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We have developed a machine learning model, specifically a random forest
regressor (RFR), to predict the coronal height in active galactic nuclei (AGNs) using
simulated power spectral density (PSD) data. We then applied this model to study the
corona evolution in two AGNSs, IRAS 13224-3809 and 1H 0707-495, observed by XMM-
Newton. The simulated PSDs were produced in a power-law form with a frequency
range and bins similar to those of the observed data. These PSDs were convolved with
relativistic disc-response functions from a lamp-post source, and then used to train
and test the RFR model to predict the coronal height. The model with the simulated
PSD data set has high performance, with R* ~ 0.93. Then applied the RFR model to
the observed PSDs where some bins dominated by Poisson noise were removed. The
model can support up to ~10 bin removals while maintaining a prediction accuracy of

R* > 0.9. The accuracy also increased with the reflection fraction. The coronal heights

of both AGNs, were varying between ~5-18 r, above the black hole, with R* > 0.9 for
all observations. Even if the true mass differed by 10% from the trained value, the
model still achieved high accuracy. Finally, we found that the model supports height-

changing corona, where the height is correlated to the source luminosity in both AGNss.
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CHAPTER |

INTRODUCTION

Active Galactic Nuclei (AGNs) emit electromagnetic radiation across a broad
range of wavelengths, from radio to Gramma bands. And all AGNs have the same
fundamental composition: a supermassive black hole at the center, surrounded by a
disc or ring of dust known as an accretion disc or torus. The variations observed in the
appearance of AGNs stem from our vantage point on Earth, which alters how we
perceive the black hole and its surrounding accretion disc, as shown in Figure 1.1.
However, it is believed that the accretion disc or another component itself cannot
produce hard X-rays. Recent research indicates that the X-ray radiation is generated by
the corona, located in the innermost region of the AGN (Haardt and Maraschi, 1991,
Kara et al., 2016). There is an ongoing debate about the geometry and evolution of
the corona, and it is still unclear how the corona connects to the disc and transforms

into relativistic jets (Reynolds and Nowak, 2003).
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Figure 1.1 The standard unified AGN model, AGN with different names depends on

what can be seen in the observer's orientation (Urry and Padovani, 1995).



Previous studies have investigated the dynamics of the disc-corona system
using the standard lamp-post geometry. The time delays caused by different photons
travel times from the corona to the disc and observer (or "reverberation lags") can
provide information about the disc-corona geometry. The majority of the previous
research has focused on examining X-ray reverberation signatures in the lag-frequency
spectra (Cackett et al., 2014; Emmanoulopoulos et al., 2014; Chainakun et al., 2016).
Nevertheless, the study on X-ray variability power in AGNs utilizing the power spectral
density (PSD) has shown that X-ray reverberation signatures are also detectable in PSD
profiles (Papadakis et al., 2016; Chainakun, 2019). It is possible to determine the coronal
height of AGNs from the reverberation signatures imprinted in the PSD profiles
(Emmanoulopoulos et al., 2016; Chainakun et al., 2022;).

In a previous study (Chainakun et al.,, 2021), a support vector machine (SVM)
machine learning model was used to classify the simulated Power Spectrum Density
(PSD) of AGNs and predict the height and inclination angle of the corona. The SVM
model was found to accurately extract these reverberation signatures from the PSD
spectra and predict coronal height, but the model was tested only with simulated
data. Additionally, the previous work focused on a "classification" problem; therefore,
the prediction result from the SYM model was a "type" of data (e.g., the ML classifies
PSDs as type 'A" which corresponds to the X-ray source height of 16-20 rg). Note that

1rg:16/\/l/c2, G is the gravitational constant, M is the mass of the supermassive black

holes (SMBH), and c is the speed of light.

The classification algorithm is a predictive model that estimates and assigns
labels or categories to discrete output variables based on input variables. It is not
suitable for predicting continuous values or real values. On the other hand, the
regression algorithm is specifically designed for predicting continuous values. It can
better capture the inherent nature of the data to predict values that can reveal the

true nature of the physical process.



Here, we use the regression algorithm, the random forest regression model, to
predict the continuous values of the AGN physical parameters, e.g., coronal height,
inclination, and black hole mass. Our ultimate goal is to use the regression model to
investigate the variability occurring within the innermost regions of AGN IRAS 13224-
3809 and 1H0707-495. Specifically, we aim to analyze the evolution of the corona in

these AGN based on the archival XMM-Newton observations.



