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CHAPTER I

INTRODUCTION

The behavior of an ant colony has fascinated naturalists for hundreds

of years and continues to motivate scientific research today. Even a casual

observer recognizes that the colony is a highly organized society. Labor is

divided effectively, with individuals performing specialized roles, so that projects

requiring the effort of thousands can be accomplished. These endeavors

require communication, and much ant research has focused on their methods

of communication, which include using pheromones, and the responses of

individuals to visual and tactile signals.

Experiments on ants are convenient (since ants are abundant and

manageable) and, in addition to what they teach us about ants specifically,

they can provide insight into more general many-body systems via analogy. The

collective motion of ants may be compared to that of many other organisms

that are more difficult to study, including birds and fish (Milinski and Heller,

1978) and microscopic examples like bacteria (Ryan et al., 2013; Sokolov and

Aranson, 2012). Ant populations placed in danger manage to find effective

strategies for evacuating enclosed areas, which may be emulated in methods of

crowd-control among people (Parisi and Josens, 2015). More abstractly, a large

group of ants is a system of correlated particles, representative of a class of

natural systems of interest to chemistry, condensed matter physics and other

fields (Czirók et al., 1999; Vicsek et al., 1999; Vicsek and Zafeiris, 2012; DeLellis

et al., 2014). Some have even suggested that, since ant colonies appear to

function effectively without hierarchical power structures, studies of ants may

have applications in political science (Tokita and Tarnita, 2020).

When foraging ants successfully locate food and return to the nest,

they direct others (in various ways) to follow the fruitful path. This means the

algorithm that one ant uses to navigate is modified according to information

received by others. The mechanism and efficiency of this communication has

been a central point of interest for many studies.

Here we are interested in a much simpler, underlying, question: how
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does an individual ant navigate within an unfamiliar environment? Originally, we

viewed this as a first step in a systematic study of simple ant communication.

The plan was first to analyze the navigation algorithm of a single ant, then to

introduce a second ant and detect any changes in this algorithm that could

be attributed to communication (Paisanapan et al., unpublished, 2022). We

were surprised to discover that the motion of a single ant was, in itself, of

considerable interest. This thesis will describe the motion of a single ant, and

the quantitative model we developed to describe it.

Our group recently performed a set of experiments on weaver ants

(Thiwatwaranikul et al., 2020). The ant species Oecophylla smaragdina, commonly

known as the weaver ant, is found in tropical Asia and Australia. Even when

compared to those of other ants, their feats of cooperation are impressive.

They build nests for the colony in trees by bending broad leaves and gluing

them together into a spherical enclosure, which is where they get their name.

To cross gaps or narrow streams, they can construct ‘living bridges’ using their

own bodies: thousands of individuals form a single solid structure that spans

the gap, and the entire colony manages to use it to cross. Their efforts have

not gone unnoticed, they have been studied for decades (Cole and Jones, 1948;

Holldobler, 1983; Kamhi et al., 2015). Weaver ants are a suitable subject for

a study of communication and are conveniently found on the campus of our

university.

Thiwatwaranikul tracked the position of an individual weaver ant as it

crawled in a small arena, which was a square floor tile bounded by a channel

of water that the ant almost never tried to cross. Its position was measured

as a function of time, over a period of T = 5 minutes, and its velocity and

acceleration calculated. The experiment was repeated many times, using different

ants on different tiles, and all data assembled in a statistical distribution. The

time-averaged distribution over position and velocity did not depend significantly

on T, and represents an equilibrium distribution that characterizes the dynamical

system.

In this thesis, I present a theoretical and computational investigation of

the navigation of individual weaver ants. With the data available, I developed a

theoretical model of ant motion that aimed to explain the measured equilibrium

distribution. Following the Langevin theory for Brownian particles, our model
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Figure 1.1 (a) Oecophylla smaragdina, ants aggregate to create their nest by

gripping the leaf. The figure was retrieved from (Barker, 2014). (b) Asian

weaver ants forming a living bridge. The figure was retrieved from (Peeters and

Wiwatwitaya, 2012).

ants move according to Newton’s law. They are subject to a trivial deterministic

force, consisting of a linear drag term and a constant forward-driving force, and

an uncorrelated random impulse drawn from a mathematically simple probability

distribution. The key qualitative features of the experimental distribution were

captured by the model.

In the experiment, ants had a high probability to be found near the

edges of the arena. Our model distribution had the same position dependence.

While one might be tempted to speculate about biological reasons for why

an ant remains near the edge of the tile, our model ants had no preference

whatsoever for one position over another. They remain near the edges because

a Brownian particle, once forced to stop at a boundary, is statistically unlikely

to move deep into the arena interior. That is, the dominant feature of the

observed ant motion can be understood without making any assumption about

the ant’s intentions.

The measured velocity distribution of ants exhibited a sharp peak

at zero velocity and broad, symmetric shoulders. This characteristic velocity

dependence is reproduced by the model calculation and readily explained.

The zero-velocity peak is the distribution of ants near the boundary while the
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shoulder features result from members in the interior. The shoulder is located

at the value of velocity where the drag and driving force are balanced.

In the next section I will review previous research on ants as a

dynamical system give more details about Thiwatwaranikul’s experiment. After

that I will present the theoretical model and describe the method I used to

simulate it computationally.

1.1 Literature on ant navigation

The motion of ants has been studied extensively. While they move

for many reasons, one aspect of their navigation that has received particular

attention is their foraging behavior. Ant colonies typically disperse scouts that

spread out over a large region surrounding the central colony in search of food.

A successful scout returns to base and uses various means (the details of which

vary from species to species) to recruit others to help collect the food. For

example, the scout may lay down a pheromone trail during his return trip.

Others pick up the trail, and whilst following it lay down their own pheromone

stream to amplify the chemical signal.

There is a large literature on the subject but a good review of the

strategies used by many species is provided by the textbook (and citing articles)

of Holldobler and Wilson, 1990 (Hölldobler and Wilson, 1990). Weaver ants, in

particular, adjust their foraging motion in response to communication in several

ingenious ways (Hölldobler and Wilson, ; Franks and Richardson, 2006; Gordon,

2010). While methods they use for foraging may or may not be employed when

they wander about in an arena like our floor tile, it is at least clear that weaver

ants can modify their navigational algorithms in response to communications they

receive.

1.2 The Motivating Experiment

The thesis is a theoretical study, but it was strongly influenced by

the work of (Thiwatwaranikul et al., 2020). To understand the model presented

below, it is necessary to know something about the setup and results of

Thiwatwaranikul’s experiment.

Weaver ants, one-by-one, were selected from one of several nearby
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colonies in the wild and safely transported into a laboratory. They were

placed on a ceramic floor tile, square in shape with length L = 30 cm.

