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group classification with respect to the entropy and magnetic field is performed. The

group classification is made by an algebraic approach, which essentially simplifies the

analysis. The found Lagrangian and the group classification allow us to use Noether’s

theorem for constructing conservation laws. Physical interpretation of the found
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CHAPTER |

INTRODUCTION

Fluid mechanics is a field that seeks to describe the behavior of fluid waves,
as understanding these behaviors can aid in predicting fluid motion phenomena.
One specific area of fluid dynamics is magnetogasdynamics, which investigates the
motion of electrically conducting fluids in a magnetic field. The magnetogasdynam-
ics equations (MGD), also referred to as magnetohydrodynamics equations (MHD),
describe various phenomena related to plasma flows, such as plasma confinement,
solar, and heliospheric plasma.

The MGD equations in Eulerian coordinates are presented in many books, for
example, Kulikovskii and Lyubimov (1965), Landau and Lifshitz (1987), Webb (2018)
and many others. However, the study of MGD equations in Lagrangian coordinates
has been less successful, with limited publications available in the literature. Thus,
there is a need to investigate the MGD equations in Lagrangian coordinates to better
understand the principles and develop more models of fluid behavior.

In this thesis, we consider the plane one-dimensional MGD equations of
a polytropic gas, which can represent the motion of an MGD fluid. We assume
that the fluids are inviscid with infinite electrical conductivity. Additionally, for the
one-dimensional case, the magnetic field H = (H;, Hs, H3) has the property of a
constant H;. We examine the equations in mass Lagrangian coordinates, aiming to
identify a Lagrangian and perform group classification. Our research's objective is

to construct conservation laws by applying Noether's theorem (Noether, 1918).

1.1 Research Objective

The research objective is to find the general form of a Lagrangian for plane

one-dimensional flows of magnetogasdynamics equations, to obtain their group



classification and use them for constructing conservation laws by Noether's theo-

rem.

1.2 Scope and Limitations

This project focuses on one-dimensional equations that model the behavior
of MGD. We specifically consider cases where H; = 0 and investigate the case of a

polytropic gas.

1.3 Research Procedure

In this study, we first examine the magnetogasdynamics equations and inves-
tigate the relations between Eulerian and Lagrangian coordinates. Following this,
we aim to find a Lagrangian and make group classification. Lastly, the conservation

laws are constructed by using Noether's theorem.



CHAPTER Il

LITERATURE REVIEW

This section introduces the magnetogasdynamics equations, focusing on
their application to one-dimensional flows. It then proceeds to explain the group
analysis method, the derivation of prolongation formulas, the process of group

classification, and the application of Noether's theorem.

2.1 Magnetogasdynamics equations

The equations of magnetogasdynamics (MGD) describe motion of electrically
conducting fluids under the action of the internal forces related with a magnetic

field.

2.1.1 Three-dimensional MGD

The magnetogasdynamics equations (MGD) in Eulerian coordinates can be
written in many forms. In this work we take the dimensionless form of the MGD

equations with infinite conductivity

pr +div(pu) =0, (2.1a)

U+ (u-Viu= —%Vp—k (V x H) x H, (2.1b)
e+ (U-V)e = —gdiv(u), (2.10)
Hi=V x [uxH], div(H)=0. (2.1d)

Here p is the density, p is the pressure, € is the internal energy per unit volume, x =
(x,y, z) is the coordinates, u = (u, v, w) is the velocity, and H = (Hy, Ha, H3) is the

magnetic field (the dependent variables p, u, €, H are functions of the independent



variables (t,z,v, 2));

o 0 0
V—QMﬁa)

is the gradient operator, and

is the divergence operator. Equations (2.1a)-(2.1c) are equations of conservation
laws of mass, momentum, and energy, respectively, and equations (2.1d) are Fara-
day's law and Gauss's law. Here, we denote the patial derivative of the dependent
variable with respect to the independent variable by using subscript by the depen-

dent variable. For example,

S VR
PP=% P o 'Oy_ay’ P== 92

2.1.2  First thermodynamics law

The first law of thermodynamics is a formulation of the law of conservation
of energy, adapted for thermodynamic processes. For a reversible process, the
relation between the change in the internal energy of a closed system, the quantity
of heat, and the quantity of work performed by the system on the surrounding, the

1-st thermodynamics law can be written in the form
1
TdS = de + pd—, (2.2)
P

where T' is the temperature, and S is entropy.

A two-parametric model is a model that specifies two parameters as arbi-
trary, and the others are functions of them. From these two parameters, the other
parameter can be found by using the first law of thermodynamics. The MGD system

(2.1) should be complemented by an equation of state, which takes the form:

e=€(p,S).
We examine a medium characterized by an ideal gas, which obeys the Boyle-
Mariotte law

p = pRT; (2.3)

here R is the specific gas constant.



2.1.3 Polytropic gas

The polytropic ideal gas is defined by a linear relation between the internal

energy function e and the temperature (Chorin et al., 1990), (Ovsiannikov, 2003),

€ =c,T,

where ¢, is the specific heat of the gas at constant volume, which is constant.

