = A∞ (s)
A (s, t) , A2 (s, t) =

∑
s3,s4

|M (s, t)|2 . (5.44)

The function M(s, t) is obtained by removing the denominator of the Feynman

propagator in the Feynman amplitude M. The term A∞ (s) represents the lead-

ing contribution in M(s, t) as s → ∞. It captures the dominant behavior of

the amplitude at high energies, providing important information about the scat-

tering process in the asymptotic limit. For pseudoscalar Reggeon exchange, we

get A∞ (s) = 2 (mN −mY ) (mN̄ −mȲ ′) while A∞ (s) = 4s is obtained for vector

Reggeon exchange. Therefore, Regge amplitude in Eq. (5.39) is then rewritten by

MR
pp̄→Y Ȳ ′ = C (t)

(
NK (s, t) MR

K + NK∗ (s, t) MR
K∗

)
. (5.45)

This form of the Regge amplitude is then consistent with the asymptotic condition

in Eq. (5.10).

Finally, we determine the overall constant b and the cutoff Λ in the form

factor C(t) to reproduce the magnitudes of the pp̄ → ΛΛ̄ and pp̄ → ΣΛ̄ cross
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sections. The obtained values are:

C(t) : b = 0.25, Λ = 1.1 GeV. (5.46)

These values of b and Λ are chosen to ensure a good agreement between the cal-

culated cross sections and the experimental data for the corresponding reactions.

5.4.2 Results for strangeness productions

The differential cross sections are presented in Figure 5.9. When compared

to the experimental data in Figures 5.9a and 5.9b, we observe an overall agreement

at a similar level to the effective Lagrangian approach. Particularly, the slopes of

the two data sets are well reproduced near the forward angle region. However,

for large values of t, the calculations underestimate the data. Consistent with

our previous findings, the vector K∗ Reggeon contribution dominates over the K

Reggeon contribution. In the Regge model, it is evident that the K Reggeon is

more suppressed as the final state becomes heavier (K(ΛΛ̄) > K(ΣΛ̄) > K(ΣΣ̄)).
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Figure 5.9 Differential cross sections for the reactions (a) pp̄ → ΛΛ̄, (b)

pp̄ → ΣΛ̄, and (c) pp̄ → ΣΣ̄ at plab = 6 GeV in the Regge model. The circles

denote the experimental data from Ref.(Becker et al., 1978).
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5.4.3 Predictions for charm productions

By applying the same set of parameters for the form factor C(t) and cou-

pling constants, we can predict charm production cross sections in the Regge ap-

proach. The results are presented in Figure 5.10 for plab = 15 GeV. As observed,

the charm production cross sections are suppressed compared to strangeness pro-

ductions by a similar amount as seen in the effective Lagrangian approach (refer to

Figures 5.6 to 5.8). Similar to strangeness production, the dominant contribution

comes from the D∗ (vector) Reggeon, while the D (pseudoscalar) Reggeon con-

tribution is highly suppressed. The magnitudes of the differential cross sections

range from 10−2 to 10−4µb/GeV2 near the forward angle region, which aligns with

the results obtained in Refs. (Titov and Kampfer, 2008; Khodjamirian et al.,

2012).
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Figure 5.10 Differential cross sections for the reactions (a) pp̄ → ΛcΛ̄c, (b)

pp̄ → ΣcΛ̄c, and (c) pp̄ → ΣcΣ̄c at plab = 15 GeV in the Regge model.

5.5 Total cross sections

In Figure 5.11, the total cross sections for different strangeness and charm

productions are presented as functions of s/sth, where sth = (mY +mȲ ′)2. These

results are obtained using the effective Lagrangian model with the form factor F
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given by Eq. (5.16). The figure shows the following production rates: (a) ΛΛ̄ and

ΛcΛ̄c, (b) ΣΛ̄ and ΣcΛ̄c, and (c) ΣΣ̄ and ΣcΣ̄c.
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Figure 5.11 Total cross sections for the reactions (a) pp̄ → ΛΛ̄ and pp̄ → ΛcΛ̄c,

(b) pp̄ → ΣΛ̄ and pp̄ → ΣcΛ̄c, and (c) pp̄ → ΣΣ̄ and pp̄ → ΣcΣ̄c. The circles are

the experimental data from Refs. (Becker et al., 1978; Barnes et al., 1989;

Barnes et al., 1991; Barnes et al., 1996).