The position r = x(t), y(t) at time t of the ant was recorded with a high-

speed camera mounted above the center of the arena over a total duration

T = 300 seconds with 15 frames per second–giving a time resolution of

∆t = 1/15s. The position origin will be defined as the center of the arena so

−L/2 < x(t), y(t) < L/2 is the allowed range. These positional data were

obtained via image-based tracking with detection of the center of an ant body

in each image. Similar techniques are now commonly applied to investigate the

motion of organisms (Dankert et al., 2009; Ballerini et al., 2008; Lukeman et al.,

2010; Audira et al., 2018). After each 300 second trial, the ant was removed

and another individual was placed (on a nearly-identical tile) and the process

repeated. Dozens of individuals were studied in this way.

The trajectories of a single weaver ant were studied in two configurations:

for the first configuration, a clean ceramic tile, the square arena is approximately

homogeneous. For the second, the arena was partly coated with 1% w/w

citronella oil. Citronella oil is detrimental but non-lethal for ants (Wang et al.,

2015; Wang et al., 2016) and was used as a natural repellent. The repellent

was coated evenly on a rectangular band at the center of arena that had a

width along the x axis of l = 10 cm and a length along the y axis that

spanned the arena (so positions with |x| < l/2 for all y were coated by the

repellent). The band (in figure 1.2) is referred as zone R with l = 10 cm.

An individual ant continued moving throughout the experiment but

tended to remain near the boundaries of the arena. It infrequently moved into

the central region and rather appeared to patrol the perimeter. There was no

evident change in its behavior over the trial duration T: it did not slow down

or significantly alter its pattern of motion. Given this time-independence, every

positional measurement (for any time t and any ant individual) can be included

within a single large data set, to be studied statistically.

We determined the instantaneous velocity components of an ant (in

the x and y direction) using

vx(t) = (x(t)− x(t−∆t))/∆t and vy(t) = (y(t)− y(t−∆t))/∆t

(1.1)

. A detailed description of the overall dynamical system is provided by the
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Figure 1.2 An illustration of an experimental setup for observing ant movement

with a camera above the center of the arena, a square floor tile of length

L = 30 cm. The position of an ant can be recorded marginally out the

boundary of the tile, about 0.5 cm from the arena. The gray shaded band at

centered along x is a repellent area with width l = 10 cm which be called R

zone

equilibrium (i.e. time-averaged) distribution Π(x, y, vx, vy), which gives the

fraction of the data set found with a given value of position and velocity. This

is a normalized probability distribution over four variables.

The full distribution Π(x, y, vx, vy) can be integrated (i.e. summed

over the large data set) over some of its variables to obtain more convenient

measures. If we integrate over all possible velocity then we obtain a normalized

density distribution n(x, y), which gives the fraction of the data set found with

a given position within the arena. A distribution over one position component

n(x) is obtained by integrating n(x, y) over y. Similarly, if we integrate

Π(x, y, vx, vy) over all positions within the arena then we obtain a velocity

distribution P(vx, vy) that can be further reduced to P(vx) by integrating over

vy.

For an ant in the clean arena, the measured density is approximately

square-symmetric: so n(x, y) ≈ n(−x, y) ≈ n(x,−y) ≈ n(y, x). Of course,

this means n(x) ≈ n(y). The density n(x) was sharply peaked near the arena

boundary x = ±L/2, and fell off rapidly with distance away from the boundary

until it became approximately position-independent in the arena interior (seen

in figure 1.3). That is, ants spent most of their time near the arena edges.

 



7

The approximate square symmetry of the distribution is important for

data analysis and the development of a theoretical model. Many tiles were

used, and a given tile was oriented arbitrarily within the laboratory. That is,

the local x axis of a tile was aligned, at random, along the x,−x, y or −y

direction in the laboratory. So upon averaging over many tiles, square symmetry

of the arena itself is understandable.

But the orientation of the Cartesian axes of the arena were fixed

with respect to other objects in the room (such as the camera, window, air

conditioner etc.). If the ants were using, to any significant extent, their long-range

senses (like vision or the smell of the air) then the distribution should not

have respected square symmetry. For example, if an ant was influenced by

a light-intensity gradient, which would have a fixed direction in the laboratory

(given that conditions in the room were maintained as constant as possible)

then this should have been detected as a violation of square symmetry. The

fact that the distribution was observed to obey square symmetry is evidence

that the ants used only local sensory information to navigate.

In the case of coated arena, square symmetry was neither expected

nor observed. The density n(x), which reflects the effect of the repellent, was

still peaked at the arena boundaries. It also exhibited an abrupt change at the

border between the clean and coated regions.

Figure 1.3 Normalized histograms of ant velocity derived from the position data

with time resolution ∆t = 1/15 s in x-axis (blue) of arena and y-axis (orange).

The data are from (Thiwatwaranikul et al., 2020).
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Figure 1.4 Normalized histograms of ant speed derived from the position data

in the interior of arena with time resolution ∆t = 1/15s . The data are from

(Thiwatwaranikul et al., 2020).

Figure 1.5 Normalized histograms of ant position for 68 ants in a coated arena

with l = 10 cm. in x-axis (blue) of arena and y-axis (orange) The data are

from (Thiwatwaranikul et al., 2020).

.

The velocity histogram P(vx) ≈ P(vy) in the clean arena has a

distinctive shape. It has a sharp, narrow central peak at vx = 0. It decreased

rapidly from this peak with increasing |vx| over a scale of 1 cm/s or so but then

partly recovered to exhibit broad shoulder features centered at vx = 5− 6cm/

s (shown in figure 1.6). These shoulder features were notably missing from the

P(vx) distribution for the coated arena. See figure 1.7
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Figure 1.6 Normalized histograms of ants velocity derived from the position data

with time resolution ∆t = 1/15s in x-axis (blue) of arena and y-axis (orange).

The data are from (Thiwatwaranikul et al., 2020).

Figure 1.7 Normalized histograms of ants velocity derived from the position data

of ants in arena with repellent (l = 10 cm) in x-axis (a) of arena and y-axis

(b). The data are from (Thiwatwaranikul et al., 2020).

We can go beyond the one-dimensional distributions discussed above

using alternative plotting formats. A heat map is convenient for displaying a

two-dimensional distribution, with color used to represent magnitude. The 2D

heat map of the velocity distribution for all ants in the clean arena is shown in

figure 1.8. The large values of velocity P(v) mainly correspond to ants moving

along the boundary, a heat map of velocity space has the shape of a ‘plus’

sign because members are usually moving along one of the square edges.

To better understand boundary effects, we divided data into two sets

according to distance from the boundary. The interior data exhibit a zero
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Figure 1.8 The heat maps of the distribution over velocity in x and y direction

for 59 ants in clean arena. The data are from (Thiwatwaranikul et al., 2020).

velocity peak surrounded by a valley. Beyond the valley there is a plateau and,

outside the plateau the distribution rapidly decreases. The plateau corresponds

to the shoulder features seen in 1D projections. The heat map for ants in the

interior is isotropic. The boundary data is strongly anisotropic because ants tend

to move along the boundaries.

Figure 1.9 The heat maps of the distribution over velocity in x and y direction

in (a) interior and (b) boundary of the ants in clean arena. The data are from

(Thiwatwaranikul et al., 2020).