CHAPTER I
LITERATURE REVIEW

2.1 Active Galactic Nucleus (AGN) and reverberation signal.

The AGN is situated at the center of an active galaxy and emits a significant
amount of X-ray radiation with high luminosity of L=~1anerg/s. The AGN comprises
of a central SMBH with the mass of 10° - 10101\/\@, an accretion disc, and occasionally
a relativistic jet (Curtis, 1918; Nowak and Wagoner, 1991; Fabian, 1999). The emissions
from AGNs span a broad range from the radio to the hard X-ray bands. Numerous
studies propose that the X-ray emissions originate from a region known as the "corona,"
although there is ongoing debate regarding its precise shape and location. Figure 2.1

illustrates some of the potential corona shapes that have been proposed.



Figure 2.1 Suggested shape and geometries for the X-ray corona, where these is a
black hole at the center surrounding by an accretion disc (red region). The yellow

region is the X-ray corona (Reynolds and Nowak, 2003).

However, there is a simplified corona model called the "lamp-post model
(LPM)" (Emmanoulopoulos et al.,, 2014; Uttley et al,, 2014; Chainakun et al., 2016;
Epitropakis et al., 2016; Papadakis et al., 2016) (see Figure 2.2). Typically, the LPM
geometry assumes a point-like X-ray source situated on the rotational axis of the SMBH.
On the other hand, an accretion disc is usually assumed to be optically thick and
geometrically thin that extends from the innermost stable circular orbit (ISCO) to
~1,000 re (Emmanoulopoulos et al,, 2014; Papadakis et al., 2016; Bambi, 2018;
Caballero-Garcia et al., 2020)

Basically, the corona produces the hard X-ray radiation (Haardt and Maraschi,
1991; Bambi, 2018). This occurred by inverse-Compton scattering of low-energy
optical/UV photons from the disc (red line in Figure 2.2) by high-energy electrons within

the corona, producing X-ray photons (blue line in Figure 2.2). The corona's X-ray



emission can be directly observed using the space X-ray telescopes such as XMM-

Newton.

However, it is possible for the accretion disc to reflect primary X-ray radiation
originating from the corona. This phenomenon produces another X-ray component
referred to as "reflection" (green line in Figure 2.2). As the reflection photons travel a
longer distance to the observer than the primary photons from the corona, they
experience a time delay known as "reverberation lags." The light travel distance
between the corona and the disc governs this delay, and measuring it enables us to
determine the size and geometry of the system, e.g., the corona's location, inclination,
and black hole mass (Cackett et al., 2014; Emmanoulopoulos et al., 2014; Uttley et al.,
2014; Chainakun et al., 2016)

Power-Law
Component
Thermal /
Component Corona  Reflection

Component

BlackHole  ~o 7

Accretion Disk

Figure 2.2 Disc-corona geometry of the lamp-post model (Bambi, 2018).

Nevertheless, observers can only detect a blend of signals between the primary

and reflected X-rays and other component, as shown in Figure 2.3. To extract the time



delay for reverberation between these two X-ray components, timing techniques must
be employed. One effective approach involves using response functions to analyze

the reverberation lags, which will be explained in the next section.
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Figure 2.3 The AGN spectral energy distribution (SED) is constructed using the observed
SEDs of non-jetted quasars. The solid black curve depicts the overall emission, while
the different colored curves represent individual components. The blue line
corresponds to the emitted accretion disc radiation, the light blue line represents
emission originating from the corona, and the green line represents emission resulting
from reflection on the disc. Additionally, the pink and red lines correspond to the soft
excess phenomenon and torus emission surrounding the black hole, respectively

(Padovani et al., 2017).



2.2 Reverberation feature

2.2.1 Response function of accretion disc

The response functions were widely applied to study X-ray reverberation time
delays in both AGN and X-ray binaries (Emmanoulopoulos et al., 2014; Chainakun et
al., 2019; Ingram et al., 2019). The response function of the disc can provide information
of how photons from the corona are reflected off the disc. Figure 2.4 show an example
of the response functions due to the X-ray reverberation around the black hole
obtained from the relativistic ray-tracing simulations. These simulated response
functions illustrate the echoes created by an instantaneous flash of the isotropic X-ray
source when we vary three parameters including the black hole spin, inclination angle,
and corona height. The x-axis represents the echo time delays of the photons reflecting
from different parts of the accretion disc. The time zero indicates the point at which
we begin to detect the direct photon from the corona. The reverberation response
profile exhibits a rapid rise, following by two peaks and a decay, with the initial peak
emerging from the first batch of photons that hit the near side of the accretion disc.
But Some photons reflect with the inner region near the central black hole which has
strong gravity, causing the function to become distorted and generating the second
peak due to the intense gravitational field. The response function's decay results from
photons colliding with the disc's outer region farther away from the central black hole.
The flux is relatively weak and the response gradually fades away (Emnmanoulopoulos

