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CHAPTER I 
INTRODUCTION

 
Throughout the past few decades, two-dimensional (2D) semiconductor 

materials such as graphene and thin layers of transition metal dichalcogenides 
(TMDCs) have attracted enormous attention due to their fascinating physical 
properties that arise from the quantum confinement associated with their ultrathin 
structure. These materials have shown promise as next-generation nanoelectronic, 
optoelectronic, spintronic and valleytonic devices. Several 2D materials exist in bulk 
form as stacks of bond layers with weak van der Waals (vdW) interlayer interactions, 
permitting exfoliation into 2D layers of atomically thin thickness (Novoselov et al., 
2005). There are many interesting layer-dependent properties in 2D materials that 
considerably differ from the properties in bulk form. The most interesting 2D material 
is graphene, which is a monolayer of graphite having a layered honeycomb structure 
(Novoselov et al., 2004). Its electronic structure has a linear dispersion and charge 
carriers can be described as massless Dirac fermions (Geim and Novoselov, 2007). As 
a result, graphene has drawn numerous attention from experiments and theoretical 
works. Although graphene has unique electronic properties, pristine graphene is 
limited in its application due to its zero-bangap. For the mentioned reasons, it is 
clearly seen that we should find other 2D materials instead of graphene. However, 
the remarkable properties of graphene have inspired interest in TMDCs including 
MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 which have honeycomb structures as well 
as graphene. In contrast, TMDC monolayers have sizeable bandgaps crossing from an 
indirect bandgap in bulk form to a direct bandgap in a single layer due to quantum 
confinement. 

Electronic structures of bulk MoS2 and WS2 have been measured by angle-
resolved photoemission spectroscopy (ARPES), as reported by Latzke et al. (Latzke et 
al., 2015). In addition, they used first-principles calculations to investigate the 
electronic structures, which are in good agreement with their experiment. Since the 
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ARPES technique can measure only occupied states of electrons, it cannot probe 
conduction states. To investigate the conduction states of electronic structure, 
inverse photoemission spectroscopy (IPES) technique is needed. Komesu and Co-
workers have demonstrated the electronic structure of Na doped MoS2 (0001), whose 
valence and conduction band were measured from the ARPES and IPES technique, 
respectively. It was found that Na doped MoS2 has an indirect bandgap of 1.46 ± 0.2 
eV, which is in excellent agreement with their density functional theory (DFT) 
calculations (Komesu et al., 2014). The influence of quantum confinement on the 
electronic structures of TMDCs has been investigated by Kuc et al. (Kuc et al., 2011) 
and Yun et al. (Yun et al., 2012). First-principles calculations have been carried out to 
investigate the trend of the electronic structures with a reduced number of layers. 
The results show the common features of the electronic structures of TMDCs. The 
electronic structures of TMDCs change from an indirect bandgap to a larger direct 
bandgap in single layer form. Moreover, molybdenum and tungsten based TMDCs are 
2D semiconductors with a bandgap in visible light to near-infrared region (Wang et al., 
2015) allowing applications such as transistors and optoelectronic devices. The bulk 
form of MoS2 , MoSe2, WS2, and WSe2 are indirect bandgaps, whose measured values 
of bandgaps from photocurrent spectroscopy is 1.23 eV, 1.09 eV, 1.35 eV and 1.20 
eV, respectively (Kam and Parkinson, 1982). 

Many efforts have focused on studying the effects of strain in TMDCs (Desai et 
al., 2014; Fan et al., 2015; Chang et al., 2013; Su et al., 2014). Yun et al. have 
demonstrated the effects of strain on the electronic structure of single layer MoS2 by 
using first-principles calculations. They found that the bandgap of monolayer MoS2 
changes from direct to indirect bandgap with a larger value under compressive strain. 
However, under tensile strain, the bandgap becomes an indirect bandgap with a 
reduced bandgap and finally becomes a metallic band with more than 11% of 
tensile stress (Yun et al., 2012). DFT calculations of effects of the strain on electronic 
structures of bulk MoS2 have been reported by Peelaers and Van de Walle. Under 
uniaxial tensile strain in the c direction, the bandgap of bulk MoS2 changes to direct 
when the interlayer distance is increased by almost 50%. Moreover, strain also 
changes the effective mass of electrons and holes (Peelaers and Van de Walle, 2012). 
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ARPES of a quasi-freestanding monolayer of MoS2 was investigated by 
Eknapakul and Co-workers in 2014 (Eknapakul et al., 2014). The quasi-freestanding 
monolayer was established at the surface of bulk MoS2 by intercalating potassium 
into the interlayer vdW gap. If the interlayer gaps of MoS2 are sufficiently expanded 
by the intercalation, quasi-freestanding monolayers are created and the electronic 
structure changes to a direct gap. Xiong and Co-workers proposed a platform to tune 
the physical and chemical properties of nanoscale MoS2. Li+ ions were 
electrochemically intercalated into the MoS2 interlayer spacing. They found 
significant enhancement of light transmission up to 90% and electrical conductivity in 
Li intercalated MoS2 nanosheets. These enhancements in both optical transmission 
and electrical conductivity can be tunable through intercalation, which makes 
intercalation a potentially interesting technique for transparent electrode and touch 
screen applications (Xiong et al., 2015). Intercalation in MoS2 has reversibility during 
the ions-intercalation/deintercalation, which shows promise as an electrode for 
batteries (Li and Li, 2004; Cheng et al., 2011). Lithium-ion batteries cannot meet the 
growing demand for energy storage at a low cost because of lithium’s rarity (0.0017 
weight %) in the Earth's crust. Sodium-ion batteries and potassium-ion batteries have 
attracted huge attention as a promising alternative to lithium-ion batteries due to 
their low cost and high abundance. However, the high standard reduction potential 
of sodium-ion batteries strongly limits their energy density of sodium-ion batteries. 
Potassium-ion batteries have a relatively high energy density because of their low 
standard reduction potential, which makes them suitable for some practical 
applications that require high energy density, especially electric vehicles. K+ would 
enable replacing Li+ to improve the rate capability and realize high mass loading 
electrodes without sacrificing specific capacity (Zhang et al., 2019). Superior 
potassium-ion storage via vertical MoS2 nano-rose with expanded interlayers on 
graphene has been demonstrated by Xie and Co-worker (Xie et al., 2017), which 
indicates that layered metal dichalcogenides have great potential as electrode 
materials for high-performance potassium-ion batteries. Nevertheless, theoretical 
study on the electronic structures of intercalation of alkali metals in bulk MoS2 and 
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other TMDCs still lacks because of the limitation of calculating electronic structure in 
a supercell.  
 Based on first-principles calculations, this research aims to study the 
structural, electronic, and optical properties of alkali metal intercalated TMDCs such 
as MoS2. We will focus on the controllability of the electronic structures of TMDCs by 
intercalation with different alkali metals at various concentrations. Other properties 
(such as structural parameters, diffusion barrier, absorption coefficient, etc.) that can 
be compared with experiments will be calculated as well. We hope that this 
research will provide a deep understanding and useful knowledge for controlling the 
electronic structure of bulk TMDCs by intercalation. 