The figures show that the total cross sections predicted by the two ap-

proaches exhibit similar overall behavior. There is a point of intersection at an

intermediate energy for all cases, such as s/sth ∼ 2.7 GeV for ΛΛ̄ production. This

crossing point is a result of parameter choices that were made to reproduce the

experimental data at that specific energy. Below the crossing point, the Regge

model predicts larger cross section values compared to the effective Lagrangian

model, while above the crossing point, the order is reversed. At high energies,

the Regge model successfully captures the expected decrease in the cross section.

Overall, the Regge model provides a better reproduction of the energy dependence

compared to the effective Lagrangian model. However, it should be noted that the

Regge model tends to overestimate the cross sections near the threshold region.

This discrepancy can be attributed to the presence of strong final state interac-

tions at low energies (Larionov and Lenske, 2017), particularly near the threshold,

which have not been considered in the present work. In reality, baryon-antibaryon
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annihilation can occur, leading to a partial loss of the initial flux.

Despite the difference in energy dependences in the two approaches, we have

found that the production rates of charmed baryons are about 10−4 - 10−6 times

those of hyperon productions, depending on the produced baryons and energies.

As a typical energy around s/sth ∼ 1.5 − 2.0, the reduction rate is about 10−5.

In Ref. (Haidenbauer et al., 1992), different cutoff parameter for KNΛ

and K∗NΛ vertices is employed for the total cross sections of pp̄ → ΛΛ̄ near the

threshold, ΛKNΛ = ΛK∗NΛ = 1.2 GeV. In our present approach, if we employ these

larger cutoff parameters, we need to reduce the strengths of the coupling constants,

in particular the dominant one for the K∗ meson, to reproduce the observed total

cross sections. However, the t-dependence of dσ/dt at pL = 6 GeV cannot be

reproduced well in this case. Furthermore, when extending their calculations to

the charm sector (Haidenbauer and Krein, 2017), a larger cutoff parameter of 3

GeV was employed. As a result, they have significantly larger production rates

for the charmed baryon productions, typically 10−1 times strangeness production

rates. If we consider the physical meaning of the cutoff as related to the hadron

size ∼ 1 fm, it is reasonable to employ a cutoff of order 1 GeV that leads to the

suppression of order 10−4 − 10−5.

 



CHAPTER VI

SUMMARY

We have constructed the effective Lagrangians for D-mesons, charmed, and

light baryons, which are invariant under isospin, chiral, discrete, and Lorentz

symmetries. The resulting Lagrangian comprises fifteen terms at the chiral orders

O(q0) and O(q). To enhance the model’s predictive power, we employ heavy quark

symmetry and large-Nc analysis to reduce the number of model parameters. Seven

free parameters remain after the heavy quark symmetry constraints, while six free

parameters are implied by large-Nc constraints. The combined constraints from

heavy quark and large-Nc analyses imply five free parameters. We estimate the

coupling constants for the effective Lagrangians by investigating the various decay

modes of Λc and Σc baryons using the effective Lagrangian method and quark

model.

We then investigate strangeness and charm productions using effective La-

grangian and Regge models. We formulate an effective Lagrangian model where

parameters and form factors are determined using various symmetry relations and

experimental data for strangeness productions, including dσ/dt at plab = 6 GeV

and the total cross sections σ at various energies. Our model explains both dσ/dt

and σ reasonably well. We then apply the model to the charm sector, where we

predict that the production rates are about 10−4 to 10−5 times those of strangeness

productions.