et al,, 2014).
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Figure 2.4 The impulse response of the X-ray reflection from an accretion disc. The

left, middle and right panels show the cases when we vary the black hole spin,

inclination angle and corona height, respectively (Emmanoulopoulos et al., 2014).

Figure 2.4 demonstrates that all of these parameters directly affect the

response function. However, Reynolds, 2021 found that the majority of black holes

exhibit a rapid spin, with a > 0.9, as shown in Figure 2.5. Consequently, for this study,

we have chosen to keep the black hole spin parameter (a) fixed at 0.998 and allow

the remaining parameter to vary.
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Figure 2.5 The relationship between the supermassive black hole mass and the spin
in 34 AGNs. Lower limits show in the red line, and upper and lower measurements

are in the blue line (Reynolds, 2021).

2.2.2 Reverberation feature imprinted on PSD profile

We used the convolution theory to simulate the PSD data imprinted with the
reverberation features due to the lamp-post source. The convolution system is a
mathematical operation that has two functions: one is a driving signal and the other is
the response function. The driving signal is filtered by the response function to produce
the third function, which is typically thought of as a modified form of the original
driving signal (Atangana, 2018). The equation for the convolution written in the time

domain can be expressed as

y(@®) = [ h@u(t —)dt = [[h(t - Du@@dr =u+h, 1
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Figure 2.6 Block diagram of the convolution system in the time domain.

where U is the input function, h is the impulse response function, and Y is the output

signal (Figure 2.6).

In the frequency domain, the equation becomes

Y(f) = HHOU). 2]

v

Figure 2.7 Block diagram of the convolution system in the frequency domain.

where U is the input signals transformed into the Fourier frequency domain, H is the
transfer function (response function in the frequency domain is usually called the
transfer function), and Y is the output signal in the frequency domain. In our case, U
is the X-ray variability power of the primary emission (or PSD), H is the Fourier form of
the disc response function (referred to as the transfer function), and Y is the observed

PSD representing the primary variability encoded with the response function (Figure

2.7).

After convolving the PSD with the transfer function due to X-ray reverberation,
Papadakis et al. (2016) found that the characteristic features such as corona height,
inclination angle, and black hole spin could be imprinted in the observed PSD profiles

(Figure 2.8). These characteristics appear as an oscillatory structure, making them useful
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for investigating the innermost region of AGN. As can be seen in Figure 2.8, both
amplitude A, and the frequency where the main dip appears are dependent strongly
on the corona height. Note that amplitude A is the maximum amplitude of the first
(main) dip. The A also increases significantly with increasing black hole spin. However,
these amplitude and frequency are relatively less dependent on the inclination ansgles.
The aim of this work is to develop the machine learning model that can extract these
reverberation signatures on the PSD data of the AGN, and predict the coronal height

which is the key parameter to study the coronal evolution in AGN.
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Figure 2.8 The PSD ratio that reveals X-ray reverberation features (Papadakis et al.,

2016).
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2.3 Corona evolution

Numerous studies have demonstrated that the X-ray corona is changing its
location along the axis of the supermassive black hole. For instance, Alston et al. (2020)
reported that the corona of the AGN IRAS 13224-3809 can vary its height between 6-
20 1y, as determined through lag-frequency spectra analysis. They also found the

corona height tends to increase as the luminosity of the corona increases, as shown in

Figure 2.9.
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Figure 2.9 The relationship between the corona height and the observed 2-10 keV

luminosity. The data and its 10 error bars were used to create a weighted linear

regression (Alston et al., 2020)

This finding was later supported by Caballero-Garcia et al. (2020), who reported

+10

a height variation of 3-10_; rg- Similarly, by analysis PSD data of IRAS 13224-3809,
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Chainakun et al. (2022) found that the corona can change its height between 3-25 rg-
This scenario recently found in NGC 5548 (Panagiotou et al., 2022).

