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CHAPTER I 

INTRODUCTION 

 

1.1 Background and significances of the study 

 1.1.1 Background of the problem 

  Under a scenario of urbanization, natural landscapes are transformed into 

anthropogenic urban lands (Voogt and Oke, 2003), and urbanization also has resulted 

in intensive concentrations of the population and built-up environment (Chen, Yao, Sun 

and Chen, 2014). Regarding these effects, cities are now facing the problem of rising 

temperatures (Dimoudi et al., 2014; Giannopoulou et al., 2011; Taha, 2015; Zinzi and 

Agnoli, 2012). Most of the world’s cities show higher temperatures in urban areas than 

in rural areas (Schwarz, Schlink, Franck and GroBmann, 2012), where air and surface 

temperatures of urban areas are higher than those of its surrounding rural areas (He, 

Liu, Zhuang, Zhang and Liu, 2007). This phenomenon is called the urban heat island 

(Voogt and Oke, 2003). 

  Numerous previous studies have examined the UHIs in large cities, which 

are defined as a metropolitan area, but less often considered are the non-mega cities, 

especially in Asia (Wu, Lung and Jan, 2013). Karl, Diaz and Kukla (1988) strongly 

indicated that the influence of urbanization on long-term temperature records had been 

detected even for cities with a population less than 10,000. 
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  UHI phenomena have been studied by ground-based observations taken 

from fixed thermometer networks or by transverse with thermometers mounted on 

vehicles (Voogt and Oke, 2003). The traditional method is only valid where there is 

enough number of weather stations located over urban and rural areas (Ayanlade, 2016; 

Stewart and Oke, 2006), and a well-designed network of stations is required (Hu and 

Brunsell, 2015). Furthermore, in situ data offers high temporal resolution and long-term 

coverage but lacks spatial details (Weng, 2009). Satellites are an invaluable tool for 

UHI studies because of their ability to detect thermal features of the earth’s surface with 

broad spatial resolution. They can provide dense time-synchronized and continuous 

grids of temperature data over an entire city to perform a larger and more regular-

sampling than surface observations (Arnfield, 2003; Hung, Uchihama, Ochi and 

Yasuoka, 2006; Streutker, 2002). High-temperature environments negatively impact 

human health and comfort (Stewart and Oke, 2012), and also increase the mortality and 

morbidity of cardiovascular and respiratory diseases (Tian, Li, Zhang and Guo, 2013; 

Vaneckova, Beggs, Dear and McCracken, 2008). Furthermore, high temperature leads 

to an increase in fossil-fuel consumption to cooling down especially in summertime 

(Armson, Stringer and Ennos, 2012; Gaitani et al., 2011; Mahmuda and Webb, 2016). 

As a result, this process increases the emission of air pollutants (Abdul-Wahab, Bakheit 

and Al-Alawi, 2005; Elsayed, 2012; Van and Bao, 2008) as well as greenhouse gases 

(Leong, Chng, Ong, Choo and Laili, 2015). 

  Therefore, mitigating the impact of the UHI is a crucial mission in 

achieving sustainability in a city (Gaitani et al., 2011). Human has attempted to modify 

the environment to reduce the heat for good lives. Despite the use of a wind tunnel 

concept, the use of high albedo materials, and also increasing the wetlands and green 

 



3 
 

spaces are considered consequently. Regarding the previous works, it can be concluded 

that the use of vegetation in UHI mitigation is the most effective landscape strategy 

(Vidrih and Medved, 2013). Because this method addresses the real cause of the 

problem (Dimoudi and Nikolopoulou, 2003; Stabler, Martin and Brazel, 2005), and also 

reduces the heat stress produced by UHIs (Lin, Wu, Zhang and Yu, 2011). Furthermore, 

urban green space also provides other ecosystem services, such as pollution reduction 

and biodiversity habitat (Norton et al., 2015). 

  In conclusion, UHIs phenomena can occur even in a small city where the 

population is less than 10,000. The problem from the rising temperature in the urban 

areas becomes a critical environmental issue because the high surface and air 

temperature environments negatively impact human health and comfort. Therefore, 

urban microclimate improvement is a crucial consideration regarded to archive 

sustainability in a city. Green surfaces and parks play the most effective heat mitigation, 

especially in hot and humid countries. Not only the ability in heat reduction but urban 

green space also provides other ecosystem services, such as pollution reduction and 

biodiversity habitat. In the UHIs studies, at present, remotely sensed data are a unique 

source of information to define surface urban heat islands and provide a new avenue in 

UHIs observations. 

 1.1.2 Significances of the study 

  Firstly, the apparent change of LULC has occurred both in Buriram Town 

municipal area and surrounding areas since 2012. Most of the changes have occurred 

in bare lands, which changed into built-up areas, such as housing estates and hotels and 

townhouses. As a result, the increase of built-up areas causes a rise in temperature in 

Buriram Town Municipality and tends to occur in many places. Based on the population 
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statistic in 2017, as shown in Table 1.1, Buriram Town Municipality represents a small 

town with a high density of population as an example of several towns in the North-

east of Thailand. 

 

Table 1.1 The population statistic in 2017. 

 Municipality Type 
Area 

(Sq.Km) 

Population 

(2017) 
Density 

1 Buriram 
Town 

Municipality 
6.00 27,150 4,525.00 

2 Phon 
Town 

Municipality 
3.00 11,189 3,729.67 

3 
Nakhon 

Ratchasima 
City Municipality 37.50 129,680 3,458.13 

4 Surin 
Town 

Municipality 
11.39 39,168 3,438.81 

5 Roi Et 
Town 

Municipality 
11.63 35,671 3,067.15 

6 Kranuan 
Town 

Municipality 
3.77 10,310 2,734.75 

7 Udonthani City Municipality 47.70 130,274 2,731.11 

8 Ubon Ratchathani City Municipality 29.04 76,271 2,626.41 

9 Khon Kaen City Municipality 46.00 120,143 2,611.80 

10 Pak Chong 
Town 

Municipality 
15.25 34,947 2,291.61 

11 Maha Sarakham 
Town 

Municipality 
24.14 52,507 2,175.10 

12 Kantharalak 
Town 

Municipality 
8.68 18,795 2,165.32 

13 Warin Chamrap 
Town 

Municipality 
12.90 27,249 2,112.33 

14 Yasothon 
Town 

Municipality 
9.71 20,345 2,095.26 

15 Kalasin 
Town 

Municipality 
16.96 33,745 1,989.68 

16 Wang Sa-pung 
Town 

Municipality 
6.07 11,737 1,933.61 

17 
Phibun 

Mangsahan 

Town 

Municipality 
6.00 10,669 1,778.17 

18 Ban Phai 
Town 

Municipality 
16.20 28,153 1,737.84 
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Table 1.1 The population statistic in 2017 (Continued). 

 Municipality Type 
Area 

(Sq.Km) 

Population 

(2017) 
Density 

19 Det Udom 
Town 

Municipality 
8.10 13,854 1,710.37 

20 Loei 
Town 

Municipality 
12.41 21,013 1,693.23 

21 
Nonsong-

Namkham 

Town 

Municipality 
6.10 10,116 1,658.36 

22 Si Khiu 
Town 

Municipality 
11.63 17,875 1,536.97 

23 Taa bor 
Town 

Municipality 
12.62 17,761 1,407.37 

24 Nong Khai 
Town 

Municipality 
35.15 47,949 1,364.13 

25 Bua Yai 
Town 

Municipality 
10.63 13,978 1,314.96 

26 Chum Phae 
Town 

Municipality 
24.55 31,347 1,276.86 

27 Chaiyaphum 
Town 

Municipality 
30.78 36,588 1,188.69 

28 Buakhao 
Town 

Municipality 
9.95 11,713 1,177.19 

29 Muang Pak 
Town 

Municipality 
12.11 14,121 1,166.06 

30 Nong Samrong 
Town 

Municipality 
24.85 28,247 1,136.70 

31 Sisaket 
Town 

Municipality 
36.66 41,246 1,125.10 

32 Nakhon Phanom 
Town 

Municipality 
24.13 26,337 1,091.46 

33 Nang Rong 
Town 

Municipality 
20.77 21,336 1,027.25 

34 Sakon Nakhon City Municipality 54.54 53,237 976.11 

35 Mukdahan 
Town 

Municipality 
35.55 33,696 947.85 

36 Ban dung 
Town 

Municipality 
20.95 15,836 755.89 

37 Amnat Charoen 
Town 

Municipality 
38.00 25,964 683.26 

38 
Nong Bua 

Lamphu 

Town 

Municipality 
39.50 21,613 547.16 

39 Ban Thum 
Town 

Municipality 
61.97 17,945 289.58 

Source: (The Bureau of Registration Administration, 2018). 
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  Secondly, in this study, the ULST mitigation focuses on the third-level 

classification of LULC in a small density town at a micro-climate scale. The LULC 

types are classified as trees, shrubs, grasslands, bare lands, constructions, roads, and 

wetlands. At this level, the LULC types are shown as the typical mixed LULC. The 

urban growth relies on this concept can reduce the ULST, and the present urban area 

would consider this result to alternatively adjust some areas for ULST reduction. 

  Thirdly, to use LST values given be a sensor onboard a satellite, these must-

have gone through processes of validation and calibration that provide an estimation of 

the uncertainty of the value (Simo et al., 2016). This information is obtained primarily 

with ground-based data used for comparison (Simo et al., 2016). Until now, the 

validation of thermal infrared satellite products at moderate resolution was mostly 

performed over homogeneous surfaces such as lakes, deserts, and dense or very 

homogeneous vegetation covers (Guillevic et al., 2012). As the land surface is 

heterogeneous at the satellite pixel level, promising temperature-based validation based 

upon in-situ measurements is limited to homogeneous land surface types (Coll, Galve, 

Sanchez and Caselles, 2010). However, the accuracy of LSTs retrieved from 

heterogeneous or mixed pixels remains questionable (Liu, Hiyama and Yamaguchi, 

2006). 

  Finally, satellite remote sensing is an excellent tool for examining the UHI 

effect (Zhou, Chen, Wang and Zhan, 2011). Satellite thermal infrared resolution 

resolves the scales of urban-rural LST differences; however, it is not sufficient to 

resolve most urban features (roads and buildings) to study microclimates and human 

comfort in urban areas (Dominguez, Kleissl, Luvall and Rickman, 2011). Therefore, 
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downscaling LST is a significant method to improve the spatial resolution of mixed 

pixels retrieved from low-resolution sensors (Sattari, Hashim and Pour, 2018).  

 

1.2 Research objectives 

 The principal objective of this research is to simulate hotspot mitigation 

associated with proportions of green space in an urban area. Based on this intention, 

there are four specific objectives proposed for this research: 

 1.2.1 To explore the optimum method for ULST estimation. 

 1.2.2 To estimate subpixel LST data using the statistical-based method. 

 1.2.3 To identify the hotspots areas based on subpixel LST data. 

 1.2.4 To simulate hotspot mitigation associated with proportions of green space 

in an urban area. 

 

1.3 Scope and limitations 

 1.3.1 This study focused on the ULST at Buriram municipality in summer. 

LANDSAT-8 imagery data obtained on January 21, February 6, March 26, and April 

11, 2018, were implemented in this study.  

 1.3.2 The ground-based temperature surveying was done during 10.00 - 12.00 

a.m., which closed to the time that the satellite obtains the data at 10.30 a.m. on the 

same date of LANDSAT-8.  

 1.3.3 The simulation of the potential scenarios of ULST hotspot mitigation 

focused only on the amount of urban green space in the variation of LULC and LST 

data. 
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 1.3.4 The purpose of the mitigation is to reduce the hotspot temperature nearly 

or equal to the temperature of the surrounding area. Furthermore, the minimum 

proportions of green space, which can decrease the hotspot temperature higher than at 

least the decreased temperature in hotspot areas, were selected for hotspot temperature 

mitigation. It should be noted that at least the decreased temperature in hotspot areas 

was calculated based on the differentiated maximum temperature between hotspot areas 

and surrounding areas. 

 1.3.5 The optimum method in ULST estimation was explored based on LST 

algorithms used in this study, namely radiative transfer equation, improved-mono 

window, generalized-single channel, and split-window algorithm, by considering the 

lowest NRMSE value. 

 1.3.6 Although the thermal infrared bands in delivered data products were 

resampling to 30 meters, the estimated LST data based on resampling thermal bands 

are not actual high spatial-like data at 30 meters. Therefore, the statistical-based method 

was applied to estimate the relative LST data, which are high spatial-like data at 30 

meters, based on scaling factors. In this study, the results based on the statistical-based 

method are called subpixel LST data. 

 

1.4 Benefits of the study 

 1.4.1 Contributions to the knowledge 

  1.4.1.1 The subpixel LST estimation using the statistical-based method. 

  1.4.1.2 The location of hotspot areas within urban areas. 

  1.4.1.3 The efficiency of using vegetation to mitigate the ULST. 
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 1.4.2 Contributions to relevant stakeholders 

  1.4.2.1 Urban planner and landscape planner would use the result of this 

study to mitigate the ULST of hotspots in the urban area. 

  1.4.2.2 Urban planners or relevant organizations may use the protocol of 

this study in terms of studying processes to apply to other areas for ULST mitigation. 

  1.4.2.3 Provincial organizations may consider the result of this study to 

set up some urban landscape to reduce the ULST in urban areas. 

 

1.5 Study area 

 In this study, Buriram Town Municipality, as shown in Figure 1.1, is selected as 

the study area, to represent a small town with a high density of population.  

 

 

 Figure 1.1 Buriram municipality. 

 



10 
 

 Recently, nearly 30,000 populations live in the municipal area with a total area of 

approximately six square-kilometers (Buriram Municipality, 2016). There are many 

determinants in rapid urbanization, despite the success in the football club and 

motorsport, the famous tourist attractions, e.g., ancient sandstone sanctuaries, extinct 

volcanoes, and also the variety of cultures (Tourism Authority of Thailand, 2017). 

Furthermore, the local government plans to improve the city from Town Municipality 

to the City Municipality to support the urbanization in the future and also plans to 

develop the city into the city of sports and tourism (Buriram World, 2016). Regarding 

these effects, SUHI may be a critical impact on sustainable livelihood if there are no 

active plans response to rapid urbanization. 
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CHAPTER II 

LITERATURE REVIEWS 

 

 This chapter provides fundamental knowledge on several topics, (1) UHIs 

phenomena, (2) LST estimation using LANDSAT-8 imagery data, (3) subpixel LST 

data estimation, (4) hotspot analysis and (5) urban green spaces. Each topic contains the 

summary at the end, which leads to the significance of this research. The context is as 

follows. 

 

2.1 UHIs phenomena 

 Apparently, Luke Howard discovered UHIs phenomena in 1818; later, Gordon 

Manley was the first one who named urban heat island in 1958 (Chang, 2016; Zhang, 

Wu and Chen, 2010). The UHIs phenomena occur where air and surface temperatures 

of urban areas are higher than those of its surrounding rural areas (He, Liu, Zhuang, 

Zhang and Liu, 2007). However, the urban thermal environment varies not only from 

its rural surroundings but also within the urban area due to intra-urban differences in 

land use and surface characteristics (Hart and Sailor, 2009). With recent developments 

in cities, there is no distinct borderline between urban and rural areas as a result of urban 

growth. Therefore, the UHI can be considered in terms of the difference between the 

central parts of the city and its surrounding areas (Ngie, Abutaleb, Ahmed, Darwish and 

Ahmed, 2014). UHIs phenomena are well recognized in large cities, also in small ones 

(Blazejczyk, Bakowska and Wieclaw, 2006). The influence of urbanization on long-
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term temperature records has been detected even for cities with a population of less 

than 10,000 (Karl, Diaz and Kukla, 1988). 

 2.1.1 Causations of UHI 

  The UHIs phenomena are generally seen as being caused by a reduction in 

latent heat flux and an increase in sensible heat in urban areas as vegetated and 

evaporating soil surfaces are replaced by relatively impervious low albedo (solar 

reflectivity) paving and building materials (Imhoff, Zhang, Wolfe and Bounoua, 2010). 

The modification of the land surface in the urban area to build surfaces enhance the 

energy storage and the heat release (Carnielo and Zinzi, 2013). The effect of the 

building is considered one of the main reasons for the UHI effect. The building also 

alters the reception of solar radiation casting shadows and change surface roughness 

and local wind field. Most of the materials used in the construction provide a low albedo 

surface, resulting in increased absorption of solar radiation in the daytime. After sunset, 

the pavements and buildings will slowly begin to release the stored heat energy it 

accumulated throughout the day. However, as the buildings and pavement start to cool 

off, the air around them begins to heat up, consequently maintaining elevated 

temperature into the night (Thomas and Zachariah, 2011). 

  Clustered and interconnected transport areas also tend to mainly increase 

LST (Dugord, Lauf, Schuster and Kleinschmit, 2014). Furthermore, the sky view factor 

is also understood to be another factor leading to urban and rural temperature 

differences (Thomas and Zachariah, 2011). The sky view factor is a good proxy for 

population density. Strictly sky view factor will be low where density is high 

(Giridharan, Ganesan and Lau, 2004). 
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  The increase in the urban population produces more heat emission (Xu, 

Dan, Dan and Lu, 2009). Metabolic heat, which is produced by human bodies, also 

contributes to UHI. The large population density in the urban region makes the total 

amount of heat throw out by the human bodies be significant in terms of the heat budget 

(Thomas and Zachariah, 2011). However, anthropogenic heat is also produced from 

heating and cooling processes in buildings and vehicles (Mackey, Lee and Smith, 

2012). 

  Finally, local meteorological conditions and geography also affect the 

magnitude of a UHI (Fabrizi, Bonafoni and Biondi, 2010). The UHI intensity is 

negatively correlated with precipitation while positively correlated with wind speed, 

and the relation between the UHI intensity and evaporation varies with the seasons; 

namely, the intensity is positively correlated with summer evaporation but negatively 

correlated with winter evaporation (Ga, NiMa, Jun and CiRen, 2011). 

  Regarding the previous literature, it can be concluded that the energy 

storage of the buildings, clustering traffic, large population density, and hot and dry 

season are the major causes of UHI occurrences. 

 2.1.2 Impacts of UHI 

  As UHI effects lead to increased temperatures within cities, they deteriorate 

our living environment. High environmental temperatures are deleterious to health and 

comfort; prolonged exposure can be an instrument to the incidence of stroke, heart 

diseases, and pulmonary disorders (Elsayed, 2012). Many studies have reported that 

high temperatures increase the mortality and morbidity of cardiovascular (Tian, Li, 

Zhang and Guo, 2013), circulatory, respiratory diseases (Vaneckova, Beggs, Dear and 

McCracken, 2008), and the transmission of infectious diseases (Tomlinson, Chapman, 
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Thornes and Baker, 2011). Furthermore, the impact of heatwaves is often felt most 

active in towns and cities where populations are concentrated, and where the climate is 

often unintentionally modified to produce a UHI (Tan et al., 2010; Tomlinson et al., 

2011).  

  High temperatures also lead to increased energy demand for cooling 

buildings and air conditioning costs, especially in summertime (Mahmuda and Webb, 

2016). Air quality deterioration occurs due to increased electricity demand, whereby 

most of the power utility companies generate electricity by burning fossil fuel. As a 

result, this process increases the emissions of air pollutants such as sulfur dioxide, 

nitrogen oxide, particulate matter as well as GHGs like carbon dioxide and methane 

(Leong, Chng, Ong, Choo and Laili, 2015). High temperature and high solar energy 

also tended to increase the daytime ground-level ozone concentration, since, higher 

temperatures accelerate the chemical reaction that produces ground-level ozone, or 

smog (Abdul-Wahab, Bakheit and Al-Alawi, 2005; Van and Bao, 2008), and also cause 

an increase in the emissions of biogenic hydrocarbons as well as higher evaporation 

rates of synthetic VOCs (Elsayed, 2012). Furthermore, the UHI makes the polluted 

materials cannot be diffused quickly so that the urban area was polluted heavily (Cai, 

Du, Xue and Li, 2008). 

  Not only air pollution, but the UHIs can also affect water quality. The 

United States Environmental Protection Agency (2017a) reported that high pavement 

and rooftop surface temperatures could heat storm-water runoff, which drains into 

storm sewers and raises water temperatures as it is released into streams, rivers, ponds, 

and lakes. Water temperature affects all aspects of aquatic life, especially the 

metabolism and reproduction of many aquatic species. Rapid temperature changes in 
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aquatic ecosystems resulting from warm storm-water runoff can be particularly 

stressful, even fatal to aquatic life. 

  Finally, UHIs can also impact local weather, alter local wind patterns, spur 

the development of clouds and fog, and influence the rates of precipitation (Liu and 

Zhang, 2011). The UHIs can enhance and possibly initiate thunderstorms and rainfall 

(Dixon and Mote, 2003). Shepherd, Pierce and Negri (2002) suggested that within 30-

60 km downwind of the metropolis, the average increase in monthly rainfall could be 

as high 28 percent. However, it depends on the size of the city and its surrounding 

geographic features (Lin, Chen, Chang and Sheng, 2011). 

  Regarding the previous literature, it can be concluded that UHIs lead to an 

increase in electricity demand for cooling. In the electricity generating process, the 

burning of fossil fuel increases the emissions of air pollutants which directly impact 

human health. Furthermore, UHIs can also impact local weather, local wind patterns, 

and influence the rates of precipitation downwind of the areas. 

 2.1.3 UHI types 

  UHI can be categorized into two broad types; the first one is the 

Atmospheric UHIs, and the second one is the Surface UHIs (Zhou, Zhao, Liu, Zhang 

and Zhu, 2014). Their specific details are as follows. 

  2.1.3.1 Atmospheric UHIs  

   Atmospheric UHIS are best expressed under calm and clear 

conditions at night (Stathopoulou and Cartalis, 2007). Atmospheric UHIs are 

commonly analyzed at two scales; the first one is the urban canopy layer, and the second 

one is the urban boundary layer (Oke, 1976; Voogt, 2004), as shown in Figure 2.1. 
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Figure 2.1 Two-layer classification of thermal modification (Oke, 1976).  

 

   Based on Figure 2.1, the UCL is the layer of the urban atmosphere 

extending upwards from the surface to approximately mean building height. In-situ 

sensors typically detect the canopy layer heat island at standard (screen-level) 

meteorological height or from the traverse of vehicle-mounted sensors (Voogt and Oke, 

2003). The UCL is a micro-scale concept, its climate being dominated by the nature of 

the immediate surroundings (especially site materials and geometry). The depth of this 

layer may also be a function of wind speed, shrinking as stronger airflow allows 

influences from above to penetrate (Oke, 1976). 

   On the other hand, the UBL is situated directly above the UCL, 

which may be 1 km or more in thickness at daytime, shrinking to hundreds of meters 

or less at night (Voogt, 2004). This is a local or mesoscale concept referring to that 

portion of the planetary boundary layer whose characteristics are affected by the 

presence of an urban area at its lower boundary. The top of the urban boundary heat 

island is commonly capped by a temperature inversion, giving some correspondence 

with the upper limit of urban pollution (Oke, 1976). The UBHI observation is made 

from more specialized sensor platforms such as tall towers, radiosonde or tethered 

balloon flights, or aircraft-mounted instruments (Voogt and Oke, 2003). 
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   In general, air temperature UHI has high temporal resolution with 

extensive time coverage, and can adequately describe the temporal variation of the UHI 

effect (Li, Zhou and Ouyang, 2013). However, the limited footprint of a ground-based 

measurement and the sparse distribution of observations make it difficult to capture a 

broad distribution of temperature over highly heterogeneous urban areas. To solve these 

problems, usually, a well-designed network of stations is required (Hu and Brunsell, 

2015). On the other hand, many studies of the UHI effect have been based on LST 

(Shen, Huang, Zhang, Wu and Zeng, 2016). 

   LST is a crucial variable required for a wide variety of 

applications, e.g., climatological, hydrological, biogeochemical, agricultural, and 

change detection studies. It is maintained by the incoming solar and long-wave 

irradiation, the outgoing terrestrial infrared radiation, the sensible and latent heat flux, 

and the ground heat flux. Therefore, LST is a good indicator of the energy balance at 

the earth’s surface (Dash, 2005). In studies of urban climate change, the LST has been 

recognized as one of the most critical parameters affecting the UHI phenomenon (Liu 

and Zhang, 2011). 

   LST has proved to be close to atmospheric temperatures due to 

the transference of energy emitted from the land surface to the atmosphere (Nichol, 

1996; Nichol and Wong, 2008; Sun, Chen, Chen and Lu, 2012; Weng, 2009; Weng and 

Quattrochi, 2006). However, surface temperatures can be both higher and more variable 

than concurrent air temperatures due to the complexity of the surface types in urban 

environments and variations in urban topography (Imhoff et al., 2010). 

 

 

 



18 
 

  2.1.3.2 Surface UHIs  

   Surface UHIs are mostly found in summer midday (Imhoff et al., 

2010). The remotely sensed UHI has been termed the SUHI (Voogt and Oke, 2003). 

The first SUHI observation, from satellite-based sensors, was reported by Rao in 1972. 

He used 7.4 km resolution thermal measurements from the Scanning Radiation onboard 

the ITOS-1 to demonstrate that the New York City-Philadelphia-Baltimore-

Washington, DC, the urban corridor can be roughly delineated with such data (Matson, 

McClain, McGinnis and Pritchard, 1978).  

   Remotely sensed data have been widely used in the study of 

SUHIs phenomena based on LST data. In the studies of the SUHI characteristics, Zhou, 

Zhao, et al. (2014), Zhou, Qian, Li, Li and Han (2014) and Du et al. (2016) indicated 

that the SUHI differed significantly by season and characterized by a higher intensity 

in summer than in winter. Furthermore, Zhou, Zhao, et al. (2014) and Du et al. (2016) 

found that UHI intensity in the daytime was stronger than that at night. Xu et al. (2009) 

also indicated that SUHI demonstrates a single-center or double-centers at night, while 

the UHI demonstrates multi-centers at daytime. Considering the investigation of the 

UHI intensity, Xu, Chen, Dan and Qiu (2011) used Weighted-Average-Intensity and 

Urban-Heat-Island-Ratio, which were used in evaluating single-temporal UHI 

adaptation, in describing heat island intensity and in depicting development degree of 

heat island, respectively. Brightness Temperature and Brightness-Temperature-Grade-

Change-Index also be used in the analysis of dynamic characteristics of UHI at different 

times adopting.  

 

 

 



19 
 

    Another important key point is the most apparent dependence of 

the LST on different land cover types (Bokaie, Zarkesh, Arasteh and Hosseini, 2016; 

Walawender, Szymanowski, Hajto and Bokwa, 2014). Temperature decreased where 

the plant density or the amount of water increased, and vice versa (Uysal and Polat, 

2015). Therefore, increasing the water area is an effective way to alleviate UHI (Dan, 

Wu, Dan, Qiu and Xu, 2010). In contrast, increasing the build-up area causes a rise in 

temperature (Uysal and Polat, 2015) since there is a strong positive relationship exists 

between mean LST and percent impervious surface area (Li et al., 2011). 

    Areas with high temperatures are primarily located in the center 

of the city or nearby counties, while low-temperature areas are in the suburbs of 

counties (Ga et al., 2011). High average temperatures occurred in industrial and 

commercial area (Cai, Du and Xue, 2011; Dobrovolny, 2013; Li et al., 2011; Rinner 

and Hussain, 2011; Van and Bao, 2008, 2010; Xu et al., 2009), and also in the areas 

with having a high density of buildings, residents (Cai et al., 2011), roads, and 

transportations (Cai et al., 2011; Xu et al., 2009). In contrast, low average temperature 

occurred in parks and recreational land, water bodies (Rinner and Hussain, 2011), and 

also around the regions with large areas of grassland, trees, and water bodies (Cai et al., 

2011). Moreover, in suburban and rural areas, where agricultural land remains with full 

vegetation cover, the LST is usually low (Van and Bao, 2008, 2010). 

    Temperature statistics of main land cover types showed that 

built-up and bare land had higher surface temperatures than natural land covers, 

implying the warming effect caused by the urbanization with the natural landscape 

being replaced by urban areas (Xu, Qin and Wan, 2010). Changes in LULC and 

population shifts resulted in significant variation in the spatiotemporal patterns of the 
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UHIs due to the loss of water bodies and vegetated surfaces (Zhang,  Qi, et al., 2013). 

UHI intensity might be enhanced by intensified urbanization, wherein the built-up area 

expands, there is increased heat from human activity, and there is more artificial heat 

input to the atmosphere (Ga et al., 2011). The heat island effect is getting stronger, along 

with the cities’ development. The features of the heat island effect have a close relation 

to changes in the process of urbanization. The expansion of urban space and the 

distribution of industrial zones have evident impacts on the intensity of the heat island 

(Dan et al., 2010). Therefore, Gobakis et al. (2011) developed a model for UHI 

phenomenon prediction using neural network techniques. 

   Furthermore, Ahmed, Kamruzzaman, Zhu, Rahman and Choi 

(2013) simulated land cover changes and their impacts on LST in Dhaka, Bangladesh. 

This study first identified patterns of land cover changes between the periods and 

investigated their impacts on LST; second, they applied an artificial neural network to 

simulate land cover change; and finally, estimated their impacts on LST in respective 

periods. However, Zhou, Qian, et al. (2014) suggested that percent of imperviousness 

was the best predictor on LST with relatively consistent explanatory power across 

seasons, which alone explained approximately 50 percent of the total variation in LST 

in winter, and up to 77.9 percentage for summer. Vegetation-related variables, 

particularly tree canopy, were a good predictor of LST during summer and fall.  

    Since the LST data are based on the LULC types, several pieces 

of research are also focused on the relationship between LST and vegetation index. 

Correlation studies between NDVI and LST showed a negative correlation between 

these two parameters (Bokaie et al., 2016; Leong et al., 2015; Zhang et al., 2010). The 

highest the NDVI, the lower is the temperature, and vice versa (Leong et al., 2015). 
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However, Weng, Lu and Schubring (2004) indicated that LST possessed a slightly 

stronger negative correlation with the unmixed vegetation fraction than with NDVI for 

all land cover types across the spatial resolution (30 to 960 m). Correlations reached 

their most influential at the 120 m resolution, which is believed to be the operational 

scale of LST, NDVI, and vegetation fraction images. Furthermore, Chen, Zhao, Li and 

Yin (2006) found that correlations between NDVI, NDWI, and temperature are 

negative when NDVI is limited in range, but the positive correlation is shown between 

NDBI and temperature.  