The 1-st thermodynamics form (2.2) changes to

1
Tw:%ﬂ+m3

(2.4)

(2.5)

Next, apply the two-parameter model, where € = ¢(p,S) and T = T'(p, S)

to equation (2.4), and then apply the result to equation (2.5)

Tw:%@+@w—%@,

thus, we get
RT
es=T and ¢€,=—,
p
where the subindex means derivative, for example €5 = g—g, €p = g—;.

Substituting e from equation (2.4) into equation (2.6), we have

RT _

H- N N | RYE. .

Integrating equation (2.7), we get
lg
['=Cew",

where C' = C(p) is an arbitrary function, and

AT

p = cy1).

Substituting the function 7' that we get into the equation above, we get

S
RO@CU _ Cvcle%,
P
o= B¢

o p

(2.6)

(2.7)



then
R
C=Kpe,

where K is constant.

Substituting C' back into the function T we obtain the result

S
c

T =Kpwers, and p=RKpetlem.

Let

R s
y=—+1 and K:e_?g,
Co

where S is constant.

Following that, the pressure is
p=A(S)p,

where A(S) = Re a" and ¢, = =

1

Then, the internal energy becomes
v/ 71 (2.8)

We consider the system of equations described by the polytropic gas. From equa-

tion (2.3) and equation (2.8), we obtain the equation of state

€= LE (2.9)

v—1p

The pressure, the density and the entropy are related by the equation

p=Sp7, (2.10)

”» ”»

where S = A(S) and v > 1 is the polytropic exponent (further the sign ” ~ ” is
omitted).
The equation of conservation of energy (2.1c) can be written in different

forms. It can be the equation for the pressure p

P+ (u- V)p +ypdiv(u) =0, (2.11)



or the equation for the entropy S
St+(UV>S:0
Rewrite system (2.1)

ip + pdiv(u) = 0,

dt
d 1 1 1
— Z THHY = Z(H-V)H =
dtu—l—pV(p—l—2 ) p( V)H =0,
d D,
T + ;dlv(u) =0,
d
aH = (H-V)u —Hdiv(u), div(H) =0,
here £ = 2 + (u- V) is the material derivative.

Equation (2.11) and equation (2.12) get rewritten as

%p + ypdiv(u) = 0,

and
d
— S5 =0.
dt

2.1.4 Plane one-dimensional equations

(2.12)

(2.13a)

(2.13b)

(2.13¢)

(2.13d)

(2.14)

(2.15)

The plane one-dimensional MGD equations represent one-dimensional MGD

flows (Kulikovskii etal., 1965). The system of equations contains all dependent

variables, which are functions of only two independent scalar variables: ¢ and z.

Note that in this project, one-dimensional means that the variables depend on

single-direction variable and one time-variable. In this case, the equations

(Hl)t = 0, and le(H) = (Hl)$ = O,

yield that H; is constant.

System of equations (2.13), equation (2.14), and equation (2.15) are reduced



to

Pt + upg + puy = 0, (2.16a)

p(uy + uuy) + <%(H22 + H3) —i—p)x =0, (2.16b)
p(vy + uv,) = Hy(Hs),, (2.16¢)

p(wy + vw,) = Hy(Hj),, (2.16d)

(Hy): + (uH2), = Hyv,, (2.16e)

(H3); + (uH3), = Hiw,, (2.16f)

Sy +uS, = 0. (2.169)

An equation of the form

(@) + (V)e =G

is called a conservation law, where @, 1/, and G are arbitrary functions.

In the case that G is zero, we can apply Noether's theorem to identify the
conservation law.

Next, we aim to express the equations in conservation form, as it makes
them simpler to analyze and identify the conservation law. Hence, system (2.16)

becomes

pr + (pu), = (2.17a)

(pu)s + <pu2 + ; H3 + H3) + ) 0, (2.17b)

(pv): + (puv — HyHy), =0, (2.170)

(pw); + (puw — HyH3), = 0, (2.17d)

(Haz)t + (uHy — Hyv), =0, (2.17e)

(H3); + (uH3z — Hyw), = (2.17f)

(p(e + %qﬁ))t + <pu(6 + %u2) +u(p + %(HQ + HQ))):C = 0. (2.179)



2.2 Lagrangian coordinates

In this part, we scope on one-dimensional space. In continuum mechanics,
there are two ways for analyzing a field F, when fluid is moving. The first one is
called the Eulerian way, where the field F is expressed in (z,t). Here t is the time
and z is the position in the fixed coordinate system at the time .

The second way is called the Lagrangian way. In this case, the function F
depends on (&,t), where the position ¢ is considered in the coordinate, which is
moving with a particle. The coordinate z = £ at the time .

Relations between the Eulerian and Lagrangian coordinates are defined by
the function ¢ (&, t)

x=p(,t). (2.18)

The velocity of a particle labeled by position € is u(€,t) = ¢i(&,t). The
velocities in Lagrangian coordinate system (&, t) and in Eulerian coordinate system

u(z,t) are related by the formula

u(&,t) = u(p(&,1),1).