2.4 Machine learning

In our previous study (Chainakun et al., 2021), we developed a machine learning
model that used dictionary learning and support vector machine to predict the discrete
values of coronal height and inclination angle from simulated PSD profiles. In this
study, our goal is to predict the coronal height from real observational data, by using

random forest regression to predict the continuous values of the coronal height
2.4.1 Random forest regression

We develop a ML model via the bootstrapping random forest (RFR) algorithm
available in sci-kit learn (Pedregosa et al.,, 2011). The bootstrapping RF algorithm
combines bootstrap aggregating and ensemble learning methods with multiple
decision trees that have more power prediction than using just 1 decision tree.

A decision tree is a type of supervised learning algorithm employed for
classification or regression tasks. It follows a hierarchical flowchart structure resembling
a tree, where the root node initiates the process and subsequent nodes split the data
based on specific parameters (decision nodes). This splitting continues until the leaf

node is reached, providing a final result that meets the desired criteria (Figure 2.10).
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Figure 2.10 Decision tree diagram.

Let us assume the training set X=( [X1]...,[X};] ) with responses (i.e., things we
want to predict) Y = ( Y1..,Vn ), where n is the total number of the samples. Each

sample [X;] can contain several features. The length (dimension) of [X;] represents a
total number of features which in our case, are the variability power in each Fourier

frequency bin. For example, if we have 100 PSD samples and we bin each PSD data
into 20 bins, then n = 100 and the number of the features for each [X;] sample is 20.

The RFR algorithm used here is summarized as a flowchart in Figure 2.11. During
the bootstrapping process, 60% of the training set is selected by randomly sampling
with replacement with a number of features about ~1/3. This process is repeated T’
time meaning that we have T decision trees (t=1...,T) in the forest. For each
regression tree, new training set Dt with responses Yt is produced, and trained and
tested via the model given by ft- The ensemble learning is initiated by using ft to
predict the unseen data set X' Then, the result is from averaging all individual

predictions on the unseen samples X' from all individual regression trees (Breiman,

1996, 2001). This leads to a model that can be written as

A 1 ,
f=78e=1feX), 3)
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CHAPTER I
METHODOLOGY

3.1 Observational data

This work considers two AGNs including IRAS 13224-3809 and 1H 0707-495,
which are high variability source (Alston et al., 2018; Xu et al.,, 2021). There have been
many X-ray observational data since 2000 that are suitable to use to probe the
evolution of X-ray corona in these AGNs. All observational data were obtained from

the XMM-Newton telescope as shown in Table 3.1.

Table 3.1 Observational data of AGNs IRAS 13224-3809 and 1H 0707-495 since 2000.
The first, second, third, fourth, and fifth column represent the observation ID,
revolution number, date for each observation, exposure time to detect the photon

and count of photon that detected.

Observation Revolution ~ Observation  Exposure time Count rate

ID number -al date (ks) (count s1)

IRAS 13224-3809

0673580101 2126 2011-07-19 34.08 0.37
0673580201 2127 2011-07-21 49.26 0.24
0673580301 2129 2011-07-25 52.03 0.09
0673580401 2131 2011-07-29 85.11 0.28
0780560101 3037 2016-07-08 39.38 0.19
0780561301 3038 2016-07-10 112.35 0.26

0780561401 3039 2016-07-12 99.76 0.22



Table 3.1 (Continued).
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Observation Revolution  Observation-  Exposure time Count rate
ID number -al date (ks) (count s™)
0780561601 3044 2016-07-22 97.85 0.38
0780561701 3045 2016-07-24 100.13 0.16
0792180101 3046 2016-07-26 110.64 0.13
0792180201 3048 2016-07-30 110.55 0.19
0792180301 3049 2016-08-01 86.44 0.07
0792180401 3050 2016-08-03 98.63 0.75
0792180501 3052 2016-08-07 102.66 0.23
0792180601 3053 2016-08-09 101.50 0.68
1H 0707-495
110890201 159 2000-10-21 29.94 0.13
148010301 521 2002-10-13 57.98 0.66
506200301 1360 2007-05-14 33.38 0.25
506200501 €5 2007-06-20 20.52 1.03
511580101 1491 2008-01-29 68.69 0.60
511580201 1492 2008-01-31 43.88 1.01
511580301 1493 2008-02-02 37.39 0.66
511580401 1494 2008-02-04 50.62 0.56
653510301 1971 2010-09-13 93.30 0.53
653510401 1972 2010-09-15 78.46 0.80
653510501 1973 2010-09-17 81.51 0.49
653510601 1974 2010-09-19 79.65 0.57
554710801 2032 2011-01-12 48.54 0.04



