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CHAPTER I

INTRODUCTION

Quark–gluon plasma (QGP) is a new state of matter that was present at ex­

tremely high temperatures and densities in the early universe. Contrary to a hadronic

medium (protons, neutrons, pions, etc.), it is characterized by deconfinement and chi­

ral symmetry restoration. In the year 2000, evidence for the new state of matter in Pb

+ Pb collisions was found at CERN (Conseil Européen pour la Recherche Nucléaire,

Geneva, Switzerland) from the heavy­ion program at the Super Proton Synchrotron

(SPS) (Schmidt et al., 1992).

The study of heavy ion collisions aims to explore the phase structure of nuclear

matter as a function of baryochemical potential µB and temperature T (M. Stephanov

et al., 1998; Alford et al., 1998). At µB= 0, a smooth crossover has been found while

for large µB, a discontinuous first­order phase transition is widely expected which ends

at a second­order critical point (CP) (Aoki et al., 2006; Steinbrecher, 2019).

Event­by­event fluctuations of conserved quantities such as net­baryon, net­

charge, and net­strangeness are sensitive to the correlation length and connected proxy

to thermodynamic susceptibilities calculated in lattice QCD (Cheng et al., 2009; Gavai

et al., 2008) or effective model calculations. The fluctuations of conserved quantities

are defined in the form of cumulants. To compare with the experimental data, ratios

of baryon number susceptibilities are used to eliminate the dependence on volume and

temperature of the system which are notoriously difficult to access. Higher order cumu­

lants of conserved quantities depend directly on higher powers of the correlation length

(M. A. Stephanov, 2011), and the correlation length of the nonequilibrium system de­

pends on expansion time and is limited by the system size. It has previously been shown
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that the correlation length increases to about 2 − 3 fm near the CP (M. A. Stephanov,

2009). Experimental programs such as the beam­energy scan program of the Relativistic

Heavy Ion Collider (RHIC) try to measure how e.g. net­proton skewness and kurtosis

deviate from baseline calculations with e.g. UrQMD or a hadron resonance gas model

to locate the QCD CP (Aggarwal et al., 2010).

The experimental data, the ratios of baryon number susceptibilities are used as

κσ2 = χ
(4)
B /χ(2)

B and Sσ = χ
(3)
B /χ(2)

B to ignore the volume and temperature of the system

that are hard to determine. Besides, the higher order cumulants of conserved quantities

depend directly on higher powers of the correlation length (M. A. Stephanov, 2011),

such as C2 ∼ ξ2, C3, ∼ ξ4.5 and C4 ∼ ξ7 and the correlation length of the system

depends on expansion time and is limited by the system size. The correlation length

increases to about 2­3 fm near the critical point (M. A. Stephanov, 2009).

Various experimental programs then try to measure how e.g. net­proton skew­

ness and kurtosis deviate from baseline calculations with e.g. UrQMD or a hadron res­

onance gas model to locate the QCD CP. Heavy­ion physicists keep investigating the

QCD phase transition to detect signals of a critical point (CP) in heavy­ion collisions.

The beam­energy scan program of the Relativistic Heavy Ion Collider (RHIC), which

is located at the Brookhaven National Laboratory (BNL), USA, then aims to study the

QCD phase structure and to search for the QCD CP (Aggarwal et al., 2010).

We follow the thesis in ”ENTROPY PRODUCTIONAT THE CHIRAL PHASE

TRANSITION” (Kittiratpattana, 2017). They study study the evolution of the expand­

ing medium using a spatially homogeneous fluid and a time­dependent order parameter.

The calculation is based on the Bjorken’s picture along with the homogeneous expand­

ing medium which simplifies the calculation into only one dimension (time). Finally,

the dynamics of entropy can be easily obtained by thermodynamics relation. In this

work, We focus on the calculation of the fluctuation of the order parameter and expand­
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ing result to freeze­out condition. To compare with the observable we investigate the

fluctuation in a net­proton number.

 



CHAPTER II

QUARK­GLUON­PLASMA AND QCD PHASE

TRANSITION

In this Chapter we would like to give some background information, on quark­

sand gluon chiral symmetry. we have discussed the basic of quantum field theory then

get equation of motion form the variation of the action vanished. We know all of the

conserved quantity can get from transformation such as translation, rotation, time in­

verse, etc. We then test on chiral symmetry by the vector­axial transformation. We then

talk about the spontaneous symmetry breaking which the mass of pion vanished called

Goldstone Boson and chiral Explicitly Break to get the mass of sigma field. Next, we

give the phase transition between chiral restoration and spontaneous chiral symmetry

breaking. Finally we then illustrate the chiral phase transition and suggest evidence for

a QCD critical endpoint.

2.1 The standard model

Standard model is named to explain the interaction of elementary particles. Cur­

rently, we classify fundamental particles into quarks and laptons as fermions. The

fermions are either the blocks of matter with interaction of boson as the force carrier

as shown in Figure 2.1.

The fermions are half­integer spin which obey Fermi­Dirac statistics called the

exclusion principle. The fermions cannot occupy the same place at the same time.

Bosons, in contrast, are have no problem occupying the same place at the same time

obey Bose­Einstein statistic. Gluons, photons, and the W, Z and Higgs are all bosons.
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Figure 2.1 The Standard Model of elementary particles, with the three generations of
matter(quarks and leptons), gauge bosons(force carriers) in the fourth column, and the
Higgs boson in the fifth (Fehling, 2008).

The carrier of the electromagnetic interaction is the photon. For weak and strong inter­

action, the carrier is W­Z boson and gluon, respectively.

Up to date, scientists found six flavors of quarks including up (u), down (d),

charm (c), strange (s), top (t), bottom (b). The color­charge are red (r) blue (b) and

green (g). When quarks are assembled into a hadron, the hadron has a higher mass due

to the QCD interaction, for example, proton (uud) including two of u quarks with mass

0.003 GeV/c2 and one of d quark with mass 0.003 GeV/c2. The combination is equal

to (2x0.003)+0.006=0.012 GeV/c2 or 12 MeV, but the mass of a proton is 938 MeV.

This one is occured by strong interaction such gluon, the gluon can be classified 8 types

including rḡ, rb̄, gr̄, gb̄, br̄, bḡ, rr̄, gḡ and bb̄ (the combination of previous one).

Now we can not detect free quark a gluon which is confinement state. The con­

finement determines quarks are never directly observed or found in isolation but color­

less hadrons. At high E, which is due to asymptotic freedom, the quarks always exist
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in a group and move freely when we work to separate one quark from another, the en­

ergy scale increases and the corresponding length scale decreases. The new state will

occur at the high energy called quark­gluon plasma as a deconfinement state. In this

work, we then study the quark a gluon by using effective theory which chiral perturba­

tion is an approximation using effective values of Lagrangian with chiral symmetry in

calculations.

2.2 Basics of quantum field theory

Here, I follow the explanation in “Aspects of chiral symmetry” (Koch, 1997). In

this section we will talk about the essentials of quantum field theory, we start with the

variation of the action S. This yields the equation of motion of Lagrange field theory.

Then we will show how do we get the conservation for symmetry of the Lagrangian.

Let’s start with what we know from classical mechanics. The variation of the

action S =
∫ t2
t1
dt L(q, q̇, t) is equal to 0,

δS = 0 ⇒ d

dt

∂L

dq̇
− ∂L

∂q
= 0. (2.1)

Here we are, L = T − V is the Lagrange­function. If we have a field theory, the

coordinates q will be replaced by the fieldsΦ(x, t). The velocities q̇ will also be replaced

by the derivatives of the fields,

q → Φ(x, t) , (2.2)

q̇ → ∂µΦ(x, t) ≡
∂Φ(x, t)

∂xµ
. (2.3)

The Lagrange­function is then given by the spatial integral over the Lagrangian density,
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L, or Lagrangian :

L =

∫
d3xL(Φ(x, t), ∂µΦ(x, t), t) , (2.4)

S =

∫ t2

t1

dt L =

∫
d4xL(Φ(x, t), ∂µΦ(x, t), t) . (2.5)

To consider the the variation of the action, the fields can be written in form as

Φ → Φ + δΦ , (2.6)

∂µΦ → ∂µΦ + δ(∂µΦ) , (2.7)

with

δ(∂µΦ) = ∂µ(Φ + δΦ)− ∂µΦ = ∂µ(δΦ) . (2.8)

Consequently, the variation of the action becomes

δS =

∫ t2

t1

dt

∫
d3x L(Φ + δΦ, ∂µΦ + δ(∂µΦ))− L(Φ, ∂µΦ)

=

∫ t2

t1

dt

∫
d3x

[
L(Φ, ∂µΦ) +

∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
δ(∂µΦ)

]
− L(Φ, ∂µΦ)

=

∫ t2

t1

dt

∫
d3x

(
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
∂µ(δΦ)

)
. (2.9)

Consider Einstein notation sum over index on last term,

∂µ(
∂L

∂(∂µΦ)
(δΦ)) = ∂µ(

∂L
∂(∂µΦ)

)(δΦ) + (
∂L

∂(∂µΦ)
∂µ((δΦ)). (2.10)

 



8

Due to δΦ = 0 at t1, t2, We then have,

∫ t2

t1

dt

∫
d3x

(
∂µ(

∂L
∂(∂µΦ)

(δΦ))

)
= 0. (2.11)

We have required that the variation of the action vanishes, then

0 = δS =

∫ t2

t1

dt

∫
d3x

(
∂L
∂Φ

− ∂µ(
∂L

∂(∂µΦ)
)

)
(δΦ). (2.12)

Now, we obtain the following equations of motion

∂L
∂Φ

− ∂µ(
∂L

∂(∂µΦ)
) = 0. (2.13)

If we have with more than one field, the fields are labelled by an additional index

∂L
∂Φi

− ∂µ(
∂L

∂(∂µΦi)
) = 0. (2.14)

2.2.1 Symmetries

What we know about classical mechanics is that if the Lagrange function is inde­

pendent of space and time, then momentum and energy are conserved. Here in quantum

field theory, the symmetries of the Lagrangian formulation lead to conserved quantities

as current conservation. Let us assume that L is symmetric under a transformation of

the fields,

Φ −→ Φ + δΦ. (2.15)
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It becomes

L(Φ + δΦ) = L(Φ), (2.16)

⇒ 0 = L(Φ + δΦ)− L(Φ) =
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
δ(∂µΦ). (2.17)

Using eq. (2.8) and the equation of motion (2.13) we have

0 =

(
∂µ
∂L
∂Φ

)
δΦ +

∂L
∂(∂µΦ)

(∂µδΦ)

= ∂µ

(
∂L

∂(∂µΦ)
δΦ

)
. (2.18)

So that,

Jµ =
∂L

∂(∂µΦi)
δΦi. (2.19)

This is a conserved current, with ∂µJµ = 0. Let us now add a symmetry breaking term

to the Lagrangian,

L = L0 + L1. (2.20)

WhereL0 is the symmetric part andL1 is non ­ symmetric under (2.15). So, the variation

of the Lagrangian L is non ­ zero and becomes

δL = δL1. (2.21)

We have divergence of current by following,

δL = δL1 = ∂µJµ. (2.22)
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Since δL1 ̸= 0 the current Jµ is not conserved. That means the symmetry breaking leads

to non­conservation of the current.