    Not only the relationship between LST and LULC but also the 

relationship between LST and social factors. Huang, Zhou and Cadenasso (2011) found 

that variation in LST co-occurred with social variables. Neighborhoods with lower 

income, more poverty, less education, more ethnic minorities, more older people, and 

high crime risk tended to have higher LST. Also, energy consumption, Du et al. (2016) 

indicated that energy consumption, average temperature, and the urban area had a 

significant positive correlation with UHI intensity.  

    Another critical point is the relationship between LST and air 

pollutants. El-Gammal, Youssef, Ali and Madkour (2011) and Feizizadeh and Blaschke 

(2013) found that LST and PM10 show the negative correlation. Moreover, El-Gammal 

et al. (2011) also indicated that the correlation between nitrogen dioxide and LST is 

positive, whereas the results of sulfur dioxide show that the correlation is negative. 

Furthermore, Al-Seroury (2012) also indicated the high correlation between LST and 

hydrocarbons, carbon monoxide, nitrogen oxide, and sulfur dioxide.  
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    Finally, some research focused on the impacts of the UHI 

phenomena. Liu and Zhang (2011) used the UTFVI to describe the UHI effect 

quantitatively, and further assessed the ecological valuation of Hong Kong UHI. Also, 

the impact on Health, Tomlinson et al. (2011) found that concentrations of very high-

risk people live within the UHI. Wu, Lung and Jan (2013) also indicated that the 

empirical result demonstrated intensified SUHI in large and medium-sized cities in 

subtropical areas during heat waves, which could result in heat stress risks of residents. 

Dong et al. (2014) also found that the heat-health risk demonstrates a spatial-temporal 

pattern with a higher risk in the urban area, lower risk in the borderland between urban 

and rural areas, and lowest risk in the rural area. Furthermore, Wibowo, Kuswantoro, 

Ardiansyah, Rustanto and Shidiq (2016) found that the active temperature index 

explains that conditions as warm, uncomfortable, increase stress due to sweating and 

blood flow and may cause a cardiovascular disorder. 

  Regarding the previous studies, it can be concluded that UHI can be 

categorized as the Atmospheric UHIs and the Surface UHIs. The atmospheric UHIS is 

commonly analyzed at two scales, namely, UCL and UBL. Atmospheric UHI has high 

temporal resolution with extensive time coverage but lacks spatial details. Therefore, 

many studies of the UHI effect have been based on LST as SUHI.  

  Numerous studies are focused on the study of characteristics of SUHI and 

the relationship between LST and LULC. In detail, coarse and moderate spatial 

resolution image data are used in SUHI characteristic studies. The results indicated that 

a higher intensity characterizes SUHIs in summer than in winter, and the SUHI intensity 

in the daytime is stronger than that at night. Furthermore, the SUHIs demonstrate a 

single-center or double-centers at night, but SUHI demonstrates multi-centers in the 
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daytime. In the local scale, LANDSAT and ASTER imagery data are used in the studies 

of the relationship between land-use and land-cover and LST. The results indicate that 

the most apparent dependence of the LST on different land cover types. Built-up and 

bare land have higher surface temperatures than natural land covers, despite wetlands 

and vegetated areas. The areas with high SUHI effects are the industrial regions and the 

areas having a high density of buildings, transportation, and residents. However, the 

temperature can be decreased when the plant density or the amount of water increased 

and vice versa. Apart from the study of the relationship between LST and LULC, LST 

and SUHI also correlate with the air pollutants, social factors, and also the impact of 

SUHIs on human health. 

 2.1.4 UHI mitigation 

  The UHI phenomenon is generally seen as being caused by a reduction in 

latent heat flux and an increase in sensible heat in urban areas as vegetated and 

evaporating soil surfaces are replaced by relatively impervious low albedo (solar 

reflectivity) paving and building materials (Imhoff et al., 2010). Therefore, urban 

planners and natural resource managers should gain insights into the importance of 

balancing the relative amount of various types of urban morphology features and 

optimizing their spatial distributions (Srivanit and Kazunori, 2011). Besides, urban 

planners and designers should strengthen the construction of ecological corridors to 

facilitate mass and energy exchange between urban areas and their surroundings (Du et 

al., 2016). 
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  The use of urban surfaces with a high reflection coefficient, and planting 

trees and vegetation, is low-cost strategies that reduce the city’s temperature and 

cooling energy demands. It could also prevent the formation of smog within the city 

(Akbari and Leanna, 2008; Khodakarami and Ghobadi, 2016). 

  Carnielo and Zinzi (2013) suggested that the increase of solar reflectance 

or urban materials is a strategy aimed at reducing surface and air temperatures, and also 

mitigating the UHI. Increasing the solar reflectance of the urban materials is an 

emerging strategy that gained interest among the stakeholder to mitigate the urban 

temperatures, as well as to improve the energy performance of buildings. Furthermore, 

Mackey et al. (2012) suggested that the albedo increases produced more significant 

cooling than the vegetation increases. Especially, reflective roofs have proven 

themselves competent, and this is likely because they provided the highest amount of 

cooling for the smallest amount of money invested. Vegetation that is dense enough to 

provide the desired cooling seems to have high installation and maintenance costs that 

prevent it from having the same widespread cooling effects of reflective roofs. 

  The more albedo values produce more significant cooling conditions than 

the more vegetation covering space. Another critical point to remember is urban green 

space not only achieves temperature reductions in an urban area, but urban green space 

also provides other ecosystem services, such as pollution reduction and biodiversity 

habitat (Norton et al., 2015). These ecosystem services play a role in creating 

salutogenic urban environments that can help mitigate human health problems, such as 

asthma, allergies, obesity, and increased stress. It is has been shown that lack of green 

spaces in cities contributes to health disparities among people in lower and higher-
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income neighborhoods (Declet-Barreto, Brazel, Martin, Chow and Harian, 2013; 

Jennings, Gaither and Gragg, 2012; Wilson, 2009). 

  Not only urban green space, but wetlands also mitigate the intensity and 

spread of UHI (Bokaie et al., 2016; Thomas and Zachariah, 2011). Wetlands are, on 

average, colder than their surrounding landscapes. It indicates that the cooling effects 

of wetlands are significant in urban environments. Area and shape can impact the 

cooling effect of wetlands in urban regions. However, the cooling effect of wetlands 

does not linearly correlate with the wetland area. It indicates that the cooling effect has 

a threshold as the wetland area increases, and it is reasonable to benefit more 

stakeholders by substituting a large water body with several small water bodies of the 

same total area (Sun et al., 2012). The rationale behind the use of water bodies 

originates in the enhanced evaporation of the water bodies during the daytime, but the 

high heat capacity of water suppresses the diurnal and annual cycle water, and water 

temperatures remain relatively high after evening and season transitions (Steeneveld, 

Koopmans, Heusinkveld and Theeuwes, 2014).  

  Finally, wind speed has widely been reported to have decreased the 

intensity of heat island effect in urban areas (Rajagopalan, Lim and Jamei, 2014). Thus, 

wind tunnel or air path is a choice to mitigate the UHI in high-density cities. Ng, Yuan, 

Chen, Ren and Fung (2011) suggested that one of the most significant factors is urban 

morphology, especially the podium layer, and its implication to the urban air ventilation 

environment. These areas require the most significant design and planning intervention 

and improvement. For building block disposition, city planners need to factor in the 

prevailing wind understanding to street layout and building disposition design. City 

planners also initially estimate the possible urban air ventilation environment of the 
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urban areas with average velocity ratios. Adjust the pedestrian-level wind speeds and 

predicting the bio-climate conditions of the city have become possible. 

  Regarding the previous literature, it can be concluded that human has 

attempted to modify the environment to reduce the heat for good lives. Despite the use 

of a wind tunnel concept, it is increasing the solar reflectance, increasing the urban 

green spaces, or wetlands. However, the increase in urban green spaces is the most 

effective strategy in UHIs mitigation. Regarding the cooling effect not only occurs in 

the vegetated areas but also in the surrounding areas. Furthermore, vegetation provides 

other ecosystem services, such as pollution reduction and biodiversity habitat. 

 

2.2 LST estimation using LANDSAT-8 imagery data 

 The LST retrieval technology from remote sensing data made significant 

progress, and various methods have been proposed (Gao et al., 2015). The concept of 

remote temperature measurements using satellite thermometers can be dated back at the 

least to the late 1950s, and remote LST measurements to the early 1960s with the launch 

of TIROS (Dash, 2005). The LST estimation algorithms, with the LSEs, are known a 

priori, can be roughly grouped into three categories: single-channel methods, multi-

channel methods, and multi-angle methods (Li et al., 2010; Li,  Tang, et al., 2013). 

Many efforts have been devoted to the last two algorithms, and they can provide better 

results than single-channel on a global scale (Bhavanibhai, 2013; Li et al., 2010). 

 The single-channel method uses the radiance measured by the satellite sensor in 

a single channel (Li,  Tang, et al., 2013) which is based on the use of a radiative transfer 

model along with atmospheric water vapor and temperature profiles to correct the at-

sensor radiance to surface radiance, followed by an emissivity model to separate the 
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surface radiance into temperature and emissivity (Price, 1983; Schmugge, Hook and 

Coll, 1998; Scott and Chedin, 1981). Therefore, the accuracy of the single-channel 

method depends on the accuracy of the RTM used, and mainly on how well the 

atmospheric profiles represent the real state of the atmosphere over the studies area at 

the time of the satellite measurements (Coll, Caselles, Valor and Niclos, 2012).  

 Furthermore, Sobrino, Jimenez-Munoz and Paolini (2004) indicated that the 

primary constraint of this method is that it needs the atmospheric parameters, which 

can be calculated from in-situ radiosoundings launched simultaneously with the 

satellite passes or using a radiative transfer code like MODTRAN. In order to avoid the 

dependence on radiosounding in the RTE method, Qin, Karnieli and Berliner (2001) 

developed the MW algorithm for obtaining LST, which estimated from LANDSAT-5 

imagery, and Jimenez-Munoz and Sobrino (2003) developed the GSC (Sobrino et al., 

2004). However, Bhavanibhai (2013) indicated that the most useful method to correct 

remotely sensed radiance is using two radiometric measurements for which 

atmospheric absorption properties are different, as can be measured at two different 

channels known as the split-window method or at two different observation angles 

known as the multi-angle method.  

 The multi-channel method or the split-window was firstly proposed by McMillin 

in 1975 to determine the sea surface temperature ( Rozenstein, Qin, Derimian and 

Karnieli, 2014). Encouraged by the success of the split-window method for estimating 

the SST from space measurements, many efforts have been made since the late 1980s 

to extend the split-window method to retrieve the LST (Li,  Tang, et al., 2013). The first 

effort to retrieve LST from satellites was made by Price (1984), by adopting the 

AVHRR sea surface temperature split-window algorithm over agricultural land. 
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 The split-window algorithm uses two spectral bands at approximately 11 and 12 

µm, which are affected by different atmospheric absorption (McMillin, 1975), 

assuming that the emissivity in the channels used for the split-window is similar (Dash, 

Gottsche, Olesen and Fischer, 2002). Land surface brightness temperatures are then 

calculated as a linear combination of the two channels (Weng, 2009). This algorithm 

does not require accurate information about the atmospheric profiles during satellite 

acquisition, such algorithms have been widely used in LST retrieval from several 

sensors (Du, Ren, Qin, Meng and Zhao, 2015), but only an estimated of the column 

integrated water vapor content (French, Norman and Anderson, 2003). Furthermore, 

this algorithm can be used for atmospheric correction from the difference in top-of-

atmosphere radiance in two spectral channels (Yang, Wong, Menenti and Nichol, 

2015). 

 Finally, the multi-angles method is based on a similar principle of the split-

window algorithm, but different absorption is due to different atmospheric path-lengths 

for different observation angles. The measurements can be made from one satellite or 

simultaneously from two satellites (Dash, 2005). This method was primarily grown 

after the first sensor launch in July 1991 to operate in dual-angle mode, the Along Track 

Scanning Radiometer onboard the first ERS-1 (Bhavanibhai, 2013).  

 As one of the most critical aspects of the land surface, LST has been the central 

topic of developing methodologies to be measured from space (Avdan and Jovanovska, 

2016). Several platforms currently include in its sensor configuration one or more 

thermal bands. However, the LANDSAT series data is one of the most widely used 

satellite images for LST retrieving because of its free download available from the 

website of USGS (Liu and Zhang, 2011), and also have long term records data. 
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Furthermore, the high spatial resolution and regular revisit times of the LANDSAT 

mission are coarse enough for global coverage, yet details enough to characterize 

human-scale processes such as the dynamics of urban growth (Masek, Lindsay and 

Goward, 2000). The LANDSAT image also has been utilized for local-scale studies of 

UHI (Kumar, Bhaskar and Padmakumari, 2012; Weng, 2001; Yuan and Bauer, 2007). 

Lauwaet et al. (2016) also indicated that its series is the foremost data source for fine-

scale SUHI analysis. 

 LANDSAT-8 was successfully launched in 2013 and deployed into orbit with two 

instruments on-board, the Operational Land Imager and the Thermal Infrared Sensor 

with two spectral bands in the LWIR (Rozenstein et al., 2014). However, band 11 is 

significantly more contaminated by stray light than Band 10. It is recommended that 

users refrain from using Band 11 data in the quantitative analysis, including the use of 

Band 11 in split-wind surface temperature retrieval algorithms (United States 

Geological Survey, 2018). 

 Regarding the previous literature, it can be concluded that the presence of two 

TIR bands of LANDSAT-8 shows the possibility of applying split-window algorithms 

(Jimenez-Munoz, Sobrino, Skokovic, Matter and Cristobal, 2014a) and single-channel 

method in LST estimation. Based on the single-channel concept, there are three LST 

estimation methods, namely the radiative transfer equation-based method, the mono-

window method, and the generalized single-channel method (Li,  Tang, et al., 2013).  
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 2.2.1 Radiative transfer equation   

  The transmission of the surface emitted radiance through the atmosphere 

to the satellite and its interaction with the active elements of the atmosphere is expressed 

as radiative transfer and it is described by the RTE as Figures 2.2 and equation 2.1 

(Bhavanibhai, 2013). 

 

 

Figure 2.2  The radiative transfer process over the Earth surface in the TIR region. 

Source: Modified from (Bhavanibhai, 2013). 

 

  Lsensor, λ   =   ελBλ(Ts) τλ  +  Lu  +  (1 − ελ)Ldτλ  (2.1) 

 

  Where Lsensor is the at-sensor radiator or TOA radiance, i.e., the radiance 

measured by the sensor, ε is the land surface emissivity, Bλ(Ts) is Plank radiance at 

surface temperature Ts, τλ is the atmospheric transmittance, Lu is the up-welling path 

radiance, and Ld is the downwelling sky radiance at Earth’s surface.  

  Considering the equation 2.1, the first term stands for the surface-emitted 

radiance after being attenuated by the atmosphere, the second term corresponds to the 

up-welling sky radiance emitted by the atmosphere towards the sensor, and the third 
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term represents the down-welling radiation reaches the sensor after being reflected from 

the Earth’s surface (Bhavanibhai, 2013). Based on RTE, it is possible to estimate LST 

by inversion of Plank’s law (Skokovic et al., 2014). The LST is obtained from equation 

2.2. 
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  Where Lsensor is thermal radiance at the sensor level, ɛ is land-surface 

emissivity, τ is atmospheric transmissivity, Lu and Ld are up-welling, and down-welling 

atmospheric radiance, respectively, and C1 and C2 are constant coefficient. 

  However, the primary constraint of this method is that it needs the 

atmospheric parameters; atmospheric transmissivity (τ), down-welling atmospheric 

radiance (Ld) and up-welling atmospheric radiance (Lu), which can be calculated from 

in-situ radiosoundings launched simultaneously with the satellite passes, or using a 

radiative transfer codes like MODTRAN (Sobrino et al., 2004). Furthermore, the use 

of radiosounding is hampered by the insufficient density of the network, and timing 

(time of satellite pass) gives the poor representativity in some cases (in the arid region 

or near coastal areas). The reanalysis data is bound to introduce significant errors due 

to the spatial and temporal variability of the atmosphere. Only satellite sounder can 

provide acute information, but there are very fewer instruments which are having 

thermal imager channels with the sounder instrument. The method based on the 
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radiative transfer approach does not seem to be applied even though it can be used quite 

effectively for validating other methods (Bhavanibhai, 2013). 

 2.2.2 Mono-window algorithm 

  The mono-window algorithm was developed to obtain LST individually 

from LANDSAT-5 (Thematic Mapper channel 6, TM6) data by Qin et al. (2001) (Li,  

Tang, et al., 2013). However, Wang,  Qin, et al. (2015) improved the mono-window 

algorithm for LST estimation from LANDSAT-8. The LST can be obtained from 

equation 2.3. 

 

  LST =   ]DTD)TCD)C(b(1D)C[a(1 
C

1
aB     

           (2.3)  

 

  With  C  =  ɛτ     (2.4) 

    D  =  (1 - τ)[1 + (1 - ɛ)τ]   (2.5) 

 

  Where a and b are constant coefficients, ɛ is the land surface emissivity, τ 

is the total atmospheric transmissivity, TB is the at-sensor brightness temperature, and 

Ta is the mean atmospheric temperature. 

  This algorithm uses only the near-surface air temperature and water vapor 

content instead of atmospheric profiles using empirical linear relationships between the 

atmospheric transmittance and the water vapor content and between the mean 

atmospheric temperature and the near-surface air temperature (Li,  Tang, et al., 2013). 

This method is used when the ground truth data is not available (Zhang, Wang and Li, 

2006). The necessitates three main parameters are emissivity, transmittance, and mean 
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atmospheric temperature  (Bhavanibhai, 2013; Kikon, Singh, Singh and Vyas, 2016). 

However, the major drawback of this method is, it requires near-surface air temperature 

at the time of satellite overpass for deriving mean atmospheric temperature 

(Bhavanibhai, 2013). Furthermore, one of the limitations of this model is the range of 

water vapor for which it was designed, 0.4 to 3 g cm-2, which limits LST retrieval 

beyond these values. Moreover, there is no reference source in near-surface air 

temperature acquisition, an important practical issue when one wishes to retrieve LST 

over large areas (Cristobal, Jimenez-Munoz, Sobrino, Ninyerola and Pons, 2009). 

 2.2.3 Generalized single-channel algorithm 

  The generalized single-channel algorithm was developed by Jimenez-

Munoz and Sobrino (2003) to obtain LST from LANDSAT-5, based on RTE (Cristobal 

et al., 2009). However, in 2014, Jimenez-Munoz, Sobrino, Skokovic, Matter and 

Cristobal (2014b) improved the method for LANDSAT-8. The LST is obtained from 

equation 2.6 (Skokovic et al., 2014). 

 

  LST    =    δ]ψ)ψL(ψγ[ε 32sensor1

1     (2.6) 

 

  With  γ  = 
sensor

2

B

Lb

T



    (2.7) 

    δ  = 



b

T
T

2

B

B
    (2.8) 

 

 

 



34 
 

  Where Lsensor is thermal radiance at sensor level, bɣ equal  1,256 K, 1,324 

K, and 1,199 K for TM6, TIRS-1 (Band 10), and TIRS-2 (Band 11), respectively, TB is 

at-sensor brightness temperature, ɛ is the land surface emissivity, and ψ1, ψ2, ψ3 can be 

obtained as a function of the total atmospheric water vapor content (w). 

  This method is also used when the ground truth data is not available (Zhang 

et al., 2006) and requires only atmospheric columnar water vapor content-dependent on 

atmospheric correction (Bhavanibhai, 2013; Cristobal et al., 2009). Furthermore, this 

algorithm can be applied to different thermal sensors using the same equation and 

coefficient (Li,  Tang, et al., 2013). However, the optimal performance of this method 

is observed for the atmospheric with water vapor content in the range of 0.5 to 2.0 g 

cm-2 (Jimenez-Munoz et al., 2009; Vlassova et al., 2014). 

 2.2.4 Split-window algorithm 

  The split-window algorithm mainly eliminates atmospheric effects based 

on differential absorption in two thermal bands (Bhavanibhai, 2013). Furthermore, 

many efforts have made to extend the split-window algorithm because this algorithm 

assumes that the land surface emissivity values in both TIR channels are known (Mao, 

Qin, Shi and Gong, 2005; Price, 1984). Using the split-window algorithm, the TIRS 

band 10 and 11 provide the atmospheric rectification for the thermal infrared data 

(Cuenca, Ciotti and Hagimoto, 2013; Irons, Dwyer and Barsi, 2012). The developed 

split-window algorithm by Jimenez-Munoz et al. (2014b) presents in equation 2.9 

(Skokovic et al., 2014): 
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  Ts     =  
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  Where C0 to C6 is the Split Window coefficients, Ti and Tj are at-sensor 

brightness temperature at Bands i and j, respectively, ɛ is the land surface emissivity 

which obtained from ɛ = 0.5(ɛi + ɛj) and Δɛ = (ɛi - ɛj). 

  The split-window algorithm requires the retrieval of several coefficients. 

These coefficients are retrieval from statistical fits performed over a simulated 

database. Simulated data are obtained from atmospheric profile data sets used as inputs 

to the MODTRAN radiative transfer code (Jimenez-Munoz et al., 2014b). However, 

the split-window coefficients specific for each sensor (Keramitsoglou, Kiranoudis, 

Ceriola, Weng and Rajasekar, 2011). Furthermore, the coefficients depend on the 

atmospheric state and the surface emissivity, and they are chosen in order to minimize 

the error in the LST determination. Numerous studies have done to estimate these 

coefficients over the sea and land surface, but sometimes fixed values are utilized, 

imposing significant errors to the results (Vazquez, Reyes and Arboledas, 1997). 

 Regarding the previous literature, LANDSAT-8 imagery data can be used in LST 

estimation by using RTE, MW, GSC, and SW algorithm. However, each method 

contains its limitations and errors. The conclusion of the advantages and disadvantages 

of each algorithm are shown in Table 2.1. 
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Table 2.1 The advantages and disadvantages of each method. 

Methods Advantages Disadvantages 

Radiative 

Transfer 

Equation 

• Uses only one thermal band. 

• Can be used quite effectively for 

validating other methods 

(Bhavanibhai, 2013). 

• Requires certain atmospheric parameters, 

namely atmospheric transmissivity, down-

welling, and up-welling atmospheric 

radiance, which can be calculated from in-

situ radiosoundings launched 

simultaneously with the satellite passes or 

using a radiative transfer code like 

MODTRAN. 

• The use of radiosounding is hampered by 

the insufficient density of the network and 

timing (time of satellite pass) (Bhavanibhai, 

2013). 

Improve 

Mono-

window 

• Uses only one thermal band. 

• Requires the near-surface air 

temperature and water vapor content 

instead of atmospheric profiles. 

• Appropriate to use when the 

ground truth data is not available 

(Zhang et al., 2006). 

 

• Requires certain atmospheric parameters. 

• One of the limitations of this model is the 

range of water vapor for which it is 

designed, 0.4 to 3 g cm-2 (Cristobal et al., 

2009). 

• The near-surface air temperature is an 

important parameter used in the practical, 

atmospheric temperature calculation. 

However, there is no reference source in 

near-surface air temperature acquisition 

(Cristobal et al., 2009). 

• The relationships between transmittance 

and water vapor content depend on not well-

defined “high” and “low” air temperature 

values, whereas the relationship between the 

sufficient atmospheric temperature (Ta) and 

the near-ground air temperature (T0) are 

given for absolute standard atmospheres 

(Jimenez-Munoz et al., 2009). 

Generalized 

Single-

channel 

• Uses only one thermal band. 

• Uses only water vapor content as 

an atmospheric parameter in 

atmospheric function estimation. 

• Can be applied to different thermal 

sensors using the same equation and 

coefficient (Li,  Tang, et al., 2013). 

• If Ta is not available, LST retrieval 

using only water vapor content is 

the right choice when the 

atmospheric water vapor content is 

low or intermediate (Cristobal et al., 

2009). 

• Requires certain atmospheric parameters. 

• The atmospheric functions may be 

obtained more precisely from water vapor 

content and air temperature but through 

more complex models. 

• The optimal performance of this method is 

observed for the atmospheric with water 

vapor content in the range of 0.5 to 2 g cm-2 

(Vlassova et al., 2014). 
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Table 2.1 The advantages and disadvantages of each method (Continued). 

Methods Advantages Disadvantages 

Split-window • Does not require accurate 

information about the atmospheric 

profiles during satellite acquisition. 

• Uses only water vapor content 

• Can be used for atmospheric 

correction from the difference in 

TOA radiance in two spectral 

channels (Yang et al., 2015). 

• Uses two or more thermal bands. 

• Requires several coefficients which 

depend on the atmospheric state. Fixed 

coefficient values are utilized, imposing 

significant errors in the results (Vazquez et 

al., 1997). 

 

 

2.3 Subpixel LST estimation 

 Thermal infrared satellite images and derived LST are variables of interest in 

many remote sensing implementations (Rodriguez-Galiano, Pardo-Iguzquiza, Sanchez-

Castillo, Chica-Olmo and Chica-Rivas, 2012). The analysis of UHI at finer scale studies 

requires the LST at a higher spatial resolution than that provided by the currently 

available satellite thermal sensors (Liu and Pu, 2008; Lu and Weng, 2006). 

Furthermore, Dominguez, Kleissl, Luvall and Rickman (2011) indicated that satellite 

TIR resolution resolves the scales of urban-rural LST differences; however, it is not 

sufficient to resolve most urban features to study microclimates and human comfort in 

urban areas. Sobrino, Oltra-Carrio, Soria, Bianchi and Paganini (2012) suggested that 

spatial resolution finer than 50 m are required to estimate the SUHI effect at the district 

level correctly. In contrast, spatial resolution coarser than 50 m underestimates the 

effect and does not distinguish between the different zones inside the city. 

 Based on the previous studies, there are many terms referred to subpixel LST 

estimation, such as thermal sharpening, downscaling LST, disaggregation of LST (Zhan 

et al., 2013). Although many terms have been used, they can be categorized as 

statistical-based methods and physical-based methods (Liu, Hiyama and Yamaguchi, 

2006). 
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 2.3.1 The physical-based method 

  The physical scaling is based on the laws of physics (Liu et al., 2006) and 

uses modulation method (Weng, Fu and Gao, 2014). This method generally uses with 

the isothermal assumption under coarse resolution to retrieve the fraction and the 

emissivity of components (Yang, Pu, Zhao, Huang and Wang, 2011). However, Weng 

et al. (2014) indicated that the isothermal assumption that underpins various modulation 

methods for retrieving component temperature or emissivity might not be valid, 

especially within the urban landscape with a mixture of different temperature 

components.  

  The most common modulation-based algorithms include the PBIM 

developed by Guo and Moore (1998) and the Emissivity Modulation method developed 

by Nichol (2009). The PBIM was developed to add spatial detail to LANDSAT-TM 

thermal band images based on the use of visible and near-infrared bands to identify 

topographic variations (Guo and Moore, 1998). This method is also used by 

Stathopoulou and Cartalis (2009) in AVHRR LST downscaling, but they used 

LANDSAT-TM as higher spatial resolution data. Dominguez et al. (2011) indicated 

that this method is not applicable to flat urban areas with very heterogeneous land 

covers. Zhu, Guan, Millington and Zhang (2013) also indicated that in the PBIM 

method based on Stathopoulou and Cartalis (2009), TIR data with a higher resolution 

is required as the input. 

  Moreover, Jung and Park (2014) indicated that PBIM had been proposed 

to fuse the panchromatic and TIR images of LANDSAT-5 TIR images for terrestrial 

Earth observation applications. This method has added the right amount of spatial 

details to the TIR images; however, it has not preserved thermal information of the TIR 
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images. On the other hand, the EM method makes a simplifying assumption that the 

thermal emittance is uniform within the low-resolution pixels and utilizes the emissivity 

data at a higher resolution to perform disaggregation. However, these data sets are 

usually unavailable (Zhu et al., 2013), and Dominguez et al. (2011) also indicated that 

emissivity is not the primary determinant of LST during the daytime, and the accuracy 

of the land class-based emissivities is questionable when emissivities libraries are used. 

  Regarding the statements mentioned above, the physical-based methods 

contain a lot of technical limitations due to the requirement of many independent 

measurements (Zaksek and Ostir, 2012), and the limited by the complexity of these 

methods which is much more complicated than statistical-based methods (Sattari, 

Hashim and Pour, 2018). Therefore, the statistical models have become the most 

prevalent owing to their ease of use, simplicity, robustness and acceptable downscaling 

accuracy (Pan et al., 2018; Yang, Li, Pan, Zhang and Cao, 2017; Zhou et al., 2016). 

 2.3.2 The statistical-based method 

  The statistical method is based on the correlation between LST and other 

ancillary data, likewise, LULC indices and other factors. This technic is based on fitting 

an ordinary least-squares regression function between each index (the predictors) and 

the LST derived from the satellite image at coarse resolution. The residual is introduced 

in the model to take into account the dependence of LST spatial variability on various 

environmental factors other than the employed predictors (Bonafoni, 2016). 

  The most common statistical-based downscaling algorithms include the 

DisTrad and the TsHARP, which were developed by Kustas, Norman, Anderson and 

French (2003) and Agam, Kustas, Anderson, Li and Neale (2007), respectively. 

DisTrad algorithm uses a quadratic regression relationship between LST and NDVI; on 
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the other hand, TsHARP exploits the linear relationship between LST and FVC 

(Mukherjee, Joshi and Garg, 2014; Zhou et al., 2016). These two models present the 

linear or non-linear relationship between LST and vegetation index (Pan et al., 2018). 

The models mentioned above are mainly applied to areas covered by a high vegetation 

fraction (Zhu et al., 2013). However, these indices are unsuitable for LST downscaling 

in urban areas (Dominguez et al., 2011; Nichol, 2009; Stathopoulou and Cartalis, 2009). 