19

3.2 PSD simulation

We use the kynxilrev model (Caballero-Garcia et al., 2020) to compute the disc-
response functions (¢2) under the lamp-post hypothesis with a fixed black hole mass
of 106!\/\® and the black hole spin of a =0.998. the source height is varied to be 2.3,
4,6,8,10, 12,14, 16, 18, 20, 22, 24, 26, 28, 30 fg- Basically, the kynxilrev is the realistic
ray-tracing simulation to trace the trajectories of the photons between the corona, the

accretion disc, and the observer, by assuming a point-like X-ray source.

Once the response function (¢2) is obtained, the total response function can

be written as
W(t) = §(t) + Rp(t), [a)

where 5(1’) is a delta function for the primary radiation, ¢ (t) is the disc response
function, and R is a normalization factor representing the reflection fraction (R;) defined

as the ratio of (reflection flux / continuum flux).

The AGN viability power can be measured via the power spectral density (PSD)

that, motivated by observations, can be written in a simple form of a power law:

P(f) < f7", [5]
where f is the Fourier frequency, and Iis the power index.

Therefore, the observed PSD taken into account the X-ray reverberation effects

can be obtained by (Uttley et al., 2014; Chainakun et al., 2021; Chainakun et al., 2022)

Pobs(f) = ¥ (NI*P(f). (6]

where Pype (f) is the PSD of the AGN that included the reverberation effects and
l1U(f) is the total response function that is already transformed to be in the Fourier

frequency domain. Note that we train the machine using Ppps (f) in order to
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predict the source height and the inclination. The number of features is then the

number of bins used to generate Pobs (f) .

Here, we simulated PSD to investigate potential of RFR model in 2 cases :

® (ase | : General RFR model for predicting the coronal height and inclination
: we simulated the response functions by varying the source height
between 2.3-30 (n=15) with the inclinations of 5, 30 ,45, 60, and 75 degrees
(n=5). These response functions are convolved with the simple form of a
power law (eq.5) with the varying power index between 1.6-3.5 (n=20) and
fixed the reflection fraction to be 1. Therefore, there are 1500 samples of
the observed PSD where the reverberation features are imprinted into (-eq.

6-). The noise is then added in the PSD following Timmer and Koenig, 1995.

® (Case Il : The RFR model to probe real observational data of IRAS 13224-
3809 and 1H 0707-495 : we simulated PSD as same as previous cases, but
we fixed the inclinations angle to be 45 degree and varied the reflection
fraction between 0.6-1.6 (n=6). Therefore, in this case, we have 1800
samples of the observed PSD. Then, we modify the PSD’s frequency bin

appropriate to individual observations.
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3.3 Machine leaning process

The RFR model is developed using sklearn.ensemble.RandomForestRegressor
available in sci-kit learn (Pedregosa et al., 2011). There are many hyperparameters that

could be tuned to increase the prediction accuracy, for example.
® n_estimators: Number of decision trees in the RFR model.

® max features: Maximum number of features that the RFR model

considers to split a node.
® max_depth: The maximum depth of individual tree

® mini_sample_leaf: The minimum number of leaves required to split

a decision node.
® criterion: Function to split the node.

® max leaf nodes: Maximum leaf nodes of individual tree

However, two key hyperparameters that have a powerful effect on prediction
performance are n_estimators and max_depth. Therefore, we select to fine-tune only
n_estimators and max_depth. Other parameters are set to default. To investigate the
potential of the RFR algorithm, we split 1500 (Case 1) or 1800 (Case Il) samples of our
prepared PSD into 80% for the training set and 20% for the testing set.

To optimize the performance of the RFR model, we used a method called
GridSearchCV in scikit-learn. This method involves tuning the hyperparameters of the
model by performing a K-fold cross-validation process, where the training set is further
divided into K folds. Here, we set K=5. For each iteration, the model is trained on 4 of
the folds and validated on the remaining fold. This process is repeated 5 times, with

each fold being used for validation once.