A similar relation between the density of fluid, presented in Eulerian coor-

dinates p(z,t), and in Lagrangian coordinates p(&,t) is

plp(&,1),t) = p(&,1).

The advantage of using Lagrangian coordinates is that the equations of con-

servation law of mass and conservation law of energy can be integrated

~ _ po(§) _
pet) = ey and S=S(0),

where po(€) is a function of integration.

Introducing the variable s such that £ = a(s), where
o/ (s) = pola(s)).
The first equation is simplified to coordinate of (s, t)

(2.19)

ﬁ(svt) = = ’
Ps(s,t)
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where ¢(s,1) = p(a(s).t) and p(s.t) = flals),t).
Note also that

u(s,t) = u(a(s),t) = @(s,t).

Summarizing, the following independent variables are used:

(x,t) are Eulerian coordinates, (£,t) are Lagrangian coordinates, (s,t) are mass
Lagrangian coordinates. Further the sign ”A” is omitted for mass Lagrangian coordi-
nates.

By using these relations, system (2.17) becomes

1
it + (Q(HQQ + H3) ‘HU) =0, (2.20a)
(Haps): = 0, (2.20b)
(Hsp,): = 0, (2.200)
S, = 0. (2.20d)

2.3  Group analysis method

The group analysis method is one of the methods for finding exact solutions
and properties of differential equations. For ordinary differential equations, it can
reduce the order of the equations. For partial differential equations, it provides a
representation of an invariant solution with a reduced number of the independent
variables. We review here the basic concepts of group analysis. Details can be
found in the books Ovsiannikov (1982), Ibragimov (1985), and Olver (1986). For the

simplicity, we consider s, t, and ¢ are variables.

Definition 2.1. Let T, be a set of invertible transformations depending on a real valued

parameter a € A C R, (s,t,0) € D C R3,

s = f(57t7 (,0,&),
t=g(s,t,p,a),

@ =q(s,t,¢,a),
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where A\ is a symmetric interval around 0, (5,%, %) € D, and D C R3 is an open set.
A local one-parameter Lie group of transformations requires to have the following
four properties:

1. For a = 0 the transformation Ty is the identity transformation:

f(S7 t? 907 0) - 87
g(87t7 ()070) == t?
q(s,t,¢,0) = .

2. A composition of two transformations satisfies the property:
TbTa 3 Ta+b7

forany a,b,a+b € A and (s,t,p) € D. Thatis forall (s,t,) € Dand a,b,a+b e A

one has

f(f(s,t,p,a),9(s,t,0,a),q(s,t,¢,a),b) = f(s,t,p,a+D),
g(f(s,t,@,a),9(s,t,p,a),q(s,t,p,a),b) = g(s,t,0,a+Db),
q(f(s,t,p,a),9(s,t,0,a),q(s,t,¢,a),b) = q(s,t,0,a+b).

3. If for V(s,t, ) € D one has

f(s,t,0,a0) = s,
g(s,t, @, a0) =t,
q(s. 0, a0) =,
then
ag = 0.

4. The functions f, g, q are sufficiently smooth.

A local one-parameter Lie group is simply called a Lie group.

Definition 2.2. Let (f, g,q) compose a Lie group of transformations. The infinitesimal

generator

0 0 0
X = 5(8,1&#,0)% + 7](57t7 So)a + <<S7t7 @)%7
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where

0
5(57 t? 90) = (%f(sv ta ®, Cl)> oo 9
t = 0 t
77(57 790) - (%9(37 2 a)> - ’
0
C(S7 t7 30) = <%Q<Sa t7 P, CL)) oo )

is called the generator of the group of transformations.

On the other hand, a Lie group can be reconstructed from its generator by solving

the Lie equations

L _dt.9.0,
% =n(/,9.9),
% =((f.9:9),
with the initial conditions
WL, £,
Gla=o =1,
Qa0 = P

2.4  Prolongations formulas

Consider that ¢ is a dependent variable and (¢, s) are independent variables.
Definition 2.3. Let the generator be

0

0 0
X—fg*‘ﬁa*‘f%,

then the generator

0
&Ptt’

XP =X 4 (¥ 9

0
+ Yt~ + Pss + Pts
a(ps C a(pt C C

+ CSDtt
aSoss a901‘/5
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with the coefficients

E(s,t, ), ms,t,e), (st 9),
(7 = Ds( — s Ds§ — i Ds,
¢ = DiC — 05 Di§ — 0 Dy,
(7 = Ds(® — pssDs§ — p1s D,
(¥ = DyC" — p1sDs€ — pu D,

¥t = DtCt — ©isDi§ — 0 Dy,

is called the second-order prolongation of the generator X.

Here D, and Dy are total differentiation operators with respect to t and s, respectively.

2.5 Group classification

A Lie group and the equations in this study are related by the notion of an admit-

ted Lie group.