  Zhu et al. (2013) indicated that LST disaggregation in the heterogeneous 

areas, especially urban areas, is very difficult to achieve. Furthermore, Yang, Cao, Pan, 

Li and Zhu (2017) also indicated that for complex urban areas with varying land cover 

types, multiple scale factors must be integrated to achieve high downscaling precision. 

Testing of the statistical-based method is still in a preliminary stage for applications in 

urban areas (Essa, Kwast, Verbeiren and Batelaan, 2013; Sattari et al., 2018); also, there 

are few studies focus on improving LST downscaling in urban areas with several mixed 

surface types (Yang, Li, et al., 2017; Zhu et al., 2013).  

  Based on the previous studies, Dominguez et al. (2011) developed the 

HUTs to increase the resolution of thermal infrared data to that of visible and near-

infrared data by fitting the relationship between radiometric surface temperature, NDVI 

and surface albedo. As a result, HUTS showed an improvement of over 0.5 oC and over 

17 percentage in MAE and RMSE from non-sharpening. Essa et al. (2013)  adapted the 

DisTrad method for downscaling the LST over urban areas using the relationship 

between LST and impervious percentage. This new approach shows improved 

downscaling results over urban areas for all evaluated resolutions, especially in an 

environment with mixed land covers. Sattari et al. (2018) developed an adaptive 

TsHARP algorithm to downscale the LST by utilizing an impervious surface index in 
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urban areas. It was found that all evaluated resolutions attained superior results 

compared with the traditional methods over urban imagery, mainly, the environments 

with heterogeneous land covers. Bonafoni (2016) carried out a downscaling from the 

coarser spatial resolution of the LST images to finer spatial resolution using the 

relationship between LST and spectral indices; however, the results indicated that the 

best regression models include both vegetation and built-up /soil spectral indices. 

 Furthermore, Bonafoni, Anniballe, Gioli and Toscano (2016) developed a new 

downscaling algorithm for LST images with the considering three generalized land 

cover classes, i.e., built-up, vegetation and open water. NDVI, NDBI, and NDWI were 

computed from LANDSAT data to represent those three classes. The overall RMSE 

with respect to 1 meter airborne ground spatial improves from 3.3 oC (USGS) to 3.0 oC 

with the new method, that also showed better results concerning other regressive 

downscaling technics and they also pointed out the impact of the predictor of resolving 

specific thermal details, showing that the image sharpening topic is still an open issue. 

 In conclusion, finer-scale studies, such as the analysis of UHI, require LST data 

at a higher spatial resolution than those provided by the available current satellite 

thermal sensors. The LST data can be improved the spatial resolution using the 

downscaling methods, which can be categorized as a physical-based method and a 

statistical-based method. The physical-based methods contain a lot of technical 

limitations, such as the limitation in thermal information preservation and the use of 

emissivity to perform disaggregation. In contrast, the statistical-based methods are the 

most prevalent owing to their simplicity, robustness, and acceptable downscaling 

accuracy. Furthermore, recent models have been developed based on this method to 

perform the subpixel LST data estimation in urban areas. However, previous studies 
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pointed out the impact of the predictor of resolving specific thermal details. A 

suggestion for improvement in areas with complex land-cover is the use of independent 

specific regression indices either derived for different LULC types or deriving those 

indices based on multiple linear regression analysis within the urban class. In this study, 

spectral indices, which are derived for different LULC types, are used to avoid the use 

of emissivities, which is not the primary determinant of LST during the daytime. 

Therefore, the statistical-based method is selected to estimate subpixel LST data. 

Moreover, LANDSAT-8 imagery data, which are used in this study, can be 

appropriately used with this method because spectral reflectance in visible, near-

infrared and short-wave wavelength can be processed as several spectral indices and 

used as the scaling factors in multiple regression modeling. 

 

2.4 Hotspot analysis 

 The significance of hotspot analysis is capable of allowing statistical-based 

estimates of spatial variation in thermal aggregation (Feyisa, Meiby, Jenerette and 

Pauliet, 2016). The identification of the hotspots helps to identify areas of priority for 

the implementation of mitigation and adaptation strategies (Adeyeri, Akinsanola and 

Ishola, 2017). 

 There are different methods in spatial patterns analysis and detecting hotspots, 

such as cluster analysis, spatial autocorrelation, and mapping technic. The nearest 

neighbor index is a simple method for testing clustering in the data, but this method 

does not account for spatial autocorrelation of events. The kernel density estimation is 

another method in hotspot detection. This method creates a smooth, continuous surface 

of the density of observations. However, the user must specify the grid cell, bandwidth, 
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and thematic threshold, which can lead to different results depending on the values 

chosen. This mapping technic does not provide statistically significant hotspots. In 

contrast, the spatial autocorrelation analysis provides a statistically significant hotspot 

and accounts for spatial autocorrelation of events (Mailman school of public health, 

n.d.). 

 The spatial autocorrelation analysis can be categorized as global and local 

measures of spatial association. Karlstrom and Ceccato (2002) indicated that global 

measures of spatial association provide a tool for testing for spatial patterning over a 

whole study area while local measures test for local patterns of spatial association. On 

the other hand, local measures can be understood as a complementary source of 

information on a specific spatial pattern. 

 2.4.1 Moran’s I 

  Moran’s I (Moran’s Index) is a global measure of the correlation among 

neighboring observations in a pattern (Boots and Getis, 1998). It evaluates whether the 

pattern expressed is clustered, dispersed, or random. The Moran’s I statistic for spatial 

autocorrelation is given as; (ESRI, 2016).  
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  Where zi is the deviation of an attribution for feature i from its mean (xi - 

x̅, wi,j  is the spatial weight between feature i and j, n is equal to the total number of 

features, and S0 is the aggregate of all the spatial weights: 
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  The ZI score for the statistic is computed as: 

 

  ZI = 
]I[V

]I[EI       (2.12) 

 

  Where:  E[I]   =  -1 / (n - 1)     (2.13) 

    V[I]   =   E[I2] - E[I]2     (2.14) 

 

  The spatial autocorrelation (Global Moran's I) is an inferential statistic, in 

which the results of the analysis are always interpreted within the context of its null 

hypothesis. For the Global Moran's I statistic, the null hypothesis states that the data is 

randomly distributed. When the Z score is significant (or small) enough and falls 

outside the desired significance, the null hypothesis can be rejected. A Moran’s Index 

value near +1.0 indicates clustering, while an index value near -1.0 indicates dispersion 

(ESRI, 2016; Prasannakumar, Vijith, Charutha and Geetha, 2011). 

 2.4.2 Getis-Ord Gi* 

  The local Getis-Ord statistic provides a criterion for identifying clusters of 

high or low values, indicating the presence of significant local spatial clusters 

(Karlstrom and Ceccato, 2002). The Getis-Ord Gi* statistic has been used in hotspot 

analysis in many previous studies. Ren et al. (2016) used the Getis-Ord Gi* statistic to 

detect the spatial position of hot-and cool-spot clustering regions of urban forest LST 

based on an optimal threshold-distance scale. Furthermore, they studied how human 
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activities and ecological factors jointly influence LST in clustering regions (hot or cold 

spots) of urban forests. Feyisa et al. (2016) also used Getis-Ord Gi* to explore thermal 

aggregation in different parts of the city and to examine thermal variation among urban 

and rural landscapes. 

  Moreover, the hotspot analysis was intended to evaluate how thermal 

aggregation is related to distance from the city center and the dynamics of land cover 

types. Adeyeri et al. (2017) identified the hotspot areas using Getis-Ord Gi* and 

investigated SUHI characteristics over Abuja, Nigeria. The results found that 

significant hotspots of high LST were recorded in built-up areas and bare surfaces, 

while significant cold spots were found over vegetation surfaces. Furthermore, Tran et 

al. (2017) assessed the impacts of LULC change and urbanization on UHI using hotspot 

analysis (Getis-Ord Gi* statistics) and urban landscape analysis. 

  This technic characterizes the presence of hot spots (high clustered values) 

and cold spots (low clustered values) over an entire area by looking at each feature 

(LST value) within the context of the proximity features (Ord and Getis, 1995). A 

feature with a high value is highlighted but may not be a statistically significant hot 

spot. As a significant hot spot, a feature will have a high value and be surrounded by 

other features with high values as well (ArcGIS Pro, 2018). The Getis-ord local statistic 

is given as: 
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  Where xj is the attribute value for feature j, wij is the spatial weight between 

feature i and j, n is equal to the total number of feature and: 

 

  X̅ =  
n

x
n

1j

j
      (2.16) 

  S =  2

n

1j

2

j

)X(
n

x




     (2.17) 

 

  The Gi* statistic is a Z-score, so there are not any further calculations 

required. Wang, Tian, Huang, Wang and Wei (2015) indicated that statistically 

significant positive Z score, the higher the value is, which belongs to a high-value 

spatial agglomeration (hotspot area). In contrast, for statistically significant negative Z 

scores, the value is, the closer the low value (cold spot) clustering is, which indicates 

that the location of values around i is relatively low (below average), i belongs to a low-

value spatial agglomeration (cold spot area). 

 In conclusion, the identification of the hotspots helps to identify areas of priority 

for the implementation of mitigation and adaptation strategies. However, there are 

different methods in spatial patterns analysis and hotspots investigation, such as cluster 

analysis, spatial autocorrelation, and mapping technic. The spatial autocorrelation 

analysis, which is selected in this study, can provide the statistically significant hotspot 

and account for spatial autocorrelation of events. This method can be categorized as 

global or local indicators of spatial association. The Moran’ I, which is the global 
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indicator, is selected to analyze the pattern of the data. On the other hand, Getis-Ord 

Gi*, which is a local indicator, is used in hotspots investigation. 

 

2.5 Urban green spaces 

 It is widely understood that urban green spaces have a natural ability to reduce 

local air and ground temperature (Zupancic, Westmacott and Bulthuis, 2015). 

Vegetation controls temperature by evapotranspiration and shading (Nichol and Wong, 

2005; Oke, 1988), whereas paved areas without vegetation have no cooling by 

evapotranspiration, and they transfer most incoming radiation to the urban atmosphere 

as heat (Nichol and Wong, 2005). On the other hand, shading affects human comfort 

since it will alter our perceived temperature, which is dependent more on the radiation 

flow between ourselves and the local environment than on convection (Matzarakis, 

Rutz and Mayer, 2007). If the loss of vegetation causes the UHI, adding vegetation to 

urban areas could potentially reduce its magnitude (Armson, Stringer and Ennos, 2012). 

 Urban green spaces are broadly defined as all types of vegetation found in the 

urban environment (Maimaitiyming, 2013). Therefore, green spaces refer to those land 

uses that are covered with natural or human-made vegetation in the built-up areas and 

planning areas (Wu, 1999). However, Jim and Chen (2003) indicated that green spaces 

in cities exist mainly as semi-natural areas, managed parks and gardens, supplemented 

by scattered vegetated pockets associated with roads and incidental locations. 

 Perini and Magliocco (2014) indicated that the difference cooling effect of 

vegetation could be noticed depending on the number of green areas and vegetation 

type, which vary with plant-specific thermal and optical characteristics (Taha, 1997). 

Li, Zhou, Ouyang, Xu and Zheng (2012) reported that a ten percent increase in green 
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space cover produces a 0.86 oC decrease in LST.  Moreover, Feyisa, Dons and Meiby 

(2014) found that the temperature dropped by 0.02 oC for every percentage increase in 

tree canopy cover. Therefore, it can be concluded that the increase in vegetation cover 

or increase the amount of green areas can reduce the air and surface temperature 

(Dimoudi and Nikolopoulou, 2003; Feyisa et al., 2014; Giridharan, Lau, Ganesan and 

Givoni, 2008; Kong, Yin, James, Hutyra and He, 2014; Kuo, 2000; Li et al., 2012). 

 However, Vannier, Vasseur, Hubert-Moy and Baudry (2011) found that the 

calculated percent cover of green space varied greatly across spatial resolution, 

decreasing significantly with the decrease of spatial resolution. Urban green space is 

generally highly fragmented in the urban landscape, resulting in a large number of small 

patches. These small patches can only be effectively mapped using high spatial 

resolution imagery data. Li, Zhou, et al. (2013) also found that the relationship between 

LST and percentage cover of green space was negative across the spatial resolution. 

The magnitudes of the decrease of LST by percent cover of green space were generally 

higher at finer spatial resolution. Furthermore, imagery with higher spatial resolution 

could more accurately quantify the spatial of green space.  

 On the other hand, vegetation type also plays an essential role in a cooling effect. 

Both grass and trees can effectively cool surface and so can provide regional cooling, 

helping reduce the UHI in hot weather (Armson et al., 2012). However, Ng, Chen, 

Wang and Yuan (2012) indicated that trees were more effective than grass surfaces in 

the cooling pedestrian area. Grass helps lower temperature in parks since grass has a 

higher albedo than asphalt or most building roofs (Thundiyil, 2003), but grass has little 

effect upon local air or globe temperatures, so should have little effect on human 

comfort, whereas tree shade can provide active local cooling (Armson et al., 2012). 

 



49 
 

However, Shashua-Bar, Pearlmutter and Erell (2009) found that the combination of 

shade trees over grass in a hot-arid region was the most effective landscape strategy. 

Onishi, Cao, Ito, Shi and Imura (2010) also found that the maximum reduction of the 

surface temperature of individual parking lots could be up to 9.26 oC in summer by 

planting 30 percent trees and 70 percent grass. 

 In terms of trees types, deciduous trees have been identified as most important for 

providing thermal comfort in parks since they provide shade in hot months but do not 

block needed warmth from the sun in cold month (Hwang, Lin and Matzarakis, 2011; 

Lin and Lin, 2010). During summer, both deciduous and evergreen trees provide similar 

cooling effects, but in winter, the evergreen tree park was much cooler and below the 

neutral comfort conditions (Cohen, Potchter and Matzarakis, 2012; Zhang, Lv and Pan, 

2013). However, green spaces with a predominance of mixed trees appear to have the 

most significant cooling ability in terms of UHI mitigation and providing thermal 

comfort and relief from heat stress (Chen, Yao, Sun and Chen, 2014; Perini and 

Magliocco, 2014; Zhang, Lv, et al., 2013). 

 The density and size of trees are also significantly playing an essential role in the 

green area cooling effect (Shashua-Bar, Tsiros and Hoffman, 2010). Lin and Lin (2010) 

found that the cooling efficiency of urban parks is mostly influenced by leaf color and 

foliage density. Shashua-Bar, Tsiros and Hoffman (2012) indicated that trees with 

dense canopy coverage were the best for decreasing air temperature, particularly on the 

hottest days. Not only canopy density, but Zhang, Lv, et al. (2013) also found that 

canopy area and tree height also had a significant influence on temperature reduction 

and relative humidity increase.  
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 The urban parks are one of the essential areas in urban thermal environmental 

improvement and UHI effects mitigation. Ren et al. (2013) found that urban park size 

(area and perimeter) had a significant positive relationship with PCI. Therefore, larger 

parks have stronger cooling effects than smaller ones. Cao, Onishi, Chen and Imura 

(2010) indicated that mean and maximum PCI intensity values increased in all seasons, 

but especially in spring and summer. However, Chang, Li and Chang (2007), Cao et al. 

(2010), and Ren et al. (2013) found that park size is non-linearly correlated to PCI 

intensity. Furthermore, Ren et al. (2013) also indicated that the possibility that PCI 

intensity increases gradually with increases in urban park size when the size is more 

significant than a certain threshold. 

 Cao et al. (2010) found that the possibility that significant PCI only exits when 

parks larger than a certain threshold (2 ha in the study). However, Oliveira, Andrade 

and Vaz (2011) found that small space (0.24 ha) was cooler than the surrounding areas, 

either in the sun or in the shade. These differences were higher in hotter days and mainly 

related to the mean radiant temperature. These results confirm the potential contribution 

of green areas, even small ones, as a mitigation measure of the adverse effects of the 

UHI and the potential additional effects of global warming in cities. 

 However, as is known to us, it is hard to increase the number of urban parks due 

to limited land resources for urban greening and many political reasons (Declet-Barreto 

et al., 2013; Jenerette, Harlan, Stefanov and Martin, 2011). Therefore, urban planners 

must understand how to design urban parks to maximize their PCI intensity and mitigate 

the UHI effect (Ren et al., 2013). Because the park characteristics also play different 

roles in the PCI phenomenon (Cao et al., 2010; Chang et al., 2007; Feyisa et al., 2014; 

Ren et al., 2013). 
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 Ren et al. (2013) found that urban park shape (perimeter /area) had a significant 

negative relationship with PCI intensity, both in summer and autumn, but the effects 

were stronger in cold seasons (Chen et al., 2014). Increasing complexity in shape, the 

cooling effect of urban parks decreased. Thus, the rounder of the urban park shape, the 

better cooling island effect is (Ren et al., 2013). Furthermore, Feyisa et al. (2014) found 

that small parks with a shape closer to that of a circle have higher thermal contrast with 

their immediate surroundings than elongated parks. Cao et al. (2010) also found that 

the irregular and belt-shape parks tend to have low PCI intensity, while the compactness 

of PCI may benefit PCI development. However, parks that have more irregular shapes 

tended to have higher park cooling distance, indicating that the larger area of the zone 

where irregular parks are in contact with the surrounding non-park landscape may 

increase the distance within which parks influence the thermal environment (Feyisa et 

al., 2014). Moreover, Cao et al. (2010) also indicated that complex shapes contributing 

to greater cooling distance.  

 However, the composition of land cover features is another important factor. Cao 

et al. (2010) found that PCI intensity is mainly determined by the area of tree and shrub 

inside the park as well as the park shape. Zhou, Huang and Cadenasso (2011) also 

indicated that the composition of land cover features is more important in determining 

LST than their configuration. Mainly, woody vegetation results in the highest 

temperature difference. These results suggest that the impact of urbanization on UHI 

can be mitigated not only by balancing the relative amount of various land cover 

features but also by optimizing their spatial configuration. 
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 Furthermore, Yu and Hien (2006) indicated that the cooling effects of city green 

areas are reflected not only in vegetated areas but also in the surrounding area, 

particularly at the leeward side of the green area. Hamada and Ohta (2010) found that 

the difference is more significant during the day than during the night in summer, 

whereas in winter, the opposite relationship is correct. During the night, the cooling 

effect of the green area reached 200-300 m in the urban area. During the day, the cooling 

effect exceeded 300 m and varied widely, although there is no correlation beyond 500 

m. Hamada, Tanaka and Ohta (2013) also found that the cooling effect is found to 

extend in any directions into the urban areas. Furthermore, Doick, Peace and Hutchings 

(2014) also found that the extension of the cooling effect beyond the green space 

boundary is the greatest during low wind speeds, as observed during the 

atmospherically stable conditions typical of a heatwave.  

 Moreover, the connectivity of urban green spaces also affected the cool urban 

islands negatively (Chen et al., 2014). At the neighborhood level, increased green space 

cover and high connectivity between neighborhood-level green spaces are associated 

with cooler air temperatures and reduced UHI effects, particularly on hot days 

(Steeneveld, Koopmans, Heusinkveld, Hove and Holtslag, 2011). More closely linked 

and continuous green spaces have stronger cool island effects than smaller patches of 

green space (Li, Zhou, et al., 2013; Li et al., 2012). Therefore, maximizing the 

connectivity of many scattered parks throughout the urban environment (rather than in 

one concentrated spot) will maximize cooling effects beyond park boundaries by 

breaking up the micro effects of the urban form that can cause hotter and cooler pocket 

(Doick et al., 2014; Hamada and Ohta, 2010). 
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 Green façade and green roofs may be a useful alternative in areas where there is 

limited capacity for tree planting (Zupancic et al., 2015). Green façade is one of the 

vertical greenery systems in which climbing plants or vine plants that are rooted in the 

limited ground area around the buildings are trained to cover unique support structures 

such as fences or columns. The green façade can mitigate UHI effects and provide 

considerable relief from heat stress (Koyama, Yoshinaga, Hayashi and Maeda, 2013). 

On the other hand, a green roof is a vegetated layer that is grown on a building roof to 

replace that part of the natural landscape that was destroyed when the building was 

constructed (United States Environmental Protection Agency, 2017b). 

 However, Ng et al. (2012) indicated that roof greening was ineffective for human 

thermal comfort near the ground. Perini and Magliocco (2014) also indicated that green 

areas on the ground (grass, shrubs, trees) are more effective compared to green roofs in 

reducing summer potential temperatures. However, green roofs are more effective in 

decreasing the cooling load of buildings; this is an essential aspect since in very dense 

urban areas due to a lack of space it may be not possible to add more vegetation on the 

ground, even if green areas have a higher positive effect on outdoor summer 

temperatures and comfort. Furthermore, Murphy (2015) suggested that adding green 

space at ground level in an urban setting may be impossible, so taking advantage of the 

real estate afforded on commercial roofs to increase green space is a crucial strategy for 

UHI mitigation. Zupancic et al. (2015) also indicated that the combined benefits of 

green roofs and walls for cooling and pollution mitigation make them an essential 

alternative in high-density urban areas where ground space for greening is limited. 
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 In conclusion, it is clearly shown that there are many factors play an essential role 

in the cooling effect of parks on surrounding landscape, i.e., park size (Feyisa et al., 

2014; Lin, Yu, Chang, Wu and Zhang, 2015; Yu and Hien, 2006), park shape (Cao et 

al., 2010; Feyisa et al., 2014), vegetation density (Cao et al., 2010; Feyisa et al., 2014), 

tree species (Feyisa et al., 2014), weather patterns (Yu and Hien, 2006), season 

temperature (Cao et al., 2010), distance from park (Feyisa et al., 2014), location, spatial 

configuration (Lin et al., 2015), topography and surrounding structures in addition to 

wind conditions (Fryd, Pauleit and Buhler, 2011). Hamada et al. (2013) also found that 

the land-use type in urban areas also affected the extent of park cooling. The 

commercial area was a critical factor in terms of interrupting the cooling extension; 

also, the character of the area around each park (Lin et al., 2015). 
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CHAPTER III 

RESEARCH METHODOLOGY 

 

 This chapter provides details of the research methodology, which explains the 

nature of this study. This research inclines to the quantitative research, which conducts 

statistical tools to evaluate the results obtained from the remote sensing data. Numerical 

data of the LST from the remote sensing were extracted and validated statistically with 

the in-situ data on the same date and almost the same time. As a result, the simulation 

of green open space presents the proportion of area adjustment to reduce the LST. 

Therefore, this research consists of three main topics, (1) conceptual framework, (2) 

data preparation, and (3) research procedures to conduct the research systematically. 

Their specific details are as follows. 

 

3.1 Conceptual framework 

 Initially, the conceptual framework presents the flow of research concepts with 

some major procedures to provide the holistic of the study. In order to achieve the aim 

of this study, four main-parts were studied response to four objectives stated in Section 

1.2, as detailed in the flowchart illustrated in Figure 3.1.  
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Figure 3.1  Conceptual framework. 

 

 According to Figure 3.1, the first part devotes to exploring the optimum method 

for ULST estimation following with the subpixel LST data estimation using a 

statistical-based method corresponds to the second objective. Then the subpixel LST 

data used in hotspot analysis identifies the hotspot areas corresponded to the third 

objective. Lastly, the final part related to the fourth objective, which simulates hotspot 

mitigation associated with proportions of green space in an urban area. 

 

3.2 Data preparation 

 The following table (Table 3.1) is the list of data with their sources acquired in 

this research. 

 

 

LANDSAT-8 
(January - April, 2018) 

UAV Imagery 
(2018) 

 

Spectral Indices 
(January - April, 2018) 

 
LST in January - April, 2018 Proportional LULC 

(Grid 30x30 m) 
(Used as Weight-values) 

 

The Optimum Method 
In LST Estimation (1) 

 

Ground-based Temperature 
(January - April, 2018) 

 

Subpixel LST 
(January - April, 2018) (2) 

 

2 

1 

Moran’s I and Getis-ord Gi* 
(Hotspot Analysis) 

Hotspot Areas 
(January - April, 2018)(3) 

UAV Imagery 
(2018) 

3 

Weighted-mean of 
Ground-based Temperature 

(Grid 30x30 m) 
 

Proportional LULC 
(Grid 30x30 m) 

The Estimated-LST 
Using Optimum Method 

(January - April, 2018) 
 

Relationship between LST and Proportional LULC: 
Multiple-regression Models (January – April, 2018) (4) 

Proportional LULC in Hotspot Areas 
(January - April, 2018) 

Simulation 
(Percentage of Green Spaces) 4 ULST Mitigation Maps 

(January - April, 2018) (5) 
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Table 3.1  Data used in the research. 

Data Date Sources 

LANDSAT-8 data 

Path /Row: 128 /50 

January 21, February 6,  

March 26, April 11, 2018 

U.S. Geological Survey 

(USGS)  

 March 20, April 5, 2016  

 March 31, April 16, 2014  

UAV imagery data March - April 2018 Surveying 

High spatial resolution images January 5, 2014 Google earth 

 December 18, 2016  

Ground-based temperature data Same date of the LANDSAT-8 Surveying 

Atmospheric parameters 

• Air temperature 

• Relative humidity 

Same date of the LANDSAT-8 

 

Hydro and Agro 

Informatics Institute 

(HAII) website 

Atmospheric parameters 

• Transmittance 

• Up-welling and down-welling 

atmospheric radiance 

Same date of the LANDSAT-8 NASA atmospheric 

correction parameter 

calculator website 

Note: Data in 2014 and 2016 were used in the feasibility test of the simulated temperature. 

 

 LANDSAT-8 imagery data, used in the ULST estimation, obtained from the 

USGS website, as shown in Table 3.1. The high spatial resolution image obtained from 

the UAV between March and April 2018. Additionally, the high spatial resolution 

imagery in 2014 and 2016, obtained from the Google Earth, were rectified using an 

image-to-image method based on the high spatial resolution imagery from UAV in 

2018. The ground-based temperature surveying had done between 10.00 – 12.00 a.m. 

on the same date of the Landsat-8 satellite captured the data over the study area around 

10.30 a.m. The atmospheric parameters (air temperature and relative humidity data), 

gathered between 10.00 - 11.00 a.m., obtained on the same date of LANDSAT-8 

imagery data from Hydro and Agro Informatics Institute (HAII) website. The 

transmittance, up-welling, and down-welling atmospheric radiance were also gathered 

at the same date of LANDSAT-8 imagery data from the NASA atmospheric correction 

parameter calculator website.  
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3.3 Research procedures 

 The research procedures consist of four parts response to the four objectives stated 

in Section 1.2. The details of the processes are described in section 3.3.1 - 3.3.4. 

 3.3.1 To explore the optimum method for ULST estimation 

  In order to explore the optimum method in the ULST extraction, RTE, 

IMW, GSC, and SW algorithm, as equation 2.2, 2.3, 2.6, and 2.9, respectively, were 

used in the calculations. As a result, then, the ULST of each method was assessed with 

the ground-based temperature data using NRMSE. The conceptual process is shown in 

Figure 3.2.  

 

 

 

 

 

 

 

 

 

Figure 3.2  Conceptual process of the first objective. 

 

  In order to achieve the first objective, the LANDSAT-8 image was initially 

used as the reference data in 30x30 meters grid creation. Then, the numbers of sample 

points were calculated by dividing the total area of the study area with the coverage 

area of pixel size. Actually, the coverage area of a pixel size should be closed to the 

LANDSAT-8 
(January - April, 2018) 

Proportional LULC 
(Grid 30x30 m) 

(Used as Weight-values) 
 

Field Observation 
(January - April, 2018) 

 

1 High Spatial Resolution 
Images (2018) 

 Used as Reference Data 
in Grid Creation 

Ground-based 
Temperature 

(Grid 30x30 m) 

• Radiative Transfer Equation 
• Improved Mono-window 
• Generalized Single-channel 
• Split-window 
 

2 

Land Surface Temperature 
(LST) (January - April, 2018) 

 

Compared (Sample) 

The Optimum Method in LST Estimation 
(The algorithm provided the lowest NRMSE) 

 

3 NRMSE Values 
 

Grid (30x30 m) 
 

Weighted-mean of Ground-based Temperature 
(Grid 30x30 m) 
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spatial resolution of the thermal band (100 meters), so the coverage area of pixel size 

could be considered into 2 cases, either 3x3 pixels (90x90 meters) or 4x4 (120x120 

meters) pixels. In this study, the pixel size of 3x3 pixels per sample was used, because 

this pixel size is within the coverage area of thermal band data. Based on the 3x3 pixels, 

the coverage area of pixel size is 8,100 square meters, and the total area of the study 

area is around six million square meters. At least several sample points are about 

740.74; however, the total number of sample points is 900 points. 

  On the other hand, ground-based temperature data were collected from 9 

neighboring sample points per one site with responding to the spatial resolution of the 

thermal band. At least several sites are 83 sites; however, the total number of sites is 

100, which fulfills the total number of sample points. The stratified random sampling 

method was used in data collection. The concept of the ground-based temperature 

surveying is shown in Figure 3.3. 

 

  
   (a) Based on LANDSAT-8 image                 (b) Based on high spatial resolution image 

Figure 3.3  Ground-based temperature surveying concept. 
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  Figure 3.3(a) shows the grids on LANDSAT-8 imagery data, whereas 

Figure 3.3(b) shows the grids on high-resolution imagery data at the same location. The 

red grids are the sample points generated based on the LANDSAT-8 imagery data; on 

the other hand, the yellow grids are the surveying sites. The ground-based data were 

collected from 9 neighboring sample points per site. The total number of sites is 100, 

as shown in Figure 3.4.  

 

 

Figure 3.4  Distribution of sample points and sample sites. 

 

  Based on Figure 3.4, the sample sites are shown in the orange squares; on 

the other hand, the sample points are shown as the points in the sample sites. The 

numbers of sample sites are 100. One sample site contains nine sample points; 

therefore, the total sample points are 900. All samples were collected within the 

Buriram municipal area, the yellow line representing the boundary of the municipality.  
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  Generally, the arithmetic means temperature data were calculated from 

each grid. The proportion of LULC within each grid was used as the weight values. In 

ground-based temperature surveying, all LULC temperatures within each grid were 

measured and averaged using the arithmetic means method. The obtained arithmetic 

means temperature data were used as the reference data and compared with the 

estimated ULST data from each method. 