Finally, Thiwatwaranikul considered ant acceleration by defining velocity

changes in Cartesian coordinate:

∆vx,y(t) = vx,y(t)− vx,y(t −∆t) = ∆vx(t) +∆vy(t) (1.2)
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and finding the histogram p(∆vx) and p(∆vy) of this quantity (of course

∆v(t) is proportional to the acceleration). The result was a relatively simple

mathematical shape: an even function p(∆v) = p(−∆v) with a cusp-like

peak at ∆v = 0 that fell off smoothly with |∆v| on the scale of 1cm/

s or so. Even more encouragingly, when the total data set was broken into

subsets, we found that p(∆v) was robust: no matter when or where ants

were studied, their distribution of acceleration remained essentially the same.

Also, it was seen that consecutive velocity changes, ∆v(t) and ∆v(t +∆t),
were uncorrelated. They could be treated as independent events. Since p(∆v)
appeared qualitatively simple, and it was not dominated by boundary effects

as the distributions P(vx) and n(x) were, it became the starting point for our

theoretical work.

Figure 1.10 The blue is normalized histogram for velocity changes in x-direction

with time step ∆t = 1/15 s. The green line is the fit result for one-parameter

in equation (2.10). The data are from (Thiwatwaranikul et al., 2020).

The results of Thiwatranikul’s experiment suggest that a reasonable

theoretical model can be based on a Brownian motion picture. Particles

undergoing Brownian motion move according to Newton’s law, but experience

random impulses because of collisions with molecules in the surrounding medium.

This means their instantaneous acceleration is governed by the probability

distribution of these random impulses.
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1.3 Ant movement as Brownian motion

Brownian motion is a well-known physical phenomenon. It was first

observed by Brown in 1827, who watched the motion of microscopic grains

of pollen in water. Their motion appears random grains perform erratic three-

dimensional walks within the fluid. In 1905, Einstein wrote a paper (Einstein,

1905) about the motion of microscopic bodies in water in which he attributed

the random motion to the effects of collisions between the grain and water

molecules. The quantitative agreement between the motion that Einstein

predicted and the experimental trajectories had far-reaching implications. At the

time, the existence of atoms was still in doubt, and the success of Einstein’s

picture (which included the thermal motion of molecules, described by statistical

mechanics) went a long way towards proving that atoms were indeed real.

Within a few years, Langevin (Langevin, 1908) recast Einstein’s theory

in a modified form, which is more convenient for our purposes. Langevin wrote

down a theory of motion, Newton’s second law, for the grain. The grain

is subject to random forces, due to the collisions with molecules, and to a

deterministic drag force proportional to the speed of the grain (and directed

opposite to its velocity). Langevin theory has since been applied to a huge range

of natural phenomena, as well as to financial processes (prices can fluctuate

randomly like a moving grain) and is in itself considered a branch of applied

mathematics (Takahashi, 1996; Picozzi and West, 2002).

A quantum description of atoms and molecules suggests that random-

ness in nature is inescapable. But that is not necessary to understand why the

grain motion is subject to random forces. Even in classical statistical physics,

processes are considered random because we simply cannot acquire sufficient

knowledge (about the microscopic state of a complex system) to predict them.

Without this knowledge, one has no choice but to treat the effect of the

collision with a water molecule as a random impulse. Of course, the fact that

random variables enter a theory does not mean we cannot use the theory

to understand experiments. If we have some knowledge of the probability

distribution of the random variable then we can still make definitive predictions.

Indeed, Einstein was able to predict the average diffusion of pollen grains and

other statistical measures of motion.

In this thesis, we are studying the motion of ants. The ant may
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well have good reasons to move as it does, perhaps each step it takes is

done purposefully according to a precise plan. But we cannot read the ant’s

mind and we do not know the microscopic features to which the ant may be

responding. This means that we do not have enough information to predict the

precise trajectory of an ant. When we write down an equation of motion that

determines this trajectory, we have no choice but to include random forces.

Since the distribution of velocity changes p(∆v) occurring in a single

time step ∆t is robust and simple, we can interpret it as a distribution of random

impulses (perfectly analogous to the results of collisions with molecules). So,

we have some knowledge, from Thiwatwaranikul’s experiment, of the probability

distribution of random impulses that steer the ant. The real physical origin

for these impulses is likely some complex combination of the ant’s personal

decision-making and its response to the microscopic terrain of the arena.

But regardless of its origin, we can take the distribution of random

forces as an experimental fact and use it to help predict average ant motion.

We can develop a model based on Langevin theory to describe this motion.

The parameters of the model can then be interpreted as properties of the ant’s

navigation algorithm. As parameters change in response to measurable factors

(such as the arena boundaries, the mild chemical repellent that Thiwatwaranikul

introduced, the interactions with fellow ants, or other factors) we can begin

to understand how the ant’s navigational algorithm is designed to allow it to

succeed in tasks like foraging.

 



CHAPTER II

THEORETICAL BACKGROUND

2.1 Overview of Langevin Theory

Langevin theory was originally devised to understand motion like that

of a grain of pollen within water. The grain movement was observed by Robert

Brown who saw the grains through a microscope - - their size was of order

tens to hundreds of microns (which we now know to be much larger than

a water molecule). This motion, so called Brownian motion, was characterized

by erratic hops: the grain appears to undergo a random walk through the

fluid. Like any classical particle, the grain obeys Newton’s laws. So the original

form of Langevin equation is just a model for the forces acting on a Brownian

particle like this grain, and the appropriate statistical formulation of the effect

of these forces. But a generalized form of Langevin’s theory can be applied

to many dynamic processes that undergo erratic change. It is used to model

biomolecular systems, various trypes of diffusion, and even financial processes.

The dominant forces acting on the grain are imparted by the surrounding

water. There is a net drag force (that is linear at small speeds) due to the

water that is directed opposite to the grain velocity. Additionally, there are

unpredictable forces acting for a very short time scale, which are treated as

instantaneous impulses. These result from the collision between the grain

and surrounding water molecules. The numerous, rapid collisions result in

a distribution of random small impulses on the grain. They are random

because it would be impossible (or at least incredibly difficult) to model the

local molecular structure of the water environment and predict the effect of

individual collisions. But the probability distribution of impulses is predictable

because water molecules, in thermal equilibrium, have a well known distribution

over velocity.

The ant moves under its own power when it crawls about and it

also obeys Newton’s laws. The most important forces acting on its body are

the reaction forces of the ground on its feet (we treat the ant motion as
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two-dimensional, so gravity and the normal force are assumed to always negate

each other). These reaction forces are unpredictable because they depend on

the precise manner in which the ant decides to moves its legs. Since we

are working with a coarse time resolution, these forces can be treated as

instantaneous random impulses.

In two dimensions, we write

d

dt
r = v (2.1)

where r(t) = x,y is the ant position and v(t) = vx,vy its velocity

at time t. When we relate differentials to experiment, we replace dt by

∆t = 1/15 s, the experimental time step. A random impulse will be assumed

to be delivered once each time step. We will also use a finite-resolution grid

such that dx is replaced by ∆x ≈ 0.1cm.