During this process, the hyperparameters of the model are systematically varied
over a range of values, and the best combination of hyperparameters is determined
based on the coefficient of determination, denoted as R? score. This coefficient
measures how well the model fits the data, with a maximum value of 1 indicative of

a perfect fit with actual results while 0 indicates no correlation between the predicted
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and actual results. The hyperparameters that produce the highest R” score are chosen

as the optimal values for the model.

Finally, the RFR model is modified further for the specific case of the AGN IRAS
13224-3809 and 1H 0707-495. The mass, inclination, as well as the number of the
frequency bins used to extract the PSD are fixed to those values comparable to what
reported in previous studies (e.g. Zhou and Wang, 2005; Alston et al., 2020; Chainakun
et al., 2022).



CHAPTER IV
RESULT

4.1 General RF model for predicting the coronal height and inclination

(Case I)
Figure 4.1 displays an example of the simulated PSD profile in the form of a

simple power-law imprinted with X-ray reverberation feature. By following the process
outlined in CHAPTER Ill, we first obtained the initial clean PSD (top panel in Figure 4.1)
that exhibits characteristic reverberation features, manifesting as oscillatory patterns
such as dips and bumps within the frequency range of 10°-10Hz. For this process,
we employed 256 frequency bins. Subsequently, we introduced noise to the PSD
following the method of Timmer and Koenig (1995). It is important to emphasize that
we utilized the PSDs that include noise (bottom panel in Figure 4.1) to train the
machine learning model as they accurately represent the observations encountered

in real-world scenario
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Figure 4.1 Example of the simulated PSD profile. Top panel is the clean PSD without

noise and bottom panel is the PSD with noise generated using the method outlined

by Timmer and Koenig (1995).

Figures 4.2 and 4.3 show the examples of the PSDs profile when we vary corona
height and inclination angle. The effect of varying height and inclination are consistent

with those in Papadakis et al. (2016) . We see the main dip move to higher Fourier-
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frequency (shorter timescales) for lower height. Also, we can see that the inclination

has relatively small effect on the profiles.
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Figure 4.2 The PSDs profiles with the corona height of 4 re, 615, 28 1, and 30 fgn The

inclination angle is 45°.
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Figure 4.3 The PSDs with the inclination angle of 5%, 45° and 75°. The corona height

is fixed at 10 rg-

Figure 4.4 shows examples of the PSDs when the reflection fraction is varied.
When the reflection fraction increases, the reverberation feature (the dip) is more

prominent. This is resonable since higher reflection fraction means that the

reverbaration signal is stronger.
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Figure 4.4 The PSDs when the reflection fraction is 0.6, 0.8, 1 and 1.2 . The inclination

angle is 45° and the corona height is fixed at 4 fg-

Figure 4.5 shows the accuracy scores (expressed as R” values) obtained through
the 5-fold cross-validation process. Note that the simulated PSD data consists of 1,500
samples (Case I). When predicting the coronal height solely, the maximum achieved
R% is ~ 0.93, indicating the model has high accuracy compared to the case where only
inclination angle is predicted. However, when attempting to simultaneously predict
both the height and inclination, the maximum R® score drops to around 0.60. This
suggests that predicting inclination is challenging due to the fact that different
inclinations yield only subtle variations in the reverberation features presenting in the
PSD profiles (see also Figure 4.3). Consequently, the decision has been made to focus

exclusively on predicting the coronal height.
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Figure 4.5 Heat map showing the obtained accuracy scores during the cross-validation
process when a) predicting only the coronal height, b) predicting only the inclination,

and ¢) predicting both height and inclination simultaneously.

Figure 4.6 shows the scatter plot between the true height and predicted height
in the case of predicting only the coronal height. There is a ¢ood prediction at ~ 2.3-
231, and a poor prediction at very high source height because at the high source height

the reverberation features on the PSDs are less significant (see Figure 4.2).
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Figure 4.6 Scatter plot between the true height and predicted height. The RFR model's
forecast is represented by the blue line while the ideal forecast line is shown by the
red dashed line. The blue-dashed and blue-dotted lines indicate the areas where the
predicted heights differ within +10 and +20, respectively. Where the O is standard

deviation of prediction.

4.2 The RFR model to probe the corona evolution in the AGN IRAS

13224-3809 and 1H 0707-495 (Case II)

The RFR model is now being utilized to extract the reverberation features in
the PSD data of IRAS 13224-3809 and 1H 0707-495. Initial investigations are conducted
to determine the appropriate frequency range and bin sizes for the PSD, taking into

account the length of each observation for IRAS 13224-3809 and 1H 0707-495.