 



 

CHAPTER II 
METHODOLOGY

 
 This chapter will focus on the theoretical background for the simulation of 
materials. A wave function contains various types of material information, which can 
be obtained by solving the Schrödinger equation, for example, for the hydrogen-
atom system. However, the equation is too complicated to solve when encountered 
with a many-electron problem. Hence, there are many approximations employed to 
simplify the many body problems into solvable ones. The DFT, which is the widely 
used method to simplify the many-electron Schrödinger equation, will be briefly 
explained. Approximations, methods and software used in this thesis will be 
introduced in this chapter. 
 

2.1 Density Functional Theory 
Recently, advanced computation systems and highly developed 

computational techniques have opened up an opportunity to study many physical 
properties of various materials. “First-principles calculations” or “ab initio 
calculations” (Brandt et al., 2001; Kresse and Hafner, 1993) are theoretical 
calculations for studying the physical and chemical properties of condensed matter. 
These calculations start from basic concepts about condensed matter systems that 
are made of atoms and do not include any experimental parameters in the 
calculations. Therefore, the physics of condensed matter arises from the basic 
interactions of positively charged nuclei and negatively charged electrons.  
 

2.1.1 Schrödinger Equation 
The physics that describes the interactions of nuclei and electrons is 

relatively simple and is mostly governed by the Schrödinger equation (Schrödinger, 
1926). The simplest example in the hydrogen-atom system can be written as follows:  
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( ) ( )
2 2

2

0 1

,
2 4

i i

h e
r E r

m r

 
−  −  =  
 

     (2.1) 

where 
2

2

2

h

m
−   is the kinetic energy of the electron, 

2

0 14

e

r
−  potential due to the 

nucleus, ir  is the distant between single electron and a nucleus, ( )ir  is the 
electron wave function and E  is the total energy of the electron. However, a 
problem arises in the practical calculations because many systems contain a very 
large number of atoms and an even larger number of electrons. Therefore, the 
interactions between electrons as well as electrons-nuclei are very complicated. The 
DFT is an approximation that the complication of many-body interactions between 
electrons is reduced by simplifying the exchange-correlation term in the potential 
(Kohn and Sham, 1965).  
 

2.1.2 The Hohenberg and Kohn Theorem 
Hohenberg and Kohn (Hohenberg and Kohn, 1964) proposed that the ground 

state energy and all properties of the electron wavefunction in the external potential 
( )extv r  can be determined from the electron density, ( )n r . The ground-state 

energy of many electron wavefunctions is defined as 

( ) ( ) ( ) ( )3 ,extE n r V r n r d r F n r= +               (2.2) 
where ( )extV r is the external potential, which is generated by the interaction 
between nuclei and electrons, and ( )F n r    is an unknown function, but it is a 
universal function of the electron density ( )n r . It does not depend on the external 
potential and includes all kinetic energy and electron-electron interaction terms. 
 

2.1.3 Kohn and Sham Equation 
Based on Hohenberg and Kohn theorems, Kohn and Sham proposed that the 

universal functional ( )F n r    in Equation 2.2 can be separated into three parts as, 

( ) ( ) ( ) ( ) ,H s xcF n r V n r T n r E n r= + +                   (2.3) 

where ( )HV n r    is the electron-electron Coulomb energy can be defined as 
( ) ( )2

3 3 ,
2

H

n r n re
V d rd r

r r


=

−  ( )sT n r    is the kinetic energy of the non-interacting 

system with the same density and it is not the exact kinetic energy function 
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( )T n r   . The last term ( )xcE n r    is exchange-correlation energy which basically 

includes all the stuff, therefore the small different energy between  ( )sT n r    and 

( )T n r    can be concluded in this term. 
 Therefore, the Kohn-Sham-effective potential can be written as (Kohn and 
Sham, 1965), 

( ) ( )
( ) ( )

2 3 .
xc

eff ext

E n rn r
V r V r e d r

r r n





   = + +
−     (2.4) 

Finally, Kohn-Sham equation involving a single electron is given by 

( ) ( ) ( )
2

2

2
eff i i iV r r r

m
 

 
−  + = 
 

,         (2.5) 

where ( )i r  and i  are the single-electron Kohn-Sham orbitals and energies, 
respectively.  

Only N (number of electrons) single-electron equations need to be solved 
self-consistently for non-interacting electrons in an effective potential due to the 
nuclei and the other N-1 electrons. An initial guess of electron density ( )n r  is used 
to construct effV . Therefore, the wavefunctions i  can be obtained by solving the 
Kohn-Sham equation. An improved ( )n r  which can be given by  

( ) ( )
2

1

N

i

i

n r r
−

= .     (2.6) 

This loop can be repeated until reaching the convergence. 
 

2.2 The Exchange Correlation Function 
 The ( )xcE n r    in Equation 2.4 includes all the stuff, so it cannot be known 
exactly. The most commonly used approximations are based on DFT with the local 
density approximation (LDA) or generalized gradient approximation (Grimme). LDA is 
the assumption that the electron density can be treated locally as a uniform 
electron gas, as proposed by Kohn and Sham in 1965. It is suitable for systems whose 
charge density does not change rapidly. However, it usually fails to describe weak 
atomic bonds. Therefore, GGA is used to improve the LDA. ( )xcE n r    is expanded 

as a function of the electron densities and their gradients, ( )n r   (Kohn, 1999). The 

( )GGA

xcE n r    can be written as, 
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 ( ) ( ) ( ) ( ) 3,GGA

xcE n r f n r n r n r d r=            (2.7) 
GGA reduces the errors in blinding energy of weak atomic bonds. It can improve 
ground state properties. GGA usually underestimates the bandgap of solids, while 
LDA overestimates. Alternatively, hybrid functionals are constructed by mixing exact 
exchange energy from Hatree-Fock (HF) with exchange and correlation from other 
functionals (Becke, 1993). Generally, the hybrid functionals provide better accuracy 
for bandgap and total energy, but the methods are more computationally intensive 
than LDA or GGA (Hafner, 2008).  