2.5.1 Admitted Lie group

The first step of the group analysis method consists of finding the admitted Lie
group. One of the definitions of the Lie eroup admitted by a system of differential equa-
tions is defined by the property that a solution of the differential equation is mapped by
a transformation from a Lie group into a solution of the same equation.

Consider a system of differential equations defined by the equation

F(t>57907 thagosﬂ@ttﬂpts,@ss) = 07

where F'is a vector-function.

A Lie group of transformations satisfying the determining equation

XPF,_ =0,

F=0

is called a Lie group admitted by equation F' = 0, or simply an admitted Lie group.
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Most differential equations of fluid dynamics include arbitrary elements denoted
here by f, which can be functions and constants. A Lie group admitted by differen-
tial equations including these elements depends on concrete choice of these elements.
Further the concept of the group classification is discussed.

2.5.2 Equivalence transformation

Let the studied equation be

F(ta S, P, Pty Psy Pty Ptsy, Psss f) = 0.

One of the problems of group analysis is to find transformations which change

arbitrary element f, but do not change the structure of the equations
F(Ev S, P, Pr, Ps, P, Pis; Pss) f) = 0.

Such transformations are called equivalence transformations. A local Lie group of equiv-
alence transformations is called an equivalence group.

Two systems of equations are called equivalent if there exists an equivalence
transformation from the equivalence group mapping one into another. This property
also defines an equivalence between admitted Lie groups. Separation of the systems of

equations into classes of equivalent systems is called the group classification.

2.5.3 Equivalence group

A set of equivalence transformations composes a Lie group, called an equivalence

group. A generator of an equivalence group is denoted as X and takes the form

X = fS(S,t,QD, f)as + £t(s,t,gp,f)8t + Cp(satﬂp?f)asa + Cf(sataﬁpaf)afa

where f = f(s,t, ) is an arbitrary element contained in the equations studied.

Prolongation formulas of a generator of an equivalence group

Xe — X° + C@sa% 4 Csot(f)% 4 Cfsafs + Cftaft + Cﬁpaﬁp
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differ from prolongation formulas of an admitted generator. The coordinates related to

the dependent functions are

(P = Dy? = D& — o Dg'y Dy, = 0+ 90,0, + (foipn + f,)05,

where p = s and p = t. The formulas define the coordinates of the prolonged generator

Xe¢, that are related with the arbitrary elements
(P = D5~ f,DSE — fiDSE' — foDSCP, DS = 0x+ iy,

where A = s, A=t and A = ¢.
The determining equation is constructed by applying the prolonged generator Xe

to the equations studied

X¢F  =0.

F=0

Remark 2.1. For finding an equivalence group, the equations studied can be extended
by additional equations corresponding to the conditions related with arbitrary elements.
For example, if the function S' = S(s) only depends on s, where the dependent variable

©(s,t) depends on s and t, then the additional equations are

S;=0and S, =0,

2.5.4 Lie algebra

Let z = (21, 22, ..., 2n) € V, where V be an open set in R", and
Xi = ('(2)0.,, (1=1,...,m),

be a set of generators. We use the standard notation: summation with respect to a

repeated index for all values of the index.

Definition 2.4. The generator

[Xi, X;] = ¢ij(2) 0,

ij
with the coefficients

Gy = Xi(¢F) = X5(6Y)
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is called the commutator of the generators X; and X;.
The operation of commutation has the following properties:
1 [X;, X;] =0.
Definition 2.5. A vector space of generators which is closed with respect to commutation

is called a Lie algebra. The set of admitted generators of a system of differential equations

composes a Lie algebra (Ovsiannikov, 1982).

2,55 Inner automorphisms

Two Lie algebras L and L are called isomorphic if there exists an isomorphism &

of vector spaces of L and L

conserving the commutators
[K(X),8(¥)] = #([X, Y]7).

In the case when L equals to L, k is called an automorphism. Choose a gener-
ator Y and observe changes of other generators along the trajectory of Y. This can be

described by the following formulas

ixzmﬂm X, = X. (2.21)

In the particular case, where L has a finite dimension, we aim to express elements
of L through a basis. Let L,, be an n-th dimensional Lie algebra of generators with a basis

X1, Xa, ..., X,. Any generator X can be written in the following form
X =2,X,.

As L, is closed under the commutation, the commutator of any two generators

can be expressed as a linear combination of the basis generators
[Xi, X;] = C X,

where C’;’j are called structure constants.
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For the Lie algebra L, it is possible to construct an isomorphic Lie algebra defined

on the space R™:

where {e;}I  is a basis in R™.

The commutator on the space R" is defined by the formula
lei, e5] = Cliea, (4,5 =1,2,...,n).

Formula (2.21) becomes

d . X R |
i = [T, yly = 2aChpy Ty =2y, (Y=1,2,...,7), (2.22)
where X = z,X,.

Due to the linearity of the Cauchy problem (2.22), its solution can be represented

in the matrix form

T =A,(t)x.