2.3 Chiral Symmetry

Firstly, we would like to introduce the conserved ‘axial­vector’ current. For

massless fermions, if its Lagrangian is invariant, this symmetry thus is called chiral sym­

metry. Consider the massless Dirac field which is corresponding to QCD Lagrangian

with out the interaction of gluon field strength tensor and invariant under the vector ­

axial transformations. To investigate symmetry of massless Dirac field the Lagrangian

is given by

L = iψ̄j∂/ψj, (2.23)

where the index ‘j‘ labels the two quark flavors ‘up’ and ‘down’.

Now, With the Pauli ­ (iso)spin­ matrices τ⃗ and ψ = (u, d) we consider the

transformation ΛV which changes sign if rotated through 180 degree,

ΛV : ψ −→ e−i τ⃗
2
Θ⃗ψ ≃ (1− i

τ⃗

2
Θ⃗)ψ, (2.24)

ψ̄ −→ e+i τ⃗
2
Θ⃗ψ̄ ≃ (1 + i

τ⃗

2
Θ⃗)ψ̄. (2.25)
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The Lagrangian is invariant under ΛV transformation,

iψ̄∂/ψ −→ iψ̄∂/ψ − iΘ⃗

(
ψ̄i∂/

τ⃗

2
ψ − ψ̄

τ⃗

2
i∂/ψ

)
= iψ̄∂/ψ. (2.26)

From the previous section eq.(2.19), the ’vector’ current divided by Θ⃗ can be written as

V a
µ = ψ̄ γµ

τa

2
ψ. (2.27)

Consider another transformation, it like vector under rotation but opposite sign

to vector under parity transformation :

ΛA : ψ −→ e−iγ5
τ⃗
2
Θ⃗ψ = (1− iγ5

τ⃗

2
Θ⃗)ψ, (2.28)

⇒ ψ̄ −→ e−iγ5
τ⃗
2
Θ⃗ψ̄ ≃ (1− iγ5

τ⃗

2
Θ⃗)ψ̄. (2.29)

We see the Lagrangian Eq. (2.23) is invariant by following

iψ̄∂/ψ −→ iψ̄∂/ψ − iΘ⃗

(
ψ̄ i∂µγ

µγ5
τ⃗

2
ψ + ψ̄ γ5

τ⃗

2
i∂µγ

µ ψ

)
(2.30)

= iψ̄∂/ψ. (2.31)

Then we obtain the conserved ‘axial ­ vector’ current,

Aa
µ = ψ̄γµγ5

τ

2
ψ. (2.32)

Now consider a finite quark mass and apply the above transformations to,

δL = −m (ψ̄ψ). (2.33)
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This is invariant under the vector transformations ΛV , under axial transformation ΛA

we get,

ΛA : m (ψ̄ψ) −→ mψ̄ψ − 2imΘ⃗

(
ψ̄
τ⃗

2
γ5ψ

)
. (2.34)

Hence L is not ΛA invariant for finite quark masses. But as the masses are very small

compared to the relevant energy scale ΛQCD, ΛA can regarded as the symmetry. We

have developed the vector­axial transformation to the combination of quark field for

example pions and sigma fields we obtain,

pion­like state: π⃗ ≡ iψ̄τ⃗γ5ψ; sigma­like state: σ ≡ ψ̄ψ

Here we go, the vector transformation ΛV is obtained as,

πi : iψ̄τiγ5ψ −→ iψ̄τiγ5ψ +Θj

(
ψ̄τiγ5

τj
2
ψ − ψ̄

τj
2
τiγ5ψ

)
= iψ̄τiγ5ψ + iΘjϵijk ψ̄γ5τkψ. (2.35)

Using the commutator, [τi, τj] = 2iϵijkτk, we obtain the isospin rotations,

π⃗ −→ π⃗ + Θ⃗× π⃗. (2.36)

Similarly, it is easy to see that under ΛV ,

σ −→ σ. (2.37)
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The axial transformations ΛA to test the symmetries give us,

πi : iψ̄τiγ5ψ −→ iψ̄τiγ5ψ +Θj

(
ψ̄τiγ5γ5

τj
2
ψ + ψ̄γ5

τj
2
τiγ5ψ

)
= iψ̄τiγ5ψ +Θiψ̄ψ. (2.38)

Using the anti­commutation relation of the τ , {τi, τj} = 2δij . The pi­mesons become,

π⃗ −→ π⃗ + Θ⃗σ. (2.39)

Similarly, we have

σ −→ σ − Θ⃗π⃗. (2.40)

We see the sigma field and the pions are not invariant under axial transformation, but

transformation achieve from into each other (mixing). To get a Lagrangian with chiral

symmetry, we have to use a suitable combination of σ, π⃗ to axial­vector invariance. We

see that σ2+π2 is a good choice because it is invariant under axial­vector transformation.

We will investigate this further in next Section.

2.3.1 The spontaneous symmetry breaking

To illustrate spontaneous symmetry breaking we consider a Lagrangian for a

scalar field, ϕ, in a potential V,

L = ∂µϕ∂
µϕ∗ − V (ϕ), (2.41)
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where ϕ = ϕ1 + iϕ2 and the potential energy V(ϕ) is given by

V (ϕ) = m2ϕ2 + λϕ4. (2.42)

Figure 2.2 Form2 > 0, we see the ground state is stable at ϕ = 0.

In Figure 2.2 the ground state is on the middle which is a local minimum of the

potential and is invariant under rotations.

In Figure 2.3, the state at ϕ = 0 is not stable which is a local maximum of the

potential. The system chooses ϕ = aeiθ to be ground state. We can not specific the

ground state because they are degenerate ground state under radius a at any θ. If we

choose some point of the ground state, it is not invaraint under rotations anymore. This

is called the spontaneous symmetry breaking.

if we move the ball around in the valley, it does not cost any energy due to

massless boson called Goldstone boson later. Then we will test global transformation
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Figure 2.3 For m2 < 0, we see clearly that the system have spontaneous symmetry
breaking at the ground state because the system is not stable at ϕ = 0.

U(1) of this lagrangian, consider the field in form of this formula

ϕ = (a+ ρ)eiθ. (2.43)

The lagrangian under U(1) is given by

L = ∂µρ∂
µρ+ (ρ+ a)∂µθ∂

µθ − V (ρ), (2.44)

and the potential is obtained as

V (ρ) = λ(ρ4 + 4aρ3 + 4a2ρ2 − a4). (2.45)

Now we have the new lagrangian. For s = 0, we have Klein ­ Gordon equation and its
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Lagrangian as

(
∂µσ∂

µσ +m2
)
= 0 , (2.46)

LKG =
1

2
(∂µσ) (∂

µσ)− 1

2
m2σ2 (2.47)

To find the mass of scalar field, we have to compare with Klein ­ Gordon. The

result gives ρ field as mass = 4λa2ρ2. Moreover the θ field have no mass. For strong

interaction QCD, we expect to have a finite scalar quark condensate< q̄q ≯= 0. In this

figure, it does not lose any energy in flat­direction due to a pion mass vanished which we

see from the PCAC relation, but radial­direction, there are massive σ because they are

moving like a harmonic oscillation with pullback force (Restoring force) due to mass.

So, we obtain the different masses of the pion and sigma from breaking the symmetry.

This is why π is so small compared to other hadrons.

2.3.2 Linear sigma­model

In this section, we will construct a chirally invariant Lagrangian using pions and

interaction of scalar fields called linear sigma ­model. Firstly, Thismodel was suggested

by Gell­Mann and Levy in 1960, the original one had nucleons.

Chiral symmetry, the Lagrangian does not change under transformations

SU(2)× SU(2), Consider the following the pion and σ­field transforms under ΛV and

ΛA give,

ΛV : πi −→ πi + ϵijkΘjπk ΛA : πi −→ πi +Θiσ (2.48)

ΛV : σ −→ σ ΛA : σ −→ σ −Θiπi. (2.49)
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The squares of the fields,

ΛV : π2 −→ π2; σ2 −→ σ2 (2.50)

ΛA : π⃗2 −→ π⃗2 + 2σΘiπi; σ2 −→ σ2 − 2σΘiπi. (2.51)

We see clearly that σ2, π2 are ΛV invariant but not ΛA invariant. Nevertheless, the

combination (π⃗2 + σ2) is invariant under both transformations, ΛV and ΛA,

ΛV ,ΛA : (π⃗2 + σ2) −→ (π⃗2 + σ2). (2.52)

We now introduce further part of the Lagrangian and make sure that they are

invariant under chiral symmetry transformation ΛV ,ΛA.