  The ULST data were extracted using RTE, IMW method developed by 

Wang et al. (2015), GSC method developed by Jimenez-Munoz, Sobrino, Skokovic, 

Matter and Cristobal (2014), and SW method developed by Jimenez-Munoz et al. 

(2014). The atmospheric parameters in 2014, 2016, and 2018, which used in the LST 

estimation based on each method, are shown in Table 3.2.  

 

Table 3.2  Atmospheric parameters in 2014, 2016, and 2018. 

 2014 2016 

Atmospheric Parameters Mar 31 Apr 16 Mar 20 Apr 5 

Air Temperature (T0) (K) 313.2 311.2 309.8 311.2 

Air Temperature (T0) (oC) 40.05 38.05 36.65 38.05 

Relative Humidity 0.42 0.53 0.50 0.39 

Water Vapor Content 3.17 3.57 3.14 2.67 

Method Atmospheric Parameters Mar 31 Apr 16 Mar 20 Apr 5 

RTE Transmittance (τ) 0.56 0.47 0.57 0.64 

 Up-welling 3.97 4.42 3.88 3.37 

 Down-welling 6.08 6.68 6.03 5.38 

IMW Atmospheric Temperature (Ta)(K) 305.23 303.39 302.11 303.39 

 Transmittance (τ) 0.61 0.55 0.61 0.67 

GSC Atmospheric Function (ψ
1
) 1.51 1.63 1.50 1.38 

 Atmospheric Function (ψ
2
) -8.41 -10.05 -8.31 -6.55 

 Atmospheric Function (ψ
3
) 4.13 4.70 4.09 3.43 

SW Water Vapor Content 3.17 3.57 3.14 2.67 

Note: 1. Transmittance, up-welling, and down-welling used in the RTE method were obtained from  

     NCEP. 

 2. The transmittance used in IMW was calculated based on the mono-window method. 
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Table 3.2  Atmospheric parameters in 2014, 2016, and 2018 (Continued). 

 2018 

Atmospheric Parameters Jan 21 Feb 6 Mar 26 Apr 11 

Air Temperature (T0) (K) 303.9 293.1 302.9 309.3 

Air Temperature (T0) (oC) 30.75 19.95 29.75 36.15 

Relative Humidity 0.63 0.60 0.65 0.44 

Water Vapor Content 2.86 1.52 2.79 2.72 

Method Atmospheric Parameters Jan 21 Feb 6 Mar 26 Apr 11 

RTE Transmittance (τ) 0.53 0.80 0.54 0.60 

 Up-welling 3.92 1.63 3.78 3.56 

 Down-welling 6.00 2.67 5.86 5.65 

IMW Atmospheric Temperature (Ta)(K) 296.69 286.79 295.78 301.65 

 Transmittance (τ) 0.65 0.80 0.65 0.65 

GSC Atmospheric Function (ψ
1
) 1.42 1.15 1.41 1.39 

 Atmospheric Function (ψ
2
) -7.25 -2.97 -6.99 -6.70 

 Atmospheric Function (ψ
3
) 3.69 1.81 3.60 3.49 

SW Water Vapor Content 2.86 1.52 2.79 2.72 

Note: 1. Transmittance, up-welling, and down-welling used in the RTE method were obtained from  

     NCEP. 

 2. The transmittance used in IMW was calculated based on the mono-window method. 

 

  According to Table 3.2, the near-surface air temperature (T0) and relative 

humidity obtained from the Hydro and Agro Informatics Institute (HAII) website were 

taken from the Huai Rat Station located near Buriram Town Municipality. These 

parameters were used in the water vapor content calculation in equation 3.1 (Liu and 

Zhang, 2011). 

 

  wi   =    1697.0
15.273T(3.237

15.273T(27.17
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  Where wi is the water vapor content (g cm-2), T0 is the near-surface air 

temperature (K), and RH is the relative humidity (Decimal). The water vapor content, 

near-surface air temperature and relative humidity are the average values. 
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  The water vapor content data are used in the transmittance calculation in 

the IMW algorithm, the atmospheric function in the GSC algorithm, and also used in 

the SW algorithm. Not only the water vapor content calculation, but this parameter is 

also used in the atmospheric temperature (Ta) calculation, which is an essential 

parameter in the IMW algorithm. 

  The transmittance, up-welling, and down-welling atmospheric radiance 

obtained from the NASA atmospheric correction parameter calculator (Barsi, Schott, 

Palluconi and Hook, 2005). The calculator uses the National Centers for Environmental 

Prediction (NCEP) modeled global atmospheric profiles interpolated to a particular 

date, time, and location as the input for the MODTRAN radiative transfer code and a 

suite of the integrative algorithm to infer the up-welling, down-welling radiances and 

site-specific transmission (Weng and Fu, 2014). It is noted that the mid-latitude summer 

model was used in this study because there is no tropical model. 

  Lastly, the RMSE values of each LST estimation algorithm were calculated 

based on equation 3.2, by comparing the estimated LST data with the weighted 

arithmetic mean temperature of each grid. Then, the RMSE values were normalized to 

NRMSE values by using equation 3.3. The NRMSE value, which has no unit and the 

range of the value, between 0-1, facilitates the comparison between datasets. The 

smaller the value is, the better the performance of the model. Eventually, the method in 

which provides the lowest NRMSE values considers as an optimum method in ULST 

estimation. 

 

  RMSE = √
1

n
∑ (estimate value - observe value)

2
 (3.2) 
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  Where estimate value is the estimated LST data; on the other hand, observe 

value is the weighted arithmetic mean temperature of each grid or ground-based 

temperature data, respectively. 

 

  NRMSE = 
RMSE

maximum observation - minimum observation
 (3.3) 

 

  Where maximum and minimum observations are the maximum and 

minimum temperature of in-situ data. 

 3.3.2 To estimate subpixel LST data using a statistical-based method 

  According to the second objective, the subpixel LST data were calculated 

based on the statistical-based method. Regarding the accuracy assessment, the subpixel 

LST data were compared with ground-based temperature data using NRMSE values. 

The conceptual processes are shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

Figure 3.5  Conceptual processes of the second objective. 
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  Firstly, LANDSAT-8 images were upscaled to 90x90 meters using the 

aggregation method based on the average statistic, as shown in Figure 3.5. The 

estimated ULST (T90) and spectral indices (SI90) were processed using the upscaled 

LANDSAT-8 images. 

  The spectral indices were used as the scaling factors. Different scaling 

factors were applied at varying application areas (Zhan et al., 2012), and selected based 

on the characteristics of the study area (Yang, Li, Pan, Zhang and Cao, 2017). In this 

research, spectral indices used as the scale factors are shown in Table 3.3. 

 

Table 3.3  Spectral indices used in this study. 

Spectral Indices Equation References 

UI (SWIR2 - NIR) / (SWIR2 + NIR) Kawamura, Jayamana and 

Tsujiko (1996) 

NDBI (SWIR1 - NIR) / (SWIR1 + NIR) Zha, Gao and Ni (2003) 

IBI [(NDBI - (SAVI + MNDWI)/2] /  

[(NDBI + (SAVI + MNDWI)/2] 

Xu (2008) 

NDISI TIR - [(MNDWI + NIR + SWIR1)/3] /  

TIR + [(MNDWI + NIR + SWIR1)/3] 

Xu (2010) 

BI (SWIR1 + RED) - (NIR + BLUE) /  

(SWIR1 + RED) + (NIR + BLUE) 

Rikimaru and Miyatake 

(1997) 

NDBaI (SWIR1 - TIR1) / (SWIR1 + TIR1) Zhao and Chen (2005) 

NDVI (NIR - RED) / (NIR + RED) Rouse, Haas, Schell, 

Deering and Harlan (1974) 

SAVI [(NIR - RED) / (NIR + RED + 0.5)] x (1 + 0.5) Huete (1988) 

FVC [(NDVI - NDVImin) / (NDVImax - NDVImin)]2 Gillies and Carlson (1995) 

NDWI (GREEN - NIR) / (GREEN + NIR) McFeeters (1996) 

NDMI (NIR - SWIR1) / (NIR + SWIR1) Wilson and Sader (2002) 

MNDWI (GREEN - SWIR1) / (GREEN + SWIR1) Xu (2006) 

Surface Albedo (0.356BLUE + 0.130RED + 0.373NIR + 

0.085SWIR1 + 0.072SWIR2 - 0.018) / 1.016 

Liang (2000) and Gercek, 

Guven and Oktay (2016) 

 

  Based on Table 3.3, the UI, NDBI, IBI, NDISI, BI, and NDBaI represent 

the impervious surfaces. NDVI, SAVI, and FVC represent the vegetation areas. The 

SAVI and FVC were chosen regarding the study of Xu (2008), which indicated that the 

SAVI is more sensitive than NDVI in detecting vegetation in the low-plant covered 
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areas such as urban areas. Besides, Weng, Lu and Schubring (2004) investigated the 

relationship between LST and vegetation abundance through various scales. The results 

showed a stronger relationship between LST and vegetation fraction than NDVI in 

different spatial resolutions and different land-use types. Commonly, the spectral 

indices represent the wetlands, and soil moisture is NDWI, NDMI, and MNDWI. Also, 

the surface albedo was chosen since Small (2006) found a close relationship between 

surface temperature and surface albedo in urban areas. 

  Then the coarse resolution data, T90 and SI90 were regressed into the model 

using a stepwise method to avoid multicollinearity. These regression models were used 

in LST estimation at 90 m (T90̂), resulting in: 

 

 T90̂  =  a0 ± a1SI90.x1 ± a2SI90.x2 ± a3SI90.x3 ± … ± aiSI90.xi (3.4) 

 

  Where T90̂  is the estimated LST data at 90 m resolution, while SI90.xi are 

the upscale spectral indices data at 90 m resolution. The numbers of spectral indices 

depend on the result using the stepwise method. 

  Afterward, the temperature residuals (ΔT90) were calculated, as the 

differentiated between the upscale LST (T90) and the estimated LST data at 90 m 

resolution (T90̂), resulting in: 

 

  (ΔT90)  =  T90 - T90̂     (3.5) 
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  The temperature residuals (ΔT90) were disaggregated to 30 m resolution 

(ΔT30) using the bi-linear resampling and added to the regression models in order to 

obtain the 30 m sharpener temperature (T30̂).  

  In the second part, the sharpener LST data at 30 m (T30̂) were calculated 

using the same regression model and regression coefficients, resulting in: 

 

  T30̂  =  a0 ± a1SI30.x1 ± a2SI30.x2 ± a3SI30.x3 ± … ± aiSI30.xi + ΔT30 

           (3.6)  

 

  Where T30̂ is the sharpener LST data, SI30.xi are the spectral indices data at 

30 m resolution, and ΔT30 is the disaggregated temperature residual. 

  For the accuracy assessment process, the subpixel LST data were compared 

with ground-based temperature data, which are the same as used in the first objective.  

 3.3.3 To identify the hotspots areas based on subpixel LST data  

  According to the third objective, the pattern of the data was identified using 

Moran’s I method. If the data pattern is a cluster, the Getis-ord Gi* was applied to 

identify the hotspot areas. The conceptual process is shown in Figure 3.6. 
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Figure 3.6  Conceptual processes of the third objective. 

 

  Initially, the subpixel LST data were converted from raster to vector format 

into the point pattern. Then, the converted LST points were analyzed using Moran’s I 

method to identify the pattern of the data. Generally, in case that the pattern of the data 

is a cluster, it is a hotspot area. In contrast, if the patterns of the data are random or 

disperse, there are no hotspot areas.  

  The threshold distance, identified as the hotspot area, was set to 30 meters, 

corresponding to the spatial resolution of subpixel LST data. The Getis-ord Gi* results 

present hotspot, random, and cold spot. In this study, all statistically significant hotspot 

occurred in January to April 2018 were selected and combined to represent the hotspot 

areas.  

 3.3.4 To simulate hotspot mitigation from proportions of green space in an 

urban area  

  Regarding the final objective, it is essential to simulate hotspot mitigation 

associated with proportions of green space in an urban area. The relationships between 

monthly subpixel LST data and the proportional LULC in sample points were 
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determined using regression analysis. Then, the monthly regression models were 

applied to the hotspot areas. The conceptual process was shown in Figure 3.7. 

 

 

 

 

 

 

 

 

 

Figure 3.7  Conceptual processes of the fourth objective. 

 

  The subpixel LST data and the proportional LULC in sample points were 

used in regression modeling, as shown in Figure 3.7. The proportional LULC in hotspot 

areas were extracted using visual interpretation. Then, the percentages of LULC data 

in hotspot areas were represented in the regression model by using the different 

proportions of green space in order to generate the different scenarios of the hotspot 

mitigation. The purpose of the mitigation is to reduce the hotspot temperature nearly or 

equal to the temperature of the surrounding area. Afterward, the LST mitigation maps 

were generated based on the results of the mitigating simulation method.  

  Lastly, the feasibility of the simulated temperature was examined to 

explore the correctness of the results. The feasibility test processes were separated into 

two parts. Firstly, the same proportions of LULC were selected and used as the 
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reference data to compare with the simulation results. Secondly, the selected 

proportions of green space in hotspot mitigation were used with the data in 2014 and 

2016, to explore the effects of these proportion of green space in hotspot mitigation. It 

should be noted that LANDSAT-8 images obtained between March and April in 2014 

and 2016 were extracted the ULST data using the optimum method, and also estimated 

the subpixel LST data. The proportional LULC within the hotspot areas and the 

regression models between ULST and proportional LULC were also explored. Then, 

the proportional LULC within hotspot areas were represented in the regression models 

with the selected proportion of green space.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

 This chapter reports significant results obtained from the research, as described 

in the research procedures stated in Chapter III. Its content composes of four principal 

works; (1) optimum method for ULST estimation, (2) subpixel LST data estimation 

using the statistical-based method, (3) hotspots area identification based on the subpixel 

LST data, and (4) simulation of hotspot mitigation associated with proportions of green 

space in an urban area. Their details are as follows. 

 

4.1 Optimum method for ULST estimation 

 The first objective results are separated into two parts, (1) the LST estimation 

results, and (2) the accuracy assessment. Their specific detail is as followed. 

 4.1.1 LST estimation results 

  The estimated LST data on January 21, February 6, March 26, and April 

11 in 2018, is illustrated in Figure 4.1 - 4.4, respectively. Following with a high spatial 

resolution image map in Figure 4.5. Furthermore, the average, maximum, and minimum 

LST data are shown in Table 4.1.  
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Radiative transfer equation Improved mono-window 

  
Generalized single-channel Split-window 

Figure 4.1   Estimated LST data on January 21, 2018. 

  
Radiative transfer equation Improved mono-window 

  
Generalized single-channel Split-window 

Figure 4.2  Estimated LST data on February 6, 2018. 
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Radiative transfer equation Improved mono-window 

  
Generalized single-channel Split-window 

Figure 4.3  Estimated LST data on March 26, 2018. 

  
Radiative transfer equation Improved mono-window 

  
Generalized single-channel Split-window 

Figure 4.4  Estimated LST data on April 11, 2018. 
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 Figure 4.5  High spatial resolution image map. 

 

  All maps based on the SW method show a more complex surface than 

others, as shown in Figure 4.1-4.4. In contrast, all maps based on single-channel 

methods, namely, RTE, IMW, and GSC, are quite similar. The cold spots occur in the 

North-West and South-East area of the city, where are urban forest (as sample number 

1) and wetlands (as sample number 2). In contrast, the areas with high temperature are 

occurred in the bare-land (as sample number 3) and built-up area, where is the most of 

the city, as shown in Figure 4.5. 
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Table 4.1  The average, maximum, and minimum LST data (oC). 

  January 21 February 6 March 26 April 11 

RTE Average 30.821 25.258 34.087 42.330 

 Minimum 25.643 19.140 29.121 35.067 

 Maximum 34.618 29.077 37.882 47.057 

IMW Average 28.863 29.241 31.785 40.883 

 Minimum 24.523 22.743 27.160 33.791 

 Maximum 32.189 33.133 35.217 45.494 

GSC Average 28.444 25.573 30.590 41.494 

 Minimum 24.424 19.897 26.606 35.266 

 Maximum 31.435 29.114 33.633 45.567 

SW Average 33.863 27.637 34.602 43.465 

 Minimum 27.377 19.607 27.860 35.323 

 Maximum 37.885 32.870 39.693 50.283 

Note: The data were obtained in 2018. 

 

  According to Table 4.1, all of LST estimation algorithms provide the 

highest average LST on April 11, 2018, as 42.330 oC, 40.883 oC, 41.494 oC, and 43.465 

oC, based on RTE, IMW, GSC, and SW algorithm, respectively. In contrast, almost 

LST estimation algorithms, namely RTE, GSC, and SW algorithm, provide the lowest 

average LST on February 6, 2018. Focusing on the LST estimation algorithms, the SW 

algorithm provides the highest average LST on January 21, March 26, and April 11 in 

2018 as 33.863 oC, 34.602 oC, and 43.465 oC, respectively.  However, on February 6, 

2018, the IMW algorithm provides the highest average temperature as 27.637 oC. 

 4.1.2 Accuracy assessment 

  The accuracy assessment is processed to explore the optimum method in 

ULST estimation by considering the LST estimation method provides the lowest 

NRMSE values. The RMSE and NRMSE values, as shown in Table 4.2 and Figure 4.6 

- 4.7.  
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Table 4.2  RMSE and NRMSE Values. 

Methods 
RMSE 

/NRMSE 

January 21, 

2018 

February 6, 

2018 

March 26, 

2018 

April 11, 

2018 

RTE RMSE (oC) 5.450 7.018 3.082 3.128 

 NRMSE 0.454 0.702 0.246 0165 

IMW RMSE (oC) 7.361 3.172 5.214 4.289 

 NRMSE 0.613 0.317 0.416 0.226 

GSC RMSE (oC) 7.799 6.713 6.384 3.832 

 NRMSE 0.650 0.671 0.509 0.202 

SW RMSE (oC) 2.728 4.729 2.741 2.509 

 NRMSE 0.227 0.473 0.218 0.132 

 

 

Figure 4.6  RMSE values based on monthly results. 

 

Figure 4.7  NRMSE values based on monthly results. 
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  Considering the RMSE values, the SW algorithm provided the lowest 

RMSE values on January 21, March 26, and April 11 in 2018, as shown in Table 4.2 

and Figure 4.6, while, the IMW algorithm provided the lowest RMSE value on 

February 6, 2018. Basically, NRMSE values relate to RMSE values. The SW algorithm 

also provided the lowest NRMSE values on January 21, March 26, and April 11 in 

2018, as shown in Table 4.2 and Figure 4.7. The IMW algorithm provided the lowest 

NRMSE value on February 6, 2018. Noticeably, all algorithms provided low error 

values on April 11, 2018. It can be concluded that the SW algorithm provides the lowest 

error in most cases, in which the amount of atmospheric water vapor content is more 

massive than 2.70 g cm-2. On the other hand, the IMW algorithm provides a better result 

than the SW algorithm on February 6, 2018, with the lowest amount of atmospheric 

water vapor content (1.52 g cm-2). The differentiated RMSE and NRMSE values 

between these two algorithms in these cases are quite low as around 1.557 oC and 0.156, 

respectively.  

  Therefore, it can be concluded that the SW algorithm is an optimum 

method in ULST estimation for this study. The SW algorithm provides the lower error 

than others methods, due to this method does not require much information about the 

atmospheric profiles during satellite acquisition (Du, Ren, Qin, Meng and Zhao, 2015). 

The SW algorithm mainly eliminates atmospheric effects based on differential 

absorption in two thermal bands (Bhavanibhai, 2013). Furthermore, the two thermal 

infrared channels, used in the SW algorithm, have narrower bandwidths in the thermal 

infrared (Du et al., 2015; Li,  Tang, et al., 2013). Additionally, Caselles, Rubio, Coll 

and Valor (1998) and Rozenstein, Qin, Derimian and Karnieli (2014) also indicated that 
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two separating narrow thermal bands had shown the smallest error in the retrieval of 

LST.  

  Although the SW algorithm does not require much information about the 

atmospheric profiles during satellite acquisition, this algorithm requires the retrieval of 

several coefficients (Du et al., 2015). For this reason, the LST retrieval method based 

on the SW algorithm is sensitive to water vapor content and coefficients. The 

coefficients used in this study are based on the study of Jimenez-Munoz, Sobrino, 

Skokovic, Matter and Cristobal (2014).  According to a study by Vazquez, Reyes and 

Arboledas (1997), the coefficients depend on the atmospheric state; however, the fixed 

values are sometimes utilized, causing significant errors to the results. Therefore, the 

fixed values of the coefficient may provide error to the result. 

  As the single-channel methods, RTE, IMW, and GSC algorithm depend on 

the accuracy of the radiative transfer model and the atmospheric profiles such as 

transmissivity, atmospheric up-welling, and down-welling radiance, atmospheric water 

vapor content, and air temperature (Jimenez-Munoz et al., 2009). Therefore, it is noted 

that it is essential to obtain accurate atmospheric parameters for single-channel LST 

retrieval (Li et al., 2010). The accuracy of the single-channel method relies on the 

accuracy of the RTM and the atmospheric profiles representing the real state of the 

atmosphere over the studies area at the orbital time (Coll, Caselles, Valor and Niclos, 

2012). 

  In this study, the errors based on the RTE algorithm may come from the 

atmospheric model used in the calculation of the atmospheric parameters. Since the 

study area located in the tropical zone, whereas the model provided by using the NCEP 
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model presents the mid-latitude summer and mid-latitude winter models. Furthermore, 

Jimenez-Munoz et al. (2009) indicated that these data are useful for a global scale.  

  The errors based on the IMW algorithm may come from the essential 

atmospheric parameters used in this algorithm. Firstly, there is no reference source in 

near-ground air temperature (T0) acquisition, which is used in the sufficient 

atmospheric temperature (Ta), an important practical issue when one wishes to retrieve 

LST over a large area (Cristobal, Jimenez-Munoz, Sobrino, Ninyerola and Pons, 2009). 

Secondly, the relationships between transmittance and water vapor content depend on 

not well-defined “high” and “low” air temperature values, whereas the relationship 

between Ta and T0 are given for absolute standard atmospheres (Jimenez-Munoz et al., 

2009). As a study of Qin, Karnieli and Berliner (2001) indicated that high transmittance 

due to low water vapor in the atmospheric profile is the best condition for accurate LST 

retrieval. Commonly, the atmospheric water vapor is the most significant in governing 

the change of atmospheric transmittance in the thermal range of the spectrum. 

Therefore, the parameter of atmospheric transmittance required for LST retrieval is 

usually estimated through atmospheric water vapor content (Qin et al., 2001; Wang et 

al., 2015). As same as a result studied by Wang et al. (2015),  it can be concluded that 

the LST retrieval method is sensitive to water vapor content estimated error. 

  The GSC algorithm provides a higher error than other methods. The basis 

of this algorithm relies on the estimation of the so-called atmospheric function, which 

is assumed to be dependent only on water vapor content values (Jimenez-Munoz et al., 

2009). As noted by Cristobal and other in 2009 and Chen, Zhao, Ye and Hu in 2011 

(Chen, Zhao, Ye and Hu, 2011); Cristobal et al. (2009),  the atmospheric functions may 

be obtained more precisely from water vapor content and air temperature through more 
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complicated models. As the dependence on the water vapor content, the atmospheric 

component is the main absorber in the thermal infrared region. Basically, the up-welling 

and down-welling radiances depend on other parameters as mean atmospheric 

temperature, and surface pressure (Jimenez-Munoz and Sobrino, 2003). However, it 

was confirmed that in the case of Ta is not available, the LST retrieval using only water 

vapor content is the right choice when the atmospheric water vapor content is the low 

or intermediate temperature (Cristobal et al., 2009). Since input data were minimized 

to only one atmospheric parameter, an error in water vapor content estimation could 

increase the error in the LST retrievability of the single-channel algorithm. This 

exploration is confirmed with a study by Jimenez-Munoz and others (2015) (Jimenez-

Munoz and Sobrino, 2003; Wang et al., 2015) that the possible errors in LST retrieval 

of the single-channel algorithm are also expected to be increased with the amount of 

atmospheric water vapor content.  

  It should be pointed out that the IMW, GSC, and SW algorithm is directly 

based on the water vapor content values (Jimenez-Munoz and Sobrino, 2003). Based 

on the results, it is showed that the accuracy of the estimated LST data depends on the 

amount of atmospheric water vapor content data, which is the main absorber in the 

thermal infrared region. This parameter was estimated by considering the near-surface 

air temperature and relative humidity values, which were taken from the local 

meteorological station; therefore, the error may occur when applied to any large area.  

  Apart from the atmospheric correction parameters, the surface emissivity 

is also required, as stated by Vlassova and others in 2014 (Vlassova et al., 2014). 

However, these methods assume that the surface is homogeneous, and radiances are 

directly correlated with emissivity values of materials and derived to LST. In fact, these 
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emissivity values are based on land cover classification data, which have not considered 

the multiple scattering and reflection caused by urban geometry (Yang, Wong, Menenti 

and Nichol, 2015). The study area, Buriram Town Municipality, appears as 

heterogeneous land use/land covers, causing different reflectance of the spectrum. It 

can be explained regarding the study by Feng and others in 2015 (Feng, (Feng, Foody, 

Aplin and Gosling, 2015)  that relatively coarse spatial resolution may be strongly 

affected by mixed pixels, whereby each pixel comprises a mixture of two or more land 

cover types. 

  Lastly, the limitations of ground-based temperature data also provide the 

error to the results. The ground-based temperature surveying was done during 10.00 - 

12.00 a.m., which closed to the time that the satellite obtains the data at 10.30 a.m. on 

the same date of LANDSAT-8. The additional test of the correlation between ground-

based temperature data and the estimated LST data using the optimum method is 

mentioned in Appendix A. 

  Regarding the finding, the SW algorithm is an optimum method in USLT 

estimation for this study. The errors may occur due to the atmospheric parameter 

estimation, emissivity estimation, and also the limitations in ground-based temperature 

surveying. Another critical point is that the amount of atmospheric water vapor content 

data plays a vital role in terms of accuracy. It is noted that the atmospheric water vapor 

content data must be carefully considered regarding the use of the SW algorithm.  
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4.2 Subpixel LST data estimation using the statistical-based method 

 The second objective results are separated into three parts, including (1) the 

regression modeling, (2) the subpixel LST data, and (3) the accuracy assessment. The 

specific details are as followed. 

 4.2.1 Regression modeling 

  The obtained regression statistics used in subpixel LST estimation are 

shown in Table 4.3.  

 

Table 4.3  Regression statistics used in subpixel LST estimation. 

Years Months R R2 Adjusted R2 Equations 

2014 March 31 0.922 0.849 0.845 40.222 + 8.131 NDISI + 20.879 AB  

+ 2.595 MNDWI 

 April 16 0.937 0.879 0.876 33.883 + 8.968 NDISI + 18.787 AB 

2016 March 20 0.945 0.893 0.888 55.542 + 8.128 NDISI - 10.041 AB +  

12.165 MNDWI - 5.443 UI + 28.514 

NDBaI 

 April 5 0.941 0.886 0.881 46.256 + 7.551 NDISI + 4.600 BI  

+ 5.097 MNDWI + 6.868 NDMI 

2018 January 21 0.893 0.798 0.792 31.361 + 5.158 NDISI + 23.610 AB  

+ 2.940 MNDWI 

 February 6 0.978 0.956 0.954 26.811 + 5.421 NDISI + 19.986 AB  

- 2.067 MNDWI - 4.354 UI - 6.257 NDVI 

 March 26 0.943 0.890 0.885 26.574 + 7.540 NDISI + 50.785 AB  

+ 5.619 MNDWI - 1.324 UI 

 April 11 0.927 0.859 0.854 38.446 + 10.657 NDISI + 30.655 AB +  

5.068 MNDWI 

Note: Data in 2014 and 2016 were used in the feasibility test of the simulated temperature. 

 

  The results of R-values, R2 values, and adjusted R2 values are in the same 

direction, as shown in Table 4.3. The highest R-value, R2 value, and adjusted R2 value 

are found on February 6, 2018, like 0.978, 0.956, and 0.954, respectively. In contrast, 

the lowest R-value, R2 value, and adjusted R2 value are found on January 21, 2018, like 

0.893, 0.798, and 0.792, respectively. 
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  Regarding the equations used in this study, NDISI is included in all models, 

while MNDWI and surface albedo are also found in all models, except April 16, 2014, 

and April 5, 2016, respectively. Although there are many spectral indices represented 

the impervious surface, NDISI is different from others because this index uses the 

thermal band in the calculation. The UI and NDBI are similar, but these indices use 

different short-wave infrared bands. Essa, Verbeiren, Kwast, Voorde and Batelaan 

(2012) reported that the extract full land information using NDBI is often mixed with 

noise caused by vegetation within the urban fabric. Furthermore, Xu (2008) indicated 

that IBI can significantly enhance the built-up land features versus non-built-up features 

within a mixed landscape and effectively suppress the background noise. However, 

Essa et al. (2012) reported that IBI was not able to differentiate LST within the urban 

pixels as in vegetated areas. 

  The MNDWI, which represents the wetlands, is also included in almost 

models. Focusing on the study area, it surrounds with circular canals in the South-

Eastern part. As a supporting reason explored by Xu (2006), it was indicated that 

MNDWI is more suitable to enhance and extract water information for a water region 

with a background dominated by built-up areas. Regarding its advantage, it reduces and 

removes the noise of built-up land over the NDWI, as stated in a study of Essa and 

others in 2012 (Essa et al., 2012), due to the obtained information about moisture and 

vegetation.  

  Similar to MNDWI, surface albedo is also included in almost models. The 

relationships between the surface albedo and the LST have shown in a few studies. For 

instance, Small (2006) found a close relationship between surface temperature and 

surface albedo in urban areas. Furthermore, Zaksek and Ostir (2012) also indicated that 
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land surface albedo quantifiers the part of the energy that is absorbed and transformed 

into heat and latent fluxes; thus, it correlates with the LST.  