The latter is an automorphism, which is called an inner automorphism. Equation (2.22)
can be rewritten in form

I OAN (2.23)

2.5.6 Classification of the Lie algebra

Definition 2.6. A vector subspace L’ C L of a Lie algebra L is called a subalgebra if it is
a Lie algebra.

Similar subalgebras of the same dimension constitute a class. This means that if
one considers two elements from the same class L and L4 then there exists an isomor-

phism A such that AL; = Ls.

Definition 2.7. A set of all representatives (one representative from each class) is called

an optimal system of subalgebras.
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2.6 Noether’s theorem

Noether’s theorem is used for finding conservation laws of variational equations
with symmetries. Here, we present a simplified version of this theorem restricted to
second-order PDEs with the two independent variables (¢, s). Consider a Lagrangian de-

pending on first-order derivatives

/C:E(t,S,QO,SOt,SOS), Y = (90 7"'790m)-

The Lagrangian provides the second-order Euler-Lagrange equations

oL
Spi

0, (i=1,..,m). (2.24)

The operator

0 _90¢ ,0 0
Y kA ]

is called the variational operator.

Let a Lie group of equation (2.24) be given by the generator

0 0 : 0
X = £t<t7 S, @)a b Y gs(tv S, @)% + nl<t7 S, 80)8_(,01

The generator X is prolonged to the second-order derivatives, contained in the Euler-
Lagrange equation, according to the standard prolongation formulas.
Noether’s theorem (Noether, 1918) is based on the following identities. The first

identity relates the invariance of the elementary action with invariance of the Lagrangian

oL

-+ Dy(N'L) + D, (N°L),
&p’—'— «(N*L)+ Dy(N°L)

XL+ L(DE + Dye®) = (f — 'l — €541

where

) 0
N° =&+ (n—E'g, — &)

. 0
Nt: t et i s, i :

0}’
which are called Noether’s operators (the details on symmetries and conservation laws

can found in Ibragimov (2011)).

If the generator X and the Lagrangian L satisfy the condition

XL+ L(D& + D&% =0,
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then the symmetry X is called a variational symmetry.

If X and L satisfy the condition
XL+ L(DE + D&*) = DBy + DBy

with nontrivial By(t, s, ) and Bs(t, s, ), we say that X is a divergence symmetry
(Bassel-Hagen, 1921).
Another identity relates the invariance of the Lagrangian with the invariance of the

Euler-Lagrange equations:

O (XL + LD + DY)

0pd
oL ot ogt . 0& oL

=X|— - — ~(0y — _ Siu(DyE" + DE°) | ==, 1 =1,2,...,m,

(590] ) + (8999 8QOJ Pt 8@] Ps  § jk( t§ + € ) 5¢k J m
where d,, is the Kronecker symbol.
Noether’s theorem is formulated as follows:
Theorem 2.1. Let the Lagrangian function L satisfies the equation

XL+ L(DE 4+ D,E%) = DBy + D, By, (2.25)

where X is a generator and B; = B;(t,s,¢),i=1,2.
Then the generator X is a symmetry of the Euler-Lagrange equations, and the

Euler-Lagrange equations possess the conservation law

Dy(N'L — By) + Dy(N*L = By) = 0. (2.26)



CHAPTER Il

RESEARCH METHODOLOGY

This chapter outlines the process employed in this research. Firstly, the equations
are transformed from their Eulerian forms to Lagrangian forms. Secondly, we identify the

Lagrangian. Lastly, we explain Noether’s condition.

3.1 Tools

In this research the experiments have been performed on the Reduce computer
algebra system (Hearn, 1987) programming on a computer with Windows 10 64 bit OS
with an Intel (R) Core (TM) i5-10400F CPU @ 2.90GHz with Memory 16 GB and equipped

with NVIDIA GeForce RTX 3060 Ti.

3.2 Transform the equations from Eulerian form into Lagrangian

form

The magnetogasdynamics equations (2.17a)-(2.17¢) are presented in the Eulerian
form. In order to apply Noether’s theorem, we need to rewrite the magnetogasdynamics
equations in mass Lagrangian coordinates. We use relations (2.18) and (2.19) to transform

system (2.17). After integration equations (2.20a)-(2.20d), they reduce to the equation
pu+ (Bpy? + Sp;7)s =0, (3.1)

where B = %(HQQO + H320), H20 = Hgo(S), H30 = H30(S) and S = S(S)

3.3 Find a Lagrangian

For finding a Lagrangian for which the studied equation is the Euler-Lagrange equa-

tion we have to solve the following problem. Let L(t, s, ¢, ¢y, ps) be a corresponding
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Lagrangian. Substituting £ and ¢y, found from equation (3.1), into the equation % =0,
and splitting it with respect to the parametric derivatives we obtain an overdetermined
system of equations for the function L.

During solving this overdetermined system we have to solve equations, which

have the following forms.

1. Consider an equation of the form
P(z,y) =0,

where

3

Pz,y) =) a;(z)y,
§=0

and y € R'. The general solution of this equation is
aj(r) =0, (7=0,1,...,n).
This operation is called splitting.
2. If Ky = 0, where K = K(x,y), then K does not depend on z.