The pion ­ quark interaction can give in the form of the combination of the quark

field multiplied by pion field with normalized coupling constant gπ,

gπ
(
iψ̄γ5τ⃗ψ

)
π⃗. (2.53)

In above equation, the chiral transformations gives π2. To make it invariant,

we have to add some term that the chiral transformations obtain σ2. That one is the

meson­sigma interaction,

gπ
(
ψ̄ψ

)
σ. (2.54)

As a result, the interaction term between nucleons and the mesons is,

δL = −gπ
[
(iψ̄γ5τ⃗ψ) π⃗ + (ψ̄ψ)σ

]
. (2.55)
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Next, we need to find the potential. It must be chirally invariant as a function of

V(π2 + σ2). It is often referred to as the ‘Mexican ­ hat ­ potential and its minimum at

σ = fπ for π = 0. The simplest form is obtained as,

V = V (π2 + σ2) =
λ

4

(
(π2 + σ2)− f 2

π

)2
. (2.56)

From this potential behave like Figure 2.3, we found the pion to be massless corre­

sponding to θ and the σ­meson to be massive like ρ field that it describes spontaneous

symmetry breaking. Finally, we have to add kinetic energy terms for the mesons. For s

= 1/2, we have the Dirac equation and its Lagrangian as

LDirac = iψ̄∂/ψ . (2.57)

For s = 0, we have the Klein ­ Gordon equation and its Lagrangian as

LKG =
1

2
(∂µπ∂

µπ + ∂µσ∂
µσ) . (2.58)

All of these are part of the Lagrangian of the linear sigma­model, we combine

them together as follows,

LL.S. = iψ̄∂/ψ − gπ
(
iψ̄γ5τ⃗ψ π⃗ + ψ̄ψ σ

)
−λ
4

(
(π2 + σ2)− f 2

π

)2
+

1

2
∂µπ∂

µπ +
1

2
∂µσ∂

µσ. (2.59)

From the chiral potential, the spontaneous symmetry breaking chiral potential

creates the massive σ­meson and massless pion. To obtain the mass of sigma, we put

perturbation on the system as small fluctuation around the ground state,

σ = σ0 + (δσ); π = (δπ). (2.60)
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Then we put the fluctuation on the chiral potential to linear order vanished. It gives,

V (σ, π) = λf 2
π(δσ)

2 +O(δ3). (2.61)

The mass of sigma is characterized by temperature and chemical potential and it is equal

to the curvature of the thermodynamic potential in equilibrium,

m2
σ =

∂2V

∂σ2

∣∣∣∣
σ=⟨σ⟩

. (2.62)

Note that σ0 = fπ, we have

m2
σ = 2λf 2

π ̸= 0. (2.63)

In summary, we have ground state characterized by,

< σ > = σ0 = fπ (2.64)

< π > = 0 (2.65)

mq = gπσ0 = gπfπ (2.66)

m2
σ = 2λf 2

π ̸= 0 (2.67)

mπ = 0. (2.68)

2.3.3 Chiral Explicit Breaking of chiral symmetry.

In QCD we have a non zero quark mass term, leading to what is called explicit

symmetry breaking,

δLXχSB = −mq̄q. (2.69)
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This mass term will be also considered in our linear sigma model. As shown in eq.

(2.34), this term is not invariant under the axial transformation ΛA, but it is invariant

under ΛV . We then put the explicit breaking term on the Lagrangian as following,

δLSB = ϵσ. (2.70)

Here ϵ is the symmetry breaking parameter. The potential V eq. (2.56) becomes,

V (σ, π) =
λ

4

(
(π2 + σ2)− v20

)2 − ϵσ. (2.71)

On the explicit symmetry breaking case, we have replaced fπ by a parameter v0 for limit

of ϵ → 0. From equation (2.71), the symmetry breaking term is to tilt the potential see

Figure 2.4.

To find what the parameter v0 is, the derivative of the potential with respect to

scalar field σ at σ0 = fπ leading,

v0 = fπ −
ϵ

2λf 2
π

. (2.72)

The mass of the sigma is change, and now the pion mass is not massless. It becomes,

m2
σ =

∂2V

∂σ2

∣∣∣∣
σ0

= 2λf 2
π +

ϵ

fπ
, (2.73)

m2
π =

∂2V

∂π2

∣∣∣∣
σ0

=
ϵ

fπ
̸= 0. (2.74)

However the nucleon mass term should not be changed, it is the contribution of the

symmetric part of the potential (∼ v0) and the symmetry breaking term (∼ ϵ). Using
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Figure 2.4 Potential of linear sigma­model with explicit symmetry breaking, if the ex­
plicit symmetry breaking term ϵ is close to zero we have the parameters of this model
chosen as fπ = 93MeV,mπ = 138MeV. For finite quark mass, the explicit symmetry
breaking term is ϵ = fπm

2
π.

the Goldberger­Treiman relation, we have

MN = gπσ0 = gπ (v0 +
ϵ

2λf 2
π

). (2.75)

Substituting mass of σ and π on the above equation, we obtain

ΣπN = δMXχSB
N = gπ

ϵ

2λf 2
π

≃ gπfπ
m2

π

m2
σ

. (2.76)

Experimentally, the pion­nucleon scattering gives (Hoe83) ΣπN(0) = 35 ± 5MeV.
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2.3.4 Chiral phase transition

We previously mentioned the spontaneous symmetry breaking in the QCD vac­

uum. At high temperatures or baryon densities, lattice QCD expects chiral symmetry

to be restored with above a temperature T ∼ 150MeV that is believed to be created in

nuclear collisions on the ultra­relativistic regime. To investigate the existence of chi­

ral symmetry restoration. The bump in the potential would vanish, creating one single

minimum. The pions would not behave like Goldstone bosons anymore and become

massive.

In present work, we study the chiral phase transition between QGP, where the

chiral symmetry is restored, and a hadronic medium, where chiral symmetry is sponta­

neously broken. Our goal is to study the chiral transition and to investigate the impact

of a critical point at nonzero baryochemical potential µ and temperature T.

Figure 2.5 The sketch of phase diagram of strongly­interacting matter of confinement
and de­confinement state as a function of temperature T (MeV) and baryon chemical
potential µB (Sinha, 2016).

The phase transition show temperature T as a function of µ to separate a
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crossover, the first­order phase transition and the second­order phase transition where

the correlation length is diverge of susceptibilities. Due to the large correlation length ξ,

we expect to see the critical point as the second order phase transition suggested by (M.

Stephanov et al., 1998). We find that mσ = 1/ξ and the critical point is characterized

by ξ → ∞.

Such a phase structure is provided by the linear sigma model. We have the La­

grangian of the linear sigma model, following

L = q [iγµ∂µ − g(σ + iγ5τ⃗ · π⃗)] q +
1

2
(∂µσ∂

µσ + ∂µπ⃗ · ∂µπ⃗)− U(σ, π⃗) . (2.77)

Here the potential is written as

U(σ, π⃗) =
λ2

4

(
σ2 + π⃗2 − v2

)2 − ϵσ . (2.78)

The simplest way to find the boundary of phase transition is by minimizing the

grand canonical potential, Ω(σeq, T, µ) to find the equilibrium sigma ⟨σ⟩ = σeq, follow­

ing

∂Ω(σ, T, µ)

∂σ

∣∣
σeq

= 0. (2.79)

Here we have a system of quarks and antiquarks in thermodynamical equilibrium

at temperature T and quark chemical potential µ ≡ µB/3, consider the grand partition

function in mean ­ field path integral

Z = Tr exp
[
−
(
Ĥ − µN̂

)
/T

]
=

∫
Dq̄DqDσDπ⃗ exp

[∫
x

(
L+ µ q̄γ0q

)]
.

(2.80)

Here
∫
x
≡ i

∫ 1/T

0
dt

∫
V
d3x, where V is the volume of the system.

The grand canonical potential given by integrating the quark degrees of freedom
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in the path integral formulation of the grand canonical partition function becomes

Ω(T, µ) = −T lnZ
V

= U(σ, π⃗) + Ωqq̄. (2.81)

In above equation, the potential of quark and antiquark contribution is given by

Ωq̄q = −2NcNfT

∫
d3p
(2π)3

{
ln

[
1 + exp

(
E − µ

T

)]
+ ln

[
1 + exp

(
E + µ

T

)]}
.

(2.82)

Here the number of degrees of freedom for quarks is equal to 2NcNf = 12 for 2 flavor

(u,d) and 3 colours. Likewise, the relativistic energy of the valence quark and antiquark

under ultra­relativistic, E =
√
p2 +m2

q ,mq = gσ.

We have the grand canonical potential, we can obtain to any other thermody­

namics quantities by,

Ω = e− Ts− µn = −p (2.83)

= e− T

(
∂p

∂T

)
− µ

(
∂p

∂µ

)
. (2.84)

The distribution of quark nq and anti­quark nq̄ function can be written as

nq(T, µ) =
1

1 + exp[(E − µ)/T ]
, nq̄(T, µ) = nq(T,−µ) . (2.85)

The nucleon is composed of 3 constituent quarks. The net quark density is then

obviously n = 3nB. The baryon­chemical potential has required the quark and anti­
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quark distribution

nB = −1

3

∂Ω

∂µ
=

νq
6π2

∫
p2dp[nq(T, µ)− nq̄(T, µ)]. (2.86)

Integrating Eq. (4.10), we get pressure or energy dinsity of the contribution of

valence quarks and antiquarks by using above equation,

Pqq̄(T, µ) =
νq
6π2

∫ ∞

0

dp
p4

E
[nq(T, µ) + nq̄(T, µ)] . (2.87)

Now we can minimizing Ω with respect to σ and π⃗ as we mentioned, leading

∂Ω

∂σ
= λ2(σ2 + π⃗2 − v2)σ −H + gρs = 0 , (2.88)

∂Ω

∂πi
= λ2(σ2 + π⃗2 − v2)πi + gρps,i = 0 . (2.89)

Here, the scalar and pseudoscalar densities can be expressed as:

ρs = ⟨q̄q⟩ = gσνq

∫
d3p
(2π)3

1

E
[nq(T, µ) + nq̄(T, µ)] , (2.90)

ρ⃗ps = ⟨q̄iγ5τ⃗ q⟩ = gπ⃗νq

∫
d3p
(2π)3

1

E
[nq(T, µ) + nq̄(T, µ)] . (2.91)

Here we have set the expectation value of the pion field to zero, π⃗ = 0, the mass

thus become M2 = g2σ2 in term of energy to calculate the equilibrium quark bath at

nonzero T and µ = 0, and at nonzero µ and T = 0.