We perform a similar analysis in the Regge model, where we use the same

strategy as for the strangeness sector. We find that the resulting dσ/dt and σ
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agree reasonably well with data, and the Regge model provides a better fit for

the experimental data in the large energy region. We also find that the charm

production rates are similar to those obtained using the effective Lagrangian ap-

proach for s/sth ≲ 2. For the higher energy region, the Regge model predicts a

better decreasing tendency as it obeys the unitarity bound. Similar tendencies

were reported in previous investigations of pion-induced productions of charmed

baryons (Kim et al., 2015).

After conducting a systematic and inclusive study in these two approaches,

we find that the charm production rate in pp̄ collision is approximately 10−4 to

10−5 times that of strangeness in the energy region s/sth ∼ 1.5−2. Therefore, the

expected total cross sections vary from 10−2µb to 10−4µb, which is our probable

prediction.

The presently developed High-Energy Storage Ring (HESR) of FAIR is

to store antiproton in the momentum range from 1.5 to 15 GeV/c, and in the

future the Ring may be developed to a collider mode at
√
s up to 32 GeV. A

conservative estimation of the p luminosity which can be reached at the startup

phase is 4×1030 cm−2s−1. One may use this luminosity to estimate the significant

event rates for our predicted cross sections for 1 year (107 s) running of P̄ANDA

experiment (Frankfurt et al., 2020). For the maximum beam momentum (15

GeV/c;
√
s = 5.474 GeV), the s/sth are about 1.43, 1.33, and 1.24 for ΛcΛc, ΛcΣc,

and ΣcΣc channels, respectively. At s/sth = 1.2 − 1.5, the total cross sections

vary from 10−2 µb to 10−4 µb for the pp → ΛcΛc, ΛcΣc and ΣcΣc reactions, which

correspond to the significant event rates from 106 and 104 for 1 year (107 s) at the

luminosity 4×1030 cm−2s−1. With such event rates, one may comfortably measure

the cross sections. In addition, one is able to intensively perform the analysis for

angular distributions of charm production rates since the typical range of t is about

 



60

-1.14 to -16.62 GeV2. If this is the case, we expect even more abundant productions

for excited charmed baryons as suggested in Ref. (Shim et al., 2020). Therefore,

pp̄ process will be useful to explore further the nature of charmed baryons.
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APPENDIX A

CHIRAL POWER COUNTING OF MATTER

FIELDS

The self-interactions of Goldstone bosons as well as their interactions

with external fields are successfully described in ChPT for mesons. In general,

matter fields such as baryons and heavy mesons can also be incorporated as we

have already presented in Chapter II. Unlike Goldstone bosons, these matter

fields are not massless in the chiral limit, where mq → ∞. This means, the four-

momentum cannot be treated as a small quantity as those of Goldstone fields.

Therefore, the inclusion of the matter fields requires the additional power counting

rules. In fact, spatial three-momentum of the matter field can be regarded as a

small quantity.

For example, the four momentum p of the matter field can be written into

the sum of the two components, i.e. p = (m,0)+(E−m,p). In the chiral limit, the

first term is larger than the second one. Therefore, the second term is counted as

O(q), in which q denotes the ratio between spatial momenta or quark masses and

cutoff or typical mass scales. The power counting rule for pseudoscalar D-meson

is then given by,

D, ∂µD ∼ O(q0). (A.1)

For vector D-meson, the corresponding counting rule is

Dµ, Dµν ∼ O
(
q0
)
. (A.2)

The relevant power counting rules of the bilinears ψ̄Γψ, Ψ̄µΓψ, and Ψ̄µΓΨν are
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understood by evaluating the matrix elements of positive-energy solutions of the

Dirac equation

ψ+
q,s(x) = e−iq·x

√
Eq +m

2m

 1
σ·q

Eq+m

χ(1/2)
s , (A.3)

and of those for Rarita-Schwinger equation

Ψµ+
q,s (x) = e−iq·x

√
Eq +m

2m

 Sµ†(q)

Sµ†(q) σ·q
Eq+m

χ(3/2)
s , (A.4)

with

χ
(1/2)
1 =

1

0

 , χ(1/2)
2 =

0

1

 , Eq =
√
q2 +m2, (A.5)

and

χ
3/2
1 =



1

0

0

0


, χ

3/2
2 =



0

1

0

0


, χ

3/2
3 =



0

0

1

0


, χ

3/2
4 =



0

0

0

1


. (A.6)