The Langevin equation for a body of unit mass is:

d

dt
v =

∆v

∆t
= F(t) =

η(t)

∆t
+ Fd(v)−∇V(r). (2.2)

The first force term η(t)/∆t is the random impulse (discussed in section 2.4).

The second term and third terms add to give the deterministic force.

For the pollen grain, the deterministic force was a linear drag force

−v
τ
, where the constant τ , with the units of time, that indicates the strength

of the drag force. We will also include such a force. It should not be literally

interpreted as a physical drag acting on the ant–its purpose in our model is

to ensure that the distribution of ant speed remains stable over long times.

The deterministic force in Langevin theory could be modified to include the

effects of gravity (or an electrical field acting on a charged grain). These are

conveniently written in terms of a potential energy. We will also include a

potential energy, V(r) the last term above, in the deterministic force. Its main

purpose will be to model the effect of the chemical repellent (see section

2.5). As long as the ant is moving in the clean arena, we can set V(r) = 0.

A preliminary analysis of the experimental data indicated that a linear

drag force was not sufficient to model the velocity dependence of the deter-

ministic force for ants. (This is hardly surprising: the ant differs in many ways
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from a passive pollen grain.) Ants in the interior of the arena were observed

to tend towards a certain average terminal speed of approximately 7cm/s. A

drag force alone would result in a terminal speed of zero–so a driving force

was required in the model. Given that an ant’s body has a defined orientation,

and it always walks forwards, it seems reasonable to include a driving force in

the forward direction. It is modeled in the simplest possible way: a constant

force directed forward.

We model the velocity-dependent part of the deterministic force as:

Fd(v) = − v

τ
v̂ +

v0

τ
v̂ (2.3)

Where in addition to the drag force v/τ we have the driving force with a

strength controlled by the positive constant v0. The direction of the driving

force is always the same as the ant velocity, i.e. it always points forward.

2.2 Orientation of velocity changes

The ant’s body orientation introduces a preferred direction of motion.

It tends to walk forward and rarely makes a sudden full turn. It is convenient

to model its velocity change in a local orientation basis according to

∆v = ∆vl̂v +∆vn(̂z × v̂) = ∆vlv̂l +∆vn̂vn (2.4)

The velocity change parallel to the velocity ∆vl = ∆vl̂v results in a change

of speed. The velocity change perpendicular to velocity ∆vn = ∆vn(̂z× v̂n)
results in a change of direction. Since ẑ is a unit vector pointing up from the

floor of the arena, we have defined a positive value of ∆vn to correspond

to a leftward turn, see 1.2. When we want to work in terms of the global

laboratory basis (i.e. standard Cartesian components) we use

v̂l =
vx√

v2
x + v2

y

x̂ +
vy√

v2
x + v2

y

ŷ (2.5)

and

v̂n = − vy√
v2
x + v2

y

x̂ +
vx√

v2
x + v2

y

ŷ. (2.6)
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We can obtain the magnitude (length) of the vector along each component by

projection:

∆vl = ∆vx,y · v̂l and ∆vn = ∆vx,y · v̂n (2.7)

2.3 Modeling velocity changes in the local orientation basis

In an arena that is truly square-symmetric, the ant motion does not

differentiate between the x and y directions. However, there is no symmetry

requirement on velocity changes relative to the ant’s body orientation. That

is, the characteristic velocity change parallel and perpendicular to ant velocity

need not be equal.

The 2D velocity change in our model is:

∆vn = ηn(t)(̂z × v̂)

∆vl = ηl(t)̂v +∆t(Fd) where Fd(v) = (− v

τ
+

v0

τ
)̂v

(2.8)

The random variables ηn(t) and ηl(t) will each be governed by a probability

distribution that is described by equation (2.10). However, the root-mean-square

(RMS) values of these variables will not be equal. We assign a value σl for

the RMS of impulses parallel to velocity and σn for the RMS of impulses

perpendicular to velocity.

The velocity-dependent deterministic force is always directed parallel

to the velocity. As noted above, the value v0 corresponds to a terminal speed

because any ant moving with this speed feels zero deterministic force. In the

presence of a repellent, an additional force will be included.

2.4 Random impulses for the ant

There are many ways one could model the random impulses seen

in ant motion. In developing our model, we were guided by one basic

principle: choose the simplest model that is plausibly consistent with qualitative

experimental results. Particularly, we wanted to keep the number of model

parameters to an minimum. (Models with many adjustable parameters can

always be made to agree with data, but such agreement is meaningless.)
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According to equation (2.2), a velocity change is

∆v(t) = η(t)− (∆t)Fd −∆t∇V(r). (2.9)

For sufficiently small ∆t, we see that ∆v is dominated by the random impulse

η. The other two forces, which are multiplied by ∆t, are not important within

a single time step. (They become important on longer time scales because

their effects accumulate.) This greatly simplifies analysis, because it means that

the normalized distribution of experimental velocity changes should be equal to

the distribution of random impulses.

We described the experimental distribution of velocity changes

p(∆vx) ≈ p(∆vy) above: it is sharply peaked at zero and appeared

symmetric. Each component of this distribution can be well-described by Eq.

(2.10).

p(η) =
1√
2σ2

exp (−
√

2η2

σ2
), (2.10)

which contains a single positive parameter, σ, and since

∫ ∞

−∞
dηη2p(η) = σ2 (2.11)

the value of σ is the RMS value. The distribution also satisfies

∫ ∞

−∞
dηp(η) = 1,

∫ −∞

∞
dηηp(η) = 0. (2.12)

That is, it is normalized and has a mean of zero

Given this experimental situation, we take each component of our

model probability distribution for random impulses to be given exactly by Eq.

(2.10). We use an RMS value of σ = σl for velocity changes parallel to

velocity and a value σ = σn < σl for transverse velocity changes.

The equation (2.10) has a number of appealing properties. It is

symmetric, with equal probability of an impulse in the positive or negative

direction. This means that the time-averaged impulse is zero. It has a simple

mathematical form that lends itself to analytic calculations and simple numerical

computation. Most importantly, it is defined by a single parameter.
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We should emphasize that our model would predict a distribution

of velocity changes that is slightly different than the equation (2.10). This is

because the model velocity change is determined by the deterministic force,

in addition to the random impulse. However, we feel the overall experimental

distribution of velocity changes gives an excellent indication for the distribution

of random impulses that we should use in our model. Not only is it the case

that the effect of the determistic force within a single time step is small, one

should also realize that the experimental distribution is effectively an average

over all positions and velocities. In taking this average, the importance of the

determistic force (an odd function of velocity) would be further reduced.

Figure 2.1 The histogram shows the probability density of changing in velocity

over all times and all ants in clean arena (blue) and the coated arena with

l = 10 cm (orange). The line curve is plotted by fitting probability density

function in equation (2.10) for ∆vn (left) and ∆vl (right)

.
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2.5 The effective potential

The potential V(r) and associated force ∇V(r) in equation (2.2) is

used to model an ant’s interaction with the chemical repellent. The ant is

averse to the citronella oil, and it is natural to associate this fact with a higher

value for the potential energy. Given that the oil is coated evenly, the simplest

model should assign two possible values for the potential energy: anywhere in

the clean arena we will take V(r) = 0 and anywhere within the repellent we

will take V(r) = V0 > 0.