 



CHAPTER III

MODEL DESCRIPTION

In this Chapter we introduce HIC and freeze­out. Then we have discussed the

hydrodynamic evolution. To get the evolution of energy and momentum, we would

like to give the information about Einstein tensor. Solving this with the assumption

of Bjorken, we will get the Langevin equation which is used to get the evolution of the

sigma field. Finally, we test the fluctuation of the field by higher­order cumulants which

is the statistical method.

3.1 Heavy­ion collision

When two very high­energy heavy ions collide to each other, the collision creates

a very hot and dense medium, a fireball of a fluid­like medium. Then this hot fireball

expands and cools down undergoing the phase transition see Figure (3.1).

One distinguishes between two types of freeze­out, the first comes to the chem­

ical freeze­out after which no inelastic collisions occur anymore, resulting in the fixed

chemical composition of the system. Then, at the moment when elastic collisions cease

as well, one speaks of a thermal or kinetic freeze­out. From the definition, it is clear that

the chemical freeze­out will happen before the kinetic freeze­out.

There are properties of the thermal fireball at chemical freeze­out in heavy­ion

collisions at all energies. The freeze­out condition is related to the description of the

successful particle spectra, it is used for the understanding of particle production. The

freeze­out(T, µ) can be obtained by the thermal model describing the ratios of hadron

yields produced in nucleus­nucleus collision. The partition function yields the parti­

 



27

Figure 3.1 (a). Two heavy ion ­ flattened into a pancake shape since they are traveling
near the speed of light ­ collide into each other. (b). Protons and neutrons dissolve
for a brief instant, liberating their constituents (quarks and gluons) to form a Quark­
Gluon­Plasma (very hot and dense fireball) (c). The Quark­Gluon­Plasma subsequently
decays into thousands of particles (d). Each of these particles provides an information as
a foot­print to what occurred inside the collision zone. https://sciencenode.org/
feature/modeling-heavy-ion-collisions-open-science-grid.php

 

https://sciencenode.org/feature/modeling-heavy-ion-collisions-open-science-grid.php
https://sciencenode.org/feature/modeling-heavy-ion-collisions-open-science-grid.php
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cle number density ni for species i and is obtained by the grand canonical ensemble

following (Andronic et al., 2006),

lnZi = V di

∫ ∞

0

d3p

(2π)3
ln[1± exp(−(Ei − µi)/T )]. (3.1)

The above equation gives the particle number density as

ni = Ni/V = −T
V

∂ lnZi

∂µ
=

di
2π2

∫ ∞

0

p2dp

exp[(Ei − µi)/T ]± 1
. (3.2)

Here, di is the spin degeneracy factor. The fermions and bosons are represented by

sign +, and ­, respectively. In this context, the temperature Ti and chemical potential

µi are the conjectered values at freeze­out. The chemical potential is given as µi =

µbBi + µI3I3i + µSSi + µCCi for baryon number (µb), isospin (µI3), strangeness (µS)

and charm (µC).

This simple model explians the experimental data from CERN’s Super Proton

Synchrotron (SPS) up to RHICmeasured only elastic collision. The ratios of the particle

number is shown in Figure 3.2. To compare with thermal model, we see the effect of

baryon is clearly reduced, but temperature is constant at high beam energy. This is

corresponding to Bjorken assumtion that at sufficiently high energy collisions the mid–

rapidity region is approximately net–baryon free.

3.2 Relativistic Hydrodynamics

In this Section, we are discussing hydrodynamics to describe the space­time evo­

lution of the medium created after the collision. In local equilibrium, the condition for

hydrodynamics is to have a minimum mean free path less than the size of medium λ⟨⟨L
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Figure 3.2 The hadron yield ratios with best fit at the SPS beam energy of 17.3 AGeV
and the RHIC

√
s = 200 AGeV, Figure from (Andronic et al., 2006).

(Monnai, 2014). We define

λ =
1

ρσ
, (3.3)

here, the particle number density ρ and the interaction cross­section σ. Phenomenology,

the matter produced in these collisions behaves like a fluid (Ollitrault, 2008).

3.2.1 Perfect fluid

To provide the fluid equations, we introduce the energy­momentum tensor T µν

of a perfect or ideal fluid in its rest frame. The component of T µν
r described the four­

momentum component µ per volume perpendicular to ν,

T µν
r =

∆P µ

∆xν′ ̸=µ
. (3.4)
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For components µ = ν = 0,

T 00
r =

∆E

∆x∆y∆z

=
∆E

∆V

= e.

For components µ = ν ̸= 0,

T µν
r = p.

Now energy­momentum tensor T µν is given by

Trest =



e 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


. (3.5)

Applying two Lorentz transformations, the energy­momentum tensor in any

frame becomes

T µν = Λµ
ρΛ

ν
σT

ρσ
r (3.6)

= Λµ
0Λ

ν
0e+ Λµ

i Λ
ν
i p (3.7)

= (e+ p)uµuν − gµνp. (3.8)

Here, the Minkowski matrix gµν = diag(−1, 1, 1, 1) and uµ is the local four­velocity of

the fluid, defined as

uµ(x) = γ(x)(1, v⃗(x)), (3.9)
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where γ = 1/
√
1− v⃗2.

The hydrodynamic equations must conserve energy­momentum and baryon number,

∂µT
µν = 0, (3.10)

∂µj
µ
B = 0. (3.11)

Here, the baryon number current jµB = nB(x)u
µ(x) and nB is the net­baryon density

defined in the fluid rest frame (the baryon number is related to the quark number by

the factor of 3, i.e. nB = nq/3 ). In the rest frame of the fluid, the energy density is a

constant of time, ∂e
∂t

= 0 and the pressure is constant over space, ∂p
∂xi

= 0. For a moving

fluid, we obtain a scalar equation by contracting the conservation of energy with the

four­velocity, yielding

uµ∂µe+ (e+ p)∂µu
µ = 0. (3.12)

3.2.2 Bjorken’s scaling solution

After a proper time τ0 ∼ 1 fm, the quarks and gluons are expected to form an

equilibrated QGP see Figure 3.3. As soon as the system is in local thermal equilibrium,

its evolution can be described by relativistic hydrodynamics (Monnai, 2014), where in­

stead of single particles, energy and baryon densities are propagated according to the

corresponding conservation laws. The hydrodynamic stage is especially interesting as

it comprises not only the evolution of the QGP but also the subsequent phase transition

to the hadronic plasma. At some time τf , the hadrons will cease to interact and stream

freely into the detector where they are measured. This is called the freeze­out. More

precisely, one distinguishes between two types of freeze­out: first comes the chemi­

cal freeze­out, after which no inelastic collisions occur anymore, resulting in the fixed
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Figure 3.3 The space­time evolution of a heavy­ion collision according to the Bjorken
model (Shi et al., 2009).

chemical composition of the system. Then, at the moment when elastic collisions cease

as well, one speaks of a thermal or kinetic freeze­out. From the definition, it is clear that

the chemical freeze­out will happen before the kinetic freeze­out.

There are two simple pictures of heavy­ion collisions. First, the Landau picture

describes the collision process as a complete stop of the nuclei that lost all of their kinetic

energy (Landau, 1953). Subsequently, the particles expand hydrodynamically along the

beam axis. For higher beam energies in the ultrarelativistic regime, the kinetic energy of

the collision can not be deposit anymore due to the large stopping power, and we need

to apply the Bjorken picture (Bjorken, 1983) which proposes that the incoming nuclei

become transparent by penetrating each other and retaining part of their initial kinetic

energy. At mid–rapidity, the net–baryon number is then approximately zero. Due to

time dilation, the particles emerge on a hypersurface of constant proper time depicted

as a hyperbola in the Minkowski diagram.

For sake of simplicity, we consider a (1+1) dimensional expansion and use the
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light cone variables, proper time τ and space­time rapidity y,

τ =
√
t2 − z2, y =

1

2
ln
t+ z

t− z
(3.13)

t = τ cosh y, z = τ sinh y. (3.14)

All particles are produced in a very short interval around z = t = 0 that means

longitudinal motion is uniform and transverse motion has vanished. The four­velocity

uµ becomes,

uµ = γ(1, 0, 0, z/t) = (t/τ, 0, 0, z/τ) = (cosh y, 0, 0, sinh y). (3.15)

This is called scaling flow or Bjorken flow. Substituting this into Eq. (3.12),

gives us the independence of the pressure on space­time rapidity and, therefore, its

boost­invariance:

∂p(τ, y)

∂y
= 0. (3.16)

This means that the pressure is Lorentz invariant. We solve the equation for the

time dependent energy density by using the relations uµ∂µ = ∂
∂τ

and ∂µuµ = 1
τ
in Eq.