In some cases, LDA and GGA fail to describe the structural properties of 
materials, especially in layered materials, due to long-range electron correlations, 
where vdW interactions between atoms and molecules play an important role. For 
the long-range electron correlations, the asymptotic tail of the energy approaches 
zero exponentially in standard LDA and GGA. Hence, the vdW correction to GGA has 
been proposed by Grimme, which introduces dispersion force field parameters to the 
conventional DFT, so called the DFT-D2 method (Grimme, 2006). The general form of 
DFT energy with vdW correction can be written as  

2DFT D DFT dispE E E+ = −  .         (2.8) 
The 

dispE  is the correction term which take the form as following 

6

,6 ,6
1 1 ,

1
( )

2

at atN N
ij

disp d ij L

i j L ij L

C
E f r

r= −

= −  ,    (2.9) 

where the summations are over all atN  and all translations of the unit cell 

1 2 3( , , )L l l l= , i j for reference cell 0L = , 
6ijC is dispersion coefficient  for the 

atom pair ij  , ,ij Lr   is interatomic distance and the term ( )ijf r  is a damping function, 
which is given by  

0

6
,6 , ( /( ) 1)

( )
1 ij R ij

d i j d r s R

s
f r

e
− −

=
+

 ,            (2.10) 

where 6s  is the global scaling parameter which has been optimized to 0.75 for PBE, 
the parameter Rs  is equal to 1 and 20d = . The combination rules which are used to 
compute the parameters 

6ijC and 
0ijR  are defined as 

6 6 6ij ii jjC C C=   and 0 0 0ij i jR R R= + .    (2.11) 
The values of 6ijC and 0ijR  are tabulated for each element by Grimme (Grimme, 
2006; Bucko et al., 2010; Kerber et al., 2008).  
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2.3 Unfolding of an Electronic Structure  
The electronic structures are calculated along the high symmetry points in 

the first BZ. However, the Bloch theorem (Bloch, 1929), which is used in DFT 
calculations, builds upon the translational symmetry of the periodic crystal systems. 
A problem arises in the practical use of DFT calculations whenever we encounter 
systems whose original translational symmetry is broken. Therefore, we must employ 
large supercells whose size determines the periodicity of the band structure through 
the Bloch theorem. This results in a smaller Brillion zone compared with the Brillion 
zone of the primitive cell and a folded band structure consisting of primitive bands 
and folded bands. The folded band structure is very complicated and difficult to 
compare to the results of the ARPES technique, which is a direct measurement of 
band structures. The problem can be alleviated by unfolding the folded electronic 
structure through induced representations of space groups, as reported by Tomić and 
Co-workers (Tomić et al., 2014). Assume that localized electronic states are given by 
0,  centered at position s  of unit cell located at origin and the folded band 

structure is given in the Bloch basis 1
| , exp( ) | ,n n

n

k ik R R
N

  =    where nR  is 

position vectors of unit cells in crystal lattice, N is a number of unit cell and   is 
localized electronic state at wave vector k  in Brillion zone. To unfold the folded 

band structure, matrix elements for the projector operator ˆ
kP  need to be 

calculated. The matrix elements are given by 
21 ˆˆ ˆ[ ] , , exp( )exp( ) ( )i

k k i i

i

i f
P k P k ik W C

K K



   

 
  = =    (2.12) 

where   is irreducible representation index, i  is lattice vector index, K  is reciprocal 
lattice vector, if

  is an integer such that 0 if K  ,   is fractional translation and 
ˆ( )iW C  is their matrix element which can be written as ˆ ˆ( ) ( )i iW C r s C s   = −  

where   is Kronecker delta and sites s  and ˆ
iC s  are equal if they differ by a lattice 

vector. In this research, band structures | ,k n  where n  is the band index will be 
obtained by using VASP. The folded band can be unfolded by applying the 
projectors to the column vector containing the projections of bands onto the 
localized states , 0, ,k nw k n = . The exponential factors exp( )ik s−   can be 
omitted because they are already included in the projections , 0, ,k nw k n =  within 
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the VASP package. Figure 2.1 indicates the unfolding method of 2 2 1   supercell of 
MoS2. The BZ of the supercell is smaller than the BZ of primitive cell because the 
reciprocal lattice vector a is reduced to ½ where divisor corresponds to the 
multiplier of the supercell. To achieve unfolding, the reduction of reciprocal lattice 
vector needs to be recovered by multiplying the calculated path (  ) of k-point 
with the multiplier, which is 2 in this case. The information about primitive bands is 
now recovered, as shown in Figure 2.1(f). However, the folded bands remain, which 
makes it very complicated as an example of a folded band structure in Figure 2.2(a).  
The problem can be alleviated by reducing the weight of the folded band through a 
Python script, so-called vasp_unfold developed by Milan Tomić based on his 
approach mentioned before. The script can be downloaded by using the following 
link: https://github.com/tomkeus/vasp_unfold. After removing the folded bands, the 
result of the unfolded band structure is exhibited in Figure 2.2(b). The unfolding 
method gives us an opportunity to study the electronic structures of real materials, 
which are not perfect, allowing one to compare the unfolded band structure with 
the experimental results from the ARPES technique, etc.  
 Moreover, a Python script was written for plotting the unfolded band with 
orbital-projected. The orbital-projected wavefunctions are obtained by decomposing 
the confined wavefunction into the l = 0, 1 and 2 spherical harmonics. The script will 
be described in the appendices section. 

 

https://github.com/tomkeus/vasp_unfold
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Figure 2.1 Unfolding method. (a, d) Crystal structures of MoS2 in primitive cell 
and 2 2 1   supercells. (b, c) The BZ of the primitive cell and supercell. (c) 
Schematic electronic structure of the primitive cell. (d) The schematic electronic 
structure of the folded band. 
 

 
Figure 2.2 Comparison between (a) folded band structure and (b) unfolded band 
structure. 
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2.4 Nudged Elastic Band 
 The diffusion barrier is important because it indicates how easy it is to move 
an intercalated or an adsorbed atom from an initial state to a final state. The nudged 
elastic band method (NEB) (Mills et al., 1995; Jónsson et al., 1998) was introduced to 
find saddle points and minimum paths between known reactants and products by 
optimizing a number of intermediate images along a reaction path. Equidistant 
images are created by using geometries interpolated between the initial and final 
states. The optimization is constrained by adding a tangential spring force to keep 
the image equidistant during relaxation. The effective forces NEB

iF can be written as,  
NEB S

i i iF F F⊥= +      (2.13) 
where, S

iF  is a parallel spring force and 
iF⊥  is the real force acting on each atom, 

ignoring the component that minimizes energy parallel to the path. The parallel 
spring force is given by  

  ( )1 1
ˆS

i i i i i iF k R R R R + −= − − −     (2.14) 
where, ˆi  is unit vector of local tangent.  
 However, NEB does not guarantee reaching the transition state where the 
energy barrier is at the saddle point. The transition state can be found by using 
climbing image modification (CINEB) to improve NEB. In this method, the forces of the 
highest energy image along the band are modified by removing the spring force and 
inverting parallel forces along the band to push the maxima uphill as following, 

  ,max
ˆ ˆ2NEB

i i i i iF F F  = −  .     (2.15) 
CINEB allows us to find transition states and minimum paths between known 
reactants and products, which is important information to describe the diffusion of 
an atom in a material. 
 