  Other spectral indices, represented the impervious surface areas (UI, BI, 

and NDBaI), are also selected in some models. The studies of Yuan and Bauer (2007), 

Essa et al. (2012), and Essa, Kwast, Verbeiren and Batelaan (2013) reported that the 

impervious surface constitutes the most significant portion accounted for the majority 

of the LST variations within the urban space. Their studies show a strong linear 

relationship among LST and impervious surfaces, regardless of the acquisition day. 

Most of the models have not considered vegetation indices; however, the NDVI 

included in the model only on February 6, 2018. Essa et al. (2012) reported that NDVI 

has a higher correlation with LST since the image was taken in a season with high 

vegetation cover. This study has surveyed during the summer period with low 

vegetation cover; therefore, other spectral indices may provide more influence. 

Furthermore, vegetation indices may have a high correlation with others. 

  It should be pointed out that other spectral indices are selected to provide 

the higher R2 values than the models with only NDISI, MNDWI, and albedo. 

Corresponding with Yang, Cao, Pan, Li and Zhu (2017) reported that multiple relevant 

remote sensing indices could characterize LULC precisely, especially in non-vegetated 

areas. Yang et al. (2017) also indicated that for complex urban areas with varying land 

cover types, multiple scale factors must be integrated to achieve high downscaling 

precision.  

  It can be concluded that the implementation of a statistical-based method 

in subpixel LST data estimation must consider several issues. Firstly, the spectral 

indices, which are used as scaling factors, represent the impervious surface area, is 
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recommended in modeling. Secondly, the characteristics of the area and the study 

period also play an essential role in scaling factors selection. Thirdly, to avoid 

multicollinearity, stepwise multiple regression modeling should be applied. Also, the 

residual is added to the model. Due to other associated variables, which are not 

considered, also affect the accuracy of the model. Lastly, besides considering R2 value, 

the error of the model, which is assessed as section 4.2.3, is considered. The supplement 

test of subpixel LST estimation using a regression model based on multiple date data 

in 2018 is mentioned in Appendix B. 

 4.2.2 The subpixel LST data 

  The LST data and subpixel LST data in 2014 and 2016 are illustrated in 

Figure 4.8. Followed with Figure 4.9 illustrates the LST data and the subpixel LST data 

in 2018. Furthermore, the average, maximum, and minimum temperatures in 2014, 

2016, and 2018 are shown in Table 4.4. 

 

  
LST data on March 31, 2014 

based on Split-window method 
Subpixel LST data on March 31, 2014 

Figure 4.8  LST data and subpixel LST data in 2014 and 2016. 
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LST data on April 16, 2014 

based on Mono-window method 
Subpixel LST data on April 16, 2014 

  
LST data on March 20, 2016 

based on Split-window method 

Subpixel LST data on March 20, 2016 

  
LST data on April 5, 2016 

based on Split-window method 
Subpixel LST data on April 5, 2016 

Figure 4.8  LST data and subpixel LST data in 2014 and 2016 (Continued). 
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LST data on January 21, 2018 

based on Split-window method 
Subpixel LST data on January 21, 2018 

  
LST data on February 6, 2018 

based on Improved Mono-window method 
Subpixel LST data on February 6, 2018 

  
LST data on March 16, 2018 

based on Split-window method 
Subpixel LST data on March 26, 2018 

  
LST data on April 11, 2018 

based on Split-window method 
Subpixel LST data on April 11, 2018 

Figure 4.9  LST data and Subpixel LST data in 2018. 

 



88 
 

  LST maps and subpixel LST maps show the same location of cold spots 

and hotspots as Figure 4.8 and Figure 4.9. However, the subpixel LST maps show a 

more complex surface than LST maps. Many high-temperature locations occur as spots. 

The sample ground-based temperature data, LST data based on the SW method, and 

subpixel LST data are shown in Figure 4.10. 

 

 

Figure 4.10 Compared samples between ground-based temperature, LST, and subpixel 

LST on April 11, 2018. 

 

  Most of the samples, which are randomly selected, show that subpixel LST 

data are closer to ground-based temperature data than LST data as Figure 4.10. Almost 

LST data based on the SW algorithm are quite low when compare with subpixel LST 

data and the ground-based temperature data. However, almost all of the subpixel LST 

data are still lower than ground-based temperature data. 
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Table 4.4  The average, maximum, and minimum temperature (oC). 

Years Months Data Average Minimum Maximum 

2014 March 31 LST 42.534 35.378 48.326 

  Subpixel LST 43.060 34.271 49.644 

 April 16 LST 38.096 31.867 43.329 

  Subpixel LST 38.680 29.693 42.680 

2016 March 20 LST 40.282 33.953 46.452 

  Subpixel LST 41.187 33.712 46.396 

 April 5 LST 42.587 34.641 49.095 

  Subpixel LST 43.071 34.313 48.873 

2018 January 21 LST 33.863 27.377 37.885 

  Subpixel LST 34.105 27.522 37.712 

 February 6 LST 29.241 22.743 33.133 

  Subpixel LST 29.273 22.924 32.647 

 March 26 LST 34.602 27.860 39.693 

  Subpixel LST 35.015 27.993 39.363 

 April 11 LST 43.465 35.323 50.283 

  Subpixel LST 44.465 34.552 51.800 

Note: Data in 2014 and 2016 were used in the feasibility test of the simulated temperature. 

 

  All average temperatures based on subpixel LST data are higher than LST 

data, as shown in Table 4.4. The highest average LST data and subpixel LST data are 

found on April 11, 2018, as 43.465 oC and 44.465 oC, respectively. In contrast, the 

lowest average LST data and subpixel LST data are found on February 6, 2018, as 

29.241 oC and 29.273 oC, respectively. Furthermore, based on minimum temperature, 

most of subpixel LST data are lower than LST data, except January 21, February 6, and 

March 26 in 2018. On the other hand, based on maximum temperature, most of subpixel 

LST data are lower than LST data, except March 31, 2014, and April 11, 2018. 

 4.2.3 The accuracy assessment 

  The RMSE and NRMSE values were calculated based on the subpixel LST 

data and ground-based temperature data on January 21, February 6, March 26, and April 

11 in 2018. The results are shown in Table 4.5, and Figures 4.11 - 4.12. Furthermore, 

the independent sample t-test was applied, as shown in Table 4.6, in order to determine 
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whether there is a statistically significant difference between LST data and subpixel 

LST data. 

 

Table 4.5  RMSE and NRMSE values. 

Data RMSE /NRMSE LST 
Subpixel 

LST 

Differentiated 

RMSE /NRMSE 

January 21, 2018 RMSE (OC) 2.728 2.413 0.315 

 NRMSE 0.227 0.201 0.026 

February 6, 2018 RMSE (OC) 3.172 2.658 0.514 

 NRMSE 0.317 0.266 0.051 

March 26, 2018 RMSE (OC) 2.741 2.354 0.387 

 NRMSE 0.218 0.188 0.030 

April 11, 2018 RMSE (OC) 2.509 2.091 0.418 

 NRMSE 0.132 0.110 0.022 

 

 

Figure 4.11  RMSE values based on LST and subpixel LST data. 
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Figure 4.12  NRMSE values based on LST and subpixel LST data. 

 

  The RMSE and NRMSE values of LST data are higher than subpixel LST 

data in all months, as shown in Table 4.5 and Figures 4.11-4.12. The differentiated 

RMSE values are higher than 0.300 oC, while the differentiated NRMSE values are 

higher than 0.022. The lowest RMSE and NRMSE values are found on April 11, 2018. 

In contrast, the highest RMSE and NRMSE values are found on February 6, 2018. 

Similar to LST data estimation, the amount of atmospheric water vapor content plays 

an important in terms of accuracy. 

  The error sources based on subpixel LST data may come from the LST 

estimation algorithm, the atmospheric parameters calculation, and land surface 

emissivity estimation. Corresponding to Zhou et al. (2016) indicated that the error of 

the original LST is subject to sources such as the parameterization of atmospheric 

influences and the estimation of land surface emissivity. These parameters play an 

essential role in LST calculation and also resulted in a subpixel LST calculation 

process. These error sources present the errors to the results, although the relationship 
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between LST data and spectral indices was high, and the regression models can provide 

accurate results. 

  The basic idea of most LST disaggregation methods is to find an assumed 

scale-independent relationship between LST and some predictor variables from the 

low-resolution image (Zhu, Guan, Millington and Zhang, 2013). If the relationships 

between LST and predictors have not changed associated with spatial resolution, then 

a detailed high-resolution LST can be estimated by predictors using such relationships 

(Yang et al., 2017). The scale effect depends on the ratio of the native resolution to the 

target resolution. Note that the scale effect is defined as the error in the downscaled 

LST at the target resolution, whereby the error is induced by the LST-descriptors 

relationship at the native resolution (Zhou et al., 2016). Ghosh and Joshi (2014) 

reported that a ratio that exceeds four could cause a significant scale effect. The scale 

effect is intrinsically caused by the different probability distribution of the LST and its 

descriptors at the native and target resolutions. It depends on the values of the 

descriptors, the phenology, and the ratio of the native resolution to the target resolution. 

However, removing the scale effect can only slightly improve the accuracy of the 

downscaled LST (Zhou et al., 2016). 

  Another critical point is the coarser resolution of the TIR band is not 

calculated based on the original data. TIR bands are acquired at the 100-meters 

resolution but are resampled to 30 meters in delivered data products (United States 

Geological Survey, 2018). In the subpixel LST data estimation process, TIR bands were 

upscaled to 90 meters closed to the original resolution; however, the data had already 

changed. On the other hand, the visible, near-infrared, and short-wave bands used in 

spectral indices also upscaled to 90 meters. The upscale spectral indices based on these 
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bands are not the real values at this resolution, but the values were also calculated based 

on the conventional method in the upscaled process. Zhu et al. (2013) suggested that 

the quoted precisions of the LST disaggregation may be over over-estimated due to the 

low spatial resolution data being rebuilt and simulated from fine spatial resolution data.  

 

Table 4.6  The independent sample t-test results. 

Data 

Levene's Test 

for Equality of Variances 
t-test for Equality of Means 

F Sig t df 
Sig 

(2-tailed) 

January 21, 2018 1.299 0.254 -8.403 1798 0.000 

February 6, 2018 3.628 0.057 -12.209 1798 0.000 

March 26, 2018 3.538 0.060 -7.731 1798 0.000 

April 11, 2018 3.688 0.055 -10.842 1798 0.000 

Note:  1. Significance level at 0.05 

 2. t-statistic, df, and sig (2-tailed) are based on equal variance assumed. 

 

  Firstly, the variance of LST data and subpixel LST data are tested based on 

Levene’s test. The null hypothesis of variance test states that the variances of LST data 

and subpixel LST data are equal. Based on Table 4.6, all p-value of Levene's test is 

more significant than 0.05; therefore, the variance in LST data and subpixel LST data 

are not significantly different. Then, based on equal variances assumed, the null 

hypothesis of the t-test states that the LST data and subpixel LST data are not 

significantly different. Based on Table 4.6, all p-value of the t-test for equality of means 

is less than 0.05; therefore, the LST data and subpixel LST data are significantly 

different at a significant level of 0.05. 
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  Regarding the finding, the LST data and subpixel LST data are significantly 

different at a significant level of 0.05. The errors of subpixel LST data are lower than 

the LST data. The differentiated RMSE values are higher than 0.300 oC in all months. 

However, the errors of subpixel LST data may come from the scale effect and spatial 

resolution of data, which are used in spectral indices and the LST estimation process. 

Also, errors based on the LST estimation process, despite algorithm, the atmospheric 

parameters calculation, and also LSE estimation, can provide the error to the results. 

 

4.3 Hotspot areas identification based on subpixel LST data 

 The third objective results were separated into three parts, (1) Moran’s I results, 

(2) hotspot areas identification based on Getis-Ord Gi* results, and (3) characteristics 

of the selected hotspot areas. Their specific details are described as followed. 

 4.3.1 Moran’s I results 

  Firstly, the data pattern was identified using Moran’s I method, and the 

results are shown in Table 4.7.  

 

Table 4.7  Moran’s I result on data in 2014, 2016, and 2018. 

Years Months Z-score Moran’s index Pattern 

2014 March 31 55.956 0.928 Cluster 

 April 16 57.509 0.954 Cluster 

2016 March 20 50.007 0.829 Cluster 

 April 5 55.280 0.917 Cluster 

2018 January 21 55.184 0.915 Cluster 

 February 6 55.185 0.915 Cluster 

 March 26 55.903 0.927 Cluster 

 April 5 55.197 0.915 Cluster 

Note: Data in 2014 and 2016 were used in the feasibility of simulated temperature tests. 
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  The null hypothesis of Moran’s I statistic states that the data is randomly 

distributed. Based on Table 4.7, all Z-scores values are more significant than 50.000; 

therefore, all data are not randomly distributed. To identify the pattern of the data, if 

Moran’s index value near +1.0 indicates clustering, while an index value near -1.0 

indicates dispersion (ESRI, 2016; Prasannakumar, Vijith, Charutha and Geetha, 2011). 

According to the results, all months show Moran’s index values more significant than 

0.900, which close to +1.0. Therefore, it can be concluded that all data patterns are 

clustered. As a result, these data identify the hotspot areas that occur during this period 

using Getis-Ord Gi*. 

 4.3.2 Hotspot area identification based on Getis-Ord Gi* results 

  The hotspot areas that occurred from January to April in 2018 are illustrated 

in Figure 4.13. Followed with Figures 4.14 - 4.17, the hotspots on January 21, February 

6, March 26, and April 11 in 2018 are illustrated respectively. The data in 2014 and 

2016 were used in feasibility test of simulated temperature; therefore, the hotspot areas 

that occurred in 2018 were used in hotspot mitigation.  
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Figure 4.13  Hotspot areas in 2018. 

 

  Based on Figure 4.13, hotspot areas occur in bare-lands (Number 6, 8, 9, 

and 13) and race tracks (numbers 11 and 15). These areas are quite similar because 

some parts of these areas are covered with dry grass. Only some part of the location 

number 13 is actually bare-land used as the parking lot. Furthermore, most of the 

hotspot areas occur in built-up areas. In this case, the hotspot areas occurred in 

residential areas (number 4, 7, 10, 14, 16, and some parts of 13), commercial areas 

(number 1, 2, and 3), some part of the educational institution as parking lots in Buriram 

Rajabhat University (number 12), and government institutions as hospital (number 5).  
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Figure 4.14  Hotspot areas on January 21, 2018. 

 

Figure 4.15  Hotspot areas on February 6, 2018. 
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Figure 4.16  Hotspot areas on March 26, 2018. 

 

Figure 4.17  Hotspot areas on April 11, 2018. 
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  Most of the hotspot areas occur at the same location, as shown in Figures 

4.14-4.17. Nevertheless, the boundaries of the hotspot areas are different, depending on 

the weather conditions. For example, on February 6, 2018, with the lowest temperature, 

almost hotspot areas occur at the bare-lands. Due to the bare-lands temperature are 

higher than other LULC, and the differentiated LST between bare-lands and other 

LULC is large. Another sample is the hotspot occurs in April. Focusing on the hotspot 

number 13 (as mentioned in Figure 4.13), this hotpots location appears on January 21 

and February 6 in 2018, but this hotspot disappeared in April 11, 2018, due to rainfall 

before the satellite obtained the data, as shown in Figure 4.18. 

 

 

Figure 4.18  The daily cumulative rainfall. 

 

  According to Figure 4.18, the cumulative rainfall data were obtained from 

the Hydro and Agro Informatics Institute (HAII) website. There was rainfall on April 

5, 6, and 8, while the satellite obtained the data on April 11, 2018. 
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  Regarding the finding, the hotspot areas occurred in bare-lands, race tracks, 

and built-up areas. Corresponding with Adeyeri, Akinsanola and Ishola (2017) who 

indicated that significant hotspots of high LST were recorded in built-up areas and bare 

surfaces. Also, Xu, Qin and Wan (2010) indicated that temperature statistics of main 

land cover types showed that built-up and bare land had higher surface temperatures 

than natural land covers. Generally, areas with high temperatures are primarily located 

in the center of the city (Ga, NiMa, Jun and CiRen, 2011). Also, high average 

temperatures always occur in commercial area (Cai, Du and Xue, 2011; Dobrovolny, 

2013; Li et al., 2011; Rinner and Hussain, 2011; Van and Bao, 2008, 2010; Xu, Dan, 

Dan and Lu, 2009), and also in the areas with having a high density of buildings, 

residents (Cai et al., 2011), roads, and transportations (Cai et al., 2011; Xu et al., 2009). 

In contrast, low average temperature occurs in parks and recreational land, water bodies 

(Rinner and Hussain, 2011), and also around the regions with large areas of grassland, 

trees, and water bodies (Cai et al., 2011). 

 4.3.3  Characteristics of the selected hotspot areas 

  The selected hotspot locations are illustrated in Figure 4.19 - 4.21. 

Furthermore, the average, minimum, and maximum temperatures in hotspot areas and 

surrounding areas are shown in Table 4.8, followed by Table 4.9. It shows the 

differentiated temperature between maximum temperature in hotspot areas and 

surrounding areas. The supplementary data of the selected hotspot locations are 

mentioned in Appendix C. 
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Figure 4.19  The selected hotspot area: the first location. 

 

 

Figure 4.20  The selected hotspot area: the second location. 
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Figure 4.21  The selected hotspot area: the third location. 

 

  The first hotspot location (Figure 4.19) covers some parts of the market and 

some commercial zone in the municipality. The proportion of main LULC types in this 

area are construction and road as 0.76 and 0.24, respectively.  

  The second hotspot location (Figure 4.20) covers some part of the market, 

where are Buriram Night Bazaar, and some residential areas. The proportion of main 

LULC types in this hotspot location is construction, road, and green space as 0.71, 0.26, 

and 0.03, respectively. 

  The third hotspot location (Figure 4.21) covers some part of the commercial 

areas, where is located near the train station. In the past, some area of this hotspot 

location was the market. The proportion of main LULC types in this area are 

construction, road, and green space as 0.70, 0.29, and 0.01, respectively.  
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  Typically, the hotspot pixels are surrounded with adjacent pixels, which 

has a radius around 30 meters of one pixel. The LULC in 2014, 2016, and 2018 are not 

absolutely changed; therefore, the LULC types and the proportional LULC in 2014 - 

2018 in these hotspot locations are the same. Lastly, the hotspot boundaries in 2018 are 

used as the hotspot boundaries in 2014 and 2016 to explore the feasibility of the 

simulated temperature. 

 

Table 4.8  The average, maximum, and minimum temperature in the hotspot and 

surrounding areas (oC). 

  2014 2016 2018 

  March 

31 

April  

16 

March 

20 

April  

5 

January 

21 

February 

6 

March 

26 

April  

11 

Hotspot 1 Min. 44.27 41.02 41.10 44.21 34.35 28.70 35.35 47.80 

 Max. 46.12 42.68 43.57 46.19 36.29 31.26 37.36 49.12 

 Mean 45.46 41.44 42.14 45.22 35.34 29.77 36.57 48.33 

Surround Min. 43.91 40.56 40.47 43.34 33.49 27.95 34.93 46.06 

Hotspot 1 Max. 45.69 41.55 42.81 45.94 35.79 30.17 37.00 47.59 

 Mean 45.06 41.19 41.87 44.83 34.79 29.34 36.00 47.09 

Hotspot 2 Min. 44.15 40.98 42.25 44.84 35.44 30.15 36.65 47.41 

 Max. 46.09 42.51 43.94 46.31 37.24 32.16 37.31 49.06 

 Mean 45.47 41.46 43.14 45.67 36.22 31.04 36.95 48.35 

Surround Min. 42.81 40.43 42.25 43.44 34.61 29.85 35.90 45.86 

Hotspot 2 Max. 45.39 41.33 43.05 45.73 35.87 30.77 37.08 47.43 

 Mean 44.66 40.99 42.68 44.79 35.34 30.38 36.49 46.75 

Hotspot 3 Min. 44.90 40.81 41.72 44.92 35.25 29.68 35.91 47.64 

 Max. 45.90 42.34 43.78 46.13 36.29 32.00 37.46 48.42 

 Mean 45.56 41.29 42.57 45.40 35.58 30.61 37.03 47.91 

Surround Min. 44.45 40.49 41.12 44.70 34.44 28.63 35.04 46.35 

Hotspot 3 Max. 45.58 41.13 43.15 45.80 35.77 30.89 37.10 47.52 

 Mean 45.17 40.85 42.43 45.29 35.23 30.18 36.52 47.03 

Note: Data in 2014 and 2016 were used in feasibility test of the simulated temperature. 

 

 

 

 

 

 

 



104 
 

Table 4.9  The differentiated temperature (oC). 

 2014 2016 2018 

 March 

31 

April  

16 

March 

20 

April  

5 

January 

21 

February 

6 

March 

26 

April  

11 

Hotspot 1 46.12 42.68 43.57 46.19 36.29 31.26 37.36 49.12 

Surrounding areas 45.69 41.55 42.81 45.94 35.79 30.17 37.00 47.59 

Differentiate 0.43 1.13 0.76 0.25 0.50 1.09 0.36 1.53 

Hotspot 2 46.09 42.51 43.94 46.31 37.24 32.16 37.31 49.06 

Surrounding areas 45.39 41.33 43.05 45.73 35.87 30.77 37.08 47.43 

Differentiate 0.70 1.18 0.89 0.58 1.37 1.39 0.23 1.63 

Hotspot 3 45.90 42.34 43.78 46.13 36.29 32.00 37.46 48.42 

Surrounding areas 45.58 41.13 43.15 45.80 35.77 30.89 37.10 47.52 

Differentiate 0.32 1.21 0.63 0.33 0.52 1.11 0.36 0.90 

Note: Data in 2014 and 2016 were used in feasibility test of the simulated temperature. 

 

  According to the scope and limitations of the study (stated in Chapter 1, 

Section 3.4), the purpose of the mitigation is to reduce the hotspot temperature nearly 

or equal to the temperature of the surrounding area. To explore at least the decreased 

temperature, the differentiated temperature between the maximum temperature in 

hotspot areas surrounding areas, as shown in Table 4.8, was calculated. The 

differentiated temperature, as at least the decreased temperature, is shown in Table 4.9. 

  In the first hotspot location, at least the decreased temperature on January 

21, February 6, March 26, and April 11 in 2018 are around 0.50 oC, 1.09 oC, 0.36 oC, 

and 1.53 oC, respectively. While at least the decreased temperature in the second hotspot 

location is around 1.37 oC, 1.39 oC, 0.23 oC, and 1.63 oC, respectively. Lastly, at least 

the decreased temperature in the third hotspot location is around 0.52 oC, 1.11 oC, 0.36 

oC, and 0.90 oC, respectively. 

  The proportions of green space, which can reduce the hotspot temperature 

around 0.50 - 2.00 oC, is considered and reported. Due to at least the decreased 

temperature is around 0.23 - 1.63 oC. Furthermore, the minimum proportion of green 
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space should mitigate almost data from January 21, February 6, March 26, and April 

11 in 2018.  

  Regarding the finding, the largest portions of LULC in hotspot locations is 

impervious surface, including constructions and roads. While the green space is very 

low when compared with other LULC types. This causation leads to SUHI occurrence 

in this location. Due to the reduction in latent heat flux and an increase in sensible heat 

in urban areas as vegetated and evaporating soil surfaces are replaced by relatively 

impervious low albedo (solar reflectivity) paving and building materials (Imhoff, 

Zhang, Wolfe and Bounoua, 2010). Also, the modification of the land surface in the 

urban area to build surfaces enhance the energy storage and the heat release (Carnielo 

and Zinzi, 2013).  

  This result corresponding to the UHI phenomenon occurs in a small town, 

as same as the exploration of Blazejczyk and others (Blazejczyk, Bakowska and 

Wieclaw, 2006), also, the concept of UHI in terms of the difference between the central 

part of the city and its surrounding areas (Ngie, Abutaleb, Ahmed, Darwish and Ahmed, 

2014). As a result, shown in Figure 4.13, the hotspot locations occur on January 21, 

February 6, March 26, and April in 2018. These hotspot areas occurred in bare-lands, 

race tracks, and built-up areas. In the case of built-up areas, the hotspot areas occurred 

in residential areas, commercial areas, education institutions, and government 

institutions. As confirmed with a study by Adeyeri et al. (2017), they indicated that the 

hotspot in the city could also occurred in bare-lands. Furthermore, the results were 

corresponding with Dobrovolny (2013), Li et al. (2011), Rinner and Hussain (2011), 

(Cai et al., 2011) and Xu et al. (2009) who indicated that the hotspot in the city occurred 
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in the commercial area because there is a high density of buildings, residents, and 

transportations.  

 

4.4 Simulation of hotspot mitigation from proportions of green space 

in the urban area 

 The results of this section are separated into three parts, (1) the regression 

modeling, (2) the proportion of green space used in hotspot mitigation, and (3) the 

feasibility test of the simulated temperature. Their specific details are as followed. 

 4.4.1 Regression modeling 

  The proportional LULC, which comprises of green space, construction, and 

road, were selected regarding the significant types of LULC found in hotspot areas. 

Firstly, Pearson correlation, which is suitable for interval and ratio variables (SPSS 

Tutorials, 2019), was applied to explore the relationship between these proportions of 

LULC and subpixel LST data. Table 4.10 shows Pearson correlation statistics between 

these LULC types and subpixel LST data. 

 

Table 4.10  The Pearson correlation statistics. 

Subpixel LST Green Space Construction Road 

March 31, 2014 - 0.662 0.484 0.207 

April 16, 2014 - 0.682 0.528 0.176 

March 20, 2016 - 0.281 0.138 0.171 

April 5, 2016 - 0.567 0.388 0.210 

January 21, 2018 - 0.542 0.396 0.169 

February 6, 2018 - 0.370 0.227 0.169 

March 26, 2018 - 0.545 0.359 0.219 

April 11, 2018 - 0.620 0.477 0.163 
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  The proportion of green space provides a higher correlation with subpixel 

LST data than the proportion of construction and road, as shown in Table 4.10. 

Therefore, regression modeling was focused on the proportion of green space and 

subpixel LST data. Then, the scatter plots were used to explore the relationship between 

the proportion of green space and subpixel LST data, as shown in Figure 4.22 and 

Figure 4.23. 

 

  
January 21, 2018 February 6, 2018 

  
March 26, 2018 April 11, 2018 

Note: [TR] was represented the proportion of green space. 

 

Figure 4.22  The scatter plots based on the proportion of green space and subpixel LST 

data in 2018. 
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March 31, 2014 April 16, 2014 

  
March 20, 2016 April 5, 2016 

Note: [TR] was represented the proportion of green space. 

 

Figure 4.23 The scatter plots based on the proportion of green space and subpixel LST 

data in March and April 2014 and 2016. 

 

  Based on Figures 4.22 - 4.23, the relationship between the proportion of 

green space and subpixel LST data is assumed to be linear. Accordingly, the test of 

normality was applied. The example result of the normality test was shown in Figure 

4.24. 
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Figure 4.24  The test of normality based on subpixel LST data in April 2018. 

 

 

  The normal QQ plot provides a visual comparison of the dataset to a 

standard normal distribution. Points on the normal QQ plot indicate the univariate 

normality of the dataset. If the data is normally distributed, the points fall on the linear 

referencing line. If the data is not normally distributed, the points deviate from the linear 

referencing line (ESRI, 2019). It is found that most of the data are normally distributed, 

as shown in Figure 4.24; therefore, all data are used. Seventy percent of the data were 

randomly selected and used in regression modeling. On the other hand, the rest 30 

percent of the data was used in the accuracy assessment by considering RMSE values. 

The results of the regression statistics are in Table 4.11. 
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Table 4.11 The regression statistics. 

Data R R2 Adjust R2 Equation RMSE (oC) 

March 31, 2014 0.691 0.478 0.477 44.347 - 3.683 [TR] 1.085 

April 16, 2014 0.706 0.498 0.497 40.501 - 4.631 [TR] 1.274 

March 20, 2016 0.319 0.102 0.101 41.538 - 1.212 [TR] 0.998 

April 5, 2016 0.594 0.353 0.353 44.152 - 3.007 [TR] 1.113 

January 21, 2018 0.582 0.338 0.338 34.833 - 2.428 [TR] 0.965 

February 6, 2018 0.408 0.167 0.166 29.594 - 1.551 [TR] 0.906 

March 26, 2018 0.577 0.333 0.332 35.851 - 2.623 [TR] 0.998 

April 11, 2018 0.648 0.420 0.419 46.195 - 4.310 [TR] 1.404 

Note: [TR] represents the proportion of green space. 

 

  The highest R, R2, and adjusted R2 values are on April 16, 2014. In contrast, 

the lowest R, R2, and adjusted R2 values are on March 20, 2016, as shown in Table 

4.11. The RMSE values are around 1.00 oC; therefore, the obtained regression models 

provided high errors. Since other variables also play an important role in temperature 

estimation, such as location, the albedo of the used materials in construction, weather 

conditions (wind speed, moisture), mixed pixels, urban design (Sattari, Hashim and 

Pour, 2018). This study focuses on the relationship between the proportion of LULC 

and subpixel LST data; therefore, other variables, as mentioned above, are not 

considered. To improve the accuracy of the equations, therefore, the residuals are 

included in the equations. The regression models used in subpixel LST data estimation 

are shown in Table 4.12. 
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Table 4.12  The regression models. 

Data Equation 

March 31, 2014 44.347 - 3.683 [TR] + e 

April 16, 2014 40.501 - 4.631 [TR] + e 

March 20, 2016 41.538 - 1.212 [TR] + e 

April 5, 2016 44.152 - 3.007 [TR] + e 

January 21, 2018 34.833 - 2.428 [TR] + e 

February 6, 2018 29.594 - 1.551 [TR] + e 

March 26, 2018 35.851 - 2.623 [TR] + e 

April 11, 2018 46.195 - 4.310 [TR] + e 

Note: [TR] and e represent the proportion of green space, and residuals, respectively. 

 

  Based on Table 4.12, [TR] represents the proportion of green space, and e 

is the residuals. In the simulation process, the residuals are calculated from the 

differentiated temperature between the estimated LST data, which are based on the 

regression model and subpixel LST data. Furthermore, it should be noted that the 

residuals are calculated pixel by pixel.  