(3.12) and obtain

∂e

∂τ
= −e+ p

τ
. (3.17)

And similarly, the conserved baryon number becomes

∂n

∂τ
= −n

τ
. (3.18)
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3.3 Effective model

We will explain how to obtain the mass of the sigma field to determine the cor­

relation length ξ from the linear sigma of the quark­meson model which describes the

restoration of chiral symmetry at high T . Previous one, the protential of quark­antiquark

contribution reads,

Ωq̄q = −2NcNfT

∫
d3p
(2π)3

{
ln

[
1 + exp

(
E − µ

T

)]
+ ln

[
1 + exp

(
E + µ

T

)]}
,

(3.19)

U(σ, π⃗) =
λ2

4

(
σ2 + π⃗2 − v2

)2 −Hσ . (3.20)

Here, U (σ) represents the vacuum potential of the σ field corresponding to contribution

of thermal quarks. We have the particle energyE =
√
p2 +M2 , and the effective mass

of quarksM(σ) = gσ. The field q = (u, d) has the component of the light quark fields

only. The quark­meson coupling g depends on the nucleon mass and is fixed by g⟨σ⟩ =

940 MeV in a vacuum.

From this Lagrangian, we get the Langevin equation of motion as (Nahrgang, Leupold,

et al., 2011; Herold, Bleicher, et al., 2018; Nahrgang, Herold, et al., 2013)

σ̈ +

(
D

τ
+ η

)
σ̇ +

δΩ

δσ
= ξ . (3.21)

In the Hubble term ∼ D/τ , D is dimension setting D = 1, the case of a longitudinal

expansion along the direction of the beam axis and the σ̇ = dσ/dτ . Under the assump­

tion of the Bjorken model that the rapidity distribution of the charged particles is boost

invariant, we obtain energy and baryon density as

de/dτ = −(e+ P )/τ , dn/dτ = −n/τ .
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The damping coefficient η has been performed as

η =
12g2

π

[
1− 2nF

(mσ

2

)] 1

m2
σ

(
m2

σ

4
−m2

q

)3/2

. (3.22)

The damping η and noise ξ (t, x) term in the above equation satisfy the fluctuation­

dissipation theorem (Herold, Nahrgang, et al., 2013) :

⟨ξ(t)ξ(t′)⟩ξ = δ(t− t′)
mση

V
coth

(mσ

2T

)
. (3.23)

The mass of sigma is characterized by temperature and chemical potential and it is equal

to the curvature of the thermodynamic potential in equilibrium,

m2
σ =

∂2Ω

∂σ2

∣∣∣∣
σ=⟨σ⟩

. (3.24)

Similar to what was found in (Nahrgang, Leupold, et al., 2011) and noise ξ is

considered Gaussian and white.

 



CHAPTER IV

RESEARCHMETHODOLOGY

In this Chapter, we concentrate on how to calculate the evolution of a fireball

by numerical by solving the sigma field equation of motion as shown on flow diagram

(4.3). The equation comprises the evolution of the quark field and dissipation­noise in a

Bjorken expansion. Next, we investigate higher cumulants of the sigma field equation to

locate the critical point. We use a freeze­out to describe σ,N fluctuations as a function

of
√
s.

4.1 Phase transition

The dynamics of the order parameter σ fields and the quark­antiquark fluid will

be coupled together. The non­equilibrium equation of motion for the sigma field (N.

Cassol­Seewald et al., 2012) is,

∂µ∂
µσ + η

∂σ

∂t
+
δΩq̄q

δσ
= ξ(t), (4.1)

∂2σ

∂t2
+ η

∂σ

∂t
+
δΩq̄q

δσ
= ξ(t), (4.2)

Here, the order parameter depended on only time coordinating and η is a damping

coefficient as there are a dissipative or the interaction between chiral fields and quarks

fluid. ξ(t) represents the stochastic noise as a function of time which is Gaussian and

white. The total energy­momentum dissipation from the sigma field is given by

∂µT
µν
q = Sν . (4.3)
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In the absence of the interaction, the source term Sν vanishes and the energy­

momentum of the quarks are conserved. Thus, the total energy­momentum tensor of

quarks plus chiral fields is the conserved quantity;

∂µT
µν
q + ∂µT

µν
σ = 0 (4.4)

∂µT
µν
q = −∂µT µν

σ = Sν . (4.5)

Here, the divergence of the energy­momentum tensor for the fields is given by

∂µT
µν
σ = −

(
η
∂σ

∂t
+
δΩq̄q

δσ

)
∂νσ. (4.6)

The derivation of this divergence was shown in (Herold, 2013). The time de­

pendence of the energy density, thus, changes from Eq. (3.17) to

∂e

∂τ
= −e+ p

τ
+

(
η
∂σ

∂t
+
δΩ

δσ

)
∂σ

∂t
. (4.7)

Here,

Ω = −T
V
lnZ = Ωq̄q + U(σ, π⃗), (4.8)

Wewill explain how to obtain the chiral phase transition from quark­mesonmodel which

describes the restoration of chiral symmetry at high T ,

U(σ) =
λ2

4

(
σ2 − f 2

π

)2 − fπm
2
πσ + U0 . (4.9)

Here, U(σ) represents the vacuum potential of the sigma field corresponding to thermal
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quarks potential where the quark and antiquark contribution reads,

Ωq̄q = −2NcNfT

∫
d3p
(2π)3

{
ln
[
1 + exp

(
E − µ

T

)]
+ ln

[
1 + exp

(
E + µ

T

)]}
.

(4.10)

To get the phase transition as a function of T, µweminimize the grand canonical

potential,
∂Ω(σ, T, µ)

∂σ

∣∣
σ=σeq

= 0, (4.11)

to obtain σeq, We thus need to find an appropriate condition that the minimize potential

occurs setting temperature Ti varying from 0 to 250 MeV and baryochemical potential

µj varying from 0 to 400 MeV see Figure 4.1. Here all of the solution at equilibrium

can express as an array of σ

σeq(Ti, µj) =



σeq(T1, µ1) σeq(T1, µ2) · · · σeq(T1, µ401)

σeq(T2, µ1) σeq(T2, µ2) · · · σeq(T2, µ401)

σeq(T3, µ1) σeq(T3, µ2) · · · σeq(T3, µ401)

...
... . . . ...

σeq(T251, µ1 σeq(T251, µ2) · · · σeq(T251, µ401)


. (4.12)

In one phase, symmetry is restored, i.e. σeq ∼ 0), and symmetry is broken at

σeq > 0.

We can separate the order of phase transition by critical point as second order

phase transition. Here we then get our phase transition that they will propagate through

the different types of transition (FOPT, CEP, or CO) as shown in Figure 4.2.
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Figure 4.1 The sigma equilibrium at all Temperature T and chemical potential µ space
as shown in 3D­plot

4.2 Numerical evolution of sigma field

From the equation of motion for the sigma fields coupled with quark, we have

σ̈ +

(
D

τ
+ η

)
σ̇ +

δΩ

δσ
= ξ . (4.13)

We use the leap frog algorithm from (N. C. Cassol­Seewald et al., 2007). The iteration

of this algorithm by starting with,

∂σj
∂t

= σ̇j =
1

2

(
σ̇j+1/2 + σ̇j−1/2

)
, (4.14)

σ̇j+1/2 =
1

△t
(σj+1 − σj), (4.15)

∂2σj
∂t2

= σ̈j =
1

△t
(
σ̇j+1/2 − σ̇j−1/2

)
. (4.16)

(4.17)

 



40

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300  350

T
 (

M
e
V

)

µ (MeV)

The first order phase transition
The critical endpoint

The crossover boundary

Figure 4.2 The phase structure of chiral phase transition in temperature and quark chem­
ical potential space (T, µ). It has 3 types of the transition. The chiral first oder phase
transition ends at (100, 200)MeV. After this critical end point, lies a cross­over region.

Rewriting the Eq. (4.2) in discrete gives,

1

△t
(
σ̇j+1/2 − σ̇j−1/2

)
︸ ︷︷ ︸

∂2σj

∂t2

+ η
1

2

(
σ̇j+1/2 + σ̇j−1/2

)
︸ ︷︷ ︸

η
∂σj

∂t

+
δΩq̄q(σj)

δσ︸ ︷︷ ︸
δΩq̄q(σj)

δσ

= ξ(j). (4.18)

In a compact notation for the iteration, we end up with

σ̇j+1/2 =
1(

1 + 1
2
η△t

) [σ̇j−1/2

(
1− 1

2
η△t

)]
−
[
δΩq̄q(σj)

δσ
△t+ ξj△t

]
. (4.19)
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We then update σ by

σj+1 = σj + σ̇j+1/2△t. (4.20)

Consider the noise term ξ(t) , we have the fluctuation­dissipation relation,

⟨ξ(t)ξ(t′)⟩ξ = δ(t− t′)
mση

V
coth

(mσ

2T

)
. (4.21)

On our calculation, we get damping η and correlation length ⟨ξ(t)ξ(t′)⟩ξ by equilibrium

in vacuum from star. For t = t′, Gauss distribution and small mσ compared with QCD

regime give an amplitude

⟨ξ(t)2⟩ = 2ηT

V∆t
. (4.22)

the random fluctuation can then be written as

ξi =

√
2ηiT

V∆t
Gi , (4.23)

whereGi,n is obtained from a zero­mean Gaussian distribution. Here, index i = 1, 2 la­

bel the Gaussian noises and white noises, respectively. We use Marsaglia polar method.

For this, we consider random variablesW1,W2 which are uniformly distributed on [­1,

1] such thatW 2
1 +W 2

2 < 1. It can be generated as follows.

W1 = 2U1 − 1 W2 = 2U2 − 1, (4.24)

where 0 ≤ W 2
1 +W 2

2 < 1. Therefore, X is generated by

X =
√

−2ln(W 2
1 +W 2

2 )
W1√

W 2
1 +W 2

2

. (4.25)
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Gaussian random variable reads

G = X ∗ σ + µ . (4.26)

From equation (4.23), we consider a zero­mean Gaussian

ξi,n =

√
2ηiT

V∆t
Xi,n , (4.27)

where U1, U2 are random variable.