The band of repellent covered positions |x| < l/2 for all y. The

potential then satisfies V(r) = V(x) with V(x) = V0 for |x| < l/2 and

V(x) = 0 for |x| > l/2. The repellent thus presents a square potential barrier

that ants may overcome.

V(x) =

{
V0, if in zone R.

0, otherwise.
(2.13)

After encountering the step potential, an ant crosses into zone R, every member

receives ∆v2
x = −2V0 opposite to the direction of its velocity. On the another

hand, an ant that moves out off the R zone, will get a positive impulse with

the same magnitude. The effect of potential is reducing probability of ants

in zone R, since some are prevented from entering the zone: the ant with

vx <
√

2V0 can’t entry the R zone.

The force associated with the potential is equal to −dV/dx and given

by

−dV

dx
= V0

(
− δ(x + l/2) + δ(x − l/2)

)
. (2.14)

So, only upon crossing in or out of zone R does the ant feel any effect of

the repellent.

2.6 Consideration of the model

The model we have outlined above is conceptually and mathematically

simplistic. We have defended this approach on the basis of minimizing the

number of unknown parameters and avoiding speculative assumptions. But is
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it possible that we are being unrealistic in applying this model to a complex

living system? We have considered a number of factors that might be included

in a more sophisticated theoretical description. We will briefly discuss some of

them here.

First, we studied whether the erratic velocity changes exhibited by

an ant are correlated in time. That is, if an ant makes an abrupt velocity

change during the current time step, will it be more or less likely to do so

during the next time step. Such time correlations would greatly increase the

mathematical complexity of analysing motion. If they were large enough, they

could undermine our entire approach.

As discussed in more detail in Thiwatwaranikul’s paper (Thiwatwaranikul

et al., 2020), we measured the statistical Gibbs’ correlation between adjacent

velocity changes (the correlation between ∆vx(t) and ∆vx(t + ∆t) etc.)

and found that these correlations were extremely weak. The distribution of a

given velocity change was essentially independent of the corresponding values

measured just before or after it. Thus, in our model calculation, we draw a

given impulse η(t) indepedently, using Eq. (2.10), at each time step.

Next, we considered whether the distribution of random velocity changes

were dependent on time spent in the arena. By breaking the data into subsets

according to time (ants that had been in the arena for less than 30 s, from

30 s to 60 s, etc.) we found that the shape of the distribution changed little

with time.

For a clean arena, the standard deviation σl and σn trended weakly

downward with time spent in the arena. In an arena with repellent, the

descending trend of standard deviation is significantly stronger. The downward

trends could be an indication that the ant gets tired or moves more circumspectly.

But it is clear that σ does not change substantially over the duration of the

experiment.

We were particularly interested in the possibility that ants change their

dynamic parameters, such as σ, in the presence of the repellent. Certain

bacteria, which move in the manner of a random walk, change their “run”

and “tumble” frequencies depending on the local chemical environment. This

behavior, an example of chemotaxis (Patteson et al., 2015), is an evolutionary

strategy for avoiding harmful environments. However, we saw no strong evidence
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Figure 2.2 The probability distribution of changing in velocity in direction (a)

parallel and (b) normal to velocity for early time (blue) and late time (orange)

in clean arena. The probability distribution of changing in velocity in direction

(c) parallel and (d) normal to velocity for early time (red) and late time (green)

in coated arena. ∆vl

.

for this phenomenon. This is why our model only accounts for the repellent

using the effective potential V(x), discussed above.

When we looked for a change in the distribution of impulses depending

on distance from the boundary we saw a similar, quantitative effect. A slight

asymmetry was seen for members very near the boundary, owing to the

limitation that large outward velocity changes were physically blocked by the

boundary. But nothing we saw in the data lead us to conclude that qualitative

behavior was dependent on position. In the model simulations, described below,

the only effect of the boundary is to stop ants from proceeding further and

force their normal velocity component to drop to zero.
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Figure 2.3 The standard deviation σl (circle) and σn (square)from fitting probability

density function in equation (2.10) change over time for all ants in a clean

arena (line) and coated arena (dash) for ∆vn (blue) and ∆vl (orange)

Table 2.1 A linear regression was done on σ values versus time t. The slope

m and its uncertainty are indicated for σ obtained from ∆vn and ∆vn in the

clean arena and the arena with repellent.

Linear curve fitting 103mσl
(cm/s2) 103mσn

(cm/s2)
Clean −0.33 ± 0.05 −0.22 ± 0.07

l = 10 cm −0.7 ± 0.1 −0.6 ± 0.1

 



CHAPTER III

SIMULATION AND ANT-BOUNDARY PROTOCOL

We carried out numerical simulations of the model described in the

previous chapter. The aim was to demonstrate that the model reproduces the

qualitative behavior seen in the experiment. In this short chapter we provide

the details about how the simulation was carried out.

Every simulated trajectory of the model ant used the same initial

values: the ant was taken to be stationary at the middle of the arena:

r(t = 0) = v(t = 0) = (0, 0). The position and velocity were updated

step wise in time intervals of ∆t. That is, we found

r(t +∆t) = r(t) + v(t)∆t

v(t +∆t) = v(t) +∆v(t).
(3.1)

The velocity change ∆v(t), described in detail above, consists of a random

impulse and the impulse due to the deterministic force

∆v(t) = η(t) +∆tFd(t) , with = Fd(t) = Fd(r[t],v[t]). (3.2)

Where Fd(t) depends on velocity and, at the interface between clean and

coated regions, on position.

A new random impulse is generated with each time step. The simulation

continues until time T, where T/∆t = 300 is the experimental value but we

often used much larger values in the simulation. After carrying out many such

simulations we can build a distribution Π(x, y, vx, vy, t) over a large ensemble

by finding the fraction of members that have a given position and velocity at

time t. At small times, this distribution is dependent on the initial state of

the ant and it evolves with t. But after sufficiently long time, the distribution

becomes independent of the initial conditions and of time, i.e. it approaches an

equilibrium distribution. We calculate the time-average to find the equilibrium

function Π(x, y, vx, vy). Since T is large, the time averaged distribution is

weakly dependent on T.
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3.1 The generation of impulses

One minor technical challenge in carrying out the simulation was to

generate two random numbers (one for the impulse parallel to velocity and

one for the impulse normal to velocity) according to a particular probability

distribution, equation (2.10). To do this, we first used a standard coin-flip

random process to decide whether the impulse was positive or negative. Then

we generated a random number q equally likely to have any value between 0

and 1. To connect this with a random number η that can have any positive

value between 0 and +∞ and has a governing probability distribution p(η)
we do the following.