  Regarding the finding, although the LULC and the proportional LULC in 

the area is the same, the temperature is different. The difference in temperature comes 

from other parameters, which play an essential role to temperature, despite the 

vegetation density (Cao, Onishi, Chen and Imura, 2010; Feyisa, Dons and Meiby, 

2014), tree species (Feyisa et al., 2014), location (Lin, Yu, Chang, Wu and Zhang, 

2015). In this study, the variable used in regression modeling depends on the proportion 

of green space only; therefore, the residual should be added to the models to improve 

accuracy. 
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 4.4.2 The proportion of green space used in hotspot mitigation 

  In order to explore the minimum proportion of green space applied in 

hotspot temperature decreasing, the maximum decreased temperature is considered. 

The results of the proportion of green space as 0.15, 0.30, 0.45, and 0.60 of the area 

used in accordance with three hotspot locations are in Tables 4.13 - 4.15. Furthermore, 

Figure 4.25 to Figure 4.28 illustrate the simulated maps based on the first hotspot 

location. Followed with Figure 4.29 to Figure 4.32 illustrate the simulated maps based 

on the second hotspot location. Lastly, Figure 4.33 to Figure 4.36 illustrate the 

simulated maps based on the third hotspot location. The supplementary data in this 

section are mentioned in Appendix C. 

 

Table 4.13  Decreased temperature based on the simulated proportion of green space 

at the first hotspot location. 

Proportion 

of green space 
 

January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

0.15 Min 33.98 0.36 28.47 0.23 34.96 0.39 47.16 0.65 

 Max 35.93 0.36 31.02 0.23 36.97 0.39 48.48 0.65 

 Mean 34.98 0.36 29.54 0.23 36.18 0.39 47.68 0.65 

0.30 Min 33.62 0.73 28.23 0.47 34.56 0.79 46.51 1.29 

 Max 35.57 0.73 30.79 0.47 36.57 0.79 47.83 1.29 

 Mean 34.62 0.73 29.30 0.47 35.78 0.79 47.04 1.29 

0.45 Min 33.25 1.09 28.00 0.70 34.17 1.18 45.86 1.94 

 Max 35.20 1.09 30.56 0.70 36.18 1.18 47.18 1.94 

 Mean 34.25 1.09 29.07 0.70 35.39 1.18 46.39 1.94 

0.60 Min 32.89 1.46 27.77 0.93 33.78 1.57 45.22 2.59 

 Max 34.84 1.46 30.33 0.93 35.79 1.57 46.54 2.59 

 Mean 33.89 1.46 28.84 0.93 35.00 1.57 45.74 2.59 

Note: T is the differentiated temperature between the actual temperature and decreased temperature. 
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  To decrease the hotspot temperature nearly or equal to surrounding areas, 

at least the decreased temperature on January 21, February 6, March 26, and April 11, 

2018, are around 0.50 oC, 1.09 oC, 0.36 oC, and 1.53 oC, respectively. Based on Table 

4.13, the proportion of green space around 0.15 of the area can only decrease the hotspot 

temperature on March 26, 2018. To decreased the hotspot temperature on January 21 

and March 26 in 2018, the proportion of green space around 0.30 of the area is needed. 

Furthermore, with this proportion of green space, the decreased temperature on April 

11, 2018, is closed to at least the decreased temperature. However, to decrease the 

hotspot temperature more than at least the decreased temperature on January 21, March 

26, and April 11, 2018, the proportion of green space around 0.45 of the area is needed. 

Although the proportion of green space is increased to 0.60 of the area, the decreased 

temperature on February 6, 2018, is still lower than at least the decreased temperature 

with the differentiated temperature around 0.16 oC. Therefore, the proportion of green 

space around 0.45 of the area is the minimum proportion of green space to mitigate the 

first hotspot location. 

 

 

 

 

 

Actual LST  

Figure 4.25  The first hotspot location mitigation based on January 21, 2018. 
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The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.25  The first hotspot location mitigation based on January 21, 2018 

(Continued). 

 

  According to the explored result, it must be confirmed by simulating the 

proportions of green space into each image corresponding with the generated LST. On 

January 21, 2018, the hotspot temperature was closed to the temperature of the 

surrounding area when the proportion of green space is increased to 0.15 of the area, as 

shown in Figure 4.25. The differentiated temperature between decreased temperature 

and the minimum decreased temperature is around 0.14 oC. The hotspot temperature is 

decreased by more than the minimum decreased temperature when the proportion of 

green space is increased to 0.30 in the area. Furthermore, the hotspot temperature is 

decreased over 1.00 oC when the proportion of green space is increased by more than 

0.45 of the area. 
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  It should be noted that the hotspot boundaries were generated based on the 

hotspot areas in all months. Therefore, the decreased temperature in some areas, which 

are the actual hotspot in this month, is lower than the surrounding areas and illustrated 

as green color in this map. 

 

 

 

Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.26  The first hotspot location mitigation based on February 6, 2018. 

 

  On February 6, 2018, the differentiated temperature between the decreased 

temperature and surrounding area temperature was more than 0.50 oC when the 

proportion of green space was increased to 0.45 of the area, as shown in Figure 4.26. 

Although the proportion of green space was increased to 0.60 in the area, the decreased 

31.257 oC 

27.768 oC 
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temperature was still less than the minimum decreased temperature. The differentiated 

temperature between the decreased temperature and surrounding area temperature was 

around 0.39 oC and 0.16 oC when the proportion of green space was increased to 0.45 

and 0.60 of the area, respectively. 

 

 

 

Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.27  The first hotspot location mitigation based on March 26, 2018. 

 

  The hotspot temperature, on March 26, 2018, was decreased more than the 

minimum decreased temperature when the proportion of green space was increased to 

0.15 of the area, as shown in Figure 4.27. Furthermore, the hotspot temperature could 

37.359 oC 

33.775 oC 
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be decreased over 0.50 oC and 1.00 oC when the proportion of green space was 

increased to 0.30 and 0.45 of the area, respectively.  

 

 

 

Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.28  The first hotspot location mitigation based on April 11, 2018. 

 

  The hotspot temperature, on April 11, 2018, was closed to the surrounding 

areas temperature when the proportion of green space was increased to 0.30 of the area, 

as shown in Figure 4.28. To decrease the hotspot temperature more than the minimum 

decreased temperature, the minimum proportion of green space around 0.45 of the area 

was needed. Furthermore, the hotspot temperature could be decreased by more than 

2.00 oC, when the proportion of green space was increased to 0.60 of the area.  

49.124 oC 

45.217 oC 
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Table 4.14  Decreased temperature based on simulated proportion of green space at the 

second hotspot location. 

Proportion  

of green space 

 
January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

0.15 Min 35.07 0.27 29.91 0.17 36.26 0.29 46.76 0.47 

 Max 36.88 0.36 31.93 0.23 36.92 0.39 48.51 0.65 

 Mean 35.89 0.36 30.82 0.23 36.60 0.39 47.74 0.63 

0.30 Min 34.71 0.15 29.68 0.09 35.87 0.16 46.12 0.26 

 Max 36.51 0.73 31.70 0.47 36.72 0.79 48.36 1.29 

 Mean 35.56 0.66 30.61 0.42 36.23 0.72 47.17 1.18 

0.45 Min 34.35 0.51 29.45 0.33 35.47 0.55 45.47 0.91 

 Max 36.15 1.09 31.47 0.70 36.33 1.18 47.71 1.94 

 Mean 35.19 1.03 30.38 0.66 35.84 1.11 46.53 1.82 

0.60 Min 33.98 0.87 29.22 0.56 35.08 0.94 44.82 1.55 

 Max 35.78 1.46 31.23 0.93 35.93 1.57 47.06 2.59 

 Mean 34.83 1.39 30.15 0.89 35.45 1.50 45.88 2.47 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 

 

  To decrease the hotspot temperature nearly or equal to surrounding areas, 

the minimum decreased temperature on January 21, February 6, March 26, and April 

11, 2018, was around 1.37 oC, 1.39 oC, 0.23 oC, and 1.63 oC, respectively. Based on 

Table 4.14, the proportion of green space around 0.15 and 0.30 of the area could only 

decrease the hotspot temperature more than the minimum decreased temperature on 

March 26, 2018. On April 11, 2018, to decreased the hotspot temperature more than the 

minimum decreased temperature, the proportion of green space around 0.45 of the area 

was needed. However, with this proportion of green space, the decreased hotspot 

temperature still less than the minimum decreased temperature on January 21 and 

February 6 in 2018. When the proportion of green space was increased to 0.60 in the 

area, the almost hotspot temperature was decreased more than the minimum decreased 

temperature, except on February 6, 2018, with the differentiated temperature around 

0.46 oC. Therefore, the proportion of green space around 0.60 of the area is the 

minimum proportion of green space in the second hotspot location mitigation. 
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Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.29  The second hotspot location mitigation based on January 21, 2018. 

 

  Based on Figure 4.29, the hotspot temperature, on January 21, 2018, was 

closed to the surrounding areas temperature when the proportion of green space was 

increased to 0.45 of the area. The differentiated temperature between decreased 

temperature and the minimum decreased temperature was around 0.28 oC. To decrease 

the hotspot temperature more than at the minimum decreased temperature, at least 

proportion of green space around 0.60 of the area was needed. 

 

37.239 oC 

33.853 oC 
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Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.30  The second hotspot location mitigation based on February 6, 2018. 

 

  Based on Figure 4.30, the differentiated temperature between the decreased 

temperature and surrounding areas temperature was more than 0.50 oC when the 

proportion of green space was increased to 0.45 of the area. Although the proportion of 

green space was increased to 0.60 of the area, the decreased temperature was still less 

than the minimum decreased temperature.  

 

32.164 oC 

29.072 oC 
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Actual LST  

  
 The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

 

Figure 4.31  The second hotspot location mitigation based on March 26, 2018. 

 

  Based on Figure 4.31, the hotspot temperature, on March 26, 2018, was 

decreased more than the minimum decreased temperature when the proportion of green 

space was increased to 0.15 of the area. Furthermore, the hotspot temperature could be 

decreased over 0.50 oC and 1.00 oC when the proportion of green space was increased 

to 0.30 and 0.45 of the area. 

 

37.311 oC 

34.840 oC 
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Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  

The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.32  The second hotspot location mitigation based on April 11, 2018. 

 

  On April 11, 2018, the hotspot temperature was closed to the surrounding 

areas temperature when the proportion of green space was increased to 0.30 of the area, 

as shown in Figure 4.32. To decrease the hotspot temperature more than the minimum 

decreased temperature,  the minimum proportion of green space around 0.45 of the area 

was needed. Furthermore, the hotspot temperature could be decreased by more than 

2.00 oC, when the proportion of green space was increased to 0.60 of the area.  

 

49.064 oC 

44.458 oC 
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Table 4.15  Decreased temperature based on simulated proportion of green space at the 

third hotspot location. 

Proportion 

of green space 
 

January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

0.15 Min 34.89 0.19 29.44 0.12 35.52 0.21 47.04 0.34 

 Max 35.92 0.36 31.76 0.23 37.07 0.39 47.81 0.65 

 Mean 35.28 0.33 30.42 0.21 36.65 0.36 47.34 0.58 

0.30 Min 34.52 0.56 29.21 0.36 35.13 0.60 46.40 0.99 

 Max 35.56 0.73 31.53 0.47 36.67 0.79 47.16 1.29 

 Mean 34.91 0.69 30.19 0.44 36.26 0.75 46.69 1.23 

0.45 Min 34.16 0.92 28.98 0.59 34.73 1.00 45.75 1.64 

 Max 35.20 1.09 31.30 0.70 36.28 1.18 46.52 1.94 

 Mean 34.55 1.06 29.96 0.68 35.86 1.14 46.04 1.88 

0.60 Min 33.79 1.29 28.74 0.82 34.34 1.39 45.10 2.28 

 Max 34.83 1.46 31.07 0.93 35.89 1.57 45.87 2.59 

 Mean 34.19 1.42 29.72 0.91 35.47 1.54 45.40 2.52 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 

 

  To decrease the hotspot temperature nearly or equal to surrounding areas, 

the minimum decreased temperatures on January 21, February 6, March 26, and April 

11, 2018, were around 0.52 oC, 1.11 oC, 0.36 oC, and 0.90 oC, respectively. Based on 

Table 4.15, when the proportion of green space was increased to 0.15 of the area, only 

the hotspot temperature on March 26, 2018, could be decreased more than the minimum 

decreased temperature. To decrease the hotspot temperature more than the minimum 

decreased temperature on January 21 and April 11 in 2018, the proportion of green 

space around 0.30 of the area was needed. However, although the proportion of green 

space was increased to 0.45 and 0.60 of the area, the decreased hotspot temperature on 

February 6, 2018, is still less than the minimum decreased temperature. Therefore, the 

proportion of green space around 0.30 of the area was the minimum proportion of green 

space in the third hotspot location mitigation.  
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Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

 

Figure 4.33  The third hotspot location mitigation based on January 21, 2018. 

 

  Based on Figure 4.33, the hotspot temperature, on January 21, 2018, was 

closed to the surrounding areas temperature when the proportion of green space was 

increased to 0.15 of the area. The differentiated temperature between decreased 

temperature and the minimum decreased temperature was around 0.16 oC. To decrease 

the hotspot temperature more than the minimum decreased temperature, the proportion 

of green space around 0.30 of the area was needed. Furthermore, the hotspot 

36.288 oC 

33.125 oC 
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temperature was decreased over 1.00 oC when the proportion of green space was 

increased by more than 0.45 in the area. 

 

 

 

Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

Figure 4.34  The third hotspot location mitigation based on February 6, 2018. 

 

  Based on Figure 4.34, the differentiated temperature between the decreased 

temperature and surrounding areas temperature was more than 0.50 oC when the 

proportion of green space was increased to 0.45 of the area. Although the proportion of 

31.765 oC 

28.597 oC 
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green space was increased to 0.60 of the area, the decreased temperature was still less 

than the minimum decreased temperature. The differentiated temperature between the 

decreased temperature and surrounding areas temperature was around 0.41 oC and 0.18 

oC when the proportion of green space was increased to 0.45 and 0.60 of the area, 

respectively. 

 

 

 

Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

 

Figure 4.35  The third hotspot location mitigation based on March 26, 2018. 
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  On March 26, 2018, as shown in Figure 4.35, the hotspot temperature was 

decreased more than the minimum decreased temperature when the proportion of green 

space was increased to 0.15 of the area. Furthermore, the hotspot temperature could be 

decreased over 0.50 oC and 1.00 oC when the proportion of green space was increased 

to 0.30 and 0.45 of the area, respectively.  

 

 

 

Actual LST  

  
The proportion of green space 0.15 of the area The proportion of green space 0.30 of the area 

  
The proportion of green space 0.45 of the area The proportion of green space 0.60 of the area 

 

Figure 4.36  The third hotspot location mitigation based on April 11, 2018. 
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  Based on Figure 4.36, the hotspot temperature, on April 11, 2018, was 

closed to the temperature of the surrounding area when the proportion of green space 

was increased to 0.15 in the area. To decrease the hotspot temperature more than the 

minimum decreased temperature, the minimum proportion of green space around 0.30 

of the area was needed. Furthermore, the hotspot temperature could be decreased by 

more than 2.00 oC, when the proportion of green space was increased to 0.60 of the 

area.  

  Regarding the finding, it can be concluded that to decrease the hotspot 

temperature nearly or equal to surrounding areas temperature, the proportion of green 

space as 0.45, 0.60, and 0.30 of the area are the minimum proportions of green space 

required to mitigate associated with the first, second, and the third hotspot location, 

respectively. 

  The proportion of green space directly impacts on the decreased 

temperature. Besides, the cooling effect of green space also depends on the weather 

condition, as shown in Figure 4.37. 

 

 

Figure 4.37  Decreased temperature and proportion of green space. 
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  Considering the hottest month of this study, on April 11, 2018, the 

temperature could be decreased more rapidly than the temperature on February 6, 2018. 

To decrease the temperature around 1.00 oC, the proportion of green space, around 0.20 

of the area, was needed on April 11, 2018. In contrast, to decrease the temperature, 

around 1.00 oC, the proportion of green space around 0.65 of the area was needed on 

February 6, 2018. Furthermore, on April 11, 2018, the differentiated temperature of the 

proportion of green space from 0.00 to 1.00 in the area was significant at around 4.00 

oC. Whereas on February 6, 2018, the differentiated temperature of the proportion of 

green space from 0.00 to 1.00 of the area as small as around 1.50 oC 

  Therefore, it can be concluded that the proportion of green space has a 

significant influence on decreasing the high temperature. Corresponding with Armson, 

Stringer and Ennos (2012) who indicated that both grass and trees could effectively 

cool surface and provide regional cooling, helping reduce the UHI in hot weather. 

  Regarding Figure 4.20 and Figure 4.21, there were existing green space 

found in some areas in the second and the third hotspot locations as  0.03 and 0.01 of 

the area, respectively. However, the proportion of green space was rarely compared 

with other LULC types in hotspot areas, since these hotspot areas were explored as 

commercial areas. According to a few green-space areas, this condition rarely reduces 

the extremely high temperature of these hotspot areas. Considering to reduce the very 

high temperature of these extreme hotspots, a large green-space area is recommended 

response to the study by Perini and Magliocco (2014), who found that a different 

cooling effect of green space can be noticed depending on the number of green spaces 

and vegetation type.  
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  However, due to the limitation of land resources for urban greening, the 

optimizing urban park shapes (Ren et al., 2013), also the connectivity of urban green 

spaces (Chen, Yao, Sun and Chen, 2014) should be considered as the ULST mitigation 

strategies, especially in the new urban expansion.  

  Increasing complexity in shape, the cooling effect of urban parks 

decreased; thus, the rounder of the urban park shape, the better is the cooling island 

effect (Ren et al., 2013). Furthermore, Feyisa et al. (2014) found that small parks with 

a shape closer to that of a circle have higher thermal contrast with their immediate 

surroundings than elongated parks. Cao et al. (2010) also found that the irregular and 

belt-shape parks tend to have low PCI intensity, while the compactness of PCI may 

benefit PCI development.  

  On the other hand, the connectivity of urban green spaces also affected the 

cool urban island negatively (Chen et al., 2014). At the neighborhood level, increased 

green space cover and high connectivity between neighborhood-level green spaces are 

associated with cooler air temperatures and reduced UHI effects, particularly on hot 

days (Steeneveld, Koopmans, Heusinkveld, Hove and Holtslag, 2011). More closely 

linked and continuous green spaces have stronger cool island effects than smaller 

patches of green space (Li, Zhou and Ouyang, 2013; Li, Zhou, Ouyang, Xu and Zheng, 

2012). As confirmed with studies of Hamada and Ohta in 2010, and Doick and others 

in 2014 (Doick, Peace and Hutchings, 2014; Hamada and Ohta, 2010), maximizing the 

connectivity of many scattered parks throughout the urban environment (rather than in 

one concentrated spot) can maximize cooling effects beyond park boundaries by 

breaking up the micro effects of the urban form that can cause hotter and colder pocket. 
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 4.4.3 Feasibility of the simulated temperature 

  In the first feasibility test of simulated temperature, the same proportions 

of LULC were selected and used as the reference data to compare with the simulation 

results. It is noted that the increasing proportion of green space focuses on the 

proportion of roads initially, according to the space along the roads are pubic areas in 

the city. Secondly, the proportion of constructions is considered regarding insufficient 

green space along the roads. The supplementary data of this section are mentioned in 

Appendix C. The results of the first feasibility test are in Table 4.16. 

 

Table 4.16  The first feasibility test of simulated temperature. 

Hotspot 

Location 

Proportion 

of green space 

RMSE (oC) 

March 31, 

2014 

April 16, 

2014 

March 20, 

2016 

April 5, 

2016 

1 0.45 0.31 0.46 0.37 0.44 

2 0.60 0.30 0.39 0.23 0.39 

3 0.30 0.21 0.31 0.38 0.31 

 

  All RMSE values are lower than 0.50 oC, regarding Table 4.16. It seems 

that the simulated values are slightly higher than the sample values. According to the 

influent variables, it is noted that there are several variables influent the temperature in 

the area, such as the location, albedo of the materials in the area. Basically, the 

simulated results are calculated by considering the pixel within the hotspot locations, 

regardless of location and albedo of the materials in the area. While the sample areas 

are selected from a whole study area. Furthermore, this comparison is processed to 

explore the feasibility of the simulated temperature with the same proportional LULC. 
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  In the second part, the selected proportions of green space in hotspot 

mitigation were used with the data in 2014 and 2016, to explore the effects of these 

proportion of green space in hotspot mitigation. The results of the simulation are in 

Table 4.17. 

 

Table 4.17  The feasibility results based on the selected proportion of green space (oC). 

Hotspot 

Location 
 

March 31, 2014 April 16, 2014 March 20, 2016 April 5, 2016 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

Decrease 

Temperature 
Δ T 

1 Min 42.62 1.66 38.94 2.08 40.55 0.55 42.86 1.35 

 Max 44.46 1.66 40.60 2.08 43.02 0.55 44.84 1.35 

 Mean 43.80 1.66 39.35 2.08 41.59 0.55 43.87 1.35 

2 Min 41.94 1.33 38.20 1.67 41.52 0.44 43.04 1.08 

 Max 44.33 2.21 39.73 2.78 43.21 0.73 45.22 1.80 

 Mean 43.36 2.11 38.81 2.65 42.44 0.69 43.95 1.72 

3 Min 43.80 0.85 39.59 1.07 41.35 0.28 44.02 0.69 

 Max 44.79 1.10 40.95 1.39 43.49 0.36 45.43 0.90 

 Mean 44.47 1.05 39.98 1.32 42.29 0.35 44.57 0.86 

Note: 1. The selected proportion of green space is 0.45, 0.30, and 0.60 of the area, following  

      Hotspot location. 

 2. T is the differentiated temperature between the actual temperature and decreased temperature. 

 

  The selected proportion of green space around 0.45 of the area was used in 

the first hotspot temperature to decrease the hotspot temperature nearly or equal to the 

temperature of the surrounding area. At least the decreased temperature on March 31, 

2014, April 16, 2014, March 20, 2016, and April 5, 2016, were around 0.43 oC, 1.13 

oC, 0.76 oC, and 0.25 oC, respectively. Based on the details in Table 4.17, the selected 

proportion of green space could reduce almost temperature data, except on March 20, 

2016. However, on March 20, 2016, there was a little differentiated temperature of the 

decreased temperature and at least a decreased temperature (around 0.21 oC). 
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  Considering the second hotspot location, the green space around 0.60 was 

used in hotspot temperature decreasing. To decrease the hotspot temperature nearly or 

equal to surrounding areas temperature, the minimum decreased temperatures on March 

31, 2014, April 16, 2014, March 20, 2016, and April 5, 2016, were around 0.70 oC, 1.18 

oC, 0.89 oC, and 0.58 oC, respectively.  Based on Table 4.17, the selected proportion of 

green space can decrease almost data, except on March 20, 2016. However, on March 

20, 2016, there was a little differentiated temperature of the decreased temperature and 

the minimum decreased temperature was around 0.16 oC. 

  Lastly, the selected proportion of green space around 0.30 of the area was 

used in the third hotspot temperature in order to decrease the hotspot temperature nearly 

or equal to the temperature of the surrounding area. The minimum decreased 

temperatures on March 31, 2014, April 16, 2014, March 20, 2016, and April 5, 2016, 

were around 0.32 oC, 1.21 oC, 0.63 oC, and 0.33 oC, respectively. Based on Table 4.17, 

the selected proportion of green space could decrease almost data, except on March 20, 

2016. However, there was a little differentiated temperature of the decreased 

temperature, and the minimum decreased temperature (around 0.27 oC).  

  Regarding the finding, all hotspot temperature could be decreased more 

than the minimum decreased temperature in all months, except on March 20, 2016. 

Nevertheless, the decrease temperature on this date was closed to the surrounding 

temperature.  
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CHAPTER V 

CONCLUSION AND SUGGESTIONS 

 

 This chapter contains the summary of the achievements of all works carried out 

in this thesis response to four objectives, (1) to explore the optimum method for ULST 

estimation, (2) to estimate subpixel LST data using statistical-based method, (3) to 

identify the hotspots areas based on subpixel LST data, and (4) to simulate hotspot 

mitigation associated with proportions of green space in urban area. The conclusion and 

suggestions are addressed as follows.  

 

5.1 Optimum method in ULST estimation 

 Regarding the finding, the SW algorithm is an optimum method in ULST 

estimation for this study. This algorithm provides the lowest NRMSE values in most 

cases, which had the amount of atmospheric water vapor content more than 2.70 g cm-2. 

The errors occur according to the atmospheric parameter estimation, emissivities 

estimation, and also the limitations in ground-based temperature surveying. All maps 

based on the SW method show a more complex surface than single-channel methods. 

All maps based on the single-channel methods, namely, RTE, IMW, and GSC, are quite 

similar. 

 Another critical point is that the amount of atmospheric water vapor content data 

plays an essential role in terms of accuracy. This atmospheric parameter is the main 

absorber in the thermal infrared region. Therefore, to select the optimum method in 
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LST estimation, the amount of atmospheric water vapor content data should be 

considered. 

 

5.2 Subpixel LST estimation by using the statistical-based method 

 In this part, the conclusion of the study is separated into two parts, including (1) 

the regression modeling, and (2) subpixel LST data. Their specific details are as 

follows. 

 5.2.1 The regression modeling 

  Regarding the results in this study, the important scaling factors in subpixel 

LST data estimation are NDISI, MNDWI, and surface albedo. The selected scaling 

factors depend on the characteristics of the areas, and also the study period. However, 

to obtain the regression model with the highest R2 value, the model cannot be fixed with 

individual spectral indices, due to other spectral indices, which are almost represented 

the impervious surface areas, are also selected to increase the R2 value.  

 5.2.2 The subpixel LST data 

  The LST data and subpixel LST data are significantly different at a 

significant level of 0.05. The errors of subpixel LST data are less than the LST data. 

The differentiated RMSE values are more than 0.300 oC in all months. The errors of 

subpixel LST data come from the scale effect and spatial resolution of data, which are 

used in spectral indices and the LST estimation process. The atmospheric parameters 

calculation and also LST estimation can provide the error to the results. 
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5.3 Hotspot analysis for subpixel LST data 

 The hotspot areas occurred in bare-lands, race tracks, and built-up areas. Focusing 

on the selected hotspot locations, where are commercial areas, the main LULC types 

are construction, road, and green spaces. However, the proportion of green space in 

these hotspot locations is very low compared with others.  

 Another critical point is, with the low-temperature condition as 19.95 oC on 

February 6, 2018, the hotspot mostly occurred in bare-lands. In contrast, with the high-

temperature condition as around 29.75 oC or higher temperatures on January 21, March 

26, and April 11, 2018, the hotspot can occur both in bare-lands and built-up areas. 

Besides, the weather parameter such as moisture also plays an essential role in the 

appearance of the hotspots. For example, the rainfall before the satellite obtained the 

data in April, which influences the appearance of hotspot areas in bare-lands (parking 

lot).  

 

5.4 Hotspot mitigation 

 In this part, the results are separated into two parts, including (1) the regression 

models, and (2) the proportion of green space in ULST mitigation. Their specific details 

are as follows. 

 5.4.1 The regression models 

  The proportion of green space correlates with subpixel LST data than the 

proportion of construction and road, according to Pearson correlation results. However, 

the obtained regression models, which are based on the only proportion of green space, 

provide the RMSE values are around 1.00 oC. Since other variables also play an 

important role in temperature estimation. This study focuses on the relationship 
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between the proportion of LULC and subpixel LST data; therefore, other variables are 

not considered. To improve the accuracy of the equations, therefore, the residuals are 

included in the equations. 

 5.4.2 The proportion of green space in ULST mitigation 

  Regarding the finding, the proportion of green space directly impacts on 

the decreased temperature. Noticeably, the proportion of green space has a significant 

influence on the decrease in the temperature in weather conditions with high 

temperatures. Furthermore, the cooling effect of green spaces will appear when the 

amount of green space is large enough. To mitigate the selected hotspot location, the 

proportion of green space around 0.30-0.60 of the area is needed. Due to the limitation 

of the available land area in most cities, other mitigation methods should be considered 

to use with the proportion of green space.  

 

5.5 Suggestions 

 The suggestions are separated into two parts, (1) suggestions in implementation 

and (2) suggestions in further research. Their specific details are as follows. 

 5.5.1 The suggestion in implementation 

  5.5.1.1 To estimate more accurate LST data, the LST estimation 

algorithm should be considered based on the weather condition, especially the amount 

of atmospheric water vapor content data. Based on the results, the SW algorithm is an 

optimum method used in LST estimation with atmospheric water vapor content larger 

than 2.70 g cm-2. In contrast, with the low amount of atmospheric water vapor content 

as 1.52 g cm-2 on February 6, 2018, the IMW algorithm should be considered. Because 

this method provides a lower error than the SW algorithm with this condition. 
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  5.5.1.2  To improve the spatial resolution by using statistical-based 

methods, the spectral indices as scaling factors should be considered and selected based 

on the characteristics of the area. However, the spectral indices represent the 

impervious surface areas that are recommended in statistical-based method 

development. Regarding the LULC type, it is the most significant portion of the urban 

area. Furthermore, to avoid multicollinearity, stepwise multiple regression modeling 

should be applied. Also, the residual should be added to the model. Due to other 

associated variables, which are not considered, they also affect the accuracy of the 

model. 

  5.5.1.3 This cooling effect based on the results depends on the proportion 

of green spaces only. However, other mitigation methods, including the use of urban 

surfaces with a high reflection coefficient or high albedo, the wind tunnel concept, and 

also the increase of the wetlands, can be used together to reduce the temperature in 

hotspot areas. 

  5.5.1.4 The results of this study should be considered in urban planning, 

especially in the new urban expansion. Furthermore, the amount of green space should 

be large enough, as around 0.30 of the area of higher, to control the temperature in the 

cities.  

 5.5.2 Suggestions in future research 

  5.5.2.1 The high spatial and also high temporal data play an essential role 

in urban climate study. Other downscaling techniques, which can downscale both 

spatial resolution and temporal resolution, should be considered. However, the spatial 

scale, which is provided by those methods, does not properly estimate the SUHI effect 
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at the district level. Therefore, this study focuses only on the spatial resolution of LST 

data using the statistical-based method. 