4.3 Numerics of hydrodynamic evolution

We have the energy in form of non­linear differential equation as a function as

shown in Eq. (4.7),

∂e

∂τ
=
e+ p

τ
+

(
∂Ω

∂σ
+ η

∂σ

∂τ

)
∂σ

∂τ
, (4.28)

f(e, τ) =
e+ p

τ
+

(
∂Ω(σ, T, µ)

∂σ
+ η

∂σ(T, µ)

∂τ

)
∂σ(T, µ)

∂τ
. (4.29)

The derivative of equation is obtained by a forth order adaptive Rung­Kutta al­

gorithm,

dy

dt
= f(y, t) (4.30)
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k1 = f(xj, tj) (4.31)

k2 = f(xj +
h

2
k1, tj +

h

2
) (4.32)

k3 = f(xj +
h

2
k2, tj +

h

2
) (4.33)

k4 = f(xj + hk3, tj + h) (4.34)

yj+1 = yj +
h

6
(k1 + 2k2 + 2k3 + k4). (4.35)

Here, h is a step size (time­step∆τ ). We choose the time­step∆τ equal to 0.08

fm,

k1 = f(ej, τj) (4.36)

k2 = f(ej +
dτ

2
k1, τj +

dτ

2
) (4.37)

k3 = f(ej +
dτ

2
k2, τj +

dτ

2
) (4.38)

k4 = f(ej + dτk3, tj + dt), (4.39)

ej+1 = ej +
dτ

6
(k1 + 2k2 + 2k3 + k4). (4.40)

Similarly, the quark density n as a function of time reads

∂n

∂τ
= −n

τ
. (4.41)
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Here, we have f(n, τ) = −n(σj, Tj, µj)/τ

k1 = f(nj, τj) (4.42)

k2 = f(nj +
dτ

2
k1, τj +

dτ

2
) (4.43)

k3 = f(nj +
dτ

2
k2, τj +

dτ

2
) (4.44)

k4 = f(nj + dτk3, τj + dt), (4.45)

nj+1 = nj +
dτ

6
(k1 + 2k2 + 2k3 + k4). (4.46)

The pressure at each time step is calculated from,

pj+1 = −Ωqq̄(σj+1, Tj+1, µj+1). (4.47)

Here, Tj+1 and µj+1 are updated in advance. The updated energy density ej+1

and quark density nj+1 are put used for solving the temperature Tj+1 and quark chemical

potential µj+1 according to the thermodynamics relation Eq. (2.3.4).

4.4 Central moment and Cumulants

In statistics, we characterize distribution by moments/cumulants. Experi­

mentally, we measure net­proton number (proton number minus antiproton number),

Np−p̄ = Np−Np̄. We useN to represent the net­proton numberNp−p̄ in one event. The

average value over the total event is defined as µ = ⟨N⟩, where ⟨N⟩ is the average for

one event. The deviation of N from the mean value can be written as

δN = N − ⟨N⟩. (4.48)
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With the evolution of the sigma field, we probe event­by­event fluctuation of the field

at each time step τi. We can define cumulants of various order of event­by­event

C1 = ⟨σ⟩, (4.49)

C2 = ⟨(δσ)2⟩, (4.50)

C3 = ⟨(δσ)3⟩, (4.51)

C4 = ⟨(δσ)4⟩ − 3⟨(δσ)2⟩2. (4.52)

We can get the event averaged sigma field by,

⟨σ(t)⟩ = 1

Nevent

∑
i

σ(i, t). (4.53)

To get the second­order cumulant, we have to calculate the average of square of sigma,

⟨δσ2⟩ = ⟨σ2⟩ − ⟨σ⟩2. (4.54)

Now, we have the first moment as the mean, the second moment as the variance

measured how much the probability distribution is spread from the mean, The third

moment as skewness that measures the symmetry of distributions and the fourth moment

as kurtosis which is the measurement of tailedness of distributions. These higher order

moments can be written in form of cumulant ratios as

M = C1, (4.55)

σ2 = C2, (4.56)

S =
C3

(C2)3/2
, (4.57)

κ =
C4

(C2)2
. (4.58)
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The chiral phase transition can be disclosed by event­by­event fluctuations of

conserved quantities such as the net­proton, net­baryon, and net­charge given by

Np = Nproton −Nantiproton, (4.59)

NB = Nbaryon −Nantibaryon, (4.60)

NCh = NCh+ −NCh− . (4.61)

We can represent these quantities by N then apply the grand canonical ensemble

to find the expectation values of these quantities given by

⟨N⟩ = 1

Z

∑
Ne

−(E−µN)
T = T

∂(lnZ)

∂µ
. (4.62)

We have used that P = (T/V )lnZ then the average values are given by

⟨N⟩ = V
∂P

∂µ
. (4.63)

Now we can write the fluctuation of these quantities in form of its pressure respective

to chemical potential µ such as

⟨δN2⟩ = ⟨N2⟩ − ⟨N⟩2, (4.64)

= T
∂⟨N⟩
∂µ

, (4.65)

= TV
∂2P

∂µ2
. (4.66)

The cumulants are related to the susceptibilities of the systemwhich is the deriva­

tive of the pressure with respect to the chemical potential. The generalized susceptibil­

ities are given by

χn =
∂n(p/T 4)

∂(µ/T )n
, (4.67)
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It is now easy to write the susceptibilities in the form of high order moments,

χ1 =
1

V T 3
⟨N⟩ =M,

χ2 =
1

V T 3

〈
δN2

〉
= σ2,

χ3 =
1

V T 3

〈
δN3

〉
= Sσ3,

χ4 =
1

V T 3

[〈
δN4

〉
− 3

〈
δN2

〉2]
= κσ4.

Experimentally, the dependence on volume and temperature of these fluctuations

is hard to measure directly. We therefore focus on ratios of cumulants to get rid of effect

of T and V ,

χ2

χ1

=
⟨δN2⟩
⟨N⟩

=
σ2

M
, (4.68)

χ3

χ2

=
⟨δN3⟩
⟨δN2⟩

= Sσ, (4.69)

χ4

χ2

=
⟨δN4⟩
⟨δN2⟩

− 3
〈
δN2

〉
= κσ2. (4.70)

The above cumulants have been measured by experiment, but in our model, we

determine the sigma field instead of the number particle. The field σ is not a conserved

quantity, but we can connect the fluctuations of the order parameter field σ to the fluc­

tuations of the observable quantities by effective field. The fluctuations of the order

parameter field σ(x) near a critical point can be described by the probability distribu­

tions as:

P [σ] ∼ exp{−Ω[σ(x)]/T} (4.71)

where Ω is the effective action functional for the field σ and can be expanded in powers
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of σ,

Ω =

∫
d3x

[
(∇σ)2

2
+
m2

σ

2
σ2 +

λ3
3
σ3 +

λ4
4
σ4 + . . .

]
. (4.72)

Consider the infinitesimal change of the field δσ, leads to a change of the effec­

tive mass of the particle by the amount δm = gδσ. We have the fluctuations δfk of the

momentum space distribution function fk of the coupling net protons in sigma model

defined as

δfk = δf 0
k +

∂np

∂m
g δσ . (4.73)

The first term δf 0
k is the purely statistical fluctuations, and the second is the distribution

np for a particle of a given mass around the equilibrium. We have the fluctuation of the

multiplicity N = V d
∫
f
� given by

δN = δN0 + V g δσ d

∫
k

∂np

∂m
, (4.74)

where d is the degeneracy factor of proton. Term δN0 can be approximated by a Poisson

statistics under assuming np ≪ 1, we can use the expectation of net­proton number for

this term. Nowwe can express the correspondingmoments in terms of theσ fluctuations.

For example, the 4­th moment can be expressed to leading order as

⟨(δN)4⟩c = ⟨N⟩+ ⟨σ4
V ⟩c

(
g d

T

∫
k

np

γk

)4

+ . . . , (4.75)

where γk = (dEp/dm)−1 is the relativistic gamma­factor of a particle with momentum

k and mass m. The first term is the Poisson baseline. By this, we can calculate N­

cumulants from σ­cumulants. We change integral on 4 momenta k by

∫
k
≡

∫
d3k
(2π)3

. (4.76)
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Now the fluctuation of the proton that is easy to integrate by numerical obtain

δN = δN0 − ⟨σV ⟩
(
g mp d

2Tπ2

∫ ∞

0

dk k2 np

E

)
. (4.77)

We can get an expression for higher­order fluctuations by assuming ⟨δσδN⟩ = 0, i.e.

the 4­th cumulant can be expressed as

⟨(δN)4⟩c = ⟨N⟩+ ⟨σ4
V ⟩c

(
g mp d

2Tπ2

∫ ∞

0

dk k2 np

E

)4

, (4.78)

where np = 1.0/(exp((E−µB)/T )+1). We can integrate numerically using Simpson’s

rule. An elementary computation reveals that

∫ b

a

f(k) dk =
b− a

6

(
f(a) + 4f(c) + f(b)

)
. (4.79)

Here, f(k) = k2 nP/E. a is lower limit and b is upper limit with b = a + h, h labelled

step size, c is equal to (a+b)/2.

4.4.1 Statistical Error

The statistical error for for cumulants ratios is estimated from the delta theorem

(Luo, 2012) for normal distributions. The error of the cumulant ratios is proportional to

the standard deviation of distribution as

error(
Cr

C2

) ∝ σr−2

√
n
, (4.80)

where rth is the order of cumulants,

n is the number of events,

C2 is the variance (σ2).
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The error of skewness and kurtosis is given by the following formula

error(Sσ) =
√
6
σ√
n
, (4.81)

error(κσ2) =
√
24

σ2

√
n
. (4.82)

4.5 Relation of initial condition to beam energy

Table (4.1) are summarized the thermal model fit with the collision beam energy.

To extend the descriptions over a wide range of beam energies, we see the beam energy

is increasing with the freeze­out temperature T and reducing with the baryon chemical

potential µB. Our analysis depends on the most recent results obtained in statistical­

thermal model fits Au+Au and Pb+Pb systems. Thermal model results gives the first a

polynomial fit,

T (µB) = a− bµ2
B − cµ4

B. (4.83)

Here, a = 0.166±0.002GeV, b = 0.139±0.016GeV −1 and c = 0.053±0.021GeV−3.