We have the cumulative distribution

p̃(η) =
∫ η

−η
dη′p(η′) ,with p̃(0) = 0, p̃(∞) = 1. (3.3)

Now, suppose we divide the range of possible q values into 100 bins. There

is a one percent chance that 0 < q < 0.01 lies in the first bin, and a

one percent chance that 0.99 < q < 1 lies in the last bin. We can find

a value η1 by solving p̃(η1) − p̃(0) = 0.01 and a value η99 by solving

p̃(η99) − p̃(0) = 0.99, which is equivalent to p̃(∞) − p̃(η99) = 0.01.
There is a one percent chance that 0 < η < η1 lies in the first bin

and a one percent chance that η99 < η < ∞ lies in the last bin. By

making a one-to-one correspondence between the bins in this way, the random

number q is transformed into a random number η with the correct probability

distribution. The process is made particularly easy because i) equation (2.10)

can be integrated analytically and ii) the distribution decays exponentially. So,

too large η is rarely occur.

After following this procedure, we tested it be generating many η,

plotting the resulting distribution and comparing it to equation (2.10). This is

shown below.

3.2 The arena boundary protocol

The last aspect of the model that must be specified is the interaction

between the ant and the boundary. Following our guiding principle of choosing
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Figure 3.1 The histogram shows the probability density of random impulse was

created via Numpy random library which number of sample is 10000. The

green curve is plotted with probability density function in equation (2.10) with

σ = 1.41cm/s

.

the simplest plausible description, we do the following. If a model ant moves

across a boundary then it is returned to the boundary and its velocity component

normal to the boundary is set equal to zero. No other parameters are modified.

For example, suppose after updating position and velocity to r(t), v(t) we

find that x(t) > L/2. We respond by setting x(t) = L/2 and vx(t) = 0 while

leaving y(t) and vy(t) as they were. We then apply equation (3.1) as usual to

determine r(t+∆t), v(t+∆t). The corresponding transformation is carried

out at any of the four sides of the square arena. It is exceedingly rare that a

model ant leaves via the corner, i.e. crosses two boundaries simultaneously. If

it does then we apply the above protocol to both violated boundaries.

This description of the ant-boundary interaction is equivalent to a

totally-inelastic collision between a particle and a wall. Because of translational

symmetry, the particle momentum parallel to the wall is conserved. But the

momentum of the particle perpendicular to the wall drops to zero. A quick

observation of the behavior of an actual ant near our arena boundary appears

roughly consistent with this interaction. (Certainly, it is a much closer description

of the observed interaction than would be an elastic collision, which would

have ants reflecting from boundaries without a change of speed.)

It is important to notice that this ant-boundary interaction is modeled

to be as simplistic and unobtrusive as possible. A model ant does not see the
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boundary until it runs into it. Upon colliding with the wall it is forced to stop.

But it immediately resumes its motion without being any wiser. The model

ants have no tendency whatsoever to be drawn towards boundaries. (Such a

tendency could easily be introduced via the effective potential, but we found

that it was not needed to explain the data.) The boundary stops the ant but

does not affect its motion in any other way.

From a observation of Thiwiratnakul’s experiment, one immediately sees

that the ants tend to remain near the water channel that defines the arena

boundaries. There are numerous “explanations” for this behavior that might

come to mind. Perhaps ants keep a boundary to one side of them as a

partial shield against predators, or they stay near a source of water in case

they should need it. It could be that they follow the 1D feature to avoid

getting lost in an unfamiliar 2D environment, or that they are using their eyes

to see beyond the arena and are trying to escape the confining tile and return

to their nest. We emphasize that none of these factors has to be considered

to explain the observed behavior. Because a model that contains none of

them can account for the experimental distribution. This finding is somewhat

counter intuitive, and we like it for this reason. Also, perhaps it serves as a

warning against speculative biological (and likely anthropomorphic) reasoning in

some cases.

3.3 Velocity evolution in laboratory coordinates

While, the velocity in the next time step of our model is updated

using local coordinates: components normal and parallel to the ant velocity

axis, the ant-boundary protocol in the square arena must be done in global

coordinates. We have to transform the velocity change in the model to be

operable in global (laboratory) coordinates.

Recall that the ant only moves forward, so its body orientation is

parallel to its velocity. If the ant has zero speed, we can still define the

direction of its body orientation. In the simulation, the ant begins with zero

speed and its body orientation is selected randomly, i.e. a random angle from

0 to 2π is the angle θ between its initial velocity v and the x axis of the

laboratory. We consider the simulated ant at time t with velocity v(t) and

direction θ (illustration in figure 3.2). For the next time step, the speed of ant
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v(t +∆t) is equal to

v(t +∆t) =
√
(v(t) +∆vl(t))2 + v2

n(t) (3.4)

with angular θ + φ where φ can evaluated by:

φ = arctan(
∆vn(t)

v(t) +∆vl(t)
) (3.5)

The arctangent function is undefined where the denominator is zero, but we

can practically set the angle φ is π/2 or −π/2 if the normal of velocity

changing is positive or negative respectively. Therefore, the velocity in x and y

components at time t +∆t can be simply written as:

vx(t +∆t) = v(t +∆t)cos(θ + φ)
vy(t +∆t) = v(t +∆t)cos(θ + φ)

(3.6)

Figure 3.2 An illustration of updating velocity and angular between velocity and

x axis of lap frame in a small time step ∆t.

 



CHAPTER IV

RESULTS AND DISCUSSION

In this chapter, we report the results of our simulations and give a

more detailed comparison between these results and the data. The simula-

tions, repeated many times, were used to calculate the equilibrium distribution

Π(x, vx, y, vy) and its projections.

4.1 Unbounded arena

We start by studying a simpler system: a clean unbounded arena

that is completely homogeneous: each position is symmetry-equivalent to every

other position. For a real arena with boundaries, ants deep in the interior

should have a distribution that is similar to that of the unbounded arena. So

the unbounded arena helps us understand the ideal distribution to which ants

should be approaching as they move further from the boundaries.

We show results for both a 1D and 2D unbounded arena. The 1D arena

is a circle of circumference L. So an ant that moves a distance L gets back

to where it started. For the one dimensional case, the distribution Π(x, v) is

calculated using x(t+∆t) = x(t)+ v(t)∆t, and v(t+∆t) = v(t)+∆v(t)
where

∆v(t) = η(t) +∆Fd(t) , with Fd(t) = η(t)− v/τ + (v0/τ )sign(v[t])
(4.1)

and the random impulse η(t) is governed by the probability distribution in

equation (2.10).

The 2D unbounded arena can be viewed as the square arena bent

into the surface of an ideal torus with a circumference (in both directions) equal

to L. An ant that moves a distance L in either the x or y direction returns to

the position from which it started. The distribution Π(x, y, vx, vy) is simulated

exactly as described in the previous chapter.

The equilibrium distribution of the unbounded arena must be inde-
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pendent of position. In the absence of a driving force, i.e. with v0 = 0, the

equilibrium distribution can be calculated analytically and found to be equal to

the Gaussian exp(−v2/2v2
∞) where

v∞ =

√
σ2τ

2∆t
. (4.2)

In the presence of a driving force, the 1D equilibrium distribution is split into

two Gaussians: it is proportional to exp(−v2/2v2
∞ + |v|v0/v2

∞), so the

distribution has peaks at v = ±v0. These analytic results (not derived here

because they are beyond the scope of this thesis) can be used to check the

reliability of our simulations.