The spin-transition matrices denoted by Sµ(q) are explicitly written as

S0† = |q|
m

0
√

2
3 0 0

0 0
√

2
3 0

 , S1† =

− 1√
2 0 1√

6 0

0 − 1√
6 0 1√

2

 , (A.7)

S2† =

− i√
2 0 − i√

6 0

0 − i√
6 0 − i√

2

 , S3† = Eq

m

0
√

2
3 0 0

0 0
√

2
3 0

 , (A.8)

In the low energy limit, the lower components of these plane-wave solutions are

suppressed as |q|
m

with respect to the upper components. To analyze the mo-

mentum dependence of the bilinears, we divide the 16 Γ matrices into two sets,

E = {I, γ0, γiγ5, σij} and O = {γi, γ5, γ0γ5, σ0j}, respectively. The matrices in O

couple large and small components while those in E do the opposite. As a con-

sequence, the counting rules for the bilinears ψ̄Γψ, Ψ̄µΓψ, and Ψ̄µΓΨν are given
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as

1, γµ, γµγ5, σµν ∼ O
(
q0
)
, γ5 ∼ O (q) , (A.9)

where q denotes the spatial momentum.

In this appendix, we have derived the chiral power counting rules of our

building blocks of the general chiral effective Lagrangian. These power counting

rules are then applied to classify the relevant Lagrangians at a given order in q.

 



APPENDIX B

ISOSPIN MATRICES

Under SU(2) isospin symmetry, we usually represent the isotriplet fields

Σc and Σ∗
c in their adjoint representations. Such representation can be written by

employing a three dimensional basis composed of the isospin matrices. When the

isotriplet state is coupled with doublet and anti-doublet states, it is convenient to

represent it in terms of three isospin Pauli-matrices,

τ1 =

0 1

1 0

 , τ2 =

0 −i

i 0

 , τ3 =

1 0

0 −1

 . (B.1)

In our case, we can represent the isotriplet state Σc as

Σ(t)
c = 1√

2
τ · Σc =

 Σ(3)
c Σ(1)

c + iΣ(2)
c

Σ(1)
c + iΣ(2)

c −Σ(3)
c

 , (B.2)

where the fundamental Σc fields are collected in Σc = (Σ(1)
c ,Σ(2)

c ,Σ(3)
c ) while

τ = (τ1, τ2, τ3). The transformations between the fundamental Σc fields and the

eigenstates of the electric charge, the physical Σc fields, are given as

Σ++
c = 1√

2
(
Σ(1)

c − iΣ(2)
c

)
, (B.3)

Σ0
c = 1√

2
(
Σ(1)

c + iΣ(2)
c

)
, (B.4)

Σ+
c = Σ(3)

c . (B.5)
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Therefore, the 2 × 2 matrix Σ(t)
c is written as,

Σ(t)
c =


1√
2Σ+

c Σ++
c

Σ0
c − 1√

2Σ+
c

 . (B.6)

On the other hand, this representation becomes irrelevant when we couple it to the

isobar state. Therefore, the adjoint represention of Σc field can be reinterpreted

in terms of isospin transition matrices,

T1 =



− 1√
2 0

0 − 1√
6

1√
6 0

0 1√
2


, T2 =



i√
2 0

0 i√
6

i√
6 0

0 i√
2


, T3 =



0 0√
2
3 0

0
√

2
3

0 0


, (B.7)

In this case, the 4 × 2 matrix Σ(T )
c is written by

Σ(T )
c = T · Σc =



−Σ++
c 0√

2
3Σ+

c − 1√
3Σ++

c

1√
3Σ0

c

√
2
3Σ+

c

0 Σ0
c


, (B.8)

with T = (T1, T2, T3). Originally, these matrices are constructed in the derivation

of spin-3
2 Rarita-Schwinger fields. More details can be found from Ref. (Semke,

2010).