The energy dependence of the baryon chemical potential can be parameterized

as:

µB(
√
s) =

d

1 + e
√
s
, (4.84)

with d = 1.308± 0.028 GeV and e = 0.273± 0.008 GeV−1 (Cleymans et al., 2006).

 



51

4.6 Flow diagram

4.6.1 Get the susceptibility of the system computed in theoretical

calculations

Firstly, we import the files that give the calculation from star as a funtion of

(T, µ) consist of temperatureSigma(100651), temperatureEtasigma(100651), tempera­

turePress(100651), temperaturedsigmaPress(100651)

4.6.2 Initialize Hydro and Fields

Then the initial condition (T0, µ0) are chosen such that they will propagate

through the difference types of transition (FOPT, CEP or CO). We also apply the dim­

pling η and White/Gaussian noise (ξ) in vacuum

4.6.3 Evolve Fluid­dynamics

We solve the equation of motion (Langevin equation) on numerical method by

using leap frog algorithm then the eqution give eq. (4.18). This equation consist of

hydrodynamic equation energy and quark density (e, n) see in Section 4.3.

4.6.4 Cumulants

On this part, we update the sigma field as a function of time event by event fluc­

tuation and then update (T, µ). Nowwe obtain the sigma field event by event fluctuation.

To calculate cumulant, we need the sigma field average then using eq. (4.68­4.70). We

stop iteration when all of cumulant are converge as the same value.
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Get the susceptibility of the system computed in theoretical calculations

Initialize Hydro and Fields

Evolve Fluid­dynamics

sigma update

All event

Get the sigma average

Find the sigma average

Cumulants

Stop

yes

no

Figure 4.3 We solve the evolution of a fireball by simulation as shown in the flow
diagram calculating cumulants of σ.
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Table 4.1 Results obtained in statistical­thermal model fits to Au+Au and Pb+Pb colli­
sion systems by numerous groups over a wide range of energies. The checked entries
have been included in the fits to determine the T (µB) and µB(

√
s).

Collision System and Energy T µB Include in
(MeV) (MeV) Fits

RHIC
Au+Au

√
s = 200 AGeV 177±7 29±6

163±4 24±4
165.6±4.5 28.5±3.7

Au+Au
√
s = 130 AGeV 169±6 38.1±4.2 ✓

174±7 46±5 ✓
165±7 41±5 ✓

SPS
Pb+Pb 158AGeV

√
s = 17.3 AGeV 157.5±2.2 248.9±8.2 ✓

154.6±2.7 245.9±10.0 ✓
161.0±6.0 260.0±30 ✓

Pb+Pb 80AGeV
√
s = 12.3 AGeV 153.5±4.1 298.2±9.6 ✓

149.9±5.1 293.8±11.0 ✓
155.0±5.0 284.0±15.0 ✓

Pb+Pb 40AGeV
√
s = 8.77 AGeV 146.1±3.0 382.4±9.1 ✓

143.0±3.1 380.8±8.9 ✓
148.0±5.0 367.0±14.0 ✓

Pb+Pb 30AGeV
√
s = 7.62 AGeV 140.1±3.3 413.7±16.3 ✓

144.3±4.7 406.0±19.1 ✓
Pb+Pb 20AGeV

√
s = 6.27 AGeV 131.3±4.5 466.7±12.9 ✓

135.8±5.2 472.5±13.7 ✓
AGS

Au+Au 11.6AGeV
√
s = 4.86 AGeV 18.7±3.1 554.4±13.0 ✓

119.2±5.3 578.8±15.4 ✓
123.0±5.0 558.0±15.0 ✓

SIS
Au+Au 1.0AGeV

√
s = 2.32 AGeV 52±1.5 822 ✓

49.6±1 810±15 ✓
49.7±1.1 818±15 ✓
58±4 792±7 ✓

Au+Au 0.8AGeV
√
s = 2.24 AGeV 54±2 808±5 ✓

 



CHAPTER V

RESULTS AND DISCUSSIONS

From the previous Chapter, we have the program that is used to solve the evo­

lution of the sigma field and its fluctuation by using the Bjorken model coupled to the

Langevin equation. This chapter we will conclude all of the result form the numerical.

Firstly we would like to show the trajectory of fireball with different initial condition

evolving on chiral phase transition and freeze­out. Then we find the proper event to

get the higher cumulants on the sigma field. Finally we obtain the net­baryon number

fluctuation to compare with the experimental.

5.1 Chiral Phase transition

From the previous Chapter, we have the grand canonical potential Ω(σ) of the

chiral model. Theminimizing of the potential at a ground state ∂Ω
∂σ

∣∣
σ=σeq

gives to be zero.

We have the symmetry restored phase, the σeq ∼ 0 and the symmetry breaking phase,

the σeq > 0. Consider the non­vanished σeq, This case is occur in range of T < Tc. To

separate the first order phase transition and the crossover, the critical point is required.

We get the phase boundary by the highest derivative of the σ to the Temperature i.e.
∂σ(T,µ)

∂T
. If we consider the grand canonical potential, it would be flat at the critical

point. That mean the second derivative of the potential should be zero. Although, it

has no latent heat. The critical point has a divergence of susceptibility and correlation

length eq. (4.67). This divergence evokes a variety of phenomena that might serve as

an experimental signal for locating a critical point. Here, we get the critical point at

(Tc,µc) = (100,200) MeV. Now it is easy to find the first order for T < Tc, the σeq is
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Figure 5.1 The phase structure of chiral phase transition in different initial conditions
(Tint, µint) alongside trajectory of fireball.

approximate to be 0. As shown in the figure 5.1, The solid line represent the first order

phase transition and the critical point labelled green point. The evolution of the sigma

field is obtained by Langevin equation extract (T, µ) from eq. (4.13). We input different

initial conditions (Tint, µint). The sigma field evolve on equation from hydrodynamic

equilibrium as

n(σ, T, µ) =
∂p(σ, T, µ)

∂µ
(5.1)

e(σ, T, µ) = T

(
∂p(σ, T, µ)

∂T

)
− p(σ, T, µ) + µn(σ, T, µ). (5.2)

By above equation, we then get T,µ from comparing the energy to our simulation. It

should get the approximate same value. Then the Figure 5.1 show the evolved fireball
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on the chiral phase transition. The phase diagram shows the temperature as a function of

quark chemical potential. At a small chemical potential, we called the crossover region

and the endpoint labelled critical point or second order phase transition. The rest of the

boundary is represented by the first order phase transition. The trajectory is referred to

as the evolution of (T, µ) as a function of time on the phase transition.

5.2 Freeze­out condition

As mentioned on the previous Chapter, we require energy dependence of the

chemical freeze­out parameters T and µB measured the quark gluon plasma transit to

the hadronic medium at the equilibrium sigma field and detectable on a detector. The

freeze­out will help us compare to the experiment. We obtain the relation function of

beam energy and baryochemical potential µB and temperature T as shown in Figure 5.2.

From equation (4.84), we input the 9 beam energy
√
s corresponding to Table (4.1). We

then extract (T, µ) by eq. (4.83). We obviously see the temperature is increasing, while

the baryon chemical potential is decreasing as a function of beam energy see in Figure

5.2. Then we connect directly the freeze­out curve on the chiral phase transition by

scaling factor to the crossover region. At zero baryochemical potential µB ∼ 0, we

can get the temperature from eq.(4.83) at the freeze­out. We will see curve that it is not

correspondingwith the chiral phase transition. To corrected the baryochemical potential,

we need the scaling factor to multiply with the freeze­out curve to fit it to chiral phase

transition. The scaling factor is required Tfreeze−out/Tchiral. From eq. (4.83) at small

baryocemical potential µB = 0, we have Tfreez−eout(µm = 0) = 166MeV but the chiral

obtain the Tchiral(µm = 0) ∼ 145. The freeze­out curves have been obtained by dotted

line fit to chiral phase transition see Figure 5.3.

From the freeze­out of (T, µ), we obtain chemical freeze­out on chiral phase

transition is related to the particle production. Moreover we see the trajectories passing
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Figure 5.2 The energy dependence of temperature T and quark chemical potential µq.

through the first­order phase transition cross the freeze­out curve twice. For these cases,

we calculate the cumulants at both crossing points to give a range of possible values.

5.3 The number of event

In this Section, we obtain the sufficient number of events to test fluctuations of

higher order cumulants. We input the number events form 10,000 to 100,000 events

to test the higher order cumulant appearance as a function of initial condition of bary­
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Figure 5.3 The phase structure of chiral phase transition for freeze­out condition is la­
belled dotted­line.

ochemical potential. We see all of fluctuation get closer to each other depends on a

increasing number of events as shown on Figure 5.4. Now we choose 100,000 events

which is the maximum that we can do it to solve the higher fluctuation with different

beam energy in the next section.

5.4 Fluctuation of sigma field

We initialize the field and fluid in equilibrium at several starting points in the

chirally restored phase, see the beginning of the trajectories in the phase diagram of

the quark­meson model, Figure 5.1. These points are conveniently characterized by a

choice of initial values (T0, µ0). The coupled system of field and fluid is then evolved

according to eqs. (4.13) and (4.7) which gives an evolution of T and µ that can be seen
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in the same figure.

The point where the trajectories hit the dashed freeze­out line is used to de­

termine the event­by­event fluctuations. We hereby use a number of N = 105 events

which are randomized through the stochastic noise term ξ that yields a non­deterministic

evolution. The bending of the trajectories has been discussed in previous publications

(Herold, Kittiratpattana, et al., 2019). It is particularly worth noting here that, as a conse­

quence of this behavior, the trajectories passing through the first­order phase transition

cross the freeze­out curve twice. For these cases, we calculate the cumulants at both

crossing points to give a range of possible values.

This section presents the energy dependence for the cumulants of sigma fields

as the order parameter. We investigated the second order of cumulant as the variance

σ2, the third order of cumulant as the skewness Sσ and the forth order of cumulant as

the kurtosis κσ2 with different initial condition (T, µ), respectively.