  5.5.2.2 The subpixel LST data used in this study are processed based on 

the relationship between LST data and spectral indices as ancillary data. Therefore, the 

temperature data is not the actual data. The actual temperature data with high spatial 

resolution, which can be obtained by using the UAV with a thermal sensor, should be 

considered. Due to a lack of equipment, LANDSAT-8 imagery data are used in this 

study. 

  5.5.2.3 The mitigation maps are created based on the simulated results to 

show the mitigated temperature in the hotspot areas. When the proportional LULC is 

changed as the proportion of green space is increased; however, the cooling effect of 

green space will occur in hotspot and surrounding areas. Due to the relationship 

between the temperature in hotspot and surrounding areas, also the cooling extent of 

green space does not explore in this study. Therefore, mitigation maps cannot illustrate 

this phenomenon. The specific software should be considered to illustrate the possible 

occurrence. 

  5.5.2.4 This study focuses on the proportion of green space used in ULST 

mitigation. Therefore, to implement these results, future research should focus on site 

selection to increase the green space.  
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APPENDIX A 

RELATIONSHIP BETWEEN ESTIMATED LST DATA 

USING THE OPTIMUM METHOD  

AND GROUND-BASED TEMPERATURE DATA 

 

 To explore the relationship between the estimated LST data using the optimum 

method and ground-based temperature data, the Pearson correlation was applied. The 

results of this process were shown in Table A.1. 

 

Table A.1  The Pearson correlation coefficients. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

R-values 0.629 0.459 0.420 0.680 

 

 Based on Table A.1, it is found that the estimated LST data in January 21, and 

April 11, 2018, have modulate positive correlation to ground-based temperauture data 

(R-values are higher than 0.500). While the estimated LST data in February 6, and 

March 26, 2018, have low positive correlation to ground-based temperauture data (R-

values are less than 0.500). The error based on SW algorithm, despite the water vapour 

content data, and also the coefficients in algorithm, may affect the correlation of these 

two variables. Also, the modulate spatial resolution of LANDSAT-8 TIRS bands cannot 

separate the objects within the coverage areas of spatial resolution as well, especially, 

the complex area as urban areas, where comprises with various LULC types. Lastly, 

the limitations in ground-based temperature surveying period, as mentioned in scope 
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and limitations of the study, also provide the error to the results. Also, the suface 

temperature relates to the top surface temperature of materials, such as rooftop of 

buildings and canopy layers of trees. Due to the limitation in temperature measuring, 

the temperature of these parts of materials cannot be measured. 
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APPENDIX B 

THE REGRESSION MODEL BASED ON  

MULTIPLE DATE DATA IN 2018 

 

 The multiple date data in 2018, which were obtained in January 21, February 6, 

March 26, and April 11, were used together in regression modeling. Then, the subpixel 

LST data were estimated using the obtained regression model. The subpixel LST data 

were compared with ground-based temperature data to calculate the NRMSE values 

afterwards. The regression statistics based on the multiple date data in 2018 and the 

NRMSE values were shown in Table B.1 and Table B.2, respectively. 

 

Table B.1  Regression statistics based on multiple date data in 2018. 

R R2 Adjusted R2 Equation 

0.925 0.855 0.855 25.231 + 7.116 NDISI + 75.824 IBI + 51.586 AB + 22.346 

BI - 8.867 UI + 243.918 MNDWI + 88.061 NDVI + 86.272 

SAVI - 112.349 NDWI - 32.551 NDBaI 

 

  The regression model, which provides the highest R, R2, and adjusted R2 

values, comprises of 10 variables, namely NDISI, IBI, albedo, BI, UI, MNDWI, NDVI, 

SAVI, NDWI, and NDBaI as shown in Table B.1. It is found that the NDISI, surface 

albedo, and MNDWI are still included in the model. While NDBI, FVC, and NDMI are 

excluded in the model. As same as a study by Essa, Verbeiren, Kwast, Voorde and 

Batelaan (2012), it showed that the extract built-up land information using NDBI is 

often mixed with noise caused by vegetation within the urban fabric. The FVC has a 
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high relationship with NDVI, because NDVI is used in FVC calculation. Lastly, Essa 

et al. (2012) reported that NDMI contains information about moisture and vegetation. 

 

Table B.2  NRMSE values. 

  NRMSE values  

Data LST 
Subpixel LST 

(Monthly models) 

Subpixel LST 

(Multiple date data in 2018) 

January 21, 2018 0.227 0.201 0.561 

February 6, 2018 0.473 0.266 0.791 

March 26, 2018 0.218 0.188 0.540 

April 11, 2018 0.132 0.110 0.423 

 

  It is found that the monthly regression models provides a better results than 

the regression model regarding the multiple date data in 2018, as shown in Table B.2. 

Due to the regression model, which is based on the multiple date data in 2018, is 

comprised of the most variables. Some variables do not affect the LST data estimation 

in some cases, however, when compared with the variables in monthly models. 

Therefore, the insignificant variables may provide the error to the results. 
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APPENDIX C 

SUPPLEMENTARY DATA 

 

 This appendix reports more associated details in Chapter 4, namey, the 

proportional LULC in the selected hotspot locations as shown in Tables C.1 - C.3, and 

the decreased temperature based on simulated proportions of green space as shown in 

Tables C.4 - C.15. Furthermore, more associated dateils in feasibility test of simulated 

temperature are also reprted. The actual and simulated proportional LULC in the 

feasibility test is shown in Tables C.16 - C.18, and the results based on the first 

feasibility test, followed with the results based on the second feasibility test as shown 

in Tables C.19 - C.21, and Tables C.22 - C.24, respectively. 

 

Table C.1  LULC in the first location of hotspot mitigation. 

 Areas (square meters) Proportions 

 TR BU RD Total TR BU RD Total 

1D - 440.30 459.70 900.00 0.00 0.49 0.51 1.00 

1E - 594.82 305.18 900.00 0.00 0.66 0.34 1.00 

2B - 582.75 317.25 900.00 0.00 0.65 0.35 1.00 

2C - 376.06 523.94 900.00 0.00 0.42 0.58 1.00 

2D - 754.62 145.38 900.00 0.00 0.84 0.16 1.00 

2E - 806.20 93.80 900.00 0.00 0.90 0.10 1.00 

3A - 854.52 45.48 900.00 0.00 0.95 0.05 1.00 

3B - 898.13 1.87 900.00 0.00 1.00 0.00 1.00 

3C - 496.87 403.13 900.00 0.00 0.55 0.45 1.00 

3D - 569.48 330.52 900.00 0.00 0.63 0.37 1.00 

3E - 549.10 350.90 900.00 0.00 0.61 0.39 1.00 

4B - 704.79 195.21 900.00 0.00 0.78 0.22 1.00 

4C - 526.26 373.74 900.00 0.00 0.58 0.42 1.00 

4D - 900.00 - 900.00 0.00 1.00 0.00 1.00 
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Table C.1  LULC in the first location of hotspot mitigation (Continued). 

 Areas (square meters) Proportions 

 TR BU RD Total TR BU RD Total 

4E - 900.00 - 900.00 0.00 1.00 0.00 1.00 

5B - 626.65 273.35 900.00 0.00 0.70 0.30 1.00 

5C - 726.87 173.13 900.00 0.00 0.81 0.19 1.00 

5D - 900.00 - 900.00 0.00 1.00 0.00 1.00 

6A - 748.52 151.48 900.00 0.00 0.83 0.17 1.00 

6B - 576.90 323.09 900.00 0.00 0.64 0.36 1.00 

6C - 900.00 - 900.00 0.00 1.00 0.00 1.00 

6D - 900.00 - 900.00 0.00 1.00 0.00 1.00 

7B - 473.52 426.48 900.00 0.00 0.53 0.47 1.00 

7C - 797.27 102.73 900.00 0.00 0.89 0.11 1.00 

7D - 863.93 36.08 900.00 0.00 0.96 0.04 1.00 

8A - 446.02 453.98 900.00 0.00 0.50 0.50 1.00 

8B - 658.76 241.24 900.00 0.00 0.73 0.27 1.00 

8C - 900.00 - 900.00 0.00 1.00 0.00 1.00 

8D - 812.93 87.07 900.00 0.00 0.90 0.10 1.00 

9A - 406.44 493.56 900.00 0.00 0.45 0.55 1.00 

9B - 691.42 208.58 900.00 0.00 0.77 0.23 1.00 

10B - 746.14 153.86 900.00 0.00 0.83 0.17 1.00 

11A - 378.05 521.95 900.00 0.00 0.42 0.58 1.00 

11B - 615.98 284.02 900.00 0.00 0.68 0.32 1.00 

Total - 23,123.30 7,476.70 30,600 0.00 0.76 0.24 1.00 

Note:  TR, BU, and RD represented tree, construction, and road. 

 

  In the first hotspot location, the total areas of green spaces, constructions 

and road are 0.00, 23,123.30, and 7,476.70 square meters, respectively, as shown in 

Table C.1. Also, the proportional LULC are 0.00, 0.76, and 0.24, respectively. 

Furthermore, it is noted that the occurred hotspot area in January 21, 2018 are 3B, 3C, 

4B, 4C and 5B area. The occurred hotspot area in February 6, 2018 are 4C, 5B, and 5C 

area. The occurred hotspot area in March 26, 2018 are 1D, 2B, 2C, 3B, 3C, 4B, 5B, and 

6B area. Lastly, all areas are occurred as a hotspot area on April 11, 2018. 
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Table C.2  LULC in the second location of hotspot mitigation. 

 Area (square meters) Proportions 

 TR BU RD Total TR BU RD Total 

1B - 849.98 50.02 900.00 0.00 0.94 0.06 1.00 

2A - 657.70 242.30 900.00 0.00 0.73 0.27 1.00 

2B - 714.85 185.15 900.00 0.00 0.79 0.21 1.00 

3A 135.73 764.27 - 900.00 0.15 0.85 0.00 1.00 

3B 214.45 557.40 128.16 900.00 0.24 0.62 0.14 1.00 

4A 32.21 600.85 266.93 900.00 0.04 0.67 0.30 1.00 

4B - 640.04 259.96 900.00 0.00 0.71 0.29 1.00 

4C - 594.89 305.11 900.00 0.00 0.66 0.34 1.00 

5A - 514.99 385.01 900.00 0.00 0.57 0.43 1.00 

5B - 900.00 - 900.00 0.00 1.00 0.00 1.00 

5C - 539.96 360.04 900.00 0.00 0.60 0.40 1.00 

5D - 648.34 251.66 900.00 0.00 0.72 0.28 1.00 

6A - 471.89 428.11 900.00 0.00 0.52 0.48 1.00 

6B - 831.26 68.74 900.00 0.00 0.92 0.08 1.00 

6C - 407.40 492.60 900.00 0.00 0.45 0.55 1.00 

7C - 508.10 391.90 900.00 0.00 0.56 0.44 1.00 

Total 382.39 10,201.92 3,815.69 14,400 0.03 0.71 0.26 1.00 

Note:  TR, BU, and RD represented tree, construction, and road. 

 

  The total areas of green spaces, constructions and roads, in the second 

hotspot locataion, are 382.39, 10,201.92, and 3,815.69 square meters, respectively, as 

shown in Table C.2. Also, the proportional LULC are 0.03, 0.71, and 0.26, respectively. 

Furthermore, it is noted that all areas are occurred as a hotspot area on January 21, 2018, 

except 1B, 5A, and 6A area. The occurred hotspot area in February 6, 2018 are 3B, 4A, 

4B, 5A, 5B, 5D, 6B, 6C, and 7C area. The occurred hotspot area in March 26, 2018 are 

4B, 5B, 5C, and 6B area. Lastly, all areas are occurred as hotspot area in April 11, 2018, 

except 7C area. 
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Table C.3  LULC in the third location of hotspot mitigation. 

 Areas (square meters) Proportions 

 TR BU RD Total TR BU RD Total 

1A - 709.37 190.63 900.00 0.00 0.79 0.21 1.00 

2A - 900.00 - 900.00 0.00 1.00 0.00 1.00 

3A - 684.95 215.06 900.00 0.00 0.76 0.24 1.00 

3B 35.76 379.93 484.30 900.00 0.04 0.42 0.54 1.00 

4A - 598.00 302.00 900.00 0.00 0.66 0.34 1.00 

4B 28.22 576.42 295.36 900.00 0.03 0.64 0.33 1.00 

5A - 471.29 428.71 900.00 0.00 0.52 0.48 1.00 

5B - 687.40 212.60 900.00 0.00 0.76 0.24 1.00 

6A 58.91 507.20 333.89 900.00 0.07 0.56 0.37 1.00 

6B 22.31 877.69 - 900.00 0.02 0.98 0.00 1.00 

6C - 529.18 370.82 900.00 0.00 0.59 0.41 1.00 

Total 145.20 6921.43 2833.37 9900.00 0.01 0.70 0.29 0.01 

Note:  TR, BU, and RD represented tree, construction, and road. 

 

  In the third hotpsot location, the total areas of green spaces, constructions 

and roads are 145.20, 6,921.43, and 2,833.37 square meters, respectively. Also, the 

proportional LULC are 0.01, 0.70, and 0.29, respectively, as shown in Table C.3. 

Furthermore, it is noted that the occurred hotspot area in January 21, 2018 are 3A and 

4A area. Similar to January 21, 2018, the occurred hotspot area in February 6, 2018 are 

3A and 4A area. The occurred hotspot area in March 26, 2018 are 1A, 2A, 3A, 4A, 4B, 

and 5A area. Lastly, all areas are occurred as a hotspot area on April 11, 2018. 
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Table C.4  The proportion of green space as 0.15 of the area used in the first hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1D 35.09 0.36 29.39 0.23 36.91 0.39 47.54 0.65 

1E 34.93 0.36 29.34 0.23 36.58 0.39 47.43 0.65 

2B 34.98 0.36 29.44 0.23 36.91 0.39 47.30 0.65 

2C 35.05 0.36 29.42 0.23 36.78 0.39 47.44 0.65 

2D 34.95 0.36 29.47 0.23 36.60 0.39 47.45 0.65 

2E 34.77 0.36 29.29 0.23 36.22 0.39 47.22 0.65 

3A 35.07 0.36 29.53 0.23 36.43 0.39 47.30 0.65 

3B 35.93 0.36 29.59 0.23 36.97 0.39 47.97 0.65 

3C 35.92 0.36 29.48 0.23 36.86 0.39 47.98 0.65 

3D 35.21 0.36 29.50 0.23 36.12 0.39 47.56 0.65 

3E 34.92 0.36 29.30 0.23 35.62 0.39 47.32 0.65 

4B 35.90 0.36 30.89 0.23 36.95 0.39 48.29 0.65 

4C 35.93 0.36 30.93 0.23 36.56 0.39 47.96 0.65 

4D 35.01 0.36 29.39 0.23 35.90 0.39 47.45 0.65 

4E 34.67 0.36 29.12 0.23 34.96 0.39 47.20 0.65 

5B 35.89 0.36 30.99 0.23 36.89 0.39 48.17 0.65 

5C 35.07 0.36 31.02 0.23 36.49 0.39 47.92 0.65 

5D 34.61 0.36 29.22 0.23 35.93 0.39 47.40 0.65 

6A 34.57 0.36 29.65 0.23 35.64 0.39 47.22 0.65 

6B 35.05 0.36 29.74 0.23 36.85 0.39 48.19 0.65 

6C 34.75 0.36 29.67 0.23 36.33 0.39 47.77 0.65 

6D 34.38 0.36 29.32 0.23 35.54 0.39 47.16 0.65 

7B 34.43 0.36 29.26 0.23 36.49 0.39 47.92 0.65 

7C 34.59 0.36 29.41 0.23 36.19 0.39 47.71 0.65 

7D 34.48 0.36 29.23 0.23 35.60 0.39 47.72 0.65 

8A 33.98 0.36 28.47 0.23 35.84 0.39 47.16 0.65 

8B 34.93 0.36 29.02 0.23 36.16 0.39 48.34 0.65 

8C 34.88 0.36 29.24 0.23 35.91 0.39 47.93 0.65 

8D 34.70 0.36 29.25 0.23 35.42 0.39 47.99 0.65 

9A 34.31 0.36 28.70 0.23 35.70 0.39 47.45 0.65 

9B 35.21 0.36 29.19 0.23 35.73 0.39 47.97 0.65 

10B 35.55 0.36 29.35 0.23 35.68 0.39 48.48 0.65 

11A 34.60 0.36 29.59 0.23 35.72 0.39 47.49 0.65 

11B 35.00 0.36 29.84 0.23 35.58 0.39 47.86 0.65 

Min 33.98 0.36 28.47 0.23 34.96 0.39 47.16 0.65 

Max 35.93 0.36 31.02 0.23 36.97 0.39 48.48 0.65 

Mean 34.98 0.36 29.54 0.23 36.18 0.39 47.68 0.65 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.5  The proportion of green space 0.30 of the area used in the first hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1D 34.72 0.73 29.16 0.47 36.51 0.79 46.89 1.29 

1E 34.57 0.73 29.10 0.47 36.18 0.79 46.78 1.29 

2B 34.62 0.73 29.20 0.47 36.51 0.79 46.65 1.29 

2C 34.69 0.73 29.19 0.47 36.39 0.79 46.79 1.29 

2D 34.59 0.73 29.24 0.47 36.21 0.79 46.80 1.29 

2E 34.41 0.73 29.06 0.47 35.83 0.79 46.57 1.29 

3A 34.70 0.73 29.30 0.47 36.04 0.79 46.65 1.29 

3B 35.57 0.73 29.36 0.47 36.57 0.79 47.33 1.29 

3C 35.56 0.73 29.25 0.47 36.47 0.79 47.34 1.29 

3D 34.84 0.73 29.27 0.47 35.72 0.79 46.92 1.29 

3E 34.56 0.73 29.07 0.47 35.23 0.79 46.67 1.29 

4B 35.54 0.73 30.66 0.47 36.56 0.79 47.64 1.29 

4C 35.57 0.73 30.70 0.47 36.17 0.79 47.32 1.29 

4D 34.64 0.73 29.16 0.47 35.51 0.79 46.80 1.29 

4E 34.30 0.73 28.89 0.47 34.56 0.79 46.55 1.29 

5B 35.53 0.73 30.75 0.47 36.50 0.79 47.52 1.29 

5C 34.71 0.73 30.79 0.47 36.10 0.79 47.27 1.29 

5D 34.24 0.73 28.99 0.47 35.53 0.79 46.76 1.29 

6A 34.21 0.73 29.42 0.47 35.25 0.79 46.58 1.29 

6B 34.69 0.73 29.51 0.47 36.46 0.79 47.55 1.29 

6C 34.39 0.73 29.44 0.47 35.94 0.79 47.13 1.29 

6D 34.02 0.73 29.09 0.47 35.15 0.79 46.51 1.29 

7B 34.07 0.73 29.02 0.47 36.10 0.79 47.27 1.29 

7C 34.22 0.73 29.18 0.47 35.79 0.79 47.06 1.29 

7D 34.12 0.73 29.00 0.47 35.21 0.79 47.07 1.29 

8A 33.62 0.73 28.23 0.47 35.45 0.79 46.51 1.29 

8B 34.56 0.73 28.79 0.47 35.77 0.79 47.70 1.29 

8C 34.52 0.73 29.01 0.47 35.52 0.79 47.28 1.29 

8D 34.34 0.73 29.02 0.47 35.02 0.79 47.34 1.29 

9A 33.95 0.73 28.47 0.47 35.31 0.79 46.80 1.29 

9B 34.84 0.73 28.95 0.47 35.34 0.79 47.33 1.29 

10B 35.19 0.73 29.12 0.47 35.28 0.79 47.83 1.29 

11A 34.24 0.73 29.36 0.47 35.32 0.79 46.84 1.29 

11B 34.64 0.73 29.61 0.47 35.19 0.79 47.22 1.29 

Min 33.62 0.73 28.23 0.47 34.56 0.79 46.51 1.29 

Max 35.57 0.73 30.79 0.47 36.57 0.79 47.83 1.29 

Mean 34.62 0.73 29.30 0.47 35.78 0.79 47.04 1.29 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 

 

 



188 
 

Table C.6  The proportion of green space 0.45 of the area used in the first hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1D 34.36 1.09 28.93 0.70 36.12 1.18 46.24 1.94 

1E 34.21 1.09 28.87 0.70 35.79 1.18 46.14 1.94 

2B 34.26 1.09 28.97 0.70 36.12 1.18 46.00 1.94 

2C 34.32 1.09 28.95 0.70 35.99 1.18 46.14 1.94 

2D 34.22 1.09 29.01 0.70 35.82 1.18 46.15 1.94 

2E 34.04 1.09 28.82 0.70 35.43 1.18 45.93 1.94 

3A 34.34 1.09 29.07 0.70 35.64 1.18 46.01 1.94 

3B 35.20 1.09 29.13 0.70 36.18 1.18 46.68 1.94 

3C 35.19 1.09 29.01 0.70 36.08 1.18 46.69 1.94 

3D 34.48 1.09 29.04 0.70 35.33 1.18 46.27 1.94 

3E 34.19 1.09 28.84 0.70 34.83 1.18 46.02 1.94 

4B 35.18 1.09 30.43 0.70 36.17 1.18 47.00 1.94 

4C 35.20 1.09 30.46 0.70 35.78 1.18 46.67 1.94 

4D 34.28 1.09 28.93 0.70 35.11 1.18 46.15 1.94 

4E 33.94 1.09 28.66 0.70 34.17 1.18 45.90 1.94 

5B 35.17 1.09 30.52 0.70 36.10 1.18 46.88 1.94 

5C 34.34 1.09 30.56 0.70 35.70 1.18 46.62 1.94 

5D 33.88 1.09 28.76 0.70 35.14 1.18 46.11 1.94 

6A 33.84 1.09 29.19 0.70 34.85 1.18 45.93 1.94 

6B 34.32 1.09 29.28 0.70 36.06 1.18 46.90 1.94 

6C 34.02 1.09 29.21 0.70 35.54 1.18 46.48 1.94 

6D 33.65 1.09 28.86 0.70 34.76 1.18 45.86 1.94 

7B 33.70 1.09 28.79 0.70 35.70 1.18 46.63 1.94 

7C 33.86 1.09 28.94 0.70 35.40 1.18 46.42 1.94 

7D 33.75 1.09 28.77 0.70 34.82 1.18 46.42 1.94 

8A 33.25 1.09 28.00 0.70 35.05 1.18 45.87 1.94 

8B 34.20 1.09 28.55 0.70 35.37 1.18 47.05 1.94 

8C 34.16 1.09 28.78 0.70 35.12 1.18 46.64 1.94 

8D 33.97 1.09 28.79 0.70 34.63 1.18 46.70 1.94 

9A 33.58 1.09 28.24 0.70 34.91 1.18 46.16 1.94 

9B 34.48 1.09 28.72 0.70 34.94 1.18 46.68 1.94 

10B 34.83 1.09 28.89 0.70 34.89 1.18 47.18 1.94 

11A 33.88 1.09 29.13 0.70 34.93 1.18 46.20 1.94 

11B 34.27 1.09 29.37 0.70 34.80 1.18 46.57 1.94 

Min 33.25 1.09 28.00 0.70 34.17 1.18 45.86 1.94 

Max 35.20 1.09 30.56 0.70 36.18 1.18 47.18 1.94 

Mean 34.25 1.09 29.07 0.70 35.39 1.18 46.39 1.94 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.7  The proportion of green space 0.60 of the area used in the first hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1D 33.99 1.46 28.69 0.93 35.73 1.57 45.60 2.59 

1E 33.84 1.46 28.64 0.93 35.40 1.57 45.49 2.59 

2B 33.89 1.46 28.74 0.93 35.73 1.57 45.36 2.59 

2C 33.96 1.46 28.72 0.93 35.60 1.57 45.50 2.59 

2D 33.86 1.46 28.78 0.93 35.42 1.57 45.51 2.59 

2E 33.68 1.46 28.59 0.93 35.04 1.57 45.28 2.59 

3A 33.98 1.46 28.84 0.93 35.25 1.57 45.36 2.59 

3B 34.84 1.46 28.89 0.93 35.79 1.57 46.03 2.59 

3C 34.83 1.46 28.78 0.93 35.68 1.57 46.04 2.59 

3D 34.12 1.46 28.80 0.93 34.94 1.57 45.62 2.59 

3E 33.83 1.46 28.61 0.93 34.44 1.57 45.38 2.59 

4B 34.81 1.46 30.20 0.93 35.77 1.57 46.35 2.59 

4C 34.84 1.46 30.23 0.93 35.38 1.57 46.03 2.59 

4D 33.91 1.46 28.69 0.93 34.72 1.57 45.51 2.59 

4E 33.57 1.46 28.42 0.93 33.78 1.57 45.26 2.59 

5B 34.80 1.46 30.29 0.93 35.71 1.57 46.23 2.59 

5C 33.98 1.46 30.33 0.93 35.31 1.57 45.98 2.59 

5D 33.51 1.46 28.53 0.93 34.75 1.57 45.46 2.59 

6A 33.48 1.46 28.95 0.93 34.46 1.57 45.28 2.59 

6B 33.96 1.46 29.05 0.93 35.67 1.57 46.25 2.59 

6C 33.66 1.46 28.97 0.93 35.15 1.57 45.83 2.59 

6D 33.29 1.46 28.63 0.93 34.36 1.57 45.22 2.59 

7B 33.34 1.46 28.56 0.93 35.31 1.57 45.98 2.59 

7C 33.50 1.46 28.71 0.93 35.01 1.57 45.77 2.59 

7D 33.39 1.46 28.53 0.93 34.42 1.57 45.78 2.59 

8A 32.89 1.46 27.77 0.93 34.66 1.57 45.22 2.59 

8B 33.83 1.46 28.32 0.93 34.98 1.57 46.40 2.59 

8C 33.79 1.46 28.54 0.93 34.73 1.57 45.99 2.59 

8D 33.61 1.46 28.56 0.93 34.24 1.57 46.05 2.59 

9A 33.22 1.46 28.00 0.93 34.52 1.57 45.51 2.59 

9B 34.11 1.46 28.49 0.93 34.55 1.57 46.04 2.59 

10B 34.46 1.46 28.66 0.93 34.50 1.57 46.54 2.59 

11A 33.51 1.46 28.89 0.93 34.54 1.57 45.55 2.59 

11B 33.91 1.46 29.14 0.93 34.40 1.57 45.92 2.59 

Min 32.89 1.46 27.77 0.93 33.78 1.57 45.22 2.59 

Max 34.84 1.46 30.33 0.93 35.79 1.57 46.54 2.59 

Mean 33.89 1.46 28.84 0.93 35.00 1.57 45.74 2.59 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.8  The proportion of green space 0.15 of the area used in the second hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1B 35.34 0.36 29.91 0.23 36.46 0.39 47.06 0.65 

2A 35.80 0.36 30.31 0.23 36.58 0.39 47.62 0.65 

2B 35.90 0.36 30.25 0.23 36.46 0.39 47.53 0.65 

3A 36.36  - 30.81  - 36.68  - 48.51  - 

3B -  - - -  - -  - -  

4A 35.97 0.27 30.92 0.17 36.56 0.29 48.00 0.47 

4B 35.82 0.36 30.86 0.23 36.89 0.39 48.33 0.65 

4C 35.86 0.36 30.50 0.23 36.60 0.39 47.68 0.65 

5A 35.30 0.36 30.89 0.23 36.55 0.39 47.77 0.65 

5B 35.81 0.36 30.94 0.23 36.79 0.39 48.42 0.65 

5C 35.99 0.36 30.87 0.23 36.92 0.39 47.93 0.65 

5D 36.88 0.36 31.93 0.23 36.26 0.39 48.18 0.65 

6A 35.07 0.36 30.43 0.23 36.57 0.39 46.98 0.65 

6B 35.91 0.36 30.88 0.23 36.83 0.39 47.62 0.65 

6C 36.30 0.36 31.60 0.23 36.44 0.39 47.70 0.65 

7C 35.98 0.36 31.21 0.23 36.35 0.39 46.76 0.65 

Min 35.07 0.27 29.91 0.17 36.26 0.29 46.76 0.47 

Max 36.88 0.36 31.93 0.23 36.92 0.39 48.51 0.65 

Mean 35.89 0.36 30.82 0.23 36.60 0.39 47.74 0.63 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.9  The proportion of green space 0.30 of the area used in the second hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1B 34.98 0.73 29.68 0.47 36.07 0.79 46.41 1.29 

2A 35.43 0.73 30.08 0.47 36.18 0.79 46.97 1.29 

2B 35.54 0.73 30.02 0.47 36.06 0.79 46.89 1.29 

3A 36.00 0.36 30.57 0.23 36.29 0.39 47.86 0.65 

3B 36.08 0.15 31.00 0.09 36.72 0.16 48.36 0.26 

4A 35.61 0.63 30.69 0.40 36.17 0.68 47.36 1.12 

4B 35.45 0.73 30.63 0.47 36.50 0.79 47.68 1.29 

4C 35.50 0.73 30.27 0.47 36.21 0.79 47.03 1.29 

5A 34.93 0.73 30.66 0.47 36.16 0.79 47.12 1.29 

5B 35.44 0.73 30.71 0.47 36.40 0.79 47.77 1.29 

5C 35.63 0.73 30.63 0.47 36.52 0.79 47.29 1.29 

5D 36.51 0.73 31.70 0.47 35.87 0.79 47.54 1.29 

6A 34.71 0.73 30.20 0.47 36.18 0.79 46.34 1.29 

6B 35.55 0.73 30.65 0.47 36.43 0.79 46.97 1.29 

6C 35.93 0.73 31.37 0.47 36.04 0.79 47.06 1.29 

7C 35.62 0.73 30.98 0.47 35.96 0.79 46.12 1.29 

Min 34.71 0.15 29.68 0.09 35.87 0.16 46.12 0.26 

Max 36.51 0.73 31.70 0.47 36.72 0.79 48.36 1.29 

Mean 35.56 0.66 30.61 0.42 36.23 0.72 47.17 1.18 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.10  The proportion of green space 0.45 of the area used in the second hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1B 34.61 1.09 29.45 0.70 35.67 1.18 45.77 1.94 