2.5 Optical Calculations 
 The optical properties of materials, such as transmission, reflection and 
absorption, can be quantified by a number of parameters. The parameters can be 
determined by optical processes of materials at a microscopic or quantum 
mechanical level. At the quantum mechanical level, complex dielectric function is 
closely connected with the band structure. The imaginary part of the frequency 
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dependent dielectric ( ) ( )2

   is determined by a summation over empty states as in 
the following equation,  

( ) ( )
2 2

2

2
0 , ,

4 1
2 ( ) | |lim k ck vk ck q vk ck q vk

q c v k

e
w u u u u

q    


     



+ +
→

= − − 


      (2.16) 

where, c  and v  are referred to conduction and valence band states, respectively, 
and cku  is the cell periodic part of the orbital at the k-point k . The transition is 
made from occupied to unoccupied states within the first BZ. The real parts of the 
dielectric tensor ( ) ( )1

   can be determined by using the Kramers-Kroning relation as 
follows: 

( ) ( )
( ) ( )2

1

2 2

0

2
1 P d

i





  
  

  

  
= +

 − +     (2.17) 

The frequency dependent dielectric can be used to find reflectivity ( )R   , 
Since  the optical transition operator between two states is proportional to 

the momentum ( i−  ) operator, the transition from the valence state v  to the 
conduction state c  is obtained from c v   (Gajdoš et al., 2006). The quantity 

of 2

c v   is calculated where c  and v  are restricted to the conduction 
band minimum (CBM) state and the valence band states at  , respectively. The 
quantity indicates the transition strength and can be used to determine which band 
is the optical bandgap in the electronic structures to compare with the optical 
bandgap from experiments. This method has been proven to be useful to identify an 
optical bandgap where the transition between the valence band maximum (VBM) 
and the CBM is forbidden (Jiamprasertboon et al., 2017).   

 

2.6 The Vienna Ab initio Simulation Package (VASP) 
 In this research, the first principles calculations will be performed by 
employing the projector augmented-wave method (Siriroj et al.) (Blöchl, 1994; Kresse 
and Joubert, 1999; Kresse and Furthmüller, 1996) as implemented in the Vienna ab 
initio simulation package (VASP) developed by Kresse, Hafner and Furthmüller (Kresse 
and Hafner, 1993; Kresse and Furthmüller, 1996). Based on DFT, the GGA functionals 
will be used with the parameterization of the Perdew, Burke, and Ernzerhof (PBE) 
(Perdew et al., 1996) exchange-correlation function. The vdW interactions are 
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corrected by using the DFT-D2 approach of Grimme (Grimme, 2006; Bucko et al., 
2010), which has been effectively used for layered structures such as graphene and 
layered TMDC materials. VASP uses a self-consistent scheme to optimize 
wavefunctions, as shown in the flowchart in Figure 2.3. The self-consistency begins 
with the trial charge density and trial wavefunctions. The input charge density and 
wavefunctions are independent quantities. Within each self-consistent loop, the 
charge density is used to set up the Hamiltonian, and then the wavefunctions are 
optimized iteratively so that they get closer to the exact wavefunctions of this 
Hamiltonian. From the optimized wavefunctions, a new charge density is calculated, 
which is then mixed with the old input-charge density. If the change of energy E  is 
less than the required accuracy or tolerance, the iteration is done and the minimized 
energy, force, equilibrium volume, etc. will be obtained. 
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Figure 2.3 The self-consistent scheme used in the VASP codes. 
 

 



 

CHAPTER III 
BULK, MONOLAYER AND ALKALI METAL INTERCALATED MoS2

 
 In this chapter, properties of bulk, monolayer and alkali metal intercalated 
MoS2, such as crystal structures and electronic structures, will be described. 
 

3.1 Crystal Structure of MoS2 
Molybdenum disulfide (MoS2) is one of the members of the TMDC family, 

which is commonly used as a dry lubricant. It is a promising low-cost material for 
commercial fabrication of nanoelectronic and optoelectronic devices. Pristine bulk 
MoS2 and other TMDCs have a honeycomb structure of strongly boned layers with 
weak vdW interaction between layers, as shown in Figure 3.1(a). The weak interlayer 
attraction allows exfoliation into a monolayer (see Figure 3.1(b)) (Mak et al., 2010). 
MoS2 monolayer is a flexible material and one of the strongest semiconductor 
materials. MoS2 monolayer is 30 times stronger than steel and can be deformed up 
to 11% before breaking (Bertolazzi et al., 2011). Ultrathin layers of MoS2 have been 
attracted as a channel material in field-effect transistors (FETs) due to its interesting 
features including the stability of the structure, the lack of dangling bonds and high 
mobility (Fivaz and Mooser, 1967).  

The optimized structures of pristine bulk and monolayer MoS2 were 
calculated by using the PAW method as implemented in the VASP package based on 
DFT. The GGA functional was used with the parameterization of PBE as an exchange-
correlation function. The vdW interaction was included using the D2 approach of 
Grimme. The cutoff energy of the plane wave expansion is 500 eV. The  -centered 
Monkhorst-Pack with 24 24 5   k-mesh was used for Brillouin zone (BZ) integration. 
The unit cell of bulk MoS2 is composed of AB stacks of X-M-X layers, so-called 2H-
MoS2, where the chalcogen atoms (X) are in two hexagonal planes separated by a 
plane of metal atoms (M). The stacking is the net result of the attractive Coulomb 
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interactions of M-X atoms and the repulsive Coulomb interactions between X atoms 
in adjacent layers. The lattice vectors can be written as  

( )1
ˆ ˆ3

2

a
a x y= + , ( )2

ˆ ˆ3
2

a
a x y= − , 3

ˆa cz= ,  (3.1) 

where a  and c  are lattice parameters. The hexagonal reciprocal lattice in the Figure 
3.1(c) can be built up from reciprocal lattice vectors as following, 

( )1

2
ˆ ˆ3b x y

a


= + , ( )2

2
ˆ ˆ3b x y

a


= − ,  

3

2
ˆb z

c


= .       (3.2) 

The high symmetry points of the hexagonal reciprocal lattice that have been used in 
this calculation are listed in Table 3.1.  