Figure 5.5 shows the so obtained σ2, Sσ and κσ2 versus beam energy
√
s. We

note that for all these cases, the consideration of the spinodal region and double­crossing

of the freeze­out curve leads to an increased range of possible cumulant values for the

lowest beam energies. The variance, which is more or less constant, decreases by a fac­

tor of 2 after passing through the second crossing. A similar effect is observed for the

skewness, though somewhat less dramatic. The most dramatic impact is seen in the kur­

tosis. Although it increases monotonically within error bars, we see a clear sign change

at beam energy
√
s ∼ 3 GeV. As argued in (M. A. Stephanov, 2011) strong negative

values of the kurtosis of the order parameter are understood as a direct consequence of

a first­order phase transition.
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5.5 Fluctuation of the net­baryon number

As introduced previously, we purpose the fluctuation net­proton proxy to the

fluctuation of the sigma field by using perturbation of effective mass. This quantity

can obtain from the experiment. The high order moment of net­proton is related to the

susceptibility.

The Figure 5.6 shows the dimensionless non­normalized moments as a function

of center of mass energy, we see the variance σ2 is increasing until
√
s = 5 GeV and

then turn around decreasing with beam energy that mean the dynamical cumulants of the

sigma field are much increasing compared with the equilibrium values, after the fireball

evolves across the first order phase transition. Probing the non­Gaussian fluctuation

is obtained by the non­vanishing skewness Sσ increasing with beam energy close to 1

around
√
s = 20GeV. Finally, the kurtosis κσ2 has been shown the monotonic behavior

within error bars, and sign change at beam energy
√
s ∼ 3 GeV. The result give strong

negative values of the kurtosis at second hit corresponding to the first order phase tran­

sition described in (M. A. Stephanov, 2011). Due to the trajectories passing through

the first­order phase transition cross the freeze­out curve twice, we then connect them

together to obtain a range of possible cumulant values for the lowest beam energies.

Consider energy curve on gray band, the variance, which is less sensitive, decreases by

a factor of 2 after passing through the second crossing. A memory effect found on the

skewness, though somewhat less dramatic. The most sensitive susceptibility is seen in

the kurtosis. We found that the kurtosis is dropping to a value −5.

5.6 Comparison with experimental data

Experimentally, it has been measured the fluctuation of the net­proton. Espe­

cially, the Sσ and κσ2 has been investigated as shown in Figure 5.7.
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Figure 5.7 (1) σ2/M , (2) Sσ and (3) κσ2of net­proton distributions for 0­5% central
Au+Au collisions from

√
SNN = 7.7 ­ 62.4 GeV measured by STAR (STAR Collabora­

tion et al., 2021).

As shown in Figure 5.7, We see that the net­proton fluctuation for 0­5% central

Au+Au collisions fit to a polynomial approximation. The left panel σ2/M is fitting with

a polynomial of order 3 and its local derivative of polynomial fit with respect to collision

energy is increasing monotonically. The middle Sσ is fitting with a polynomial of or­

der 5 and its local derivative of polynomial fit have non­monotonic behavior. The right

panel κσ2 is fitting with a polynomial of order 4 and its local derivative of polynomial

fit is increasing monotonically. Moreover we found the negative sign changed of κσ2 at

low energy. Thus we see clearly that the cumulant ratios as a function of beam energy

change from a monotonic variation to a non­monotonic variation with higher orders. To

compare with experimental data, we measure the fluctuation of the net­proton number.

On the varaince σ2, the nonmonotonic behavior is observed, but the STAR experiment

obtain monotonically increasing. If we consider at low energy, our result is correspond­

ing to STAR. On the skewness Sσ, we see the fluctuation is converge to the Poisson

base line that is observed on both of STAR and our result. But our skewness is increas­

ing monotonically different from STAR decreasing monotonically. The most dramatic

kurtosis κσ2 is increasing monotonically. Although it increases monotonically within

error bars on STAR experiment, we still see the negative sign change at low energy both

 



65

of them. This agreement could hint that the first order phase transition is observed at
√
s = 3 GeV.

 



CHAPTER VI

SUMMARY AND CONCLUSIONS

Currently, the higher­order multiplicity moments are one tool to locate the QCD

critical point. The high energy physics hopes to pinpoint the one point that connecting

the first order phase transition, distinguishing the quark gluon plasma created at low­

medium from the hadronic medium.

In this work, we focus on the dynamic of the sigma field (σ) as the order pa­

rameter on the chiral phase transition. The one phase has occurred in the expansion of

the fireball to the hadronic matter described the spontaneous chiral symmetry break­

ing.The Langevin equation is described the evolution of the order parameter coupled

with Bjorken’s scaling picture including damping coefficient η and the stochastic noise

ξ(t) by White/Gaussian distribution.

We study the fluctuation of the sigma field by solving the Langevin equation to

investigate locating QCD critical point. The fluctuation of the sigma field is obtained

by higher order moments. To compare with the experiment, we connect the fluctuation

of sigma to proton given by the perturbation of effective mass.

We have studied cumulant ratios of the sigma field for different beam energies

within the nonequilibrium chiral Bjorken model based on the quark­meson Lagrangian

and observed double­crossing of the freeze­out curve leads to an increased range of pos­

sible cumulant values for the lowest beam energies. The kurtosis give a monotonically

increasing with the beam energy. The most sensitive susceptibility found the strong

negative values of the kurtosis of the order parameter and decreasing by a factor of 5.

As argued in (M. A. Stephanov, 2011) are understood as a direct consequence of a first­

order phase transition. For comparison with experimental data, we need to evaluate the

 



67

fluctuations in the net­proton number after a correct treatment of volume fluctuations

and the possible need for an extension of the Lagrangian to cure the problem of negative

pressure at lowest temperatures. We neglect the effect of the volume fluctuation. When

we investigrate on the higher cumulants of net proton, we fond a monotonic behavior

but the star experiment is observed nonmonotonic construction. Even the fluctuation

behavior is not obey the experiment, we still see a negative value of kurtosis decreasing

with a factor of 2 that corresponding with star experiment.

It must be stressed that although our theoretical framework is just a simple model

it is nevertheless able to describe the complex nature of dynamical phenomena near

a chiral CP. We found a large spread of possible values for variance, skewness, and

kurtosis at the first­order phase transition. Especially the kurtosis with strongly negative

values at low
√
s can hint at the presence of a first­order phase transition.
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APPENDIX

UNIT AND NOTATIONS

We work in units where c = h = kB = 1. With the relations

x = ct, (1)

hk = p, (2)

E = kBT, (3)

In particle physics, the space x and time t and momentum p as well as energy E

and temperature T are all in the same dimensions i.e. fm (femtometer or fermi) andMeV

(mega electron volt) respectively. These two are also equivalent and can be transformed

into each other via

1 = hc = 197.3 MeVfm (4)

The relations to usual SI­units are 1 fm = 10−15 m and 1 MeV = 1.602 · 10−13

J. The constants are the speed of light c = 2.99792458 · 108 m/s, the Planck constant

h = 1.055 · 10−34 Js and the Boltzmann constant kB = 1.381 · 10−23 J/K.

In four­dimensional Minkowski space, we write contravariant four­vectors as

xµ = (t, x, y, z) (5)

One can calculate the corresponding covariant vector xµ = gµνx
ν from the met­
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ric tensor gµν which we define in the convention

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(6)

such that

xµ = (t,−x,−y,−z) (7)

With this, the inner product

xµxµ = t2 − x2 − y2 − z2 (8)

is Lorentz invariant, a so­called Lorentz scalar. We define differential operators

as

∂µ =
∂

∂xµ
=

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∂µ =

∂

∂xµ
=

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
(9)

One can multiply these two to obtain the Lorentz invariant d?Alembertian oper­

ator

∂µ∂µ =
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
(10)

The energy­momentum four­vector of a particle in the contra­ and covariant form

reads
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pµ = (E, p⃗), pµ = (E,−p⃗) (11)

with E the energy and p⃗ the three­momentum of the particle. The square gives

the invariant mass

pµpµ = E2 − p⃗ · p⃗ = m2 (12)

The Dirac matrices are a set of four 4 × 4 matrices {γ0, γ1, γ2, γ4} that were

originally introduced by Dirac to transform the second­order Klein­Gordon equation

into a first­ order differential equation. The γ­matrices act on a space of spinors which

are defined by their behavior under rotations. They obey the Dirac algebra, i.e. the

anticommutation relation

{γµ, γν} = γµγν + γν , γµ = 2gµν (13)

In the Dirac standard notation they have the form

γ0 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


, γ1 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


, (14)
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γ2 =



0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


, γ3 =



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


In addition, one often defines a fifth* γ­matrix as

γ5 = iγ0γ1γ2γ3 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


(15)

with which one can define projectors PL and PR on the subspaces of particles

with different chirality, left and right handed:

PL =
1− γ5

2
, PR =

1 + γ5

2
(16)

Furthermore, the inclusion of a γ5 matrix changes scalars to pseudoscalars as it changes

sign under parity transformations, so ψ̄ψ is a scalar, while ψ̄γ5ψ transforms as a pseu­

doscalar.

The Gell­Mann matrices Ta that occur in the QCD Lagrangian are the infinites­

imal generators of the SU(3) color gauge group. They form a Lie algebra obeying the

commutation relations

[T a, T b] = T aT b − T bT a = ifabcT c (17)

*It was called fifth because back then the γi were counted from 1 to 4, so it is reasonable to call a new
one as fifth. But nowadays, we intuitively start with 0 instead
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with the completely antisymmetric structure constants

f 123 = 1, f 147 = f 165 = f 246 = f 257 = f 345 = f 376 =
1

2
, f 458 = f 678 =

√
3

2
(18)

The Gell­Mann matrices can be written as T a = λa/2 with the 3× 3 matrices

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 (19)

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 (20)

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (21)
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