 



APPENDIX C

REGGE PARAMETERS

In Regge theory, the transition amplitude in the Regge representation has

already been introduced in Chapter V. There are two model parameters: Regge

trajectory α(t) and scaling parameter s0. In this appendix, the evaluations of

these parameters will be briefly summarized. More information regarding the

evaluations of Regge trajectories can be found in Ref. (Brisudova et al., 2000). For

QGSM, the detailed information is provided in Ref. (Kaidalov and Volkovitsky,

1994).

C.1 Regge trajectories

We focus our discussion with meson trajectories since they have been em-

ployed to calculate production rates of various strange and charmed baryons. In

general, we can write the Regge trajectory α(t) in the nonlinear representation

α(t) = α(0) + γ
[√
T −

√
T − t

]
, (C.1)

where the parameter γ denotes an universal slope while the scale parameter is

written as T . In the diffractive region where −t ≪ T , the expression in Eq. (C.1)

is approximated as

α(t) = α(0) + α′t, (C.2)

with the corresponding slope α′ = γ

2
√

T
.

The trajectory intercepts and slopes are related by (Kaidalov and Volkovit-
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sky, 1994; Brisudova et al., 2000)

2αij̄(0) = αīi(0) + αjj̄(0), (C.3)

2
[
α′

ij̄

]−1
= [α′

īi]
−1 +

[
α′

jj̄

]−1
, (C.4)

where i, j (̄i, j̄) denote quark (antiquark) flavor. First, we consider the trajectory

of ρ-meson. The trajectory intercept which agrees with relevant evidences is given

as αρ(0) = 0.55 (Brisudova et al., 2000). By using the mass-spin relations of ρ

and ρ3,

αρ

(
m2

ρ

)
= 1,mρ = 769.0 ± 0.9 MeV, (C.5)

αρ

(
m2

ρ3

)
= 3,mρ3 = 1688.8 ± 2.1 MeV, (C.6)

the following parameters are consequently extracted

γ = 3.65 ± 0.05 GeV−1,
√
Tρ = 2.46 ± 0.03 GeV. (C.7)

Then, the parameters of K∗ trajectory are obtained by using the following

relations

αK∗

(
m2

K∗

)
= 1,mK∗ = 896.1 ± 0.3 MeV, (C.8)

αK∗

(
m2

K∗
3

)
= 3,mK∗

3
= 1776 ± 7 MeV, (C.9)

and the universal slope γ, which implies that

αK∗(0) = 0.414 ± 0.006,
√
TK∗ = 2.58 ± 0.03 GeV. (C.10)

By using relations in Eqs. (C.3) to (C.4), the parameters for ϕ are then extracted.

Therefore, trajectories for those containing charm quarks can also be extracted by
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using the universal slope γ and masses of the associated states. The parameters

for relevant meson trajectories are summarized in Table C.1

Table C.1 Parameters of corresponding meson trajectories for strangeness and

charm productions from pp̄ reactions

Trajectory α(0)
√
T (GeV) α′ (GeV−2)

π -0.0118 2.82 0.647
K -0.151 2.96 0.617
ηs -0.291 3.10 0.606
D -1.61105 4.16 0.439
ηc -3.2103 5.49 0.332
ρ 0.55 2.46 0.742
K∗ 0.414 2.58 0.707
ϕ 0.27 2.70 0.675
D∗ -1.02 3.91 0.467
J/ψ -2.60 5.36 0.340

C.2 Scaling parameters

In Kaidalov’s QGSM, the scaling parameter for the elastic scattering ab →

ab is calculated in terms of transverse masses of the quarks in the hadrons a and

b as

sab =
∑

j

m⊥j


a

(∑
k

m⊥k

)
b

, (C.11)

where m⊥j denotes the transverse mass of the constituent quark j, in which m⊥q =

0.5 GeV, m⊥s = 0.6 GeV, and m⊥c = 1.6 GeV. Therefore, the following scaling

parameters are obtained,

spp̄ = 2.25 GeV2 (C.12)

sΛΛ̄ =sΣΛ̄ = sΣΣ̄ = 2.56 GeV2 (C.13)

sΛcΛ̄c =sΣcΛ̄c = sΣcΣ̄c = 6.76 GeV2 (C.14)
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From the factorization of the inelastic scattering amplitude in the s-channel, the

relations between the scaling factors of inelastic scattering (ab → cd) and those of

elastic scatterings (ab → ab and cd → cd) are

(
sab→cd

p

)2αij̄(0)
=
(
sab
)αīi(0) (

scd
)αjj̄(0)