The optimized lattice parameters a  and c  of pristine bulk MoS2 are 3.189 Å 
and 12.426 Å. They are slightly larger than the experimental results (3.160 Å and 
12.294 Å, respectively) (Bronsema et al., 1986). The tiny overestimate of the lattice 
parameter is usually found in PBE. A unit cell of a monolayer was constructed by 
fixing the lattice parameter c  at 20 Å , which creates a vacuum space to separate 
periodic layers. The optimized lattice parameter a  of the monolayer is equal to the 
value of pristine bulk and atomic positions have no change. This indicates the 
stability of the isolated layer structure. 

 
Table 3.1 High symmetry points of the reciprocal lattice and their coordinates in 

unit of 2

a

 . 

High symmetry 

points 
b1 b2 b3 

  0 0 0 

  1 0 0 

  0.667 0.667 0 

  0.333 0.333 0 
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3.2 Electronic Structure of MoS2 
 The electronic structure of MoS2 and other TMDCs has a similar feature of 
crossing over from indirect bandgap in bulk form to direct bandgap in monolayer 
form. Optical spectroscopy of N-monolayers of MoS2 (N = 1, 2, 3;…;6) has been 
demonstrated by Mak et al. (Mak et al., 2010). From photoluminescence (PL), it was 
found that the bandgap increases with a reduced number of layers. At the limit of a 
single layer, the bandgap becomes a direct bandgap of 1.8 eV. PL quantum yield (QY) 
of monolayer MoS2 shows more than 104-fold enhancement compared to PL QY of 
bulk MoS2. Although the PL QY of monolayer MoS2 has shown a dramatic 
enhancement, it is still lower than the expected theoretical value because of 
considerable defect density (Mak et al., 2010; Yuan and Huang, 2015). The monolayer 
of TMDCs has strong spin-orbit coupling, making them a potential candidate for 
application in spintronic devices. The strong spin-orbit coupling is a result of the lack 
of inversion symmetry, quantum confinement, and d electrons in the TMDC materials 
(Zhu et al., 2011).  
 

 
Figure 3.1 Crystal structures and electronic structures of MoS2. (a, b) Crystal 
structures of bulk and monolayer. (c) BZ of hexagonal unit cell. Electronic structures 
of (d) pristine bulk MoS2 and (e) monolayer MoS2 along high symmetry 
−−−− . 
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 The electronic structures of pristine bulk and monolayer MoS2 were 
calculated along high symmetry −−−− in the first Brillouin zone. Bulk 
MoS2 has an indirect bandgap of 0.939 eV (Figure 3.1(d)), where VBM and CBM are 
located at K  point and   point, respectively. The bandgap is an underestimated 
value compared to 1.23 eV from photocurrent spectroscopy by Kam and Parkinson 
(Kam and Parkinson, 1982). The calculated bandgap is lower than the experimental 
results due to an underestimation of the bandgap by the approximation of the 
many-body interactions. However, the bandgap of monolayer MoS2 changes to direct 
bandgap of 1.645 eV at K  point, as shown in Figure 3.1(e) due to quantum 
confinement. This is in good agreement with the photoluminescence measurement 
of 1.88 eV by Mak et al. (Mak et al., 2010). Molybdenum and tungsten-based TMDCs 
are 2D semiconductors with bandgaps ranging from visible light to the near-infrared 
region, allowing applications such as transistors and optoelectronic devices (Wang et 
al., 2015). 
 

3.3 Influence of Quantum Confinement on the Electronic Structures 
of MoS2 

The crossover from indirect to direct bandgap in monolayer MoS2 is the result 
of quantum confinement and changes in hybridization between pz orbitals on S 
atoms and d orbitals on Mo atoms (Kuc et al., 2011; Splendiani et al., 2010). To 
study the influence of quantum confinement on the electronic structure of MoS2, 
tensile strain was applied to pristine bulk MoS2 by extending the lattice parameter c . 
Since each layer of bulk MoS2 is barely changed after applying the strain, the 
interlayer gap increases with the lattice parameter c  proportionally. The wider 
interlayer gap enables us to investigate the impact of layer coupling on electronic 
structure. Theoretically, the energy spitting decreases with decreasing interaction 
strength, as shown in the schematic in Figure 3.2. 
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Figure 3.2 Schematic of the reduction in energy splitting due to the increased 
interlayer spacing.  
 
 Bulk MoS2 was optimized while the extended lattice parameter c  was fixed 
for each different value, such as 1.2 0c  and 1.4 0c , where 0c  is the value of pristine 
bulk. Electronic structures were calculated with orbital-projected along high 
symmetry −− . Spin-orbit interactions were neglected in this calculation. The 
results indicate that the increasing of lattice parameter c  weakens the interaction 
between layers. Therefore, the characteristics of MoS2 electronic structures with 
extended lattice parameter c  change similarly to the electronic structure of 
monolayer MoS2 as shown in Figure 3.3. The black arrows in Figure 3.3(a) denote 
indirect bandgap between VBM at   point and CBM at   point ( )( )g c vE  − , 

indirect bandgap between VBM at   point and CBM at   point ( )( )g c vE  −  and 

direct bandgap between VBM at   point and CBM at   point ( )( ) g c vE  −  that 
have been tracked while increasing the lattice parameter c . The relationship 
between the tracked bandgaps of MoS2 and lattice parameter c  in Figure 3.3(e) 
indicates that the direct bandgap ( )g c vE  −  increases rapidly and then converges 
to the bandgap of the monolayer (dash line in the Figure 3.3(e)), leading to the 
crossing over to the direct bandgap. This is the result of the exponential decreasing 
of energy splitting shown as red arrow in Figure 3.3(a), especially the splitting of 2

zd   
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Figure 3.3 Electronic structures of MoS2 with different lattice parameter c  
including the value of (a) 0c , (b) 1.2 0c  and (c) 1.4 0c . (d) Electronic structure of 
monolayer MoS2 where orbital-projected are shown in different colors for each 
orbital. (e) Relationship between bandgaps of MoS2 and the lattice parameter c  
where dashed lines denote the bandgap of monolayer MoS2. (f) Energy spitting 
reduction upon increasing of the lattice parameter c . 
 
orbital of Mo atom at   point. These results give us an opportunity to tune the size 
and type of electronic structure of MoS2 and other TMDCs by controlling the gap 
between layers, such as by intercalating alkali metals into the interlayer gap. 
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3.4 Alkali Metal Intercalated MoS2 
The intercalation of alkali metal on bulk MoS2 has two significant effects, 

including the expansion of the interlayer spacing and the contribution of electrons. 
The 2 2 1   supercell was used to simulate alkali metal intercalated MoS2 with 
various concentrations ( 2MoS xA , where A  is alkali metal and x  is concentration). 
The intercalated alkali metals have an energetically favorable position at the center 
of the hexagonal interstitial site (Hex-site), as indicated by the brown atom or dashed 
circle in Figure 3.4(b). The intercalations expand the interlayer vdW gap of MoS2 bulk 
while layer thickness barely changes. Therefore, the lattice parameter c  was 
considerably increased due to the expansion. The blue line in Figure 3.5(i) shows that 
at the same concentration but with different intercalated alkali metal atomic sizes, 
the lattice parameter c  increases. However, the increasing of the lattice parameter a  
is irrelevant to the atomic size. The higher the concentration, the more the lattice 
parameter a  increases (see red line in Figure 3.5(i)) because of charge repulsion from 
the donated electron. We note that the concentration above 0.25x = introduces a 
phase transition, leading to a mixed state between semiconducting 2H and metallic 
1T.  
 