3. The general solution of an equation of the form

’C:EZ(‘Tu y) g O>

K(z,y) = a(y)x + b(y),

where a(y) and b(y) are arbitrary functions.

4. If the equation is
]C:ry<x, Z/) = 07

then its general solution is

K(x,y) = a(x) + b(y),

where a(x) and b(y) are arbitrary functions.
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5. If the equation is

ICt - Px - 07
then its general solution is
K= hxa
and
7) - ht7

where h = h(x,t) is an arbitrary function

After solving all the equations, the found Lagrangian is

L Do e B (3.2)

5 7_1% o

Further steps of the research consist of finding the equivalence group and group
classification. Results of the latter study are applied for constructing conservation laws

by using Noether’s theorem.

3.4 Noether’s condition

Let X, (1 = 1,2, ..., n) be admitted generators, and a linear combination of these

generators be

X = kX,

where k; are constant.
In order to check Noether’s condition we apply the variational derivative to the

expression X L + L(D;&' + Dy&°) -
5 t s
55 (XL+LDE + D)) =0, (33)

This gives conditions for the constants k;.



CHAPTER IV

RESULTS AND DISCUSSION

This chapter is devoted to the main results obtained and discussions. Among the

main results we focus on the group classification of equations (3.1).

4.1 Group Classification

Group classification consists of 2 steps.
1. Find the equivalence group, which is used for separation of equation (3.2) into equiva-
lence classes with respect to the group. For equivalence group, equation g—i = (0 should

be extended by the equations
St —3 0, SSO = 0, Bt — 0, B(p — O (41)
The equivalence group is found by solving the determining equation

Xe(F),_, =0,

[F=0

where F' consists of the equations % = 0, and equations (4.1).

2. Find the admitted Lie group for each class

XP 5—£ =0. (4.2)
dp 520

4.1.1 Equivalence group

The equivalence transformations for equation (4.2) have generators of the form

o 0 ) B
Xe — ¢t = s 7 w7 s ¥ B >
Sor T s T, T s T g

where all coefficients depend on (¢, s, ¢, S, B).
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Computations provide the generators

Xi=g. Xi=g
Xs = %, X5 :t%7
i :t%“%“@% Xg =t~ 262 120~ )55,
Xr=(- v)t% - 23% +2(y — 2)38%,

where X7, X§, and X5 are shift of ¢, s, and ¢, respectively, X7 is Gallilean transforma-
tion, X¢, X¢§, and X¢ are scaling.

There are also two involutions

(4.3)

4.1.2 Admitted Lie group

Partially solving the determining equation we obtain that an admitted generator

has the following form

=7
il = Z ﬂfiXi,
=1

where X; = 00, Xo =0, X3 =10, X4y =0,, Xs=10, X¢=0,, X7= 50,

x; are constants. The generators X5, X4, X5 are admitted for all arbitrary elements, they
are basis generators of the kernel. The generators X, (i = 1, ..., 7) compose a Lie algebra
L7. The remaining equations, which are not solved, are called classifying equations. The

classifying equations are

—3Bxy + 2Bx3 + Bsxg + (sBs + B)xy = 0, (4.43)

S(y+ 1)z — 2Sx3 — Ssae + (S — S — sS5)x7 = 0. (4.4b)

Latter equations contain constants x; and functions B and S. We have to solve equation
(4.4a) and equation (4.4b) with respect to the constants and the functions together.
If ¢ = 0 and 27y = 0, then this leads to the contradiction that X = 0. Indeed,

let zg = 0, z7 = 00 X = 21X; + 23X3, (22 + 23 # 0). Equations (4.4a) and (4.4b)
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become

B(—3z; 4+ 2x3) =0, S((y+ 1)z —223) = 0.

As BS # 0, then for v # 2 the latter equations lead to the contradiction
r1=0, x3=0.

For solving the classifying equations we use the algebraic approach.
For the algebraic approach we note that action of equivalence transformations is
equivalent to the inner automorphisms. The set of inner automorphisms is constructed

on the base of commutator table.

Table 4.1 The commutator table.

Xl XS Xﬁ X7 XQ X4 X5

X; 0 0 0 0 -X, 0 X;
X¢ 0 0 0 X¢ O 0 0
X% I\ J~1b 0 0
XVl Nt B () 0o X
X, SONE b d (h 0 0

“The case v = 2 corresponds to the classical gas dynamics equations, which are excluded from our

consideration.
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The inner automorphisms are

Ay 1 240, + 150, = Ty = 14", T5 = T5e",

Ag 130, + x50, = To = Ty + o3, Ty = T4+ a2,

A3 : —xgﬁm + ZL’58¢5 = Ty = Toe 3, Ty = x5€%3,

Ay 1210, = Ty = x4+ agxq,

As i (21 — 23)0p; — X205, = T5 = x5 + as(r1 — x3), Ty = x4 + 52,

A6 : ZE78$6 = Tg = Tp + asT7,

A7 =260, = Tg = Te™.