Our simulation results for the unbounded arena are shown in figure

4.1. There is no position dependence to the distribution, so we show only

the distribution over velocity P(v) in 1D and P(vx, vy) in 2D. We started every

simulation with the ant having zero velocity. We carried out many simulations

and averaged them to obtain the distribution. Here we show how the distribution

evolves with time in figure 4.2 and approaches its equilibrium form, which is

exactly the split Gaussian described above. The parameters are indicated in the

figure captions.

4.2 Clean bounded arena

Now we add boundaries to the arena, again showing the result for

both 1D and 2D arenas. The 1D arena is just a line of length L while the

2D arena is the square of length L described above. The boundary protocol,

discussed in section 3.4, is applied. (The 1D version of this procedure is obvious:

if x(t) > L/2 then x(t) = L/2 and v(t) = 0.)

The simulations all started with an ant at the center of arena with zero

velocity. That is, the initial distribution in 1D was Π(x, v, t = 0) = δ(x)δ(v)
and in 2D was Π(x, vx, y, vy, t = 0) = δ(r)δ(v). With time, this distribution

rapidly spreads. After long times, it approaches its equilibrium state.

For the 1D arena, the time-averaged position distribution n(x) shows

a high probability to find ants near the boundary. This density n(x) decreases

with distance from boundaries, becoming position independent within the arena
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Figure 4.1 (Top) The probability distribution of velocity with parameters ∆t =
1/15 s, σ = 1.33 cm/s, τ = 0.5 s, (a) v0 = 0 cm/s and (b) v0 = 7 cm/s.

(Bottom) The probability distribution of velocity by changing τ = 1 s. Those

show that the root mean square is proportional to
√
τ . The orange curve is

result of fitting with the normal distribution: (a) standard deviation is 2.58 cm/

s (b) standard deviation is 3.64 cm/s that are correspond to the equation 4.2.

(The length between black dash lines is the standard deviation v∞ in case of

v0 = 0 cm.)

interior. The 2D density has exactly the same behavior. (We do not show a

heat map of the 2D distribution n(x, y) because you cannot see much: the

peaks at the boundary dominate the color mapping.) Once again, this striking

behavior results from the statistics of Brownian motion in our model. The

model ants do not prefer to be near boundaries, but they end up near them

because of their aimless movement.

The velocity distribution P(v) in 1D and P(vx, vy) in 2D is also plotted.

The peak at zero velocity is seen along with the shoulder features. To better

understand the origin of these respective features, we have broken the model

data into two subsets: one for ants in arena interior and one for ants near
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Figure 4.2 The evolution of velocity probability distribution in the unbounded

arena is shown with parameters ∆t = 1/15 s, σ = 1.33 cm/s, τ = 1 s and

v0 = 7 cm/s. The peak of velocity distributions are separated and move to

±v0 over times. (The red dash line represents the terminal speed on average

±v0)

the boundaries.

The model result P(vx, vy) for the distribution of ants in the arena

interior is qualitatively similar to the corresponding experimental data. The

distribution is isotropic and exhibits the shoulder features discussed above. Ants

deep in the interior have a characteristic terminal velocity, at which the drag

and driving forces balance. It does not matter which direction the ant is moving:

for any direction it has the same preferred speed of v0.

When we plot the distribution for ants near the boundary, we see

the general features anticipated above. The sharp peak at v = 0 (for the 1D

simulation) and vx, vy = 0 (for 2D) is simply explained: near a given boundary

we find a dominate fraction of ants that have recently come in contact with

this boundary. After they contact it and are forced to stop, it is unlikely that

they will receive a long sequence of impulses in the same direction to push

them deep into the interior. Rather, they will receive just as many impulses
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Figure 4.3 The 2D map of velocity distribution (left) and velocity distribution in

x axis (right) in the unbounded arena with parameters ∆t = 1/15 s, σ = 1

cm/s, v0 = 7 cm/s, τ = 0.5 s (top) and τ = 1 s (bottom)

pushing them outwards. Their typical motion is to repeatedly move away from,

then back into, the same boundary. As a result, the component of their

velocity normal to the boundary always remains small. The 2D heat map

for the boundary population exhibits the characteristic “plus sign” seen in the

experiment. In this idealized model description, the sharpness of this feature is

exaggerated.

We also present the distribution in a slightly different way, by plotting

the ensemble averages of v2
x, v2

y and v2 = v2
x + v2

y as functions of position.

That is, we broke the model data into subsets according to position, then found

the statistical average of velocity squared within each subset. (The average of

velocity would be very nearly equal to zero because of rotational symmetry, so

the squared velocity is more illuminating.) The results indicate that the average

{v2
x} is very nearly zero at x = ±L/2. All ants at the boundary have

zero velocity normal to it. With distance from the boundary, {v2
x} increases

and approaches its plateau value associated with equilibrium distribution of the
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Figure 4.4 The evolution of probability distribution in finite arena length L = 30

cm with parameters ∆t = 1/15 s, σ = 1.33 cm/s, τ = 2 s and v0 = 7

cm/s for (a) 1 s ,(b) 10 s and (c) 100 s

unbounded arena. Because of the square symmetry of the overall distribution

{v2
y} is weakly dependent on x and vice versa (figure 4.9).

4.3 Coated bounded arena

The effect of the chemical repellent in the R zone is modeled by

adding a potential barrier in equation (2.13). The height of the barrier must

increase according to how “unpleasant” the ants find the citronella oil. Obviously,
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Figure 4.5 The simulation results in finite arena length L = 30 cm with

parameters ∆t = 1/15 s, σ = 1.33 cm/s, τ = 2 s and v0 = 7 cm/

s. (a) The probability distribution of position was sharply peaked near the

arena boundary and decay over distant far from the boundary. The probability

distribution of velocity for (b) all arena (c) interior of arena (|x| < 7) (this

result is similar to the unbounded arena) (d) near the boundary (2 cm from the

boundary) for probability distribution from 0.00 to 0.14 cm−1s (inserted figure

for over all).

we have not way of knowing this parameter. But at a qualitative level, we can

check whether a significant potential barrier could produce the behavior seen

in the experimental distribution.

Consider what happens when an ant tries to enter the R zone at

x = −l/2. It feels a change in its velocity of dvx = −Fddt so after

writing dt = dx/vx we integrate from just before to just after the ant passes

x = −l/2 and find

1

2

∫ v2
x2

v2
x1

dv2
x =

1

2

(
v2
x2 − v2

x1

)
= V0 =

∫ x2

x1

dxδ
(

x + l/2

)
(4.3)
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Figure 4.6 The simulation results in 2D finite arena length L = 30 cm with

parameters ∆t = 1/15 s, σl = 1.33, σn = 0.99 cm/s, τ = 1 s and v0 = 7

cm/s. (a) The probability distribution of position (b) for the density from 0.00

to 0.10 cm−1 for ant in all area of arena. (c) The probability distribution of

velocity for all arena (d) for the density from 0.00 to 0.10 cm−1s, (e) interior

of arena and (f) near the boundary cm−1s. The peak in (c) is over estimated

,compared to the result in 1D arena. The shoulder feature in (d) is formed by

the contributions from (e) and (f)

where vx1 and vx2 is its x velocity component before and after passing into the

R zone. If the ant approached the square barrier with a velocity vx1 <
√

2V0
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Figure 4.7 From simulation with ∆t = 1/15 s, τ = 0.5s, v0 = 7 cm/s,

σl = 1.33 cm/s, σn = 1.00 cm/s (a) and σn = 2.00 cm/s (b), the velocity

in central arena distributions (bottom) are slightly changed the peak position by

the σn. (the red dash line is vertical line at v0.)