 
Figure 3.4 Alkali metal intercalated MoS2 with a concentration of 0.25x =  in the 
(a) cross-section and (b) top views, where dashed circles indicate other positions of 
the Hex-site.  
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3.5 Electronic Structure of Alkali Metal Intercalated MoS2  
Since DFT builds upon the translational symmetry of the periodic crystal 

systems through the Bloch theorem. The electronic structures of 2 2 1   supercell 
calculations are folded band structures, which cannot be compared to the 
experiment. The unfolding method proposed by Tomić and Co-workers (Tomić et al., 
2014) was used to alleviate the problem. The results showed that both bandgap size 
and type are tunable through intercalation. The electronic structures of Li and Na 
intercalation have an indirect bandgap of 1.011 eV and 1.241 eV, respectively, which 
are similar to pristine bulk but with a larger bandgap. The same feature of crossing 
over from indirect to direct bangap that has been found in monolayer occurs in K 
and Rb intercalation. Since K and Rb intercalation greatly increase the lattice 
parameter c , the interaction between layers is greatly reduced, reaching an isolated 
condition as described in Section 3.3. The bandgaps of K and Rb intercalation 
changed to the direct bandgaps of 1.598 eV and 1.600 eV, respectively, located at K  
point (see Figures 3.5(c) and 3.5(d)). These are very close to the direct bandgap of 
monolayer MoS2 of 1.645 eV from our calculation as well as 1.86 eV from Eknapakul 
et al.'s ARPES measurement of a quasi-freestanding monolayer of K intercalated in 
MoS2 (Eknapakul et al., 2014). Alkali metals contribute electrons to the layer of MoS2, 
and Fermi levels thus increase. Hence, enhancement of electrical conductivity can 
be tunable. Moreover, the metallic band structure (the Fermi level lies in an 
incompletely filled band) decreases the probability of light absorption, which 
enhances the optical transmission of MoS2 even further (Xiong et al., 2015). The 
tunable bandgap, the enchantment in conductivity and the improved transparency 
of MoS2 through intercalation have shown promise for optoelectronic, electronic and 
touch screen devices. 
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Figure 3.5 Unfolded electronic structures of alkali metal intercalated TMDCs, 
including (a) 2 0.25MoS Li , (b) 2 0.25MoS Na , (c) 2 0.25MoS K , (d) 2 0.25MoS Rb , (e) 

2 0.50MoS K , (f) 2 0.75MoS K  and (g) 2 1.00MoS K . The white horizontal lines denote 
Fermi energy. (i) Graph of lattice parameter a  versus c  of pristine MoS2 and alkali 
metal intercalated MoS2, the blue line exhibits the result of different alkali metals M 
and the red line indicates the result of varying concentrations x . 
 

3.6 Effect of Increasing the Lattice Parameter a  and Contribution of 
Electrons to Electronic Structure 
 The enhancement of electrical conductivity can be tuned depending on 
electron contribution. To investigate the effect of electron contribution to electronic 
structure, different values of electrons (such as 0.5, 1.0, 1.5 and 2.0 (e/unit cell) 
corresponding to x = 0.25, 0.50 and 0.75, respectively) were added to the unit cell of 
bulk MoS2 while the lattice parameter c  was fixed at 0c . This allows us to observe 
the increase of the lattice parameter a  in terms of electron contribution due to 
charge repulsion. The results indicate that the lattice parameter a  increases linearly 
with the electron contribution, causing the angle of S-Mo-S ( )S Mo S − −  to decrease, as 
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shown in Figure 3.6(e). The S Mo S − −  controls the strength of the coupling of the d  
orbital from the Mo-S bond. With the decreasing of S Mo S − − , a pair of bonding and 
antibonding states with major 4dz

2 (out-of-plane orbital) is weakened (see the red 
line in Figure 3.6(e)), causing the energy change of the state at cΚ  and v . Bandgap 
becomes more metallic with electron contribution because of the rapidly decreasing 
energy of the state at cΚ  and the increasing energy of the state at v . However, a 
pair of bonding and antibonding states with major 4dxy (in-plane orbital) was 
strengthened with the decrease of S Mo S − − . We noted that the weakened coupling of 
out-of-plane orbital results in the metallic band structure of MoS2. 
 

 
Figure 3.6 Electronic structures of MoS2 with added (a) 0.5, (b) 1.0 and (c) 1.5 
electrons/unit cell where the lattice parameter c  is fixed at 0c . (d) Isosurfaces of 
band with band-decomposed charge density at c  and cΚ dominated by the major 
4dxy and 4dz

2 orbitals, respectively. (e) Contributed electron vs. lattice parameter a  
and S Mo S − − . (f) Energy splinting of a pair of bonding and antibonding states with 
major 4dxy (red line) and 4dz

2 (blue line) characters. 

 



 

CHAPTER IV 
ELECTRONIC AND OPTICAL PROPERTIES OF ALKALI METAL 

INTERCALATED MoS2

 
 From the previous chapter, the changing of the electronic structures of MoS2 
through intercalation indicates that intercalation is a good technique to improve the 
electronic and optical properties of MoS2 and the TMDC family. In this chapter, the 
electronic and optical properties of alkali metal intercalated MoS2 will be discussed.  
 