To find the four-dimensional and higher-dimensional optimal system of subalge-

bras of the Lie algebra L7, we aim to simplify all the coefficients of the generator
X =21 Xy + 23X3 + 16 X6 + 207.X7.

Other three generators are basis generators of the kernel of the admitted Lie algebras.
Hereinafter, the generators from the kernel are omitted. Considering the inner automor-

phisms, one notes that x7 is invariant of the inner automorphisms.

Case x7 # 0

In the first case, we assume that z7; # 0. Using the inner automorphism Ag, we

can reduce zg = 0. Dividing each term in the generator X by x7, we obtain
X =X + 51 X3 + Xy,

where a1 and (3, are constant.

Casez7; =0
In the second case, assuming 7 = 0, we get
X = ZE1X1 + ZL‘3X3 + JJGXG. (45)

Let z¢ # 0. In this case, we can assume that xg = 1. Considering the condition z; # 0
and using involution E of (4.3) and the inner automorphism A7, we can reduce x; = 1.
Generator (4.5) becomes

X =X + B2 X35 + X,



27

where (3, is constant.

For another case, where x; = 0, generator (4.5) becomes
X = a3 X3 + X,

where a3 is constant. Similar to the previous case, using F; and Ay, the latter generator

can be reduced to either
X:X3+X6 or X:X6

As noted earlier, the basis elements of an admitted subalgebras of L7 should

contain either the generator X4 or X7, thus it is not necessary to analyze the case
[lﬁ'le - I3X3

For higher dimensional subalgebras of the Lie algebra L7, which are admitted, we
have to analyze the only case

{X? Y}v

where

X = X7 - (XXl —I—ﬁX&
s X@ + l’le -+ ZE3X3.

Taking the commutator

[X Y] = —Xo,
and using the condition for the generators to compose a Lie algebra, we have
—X¢ = hX + 1Y,
where h and p are constant. The latter leads to x1 = 0, x5 = 0. This gives the subalgebra
{Xe, X7 + aX; + BX3}.

Therefore, for solving equation (4.4a) and equation (4.4b), we only use the subal-

gebras with the basis generators

{an Xh + 51 X5+ Xz}, {X1+ B X5 + X6},
{X3—|—X6}, {X6}, {XG,X7+OKX1 +ﬁX3}

(4.6)
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All of these subalgebras also include the generators Xo, X4, X5. From the optimal system
of subalgebras (4.6) the coefficients of the classifying equations (4.4a) and (4.4b) can be

found. This is explained further.
1. At first, we consider the subalgebra from the optimal system
{on Xy + 51 X3 + X7, Xy, X4, X5} (@.7)

From this subalgebra, we get 1 = ay, 13 = (1, 7 = 1, and 9 = x4 = x5 = 1,

then the classifying equations (4.4a) and (4.4b) become
sBs + (26, — 3a1 + 1)B = 0, (4.8)
sSs — (v + Doy — 2681 + (1 —7))S =0. (4.9)
Integrating equations (4.8) and (4.9), we obtain
B = (Oys@=28=0 g — 0, g((rF)en=281+(1-7))
where (' and C5 are constant.
2. Consider the case in which the subalgebra is
{Xi + B2 X5 + X, Xo, Xy, X5} (4.10)

From subalgebra (4.10), we have 11 = 6 = 1, 3 = B3, and x5 = x4 = x5 = 1,

Then the classifying equations (4.4a) and (4.4b) become

Sy — ((y+1) — 28,)S = 0. (4.12)

Integrating equations (4.11) and (4.12), we get
B = 036(3—252)’ S = 046((7“)_2’32),

where C5 and C} are constant.
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3. Choosing the subalgebra
{ X3 + X, Xo, Xy, X5} (4.13)

from the optimal system, the coefficients are 23 = 26 = 1, 1 = 27 = 0, and

x9 = x4y = x5 = 1. Then the classifying equations (4.4a) and (4.4b) become
B, +2B =0, (4.14)

S, +25 =0. (4.15)

Integrating equations (4.14) and (4.15), we have
B=Css2% S =Cgs 2,
where C5 and (g are constant.
4. One more subalgebra from the optimal system is
{ X6, Xo, Xy, X5} (4.16)

From subalgebra (4.16), we get x4 = 1, 21 = x3 =27 = 0,and x5 = x4 = x5 = 1.

The classifying equations (4.4a) and (4.4b) lead to

B, =0, (4.17)

S (4.18)
The general solution of equations (4.17) and (4.18) is

B =007 S=Cs,
where C7 and Cg are constant.
5. Lastly, the subalgebra of the optimal system is
{ X6, X7+ aXj + X3, Xo, Xy, X5} (4.19)

From subalgebra (4.19), we get two cases for the coefficients. The first case is
¢ =1, 11 =23 =27 =0, and z9 = x4 = x5 = 1, then the classifying equations
(4.4a) and (4.4b) become

B, =0, (4.20)
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Ss = 0. (4.21)

Hence, as in the previous case
B =0y S =0,

The second casegives 1 = a, 13 = 5,24 = 0,27 = 1l,and o = x4 = x5 = 1. As
from the first case, we get that B and .S are constant, then by virtue of the condition

BS # 0, the classifying equations (4.4a) and (4.4b) reduce to the equations
—31’1 + 2$3 +1= 0, (4.22)

(v+ 1Dz =223+ (1—7) =0. (4.23)

Summing equation (4.22) and equation (4.23), we obtain
(y=2)(x; — 1) =0.
From the condition that v # 2, we get
=17 d=\rof "Ly —NN

A summary of the calculations above is presented in Table 4.2.