, (C.15)

(
sab→cd

v

)2[αij̄(0)−1] =
(
sab
)αīi(0)−1 (

scd
)αjj̄(0)−1

, (C.16)

where the corresponding exchanged trajectories are identified by the subscripts p

(for pseudoscalar meson) and v (for vector meson). Therefore, the scaling param-

eters for various strangeness productions are evaluated from

(
spp̄→ΛΛ̄

K

)2αK(0)
=
(
spp̄
)απ(0) (

sΛΛ̄
)αηs (0)

, (C.17)

(
spp̄→ΣΛ̄

K

)2αK(0)
=
(
spp̄
)απ(0) (

sΣΛ̄
)αηs (0)

, (C.18)

(
spp̄→ΣΣ̄

K

)2αK(0)
=
(
spp̄
)απ(0) (

sΣΣ̄
)αηs (0)

, (C.19)

(
spp̄→ΛΛ̄

K∗

)2(αK∗ (0)−1)
=
(
spp̄
)αρ(0)−1 (

sΛΛ̄
)αϕ(0)−1

, (C.20)

(
spp̄→ΣΛ̄

K∗

)2(αK∗ (0)−1)
=
(
spp̄
)αρ(0)−1 (

sΣΛ̄
)αϕ(0)−1

, (C.21)

(
spp̄→ΣΣ̄

K∗

)2(αK∗ (0)−1)
=
(
spp̄
)αρ(0)−1 (

sΣΣ̄
)αϕ(0)−1

. (C.22)

In case of charm productions, the relevant scaling parameters are given from

(
spp̄→ΛcΛ̄c

D

)2αD(0)
=
(
spp̄
)απ(0) (

sΛcΛ̄c
)αηc (0)

, (C.23)

(
spp̄→ΣcΛ̄c

D

)2αD(0)
=
(
spp̄
)απ(0) (

sΣcΛ̄c
)αηc (0)

, (C.24)

(
spp̄→ΣcΣ̄c

D

)2αD(0)
=
(
spp̄
)απ(0) (

sΣcΣ̄c
)αηc (0)

, (C.25)

 



85

(
spp̄→ΛcΛ̄c

D∗

)2(αD∗ (0)−1)
=
(
spp̄
)αρ(0)−1 (

sΛcΛ̄c
)αJ/ψ(0)−1

, (C.26)

(
spp̄→ΣcΛ̄c

D∗

)2(αD∗ (0)−1)
=
(
spp̄
)αρ(0)−1 (

sΣcΛ̄c
)αJ/ψ(0)−1

, (C.27)

(
spp̄→ΣcΣ̄c

D∗

)2(αD∗ (0)−1)
=
(
spp̄
)αρ(0)−1 (

sΣcΣ̄c
)αJ/ψ(0)−1

. (C.28)

By employing the intercepts of corresponding trajectories and elastic scaling pa-

rameters, the following results for strangeness and charm productions are obtained

sK = spp̄→ΛΛ̄
K = spp̄→ΣΛ̄

K = spp̄→ΣΣ̄
K = 2.42 GeV2, (C.29)

sK∗ = spp̄→ΛΛ̄
K∗ = spp̄→ΣΛ̄

K∗ = spp̄→ΣΣ̄
K∗ = 2.45 GeV2, (C.30)

sD = spp̄→ΛcΛ̄c
D = spp̄→ΣcΛ̄c

D = spp̄→ΣcΣ̄c
D = 5.46 GeV2, (C.31)

sD∗ = spp̄→ΛcΛ̄c
D∗ = spp̄→ΣcΛ̄c

D∗ = spp̄→ΣcΣ̄c
D∗ = 6.01 GeV2. (C.32)
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