4.1 Alkali Metal Diffusion 
 The large interlayer distance and the weak van der Waals interaction between 
layers in MoS2 make it an ideal host for reversible and fast alkali metal 
insertion/extraction in principle. In this section, the diffusion of alkali metal in MoS2 
was investigated by using the NEB method with CINEB improvement to study how 
easy it is to move an intercalated alkali metal to the next energetically favorable 
position. This method was introduced to find the minimum path between reactants 
and products, where the diffusion barrier can be found at the saddle point where its 
relative (Rel.) energy is at its maximum. In this study, a 2 2 1   supercell of MoS2 was 
used, where 11 images were created by using geometries interpolated between the 
initial and final states. The spring force used to keep the image equidistant during 
relaxation is the adjusted parameter to make the NEB calculation converge. The 
diffusion of alkali metal from Hex-site (A point) to another Hex-site (C point) was 
investigated along 2 paths, including the first path that alkali metal diffuses directly 
from A point to C point (AC path) and the second path that alkali metal diffuses from 
A point to B point located at the top of the Mo atom (Mo-top) and then diffuses to C 
point (ABC path), as shown in Figure 4.1. The results show that the Li atom moves 
toward the Mo atom at the B point when diffuses along an ABC path. However, this 
offset does not occur when the Li atoms diffuse along an AC path. The offset was 
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also found in Na, K and Rb diffusion along the ABC path, which results in a lower 
diffusion barrier compared to that of the AC path, as indicated by Rel. energy in 
Figure 4.2. At the saddle point, the distance between the Li and S atoms of the 
image is the shortest, as indicated in Tables 4.1 and 4.2 for ABC and AC paths, 
respectively. The Rel. energy of Li diffusion indicates that there is a local minimum at 
the B point and the diffusion barrier is about 0.53 eV. However, the diffusion barrier 
of Na in MoS2 is considerably high at 1.04 eV. The expanded interlayer spacing 
through intercalation results in relatively low diffusion barriers in K and Rb diffusion 
(0.28 and 0.26, respectively). This indicates that MoS2 has the potential to be an 
electrode material for ion batteries. Although Li-ion batteries can archive high 
gravimetric and volumetric energy densities, the crust abundance of Li is very low, 
which cannot meet the growth demand of rechargeable batteries. Potassium has its 
own unique advantages over lithium or sodium as a charge carrier. However, K-ion 
batteries lack suitable electrode materials to host the relatively large K+ ions. Our 
findings suggest that MoS2 could host large K+ ions as an electrode material for K-ion 
batteries. 
 

 
Figure 4.1 Minimum paths of Li diffusion along (a and c) the ABC path and (b and 
d) the AC path. 
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Figure 4.2 Rel. energy of Li, Na, K and Rb diffusion, respectively. 
 
Table 4.1 Nearest neighbor of Li diffusion in MoS2 along ABC where AB and CB 
paths are symmetric (* indicates the image that whose energy is the highest). 
Images nearest neighbor (Å) 

0 (A) 2.49S, 2.49S, 2.49S, 2.49S, 2.49S, 2.49S, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo 

1 2.39S, 2.43S, 2.43S, 2.61S, 2.61S, 2.65S, 3.57Mo, 3.68Mo, 3.68Mo, 3.75Mo, 3.75Mo, 3.84Mo 

2 2.28S, 2.32S, 2.32S, 2.82S, 2.82S, 2.86S, 3.35Mo, 3.72Mo, 3.72Mo, 3.79Mo, 3.79Mo, 3.93S 

3 2.22S, 2.25S, 2.25S, 3.07S, 3.07S, 3.10S, 3.16Mo, 3.80Mo, 3.80Mo, 3.86Mo, 3.86Mo, 3.89S 

4* 2.19S, 2.21S, 2.21S, 2.88S, 2.98Mo, 3.34S, 3.34S, 3.87S, 3.90Mo, 3.90Mo, 3.96Mo, 3.96Mo 

5 2.19S, 2.23S, 2.23S, 2.56S, 2.84Mo, 3.62S, 3.62S, 3.87S, 4.02Mo, 4.02Mo, 4.10Mo, 4.10Mo 

6 (B) 2.21S, 2.30S, 2.30S, 2.31S, 2.80Mo, 3.88S, 3.88S, 3.88S, 3.96S, 4.12Mo, 4.12Mo, 4.12Mo 
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Table 4.2 Nearest neighbor of Li diffusion in MoS2 along AC (* indicates the 
image that whose energy is the highest). 
Images nearest neighbor (Å) 

0 (A) 2.49S, 2.49S, 2.49S, 2.49S, 2.49S, 2.49S, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo 

1 2.44S, 2.44S, 2.52S, 2.52S, 2.61S, 2.61S, 3.64Mo, 3.64Mo, 3.71Mo, 3.71Mo, 3.78Mo, 3.78Mo 

2 2.31S, 2.31S, 2.56S, 2.56S, 2.81S, 2.81S, 3.56Mo, 3.56Mo, 3.76Mo, 3.76Mo, 3.77S, 3.94Mo 

3 2.22S, 2.22S, 2.63S, 2.63S, 3.04S, 3.04S, 3.49Mo, 3.49Mo, 3.57S, 3.82Mo, 3.82Mo, 4.11Mo 

4 2.15S, 2.15S, 2.72S, 2.72S, 3.29S, 3.29S, 3.38S, 3.44Mo, 3.44Mo, 3.90Mo, 3.90Mo, 4.29Mo 

5 2.11S, 2.11S, 2.85S, 2.85S, 3.18S, 3.18S, 3.40Mo, 3.40Mo, 3.54S, 4.00Mo, 4.00Mo, 4.06S 

6* 2.10S, 2.10S, 3.00S, 3.00S, 3.00S, 3.00S, 3.39Mo, 3.39Mo, 3.80S, 3.80S, 4.11Mo, 4.11Mo 

7 2.11S, 2.11S, 2.85S, 2.85S, 3.18S, 3.18S, 3.40Mo, 3.40Mo, 3.54S, 4.00Mo, 4.00Mo, 4.06S 

8 2.15S, 2.15S, 2.72S, 2.72S, 3.29S, 3.29S, 3.38S, 3.44Mo, 3.44Mo, 3.90Mo, 3.90Mo, 4.29Mo 

9 2.22S, 2.22S, 2.63S, 2.63S, 3.04S, 3.04S, 3.49Mo, 3.49Mo, 3.57S, 3.82Mo, 3.82Mo, 4.11Mo 

10 2.31S, 2.31S, 2.56S, 2.56S, 2.81S, 2.81S, 3.56Mo, 3.56Mo, 3.76Mo, 3.76Mo, 3.77S, 3.94Mo 

11 2.44S, 2.44S, 2.52S, 2.52S, 2.61S, 2.61S, 3.64Mo, 3.64Mo, 3.71Mo, 3.71Mo, 3.78Mo, 3.78Mo 

12 (C) 2.49S, 2.49S, 2.49S, 2.49S, 2.49S, 2.49S, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo, 3.66Mo 

 