Table 4.2 Representations of the functions S(s) and B(s).

Case S(s) B(s) Symmetry Extensioin Conditions
1 So By Os, t0, + 505 + ¢0,,
2 Sps®  Bys? (2(y = 2) + 3a — B(y + 1))to, o’ 4+ % #0
+2(y —2)s0s +2(y — 24+ a — B)pd,
3 SpeP*  Bye® (—q(y + 1) + 3p)to, P+¢E#0

+2(y —2)05 + 2(p — q)90,
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4.2 Application of Noether’s theorem

4.2.1 Noether’s condition

Applying the Lagrangian (3.2) and the data from Table 4.2, the conservation laws
are found. However, Noether’s conditions must be satisfied. A summary of solving of

these conditions is presented in Table 4.3.

Table 4.3 Additional variational symmetries of S(s) and B(s).

Case S(s) B(s) Symmetry Extensioin Conditions

1 So By 05

a’+ B2 #0,
(Note that v # 3 if « = 0)

P +a#0
3 SpeP®  Bye?® 2qt0;, — 0s + qy0,, p+q(v—3)=0
(Note that v = 3 if p = 0)

4.2.2 Conservation laws

Here the conservation laws of equation (3.1) are discussed.

The symmetries of the basis generators Xy = 0y, X4 = 0,, and X5 = t0,, provide
conservation laws of energy, momentum and motion of the center of mass, respectively.
They represent
e conservation laws of energy

DE (%2+ﬁl—p)+ﬂ22%p}]§0) + D, (u (p+ w» =0; (4.20)
e conservation laws of momentum:

H2 + H2
D (u) + D (p + —20; 3°> =0; (4.25)
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e conservation laws of motion of the center of mass:

H2, + H2
DE(tu — z) + D, (t (p + %)) = 0. (4.26)

The additional symmetries provide the following conservation laws:

1. Case (S(s), B(s)) = (So, Bo). In this case the extension of the kernel of admitted

Lie algebras is defined by the generator 0.

The conservation law in Lagrangian coordinates is

S 2B
Df(psipr) + Dy (—% + 77 1@57 + p ) =0, 4.27)

and using the physical variables, we get

2 H2 H2
Dt (E) + D, (_u_ n X4 P+ M) =0. (4.28)
P " =l p

2. Case (S(s), B(s)) = (Sps®, Bys?), where the extension is given by the generator
(28 + 5)t0y — s0s + (B + 3)p0,.

The conservation law in Lagrangian coordinates is
2 S 9
Df ((Qﬁ +5)t <& X ey Vo ;) — spspr — (B +3) sosot>

2 v-1
) (0.9
Ps

| =

+0,((28+ 9t~ (5 + 319 (

_l’_
(G-
A &'

and using the physical variables, we have

2 S H2 + H? U
DL(26+5t<u—+ 7‘1+M)—s——ﬂ+3zu)
| ( 5 ol 2 ; ( )

N

H2

+DS{((2,8 + 5)tu — (B + 3)x) (Sp7 + %H;O) (4.30)

u? S HZ, + H:
22 oyl 7720 7 7730 =0
(B e

3. Case (S(s), B(S)) = (SoeP?, Bye?). The generator used for this case is 2¢td; —

Os + qp0,.
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The conservation law in Lagrangian coordinates is

2 S B
Df (2 t (% +—— T+ ) — Qs — qsosot)
v—1 Ps
vS 2B

B 2
+ D (q(%% — ) (Ssog7 + —2) T ) =0, (4.31)
Sos 2 Y= 1 Ps

and using the physical variables, we obtain

2 S H2 H2
DE <2qt (% + 1p771 + 0;— 30) 4 qxu)
Y= P

H220 + H320>

(4.32)

+D; {q(2tu — ) (S 7+
u? ) y—1 _ H + Hso}

2 7—1p

0.



CHAPTER V

CONCLUSION AND RECOMMENDATION

The focus of this research is on Lie group analysis and conservation laws of one-
dimensional magnetogasdynamics equations, which are described in the mass Lagrangian
coordinates, and case of infinite conductivity. We found a Lagrangian and applied the
group analysis method. The conservation laws were found using Noether’s theorem in
Lagrangian coordinates. Finally, the additional conservation laws are written in Lagrangian
coordinates using the physical variables.

In the future, we plan to expand our study to consider the three-dimensional

case, and the case of finite conductivity.
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