We generate the modeled PSD data incorporating the reverberation effects,
following a similar approach as before. However, for IRAS 13224-3809, we adjust the
black hole mass to be 2><106I\/\® and fix the inclination at 45° (Alston et al., 2020;
Chainakun et al., 2022). Similarly, for 1H 0707-495, the black hole mass is changed to
2.3x106!\/\5un and the inclination is fixed at 45° (Zhou and Wang, 2005). In this case, we

vary the reflection fraction between 0.6 and 1.6.
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The PSD profiles are then binned into ~30 Fourier-frequency bins, covering the
frequency range of 10™- 2x10Hz, which is consistent with what is typically observed
in real data (see Figure 4.7). Note that in this case the number of frequency bins is

significantly lower than what used in Case | (Section 4.1)
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Figure 4.7 PSD profiles binned into ~30 frequency bins shown in the red dotted line,
corresponding to what can be probed in IRAS 13224-3809 and 1H 0707-495, and the
blue line is a simulated PSD profile before binned. The binned PSDs then are used to

train the machine (Mankatwit et al., 2023).

Subsequently, we proceeded to train a random forest regression model using
the binned PSDs. Figure 4.8 showcases the accuracy results obtained from fine-tuning
the hyperparameters through 5-fold cross-validation. In this case, the maximum
achieved accuracy R’~ 0.95. The optimal hyperparameters are the maximum depth,

and the number of estimators, which are approximately 26 and 200, respectively.
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Figure 4.8 Obtained accuracy scores when the machine is trained using the binned
PSDs. The AGN parameters as well as the number of frequency bins are set according

to what is observed in IRAS 13224-3809 and 1H 0707-495. The model can still provide

an accurate prediction of the coronal height, with R?~0.95 (Mankatwit et al., 2023).

Figure 4.9 displays the true versus predicted values of the coronal height
obtained using this random forest regression model. It is evident that the model can
still provide accurate predictions of the coronal height even when the PSD data is
binned into approximately 30 frequency bins. However, there is a low prediction
accuracy observed at the heights of ~ 2.3 re. This discrepancy arises because the
reverberation feature imprinted in the PSDs lies outside the frequency range

considered here (i.e., exceeding 2x107 Hz).
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Figure 4.9 Scatter plot between the true and predicted height in the case of the binned
PSDs. The AGN parameters as well as the number of frequency bins are set according

to what is observed for IRAS 13224-3809 and 1H 0707-495. The model can still provide

an accurate prediction of the coronal height, with R?~0.95 (Mankatwit et al., 2023).

Figure 4.10 shows that the RFR model is more effective when the reflection
fraction R¢ > 1. This is because the reverberation are more prominent for higher R; (see
Figure 4.4), which means that the model is best to use with PSDs in the soft energy

band such as in 0.3 - 1 keV where the reflection flux dominates.



33

35

25 1

20 1

15

10

Predicted height (rg)

0 5 10 15 20 25 30
True height (rg)
35

30 4

25

20 4

151

10 -

Predicted height (rg)

U T T T T T T
0 5 10 15 20 25 30

True height (rg)

Figure 4.10 Scatter plot between the true height and the predicted height. Top panel
presents the prediction of PSDs when the reflection fraction < 1 and bottom panel
presents the prediction of PSDs when the reflection fraction > 1 (Mankatwit et al,,

2023).
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The prediction accuracy when removing some frequency bins randomly is
shown in Figure 4.11. This is relevant because in real observational data, certain bins
may be dominated by Poisson noise. Our result shows that even with the removal of
these frequency bins up to ~10 bin, the accuracy of the model is still high, with R

value greater than 0.9.

1.0
@ * = ®
0.9
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Figure 4.11 The prediction accuracy when we fixed the number of the frequency bins
to be 30 and then randomly removed them out ~2-10 bins, the small figure shows the
accuracy has a small variability when removing the frequency bins (Mankatwit et al.,

2023).

Figure 4.12 shows how the accuracy of the model changes as the mass of the
AGN being studied deviates from the value used to train the model. As the difference
in mass increases, the accuracy of the model decreases. However, the results show
that an R’value of approximately 0.9 can still be achieved even if the true mass is

within a range of +10% from the mass used to train the model.
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Figure 4.12 The accuracy of prediction when we test with variation black hole mass

~1-15% (Mankatwit et al., 2023).