Figure 4.8 The 2D heat map of the velocity distribution from simulation results

in finite arena length L = 30 cm with parameters ∆t = 1/15 s, σl = 1.33
cm/s, σn = 0.99 cm/s, τ = 0.5 s and v0 = 7 cm/s for (a) all area (b)

interior of arena (c) near the boundary.
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Figure 4.9 The mean of velocity square in x (red) and y (blue). (a) simulation

results in 2D length L = 15 cm with parameters ∆t = 1/15 s, σl = 1.33
cm/s, σn = 0.99 cm/s, τ = 1 s and v0 = 7 cm/s. (b) the data are from

(Thiwatwaranikul et al., 2020).

then this equation suggests that its velocity vx2 will be complex. This means

that the ant cannot overcome the square barrier unless it has a sufficient

velocity towards it.

Those ants with vx <
√

2V0 fail to clear the boundary, and a

significant number of members accumulate at the foot of the barrier. Ants with

vx >
√

2V0 are able to overcome the barrier, but their velocity is reduced.

As ants move deeper into zone R, they once again approach the velocity

distribution of the unbounded arena. Those ants moving out of the R zone

enjoy a boost in their outward velocity component by the same amount (use

Eq. (4.3) but switch the meanings of vx1 and vx2 for this case).

The interface between the clean and coated regions acts like a gentler

version of the boundary. There is a local peak of density n(x) that is due

to many slow ants at the feet of the square potential barrier. The presence

of the repellent band leaves ants with less space in which to achieve the

distribution of the unbounded arena. As a result, the features associated with

the interior are suppressed relative to those features resulting from boundaries.

This provides an explanation for why the shoulder features in P(vx) were less

prominent in experiments done in the coated arena.

The simulation results for the density n(x, y) and velocity distribution

P(v,vy) are shown in figure 4.10. The features described above are all seen.

In particular, consider the heat map of P(vx, vy). The obvious vertical features

in this plot result from the abrupt change in the velocity distribution resulting
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from the square barrier–the feature is located at vx = ±√
2V0.

Figure 4.10 The simulation results in repellent arena length L = 15 cm and

l = 10 cm parameters ∆t = 1/15 s, σn = 1.25 cm/s, σl = 0.96 cm/s,

τ = 0.5 s, v0 = 7 cm/s and V0 = 8 (cm/s)2. The position distribution (top)

in x axis (left) is dropped in coated area while the position distribution in y

axis (right) is the same as clean arena. The velocity distribution (bottom) in x

axis has a smaller “shoulder” then the y-distribution.
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Figure 4.11 The 2D heat map of the position distribution (a) and the 2D heat

map of the velocity distribution from simulation results in arena length L = 30

cm, the coated length l = 10 cm ,with parameters ∆t = 1/15 s, σn = 1.25
cm/s, σl = 0.96 cm/s, τ = 0.5 s, v0 = 7 cm/s and V0 = 24.5 (cm/s)2 for

(b) all area (c) interior of arena (d) near the boundary.

Figure 4.12 The mean of velocity square in x (red) and y (blue) and the mean

square of vx + vy (black) (a) simulation results in 2D length L = 15 cm with

parameters ∆t = 1/15 s, σn = 1.25 cm/s, σl = 0.96 cm/s, τ = 1 s and

v0 = 5 cm/s V0 = 8 (cm/s)2 and (b) the data from (Thiwatwaranikul et al.,

2020). The green dash line is v0 cm/s and light blue line is average speed.

 



CHAPTER V

CONCLUSION

The motion of an individual weaver ant, of the species Oecophylla

smaragdina, was previously tracked experimentally. In this thesis, we developed

a model of its motion–essentially a model of the algorithm it uses to navigate

within a simple, unfamiliar environment. Our model was based on the theory

of Brownian motion. Accordingly, the total force on the ant was written as a

sum of a random component and a deterministic component. We obtained,

from experiment, a probability distribution for the impulses caused by the

random component–they have zero time average and a mathematically simple

distribution. In the deterministic force we included a linear drag term and a

constant, forward-directed driving force. To model the effect of a mild chemical

repellent we introduced an effective potential energy–the potential is higher

when citronella oil, a repellent, is present. We carried out numerical simulations

of the motion of our model ants and compared them to the experimental

distribution of ants over position and velocity.

Our remarkably simple model accounted for all qualitative properties

of the measured distribution. In the experiment, ants tended to remain near

the boundaries of the square arena. The model explains this behavior as a

basic property of bounded Brownian motion: when an ant is stopped at the

boundary, the random impulses tend to make it remain there. The experimental

distribution over velocity had a sharp zero-velocity peak and broad shoulder

features. The former are explained by the model as a contribution from ants

near boundaries, moving slowly because they were recently forced to stop. The

latter are characteristic of ants near the arena interior: the shoulders mark the

terminal velocity at which the drag and driving forces add to zero. The features

of the distribution associated with a band of chemical repellent painted across

the arena were similarly explained. The simple effective potential, a square

barrier, produced similar features in the model distribution.

Throughout this project, we were guided by the principle of simplicity.

We tried to develop a minimal quantitative model. Our model included very
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few free parameters: we had two parameters corresponding to the RMS impulse

parallel and perpendicular to ant velocity, two corresponding to the strength of

drag and driving force, and one to the height of the effective barrier (i.e. the

degree to which the citronella oil was unpleasant to ants). We avoided the

temptation to classify the ant motion into qualitative phases (searching, resting,

etc.) as is often done in analyses of animal behavior. We feel that to do so

is to introduce subjective judgement into observation. Also, we refrained from

making assumptions about the intentions of the ant, and based our model only

on observed quantitative tendencies. The fact that we were able to account for

the complex characteristics of experiment, despite being constrained by these

guiding principles, is the main positive result of this thesis.

The work was intended as a first step in a study of one aspect of

a ant’s communication project: a study of how communication of ants affects

their navigation. We hope to continue this effort. But the thesis might also have

value, in itself, towards understanding the motion of individual ants. It provides

a basis for understanding how ants move in unfamiliar territory and might be

useful for predicting how they disperse and how their motion may be directed

by physical barriers and chemical repellents. Also, we might be bold enough to

claim that our approach, which emphasized objective quantitative analysis and

simple theoretical modeling, should be followed by other biophysical researchers.
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