2A 35.07 1.09 29.85 0.70 35.79 1.18 46.33 1.94 

2B 35.18 1.09 29.79 0.70 35.67 1.18 46.24 1.94 

3A 35.63 0.73 30.34 0.47 35.89 0.79 47.22 1.29 

3B 35.72 0.51 30.77 0.33 36.33 0.55 47.71 0.91 

4A 35.24 1.00 30.46 0.64 35.78 1.08 46.71 1.77 

4B 35.09 1.09 30.39 0.70 36.10 1.18 47.04 1.94 

4C 35.13 1.09 30.04 0.70 35.81 1.18 46.38 1.94 

5A 34.57 1.09 30.43 0.70 35.77 1.18 46.48 1.94 

5B 35.08 1.09 30.47 0.70 36.00 1.18 47.12 1.94 

5C 35.26 1.09 30.40 0.70 36.13 1.18 46.64 1.94 

5D 36.15 1.09 31.47 0.70 35.47 1.18 46.89 1.94 

6A 34.35 1.09 29.97 0.70 35.79 1.18 45.69 1.94 

6B 35.18 1.09 30.42 0.70 36.04 1.18 46.32 1.94 

6C 35.57 1.09 31.13 0.70 35.65 1.18 46.41 1.94 

7C 35.25 1.09 30.74 0.70 35.57 1.18 45.47 1.94 

Min 34.35 0.51 29.45 0.33 35.47 0.55 45.47 0.91 

Max 36.15 1.09 31.47 0.70 36.33 1.18 47.71 1.94 

Mean 35.19 1.03 30.38 0.66 35.84 1.11 46.53 1.82 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.11  The proportion of green space 0.60 of the area used in the second hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1B 34.25 1.46 29.22 0.93 35.28 1.57 45.12 2.59 

2A 34.70 1.46 29.62 0.93 35.40 1.57 45.68 2.59 

2B 34.81 1.46 29.55 0.93 35.28 1.57 45.60 2.59 

3A 35.27 1.09 30.11 0.70 35.50 1.18 46.57 1.94 

3B 35.35 0.87 30.54 0.56 35.93 0.94 47.06 1.55 

4A 34.88 1.36 30.22 0.87 35.38 1.47 46.07 2.41 

4B 34.72 1.46 30.16 0.93 35.71 1.57 46.39 2.59 

4C 34.77 1.46 29.80 0.93 35.42 1.57 45.74 2.59 

5A 34.20 1.46 30.19 0.93 35.37 1.57 45.83 2.59 

5B 34.71 1.46 30.24 0.93 35.61 1.57 46.48 2.59 

5C 34.90 1.46 30.17 0.93 35.74 1.57 45.99 2.59 

5D 35.78 1.46 31.23 0.93 35.08 1.57 46.24 2.59 

6A 33.98 1.46 29.74 0.93 35.39 1.57 45.04 2.59 

6B 34.82 1.46 30.18 0.93 35.65 1.57 45.68 2.59 

6C 35.20 1.46 30.90 0.93 35.26 1.57 45.76 2.59 

7C 34.89 1.46 30.51 0.93 35.17 1.57 44.82 2.59 

Min 33.98 0.87 29.22 0.56 35.08 0.94 44.82 1.55 

Max 35.78 1.46 31.23 0.93 35.93 1.57 47.06 2.59 

Mean 34.83 1.39 30.15 0.89 35.45 1.50 45.88 2.47 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.12  The proportion of green space 0.15 of the area used in the third hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1A 34.90 0.36 30.15 0.23 36.95 0.39 47.12 0.65 

2A 35.05 0.36 30.33 0.23 37.07 0.39 47.18 0.65 

3A 35.85 0.36 31.67 0.23 37.02 0.39 47.54 0.65 

3B 35.02 0.27 30.47 0.17 36.65 0.29 47.16 0.47 

4A 35.92 0.36 31.76 0.23 36.87 0.39 47.77 0.65 

4B 35.34 0.29 30.38 0.19 36.95 0.31 47.23 0.52 

5A 35.34 0.36 30.32 0.23 36.98 0.39 47.54 0.65 

5B 34.99 0.36 29.92 0.23 36.50 0.39 47.11 0.65 

6A 35.55 0.19 30.32 0.12 36.60 0.21 47.81 0.34 

6B 35.21 0.32 29.88 0.20 36.05 0.34 47.20 0.56 

6C 34.89 0.36 29.44 0.23 35.52 0.39 47.04 0.65 

Min 34.89 0.19 29.44 0.12 35.52 0.21 47.04 0.34 

Max 35.92 0.36 31.76 0.23 37.07 0.39 47.81 0.65 

Mean 35.28 0.33 30.42 0.21 36.65 0.36 47.34 0.58 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 

 

Table C.13  The proportion of green space as 0.30 of the area used in the third hotspot  

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1A 34.53 0.73 29.92 0.47 36.55 0.79 46.47 1.29 

2A 34.69 0.73 30.10 0.47 36.67 0.79 46.54 1.29 

3A 35.49 0.73 31.44 0.47 36.62 0.79 46.90 1.29 

3B 34.66 0.63 30.23 0.40 36.26 0.68 46.52 1.12 

4A 35.56 0.73 31.53 0.47 36.48 0.79 47.12 1.29 

4B 34.98 0.66 30.15 0.42 36.56 0.71 46.59 1.16 

5A 34.97 0.73 30.09 0.47 36.59 0.79 46.90 1.29 

5B 34.62 0.73 29.69 0.47 36.11 0.79 46.46 1.29 

6A 35.19 0.56 30.08 0.36 36.20 0.60 47.16 0.99 

6B 34.85 0.68 29.64 0.43 35.66 0.73 46.55 1.21 

6C 34.52 0.73 29.21 0.47 35.13 0.79 46.40 1.29 

Min 34.52 0.56 29.21 0.36 35.13 0.60 46.40 0.99 

Max 35.56 0.73 31.53 0.47 36.67 0.79 47.16 1.29 

Mean 34.91 0.69 30.19 0.44 36.26 0.75 46.69 1.23 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.14  The proportion of green space 0.45 of the area used in the third hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1A 34.17 1.09 29.68 0.70 36.16 1.18 45.83 1.94 

2A 34.32 1.09 29.87 0.70 36.28 1.18 45.89 1.94 

3A 35.12 1.09 31.20 0.70 36.23 1.18 46.25 1.94 

3B 34.29 1.00 30.00 0.64 35.87 1.08 45.87 1.77 

4A 35.20 1.09 31.30 0.70 36.08 1.18 46.48 1.94 

4B 34.61 1.02 29.92 0.65 36.17 1.10 45.94 1.81 

5A 34.61 1.09 29.86 0.70 36.19 1.18 46.25 1.94 

5B 34.26 1.09 29.46 0.70 35.71 1.18 45.81 1.94 

6A 34.82 0.92 29.85 0.59 35.81 1.00 46.52 1.64 

6B 34.48 1.04 29.41 0.67 35.27 1.13 45.91 1.85 

6C 34.16 1.09 28.98 0.70 34.73 1.18 45.75 1.94 

Min 34.16 0.92 28.98 0.59 34.73 1.00 45.75 1.64 

Max 35.20 1.09 31.30 0.70 36.28 1.18 46.52 1.94 

Mean 34.55 1.06 29.96 0.68 35.86 1.14 46.04 1.88 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 

 

Table C.15  The proportion of green space 0.60 of the area used in the third hotspot 

location. 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1A 33.80 1.46 29.45 0.93 35.77 1.57 45.18 2.59 

2A 33.96 1.46 29.64 0.93 35.89 1.57 45.24 2.59 

3A 34.76 1.46 30.97 0.93 35.84 1.57 45.60 2.59 

3B 33.93 1.36 29.77 0.87 35.47 1.47 45.22 2.41 

4A 34.83 1.46 31.07 0.93 35.69 1.57 45.83 2.59 

4B 34.25 1.38 29.69 0.88 35.77 1.50 45.30 2.46 

5A 34.24 1.46 29.62 0.93 35.80 1.57 45.60 2.59 

5B 33.89 1.46 29.22 0.93 35.32 1.57 45.17 2.59 

6A 34.46 1.29 29.62 0.82 35.41 1.39 45.87 2.28 

6B 34.12 1.41 29.18 0.90 34.87 1.52 45.26 2.50 

6C 33.79 1.46 28.74 0.93 34.34 1.57 45.10 2.59 

Min 33.79 1.29 28.74 0.82 34.34 1.39 45.10 2.28 

Max 34.83 1.46 31.07 0.93 35.89 1.57 45.87 2.59 

Mean 34.19 1.42 29.72 0.91 35.47 1.54 45.40 2.52 

Note: T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.16  The actual LULC and simulated LULC in the first hotspot location. 

 Actual LULC Simulated LULC 

 TR BU RD TR BU RD 

1D 0.00 0.49 0.51 0.45 0.49 0.06 

1E 0.00 0.66 0.34 0.45 0.55 0.00 

2B 0.00 0.65 0.35 0.45 0.55 0.00 

2C 0.00 0.42 0.58 0.45 0.42 0.13 
2D 0.00 0.84 0.16 0.45 0.55 0.00 

2E 0.00 0.90 0.10 0.45 0.55 0.00 

3A 0.00 0.95 0.05 0.45 0.55 0.00 

3B 0.00 1.00 0.00 0.45 0.55 0.00 

3C 0.00 0.55 0.45 0.45 0.55 0.00 

3D 0.00 0.63 0.37 0.45 0.55 0.00 

3E 0.00 0.61 0.39 0.45 0.55 0.00 

4B 0.00 0.78 0.22 0.45 0.55 0.00 

4C 0.00 0.58 0.42 0.45 0.55 0.00 

4D 0.00 1.00 0.00 0.45 0.55 0.00 

4E 0.00 1.00 0.00 0.45 0.55 0.00 

5B 0.00 0.70 0.30 0.45 0.55 0.00 

5C 0.00 0.81 0.19 0.45 0.55 0.00 

5D 0.00 1.00 0.00 0.45 0.55 0.00 

6A 0.00 0.83 0.17 0.45 0.55 0.00 

6B 0.00 0.64 0.36 0.45 0.55 0.00 

6C 0.00 1.00 0.00 0.45 0.55 0.00 

6D 0.00 1.00 0.00 0.45 0.55 0.00 

7B 0.00 0.53 0.47 0.45 0.53 0.02 

7C 0.00 0.89 0.11 0.45 0.55 0.00 

7D 0.00 0.96 0.04 0.45 0.55 0.00 

8A 0.00 0.50 0.50 0.45 0.50 0.05 

8B 0.00 0.73 0.27 0.45 0.55 0.00 

8C 0.00 1.00 0.00 0.45 0.55 0.00 

8D 0.00 0.90 0.10 0.45 0.55 0.00 

9A 0.00 0.45 0.55 0.45 0.45 0.10 

9B 0.00 0.77 0.23 0.45 0.55 0.00 

10B 0.00 0.83 0.17 0.45 0.55 0.00 

11A 0.00 0.42 0.58 0.45 0.42 0.13 

11B 0.00 0.68 0.32 0.45 0.55 0.00 

Note:  TR, BU, and RD represented tree, construction, and road. 
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Table C.17  The actual LULC and simulated LULC in the second hotspot location. 

 Actual LULC Simulated LULC 

 TR BU RD TR BU RD 

1B 0.00 0.94 0.06 0.60 0.40 0.00 

2A 0.00 0.73 0.27 0.60 0.40 0.00 

2B 0.00 0.79 0.21 0.60 0.40 0.00 

3A 0.15 0.85 0.00 0.60 0.40 0.00 

3B 0.24 0.62 0.14 0.60 0.40 0.00 

4A 0.04 0.67 0.30 0.60 0.40 0.00 

4B 0.00 0.71 0.29 0.60 0.40 0.00 

4C 0.00 0.66 0.34 0.60 0.40 0.00 

5A 0.00 0.57 0.43 0.60 0.40 0.00 

5B 0.00 1.00 0.00 0.60 0.40 0.00 

5C 0.00 0.60 0.40 0.60 0.40 0.00 

5D 0.00 0.72 0.28 0.60 0.40 0.00 

6A 0.00 0.52 0.48 0.60 0.40 0.00 

6B 0.00 0.92 0.08 0.60 0.40 0.00 

6C 0.00 0.45 0.55 0.60 0.40 0.00 

7C 0.00 0.56 0.44 0.60 0.40 0.00 

Note:  TR, BU, and RD represented tree, construction, and road. 

 

Table C.18  The actual LULC and simulated LULC in the third hotspot location. 

 Actual LULC Simulated LULC 

 TR BU RD TR BU RD 

1A 0.00 0.79 0.21 0.30 0.70 0.00 

2A 0.00 1.00 0.00 0.30 0.70 0.00 

3A 0.00 0.76 0.24 0.30 0.70 0.00 

3B 0.04 0.42 0.54 0.30 0.42 0.28 

4A 0.00 0.66 0.34 0.30 0.66 0.04 

4B 0.03 0.64 0.33 0.30 0.64 0.06 

5A 0.00 0.52 0.48 0.30 0.52 0.18 

5B 0.00 0.76 0.24 0.30 0.70 0.00 

6A 0.07 0.56 0.37 0.30 0.56 0.14 

6B 0.02 0.98 0.00 0.30 0.70 0.00 

6C 0.00 0.59 0.41 0.30 0.59 0.11 

Note:  TR, BU, and RD represented tree, construction, and road. 
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Table C.19  The feasibility test results in the first hotspot location (oC).  

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Sample Simulate ΔT Sample Simulate ΔT Sample Simulate ΔT Sample Simulate ΔT 

1D 33.69 34.36 -0.67 28.85 28.93 -0.08 35.76 36.12 -0.36 46.16 46.24 -0.08 

1E 34.49 34.21 0.28 29.18 28.87 0.31 35.47 35.79 -0.32 46.16 46.14 0.02 

2B 34.49 34.26 0.23 29.18 28.97 0.21 35.47 36.12 -0.65 46.16 46.00 0.16 

2C 34.49 34.32 0.17 29.62 28.95 0.67 35.16 35.99 -0.83 46.16 46.14 0.02 

2D 34.49 34.22 0.27 29.18 29.01 0.17 35.47 35.82 -0.35 46.16 46.15 0.01 

2E 34.49 34.04 0.45 29.18 28.82 0.36 35.47 35.43 0.04 46.16 45.93 0.23 

3A 34.49 34.34 0.15 29.18 29.07 0.11 35.47 35.64 -0.17 46.16 46.01 0.15 

3B 35.60 35.20 0.40 29.18 29.13 0.05 35.47 36.18 -0.71 46.16 46.68 -0.52 

3C 35.60 35.19 0.41 29.18 29.01 0.17 35.47 36.08 -0.61 46.16 46.69 -0.53 

3D 34.49 34.48 0.01 29.18 29.04 0.14 35.35 35.33 0.02 46.16 46.27 -0.11 

3E 34.49 34.19 0.30 29.18 28.84 0.34 34.90 34.83 0.07 46.16 46.02 0.14 

4B 35.60 35.18 0.42 29.78 30.43 -0.65 35.47 36.17 -0.70 46.16 47.00 -0.84 

4C 35.60 35.20 0.40 29.78 30.46 -0.68 35.47 35.78 -0.31 46.16 46.67 -0.51 

4D 34.49 34.28 0.21 29.18 28.93 0.25 35.04 35.11 -0.07 46.16 46.15 0.01 

4E 33.57 33.94 -0.37 29.18 28.66 0.52 34.90 34.17 0.73 46.16 45.90 0.26 

5B 35.08 35.17 -0.09 29.78 30.52 -0.74 35.47 36.10 -0.63 46.16 46.88 -0.72 

5C 34.49 34.34 0.15 29.78 30.56 -0.78 35.47 35.70 -0.23 46.16 46.62 -0.46 

5D 33.57 33.88 -0.31 29.18 28.76 0.42 35.04 35.14 -0.10 46.16 46.11 0.05 

6A 33.69 33.84 -0.15 29.18 29.19 -0.01 35.04 34.85 0.19 46.16 45.93 0.23 

6B 34.49 34.32 0.17 29.18 29.28 -0.10 35.47 36.06 -0.59 46.16 46.90 -0.74 

6C 33.69 34.02 -0.33 29.25 29.21 0.04 35.47 35.54 -0.07 46.16 46.48 -0.32 

6D 33.69 33.65 0.04 29.18 28.86 0.32 34.90 34.76 0.14 45.60 45.86 -0.26 

7B 33.69 33.70 -0.01 28.85 28.79 0.06 35.76 35.70 0.06 46.16 46.63 -0.47 

7C 33.57 33.86 -0.29 29.18 28.94 0.24 35.47 35.40 0.07 46.16 46.42 -0.26 

7D 33.57 33.75 -0.18 29.18 28.77 0.41 34.90 34.82 0.08 46.16 46.42 -0.26 

8A 33.69 33.25 0.44 27.56 28.00 -0.44 35.35 35.05 0.30 46.16 45.87 0.29 

8B 34.49 34.20 0.29 29.18 28.55 0.63 35.35 35.37 -0.02 46.16 47.05 -0.89 

8C 34.49 34.16 0.33 29.18 28.78 0.40 35.04 35.12 -0.08 46.16 46.64 -0.48 

8D 33.57 33.97 -0.40 29.18 28.79 0.39 34.90 34.63 0.27 46.16 46.70 -0.54 

9A 33.69 33.58 0.11 29.22 28.24 0.98 34.90 34.91 -0.01 46.16 46.16 0.00 

9B 34.49 34.48 0.01 29.18 28.72 0.46 34.90 34.94 -0.04 46.16 46.68 -0.52 

10B 34.70 34.83 -0.13 29.18 28.89 0.29 34.90 34.89 0.01 46.16 47.18 -1.02 

11A 34.49 33.88 0.61 30.03 29.13 0.90 35.16 34.93 0.23 46.16 46.20 -0.04 

11B 34.49 34.27 0.22 30.06 29.37 0.69 35.16 34.80 0.36 46.16 46.57 -0.41 

Min 33.57 33.25 0.32 27.56 28.00 -0.44 34.90 34.17 0.73 45.60 45.86 -0.26 

Max 35.60 35.20 0.40 30.06 30.56 -0.50 35.76 36.18 -0.42 46.16 47.18 -1.02 

RMSE 0.31 0.46 0.37 0.44 

Note: 1. The proportion of green space is 0.45 in the area. 

 2. ΔT referred to the differentiated temperature between sample and simulated results. 
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Table C.20  The feasibility test results in the second hotspot location (oC). 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Sample Simulate ΔT Sample Simulate ΔT Sample Simulate ΔT Sample Simulate ΔT 

1B 34.13 34.25 -0.12 29.40 29.22 0.18 35.52 35.28 0.24 45.54 45.12 0.42 

2A 35.11 34.70 0.41 29.46 29.62 -0.16 35.52 35.40 0.12 46.38 45.68 0.70 

2B 35.11 34.81 0.30 29.40 29.55 -0.15 35.52 35.28 0.24 45.54 45.60 -0.06 

3A 35.19 35.27 -0.08 30.12 30.11 0.01 35.52 35.50 0.02 46.38 46.57 -0.19 

3B 35.19 35.35 -0.16 30.12 30.54 -0.42 35.52 35.93 -0.41 46.38 47.06 -0.68 

4A 35.11 34.88 0.23 30.12 30.22 -0.10 35.52 35.38 0.14 46.38 46.07 0.31 

4B 35.11 34.72 0.39 30.12 30.16 -0.04 35.52 35.71 -0.19 46.38 46.39 -0.01 

4C 35.11 34.77 0.34 29.46 29.80 -0.34 35.52 35.42 0.10 45.54 45.74 -0.20 

5A 34.13 34.20 -0.07 30.12 30.19 -0.07 35.52 35.37 0.15 45.54 45.83 -0.29 

5B 35.11 34.71 0.40 30.12 30.24 -0.12 35.52 35.61 -0.09 46.38 46.48 -0.10 

5C 35.19 34.90 0.29 30.12 30.17 -0.05 35.52 35.74 -0.22 46.38 45.99 0.39 

5D 35.19 35.78 -0.59 30.12 31.23 -1.11 35.52 35.08 0.44 46.38 46.24 0.14 

6A 34.13 33.98 0.15 29.46 29.74 -0.28 35.52 35.39 0.13 45.54 45.04 0.50 

6B 35.11 34.82 0.29 30.12 30.18 -0.06 35.52 35.65 -0.13 45.54 45.68 -0.14 

6C 35.19 35.20 -0.01 30.12 30.90 -0.78 35.52 35.26 0.26 45.54 45.76 -0.22 

7C 35.19 34.89 0.30 30.12 30.51 -0.39 35.52 35.17 0.35 45.54 44.82 0.72 

Min 34.13 33.98 0.15 29.40 29.22 0.18 35.52 35.08 0.44 45.54 44.82 0.72 

Max 35.19 35.78 -0.59 30.12 31.23 -1.11 35.52 35.93 -0.41 46.38 47.06 -0.68 

RMSE 0.30 0.39 0.23 0.39 

Note: 1. The proportion of green space is 0.60 in the area. 

 2. ΔT referred to the differentiated temperature between sample and simulated results. 

 

Table C.21  The feasibility test results in the third hotspot location (oC). 

 January 21, 2018 February 6, 2018 March 26, 2018 April 11, 2018 

 Sample Simulate ΔT Sample Simulate ΔT Sample Simulate ΔT Sample Simulate ΔT 

1A 34.52 34.53 -0.01 29.72 29.92 -0.20 36.14 36.55 -0.41 46.37 46.47 -0.10 

2A 34.70 34.69 0.01 29.72 30.10 -0.38 37.18 36.67 0.51 46.65 46.54 0.11 

3A 35.00 35.49 -0.49 31.13 31.44 -0.31 37.18 36.62 0.56 46.37 46.90 -0.53 

3B 34.30 34.66 -0.36 29.78 30.23 -0.45 36.14 36.26 -0.12 46.71 46.52 0.19 

4A 35.66 35.56 0.10 31.13 31.53 -0.40 36.95 36.48 0.47 47.47 47.12 0.35 

4B 34.95 34.98 -0.03 29.74 30.15 -0.41 36.95 36.56 0.39 46.37 46.59 -0.22 

5A 35.25 34.97 0.28 29.74 30.09 -0.35 37.18 36.59 0.59 46.63 46.90 -0.27 

5B 34.70 34.62 0.08 29.72 29.69 0.03 36.14 36.11 0.03 46.37 46.46 -0.09 

6A 35.25 35.19 0.06 29.79 30.08 -0.29 36.14 36.20 -0.06 47.85 47.16 0.69 

6B 34.95 34.85 0.10 29.72 29.64 0.08 35.36 35.66 -0.30 46.37 46.55 -0.18 

6C 34.52 34.52 0.00 29.42 29.21 0.21 35.25 35.13 0.12 46.37 46.40 -0.03 

Min 34.30 34.52 -0.22 29.42 29.21 0.21 35.25 35.13 0.12 46.37 46.40 -0.03 

Max 35.66 35.56 0.10 31.13 31.53 -0.40 37.18 36.67 0.51 47.85 47.16 0.69 

RMSE 0.21 0.31 0.38 0.31 

Note: 1. The proportion of green space is 0.30 in the area. 

 2. ΔT referred to the differentiated temperature between sample and simulated results. 
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Table C.22  The feasibility results in the first hotspot location based on the selected 

proportion of green space (oC). 

 March 31, 2014 April 16, 2014 March 20, 2016 April 5, 2016 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1D 43.73 1.66 39.25 2.08 42.96 0.55 44.84 1.35 

1E 43.38 1.66 40.60 2.08 41.31 0.55 44.61 1.35 

2B 44.12 1.66 39.06 2.08 42.28 0.55 43.76 1.35 

2C 44.20 1.66 39.12 2.08 42.32 0.55 44.73 1.35 

2D 43.83 1.66 39.26 2.08 43.02 0.55 44.79 1.35 

2E 43.63 1.66 39.18 2.08 41.56 0.55 44.03 1.35 

3A 43.59 1.66 39.27 2.08 41.82 0.55 43.45 1.35 

3B 43.97 1.66 39.29 2.08 42.10 0.55 44.00 1.35 

3C 44.24 1.66 39.23 2.08 42.41 0.55 44.73 1.35 

3D 44.26 1.66 40.31 2.08 41.38 0.55 43.78 1.35 

3E 44.18 1.66 39.25 2.08 41.49 0.55 43.69 1.35 

4B 44.44 1.66 39.10 2.08 43.00 0.55 43.95 1.35 

4C 44.31 1.66 39.25 2.08 41.79 0.55 43.90 1.35 

4D 44.20 1.66 40.31 2.08 40.89 0.55 43.93 1.35 

4E 44.40 1.66 39.42 2.08 41.04 0.55 43.22 1.35 

5B 44.46 1.66 39.14 2.08 43.02 0.55 43.93 1.35 

5C 44.11 1.66 40.17 2.08 41.37 0.55 43.53 1.35 

5D 43.77 1.66 40.36 2.08 40.55 0.55 43.70 1.35 

6A 44.05 1.66 39.06 2.08 41.66 0.55 43.13 1.35 

6B 44.25 1.66 39.17 2.08 41.85 0.55 43.84 1.35 

6C 43.91 1.66 39.40 2.08 40.78 0.55 43.65 1.35 

6D 43.66 1.66 39.21 2.08 40.77 0.55 43.71 1.35 

7B 44.15 1.66 39.11 2.08 41.17 0.55 43.35 1.35 

7C 43.89 1.66 39.18 2.08 40.67 0.55 43.48 1.35 

7D 43.48 1.66 39.31 2.08 40.86 0.55 43.91 1.35 

8A 43.25 1.66 38.97 2.08 41.06 0.55 42.86 1.35 

8B 43.50 1.66 39.17 2.08 41.42 0.55 43.49 1.35 

8C 43.41 1.66 39.10 2.08 41.00 0.55 43.50 1.35 

8D 43.74 1.66 39.14 2.08 41.03 0.55 44.08 1.35 

9A 42.86 1.66 38.94 2.08 41.09 0.55 43.10 1.35 

9B 43.09 1.66 39.08 2.08 41.03 0.55 44.02 1.35 

10B 42.62 1.66 39.34 2.08 41.71 0.55 43.92 1.35 

11A 43.10 1.66 39.16 2.08 41.59 0.55 44.06 1.35 

11B 43.45 1.66 39.13 2.08 42.17 0.55 44.80 1.35 

Min 42.62 1.66 38.94 2.08 40.55 0.55 42.86 1.35 

Max 44.46 1.66 40.60 2.08 43.02 0.55 44.84 1.35 

Mean 43.80 1.66 39.35 2.08 41.59 0.55 43.87 1.35 

Note: 1. The proportion of green space is 0.45 in the area. 

 2. T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.23  The feasibility results in the second hotspot location based on the selected 

proportion of green space (oC). 

 March 31, 2014 April 16, 2014 March 20, 2016 April 5, 2016 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1B 43.06 2.21 39.45 2.78 41.95 0.73 44.09 1.80 

2A 42.98 2.21 38.54 2.78 42.06 0.73 44.48 1.80 

2B 43.12 2.21 39.46 2.78 41.86 0.73 44.49 1.80 

3A 44.18 1.66 38.96 2.08 42.41 0.55 44.74 1.35 

3B 44.33 1.33 39.60 1.67 42.43 0.44 45.22 1.08 

4A 43.91 2.06 38.63 2.59 42.93 0.68 44.01 1.68 

4B 43.88 2.21 39.73 2.78 42.99 0.73 44.33 1.80 

4C 43.64 2.21 38.61 2.78 43.09 0.73 43.64 1.80 

5A 43.65 2.21 38.54 2.78 42.99 0.73 43.69 1.80 

5B 43.82 2.21 39.25 2.78 41.52 0.73 43.93 1.80 

5C 43.65 2.21 38.52 2.78 43.21 0.73 43.59 1.80 

5D 43.07 2.21 38.31 2.78 42.62 0.73 43.04 1.80 

6A 42.86 2.21 38.20 2.78 41.90 0.73 43.35 1.80 

6B 42.91 2.21 38.50 2.78 42.07 0.73 43.83 1.80 

6C 42.73 2.21 38.33 2.78 42.57 0.73 43.50 1.80 

7C 41.94 2.21 38.33 2.78 42.51 0.73 43.26 1.80 

Min 41.94 1.33 38.20 1.67 41.52 0.44 43.04 1.08 

Max 44.33 2.21 39.73 2.78 43.21 0.73 45.22 1.80 

Mean 43.36 2.11 38.81 2.65 42.44 0.69 43.95 1.72 

Note: 1. The proportion of green space is 0.60 in the area. 

 2. T is the differentiated temperature between actual temperature and decreased temperature. 
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Table C.24  The feasibility results in the third hotspot location based on the selected 

proportion of green space (oC). 

 March 31, 2014 April 16, 2014 March 20, 2016 April 5, 2016 

 Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT Decreased 

temperature 

ΔT 

1A 44.79 1.10 39.76 1.39 41.52 0.36 44.22 0.90 

2A 44.75 1.10 40.95 1.39 41.35 0.36 44.02 0.90 

3A 44.79 1.10 39.80 1.39 41.76 0.36 44.38 0.90 

3B 44.46 0.96 39.77 1.20 42.21 0.32 44.53 0.78 

4A 44.75 1.10 39.76 1.39 43.41 0.36 45.23 0.90 

4B 44.34 0.99 39.88 1.25 43.37 0.33 44.33 0.81 

5A 44.50 1.10 39.74 1.39 43.07 0.36 45.19 0.90 

5B 44.20 1.10 40.91 1.39 41.60 0.36 44.31 0.90 

6A 44.68 0.85 39.74 1.07 43.49 0.28 45.43 0.69 

6B 44.15 1.03 39.86 1.30 41.73 0.34 44.33 0.84 

6C 43.80 1.10 39.59 1.39 41.63 0.36 44.27 0.90 

Min 43.80 0.85 39.59 1.07 41.35 0.28 44.02 0.69 

Max 44.79 1.10 40.95 1.39 43.49 0.36 45.43 0.90 

Mean 44.47 1.05 39.98 1.32 42.29 0.35 44.57 0.86 

Note: 1. The proportion of green space is 0.30 in the area. 

 2. T is the differentiated temperature between actual temperature and decreased temperature. 
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