The RFR model's prediction of the corona height compared to the count rates
for IRAS 13224-3809 and 1H 0707-495 using the PSDs in 0.3-1 keV band is shown in
Figure 4.13. Based on the analysis of 16 observations for IRAS 13224-3809 and 13
observations for 1H 0707-495, we find a moderate monotonic correlation between the
coronal height and count rate. We conducted two tests, Test A and Test B, where we
examined 20 PSD indices in the range of 0.5 to 2 and 40 PSD indices in the wider range
of 0.5 to 4, respectively. The predicted corona heights differ slightly depending on the
assumed power law PSD index range. However, the trend of an increasing source height
with the count rate remains unchanged. In the case of IRAS 13224-3809, we find the
Spearman correlation coefficient is 0.55 with the p-value of 0.029 for test A and
Spearman correlation coefficient is 0.54 with the p-value of 0.032 for test B. In the case
of 1H 0707-495, we find the Spearman correlation coefficient is 0.50 with the p-value
of 0.082 for test A and Spearman correlation coefficient is 0.56 with the p-value of

0.047 for test B.
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Figure 4.13 Coronal height versus count rate of the observations of IRAS 13224-3809
(top panel) and 1H 0707-495 (bottom panel) as predicted by the RFR models.
Additionally, the Spearman correlation coefficient (r,) and p-value (p) of this correlation

are also provided (Mankatwit et al., 2023).



CHAPTER V
DISCUSSION AND CONCLUSION

Our research shows that machine learning techniques can potentially be used
to study the coronal evolution in AGN. We have developed a random forest regressor
model to predict the coronal height, black hole mass, or inclination angle using
simulated PSD data sets and have applied it to real observed data. However, the
accuracy of the model is limited when determining the inclination or black hole mass
due to various factors. For example, the reverberation features may be unclear and
difficult to extract (see Figure 4.2 and 4.3), or the model may require a larger number
of PSDs with varying inclination angles to be trained. Additionally, the characteristics
of PSDs that vary with mass can be similar to those that change with the source height

(Papadakis et al., 2016).

We found that the coronal evolution in IRAS 13224-3809 and 1H 0707-495 can
be estimated to be around 5-18 r,. The significant moderate monotonic correlation
between corona height and luminosity are revealed, with p-value < 0.05 (see. Figure
4.13). This finding supports the light-bending scenario (Miniutti and Fabian, 2004), where
the corona moves closer or farther away from the black hole due to the fluctuations
in the gravitational and magnetic fields caused by the interaction between the black

hole and the accretion disc.

Our results are comparable with previous studies, particularly in AGN IRAS
13224-3809. Alston et al. (2020) used lag-frequency spectra and found a constrained
coronal height of approximately 6-20 r,. Caballero-Garcia et al., 2020 used a combined
spectral-timing analysis and found that the coronal height varies between
approximately 3—1O_+310rg, assuming a maximally spinning black hole. More recently,

Chainakun et al., 2022 traced the corona evolution from reverberation signatures



38

appearing in PSDs of IRAS 13224-3809 using conventional fitting techniques and found

a varying corona located at the height of ~3-25 r,.

Finally, our results suggest that machine learning techniques could potentially
be used to investigate AGN variability in a range of other contexts. For example, future
studies could use similar models to predict other properties of AGNs. We hope our
project will inspire further research in this area and contribute to a better
understanding of these fascinating astronomical objects. Nevertheless, machine
learning techniques may also have an 'overconfident' problem. They make predictions
for every input data regardless of whether it is relevant to the training set. In our case,
machine learning predicts the height of every PSD without considering if the PSD
characteristics are suitable enough to predict. For instance, it tries to predict the height
of PSDs within the range of 2-5 r, or 25-30 r,without considering the prediction’s
uncertainty or high variance (see Figure 4.6 and Figure 4.9). There are some suggestions
for solving this problem using deep learning, e.¢., Bayesian neural network (see. Jospin
et al,, 2022). Furthermore, the frequency range dominated by Poisson noise does not
appear randomly but rather arises due to the limitations imposed by the device. By
identifying the specific frequency range in which Poisson noise is likely to occur,
developing a machine learning algorithm that excludes this range from consideration

becomes feasible, enhancing accuracy even further.
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