4.2 Co-intercalation 
Since the atomic size of the intercalated alkali metal determines the 

expansion of interlayer spacing, co-intercalation with a larger atom cloud reduces the 
diffusion barrier of the smaller one. Co-interactions of Li and a larger-sized alkali 
metal (such as Na, K or Rb) were studied by calculating Li diffusions in bulk MoS2 
with various lattice parameters c . Figure 4.3(a) indicates Rel. energy of Li diffusion in 
MoS2, monolayer MoS2 and MoS2 with a lattice parameter c  equivalent to that of Na, 
K and Rb intercalation (CNa=12.40, CK=14.23 and CRb=14.52, respectively) along AC 
and ABC paths. In this graph, the Rel. energy of Li diffusion along the AC path is  
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Figure 4.3 Rel. energy of Li diffusion in MoS2, monolayer MoS2 and MoS2 with a 
lattice parameter c  equivalent to that of Na, K, Rb intercalation and diffusion barriers 
with different lattice parameter c  along the ABC path. 
 
perfectly overlapping on the same line for every case. The results show that the 
diffusion barrier of Li along the AC path does not change with the lattice parameter 
c . However, the diffusion barrier of Li along the ABC path reduced by the increased 
lattice parameter c  (see Figure 4.3(b)). Li diffusion in monolayer MoS2 along the ABC 
path has the lowest diffusion barrier, where the energetically favorable position of Li 
changes to the B point instead. We proposed that this method has the potential to 
improve the charging ability of Li-ion batteries by varying the diffusion barrier of Li 
through co-intercalation. 
 The reaction rate, also known as the diffusion rate, indicates how easily 
atoms may flow into the electrodes of substances and can be a good indicator of 
how fast a battery can be charged. The Arrhenius equation can be used to estimate 
the reaction rate ( k ) as follows: 

( )0 exp / ,b Bk A E k T= −     (4.1) 
where 0A is diffusion pre-factor, bE  is the diffusion barrier, Bk  is the Boltzmann 
constant and T  is temperature. The ratio of the diffusion rate at a particular 
condition to the diffusion rate of Li–ions in MoS2 having a lattice parameter c = *C  at 
50 K is described as selectivity ( S ) which is given by 

0,

* 0, *

exp( / )( )
,

( 50 ) exp( / 50 )

C b BC

C C b B

A E k TA T
S

A T K A E k

−
= =

= − 
  (4.2) 
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where ( )CA T  is the diffusion rate in MoS2 having a lattice parameter c  at a given 

temperature, 
0,CA  is diffusion pre–factor, bE  is the diffusion barrier, Bk  is the 

Boltzmann constant and T  is temperature. The diffusion barriers from Figure 4.3 (b) 
were used to calculate the selectivity as a function of temperature for the Li and co-
intercalation atoms (Na, K and Rb). The lattice parameters change depending on the 
co-intercalation atom. To simplify the selectivity equation, the ratio of the diffusion 

pre–factor was assumed to be 1. Figure 4.4 shows the selectivity of Li and the co-
intercalation of Na atoms, K atoms and Rb atoms as a function of temperature. The 
results indicate that the selectivity of the diffusion along the ABC path is slightly 
higher than that of the AC path. In the case of co-intercalation of Na, the selectivity 
of Li is higher than that of the co-intercalation atom. However, in the case of co-
intercalation of K and Rb, the selectivity of Li is lower than that of the co-
intercalation atom. The higher selectivity indicates that the atom can diffuse more 
easily compared to another one. For battery applications, Na has the potential to be 
a good co-intercalation atom because, during the deintercalation process, the 
expander (which is Na in this case) is expected to stay in MoS2 to maintain volume 
and keep the diffusion barrier of the charge carrier (Li) low. On the other hand, co-
intercalation of K and Rb diffuses more easily than the charge carrier (Li). Therefore, 
the electrode’s volume is unstable and the diffusion barrier of Li changes during the 
deintercalation process. We suggested that the co-intercalation of Na could enhance 
the performance of Li-ion batteries with MoS2 electrodes. Co-intercalation of Na can 
reduce volume changes during the charged/discharged process, leading to improved 
cycle stability over the long term for rechargeable batteries.  
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Figure 4.4 Selectivity of Li and the co-intercalation of (a) Na atom, (b) K atom 
and (c) Rb atom as a function of temperatures. 
 

4.3 Charge Density Difference 
 In this section, charge density difference (CDD) was introduced to study the 
charged contribution of alkali metal to the MoS2 layers. The CDD plot ( )  can be 
calculated as following, 

AB A B    = − −       (4.3) 
Where, AB  is the full system, A  is the substrate and B  is the intercalating 
system.  
 The CDD plots of alkali metal intercalated MoS2 at Hex-site in Figure 4.5 show 
that charge accumulated between alkali metal and S atoms indicated covalent 
bonds between alkali metal and S atoms, while charge accumulated at Mo atoms 
indicated ionic bonds between alkali metal and Mo atoms. The accumulated charge 
in the MoS2 layer leads to charge repulsion, which makes the lattice parameter a   
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Table 4.3 The nearest neighbor of alkali metal (A) intercalated MoS2 at Hex-site 
and Mo-top, where Limono denotes Li intercalated monolayer MoS2. 

Intercalated  

alkali metal (A) 
A-Mo (Hex-site) A-S (Hex-site) A-Mo (Mo-top) A-S (Mo-top) 

Limono 3.33 2.28 2.85 2.33 

Li 3.66 2.49 2.80 2.30 

Na 3.78 2.61 3.09 2.50 

K 4.52 3.20 3.93 3.07 

Rb 4.65 3.33 3.84 2.98 

 
increase as mentioned in Chapter III. In Figure 4.6, CDD plots of alkali metal 
intercalated MoS2 at Mo-top indicate tetrahedral geometry between alkali metal and 
S atoms and the movement of alkali metal toward Mo atoms. Li intercalation has the 
most accumulated charge as shown in Figure 4.6(f) and has the shortest bond 
distance according to the Table 4.3. This could be the outcome of the local 
minimum at the B point for Li intercalation from the previous section. 
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Figure 4.5 The CDD plot of (a, f) Li, (b, g) Na, (c, h) K, (d, i) Rb intercalated MoS2 
and (e, j) Li intercalated monolayer MoS2 at Hex-site using isosurface = 0.002. 
 

 

 
Figure 4.6 The CDD plot of (a, f) Li, (b, g) Na, (c, h) K, (d, i) Rb intercalated MoS2 
and (e, j) Li intercalated monolayer MoS2 at Mo-top using isosurface = 0.002. 
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4.4 Optical Properties 
 At the microscopic level, the optical properties of MoS2 and alkali metal 
intercalated MoS2 will be described in this section. The Bethe-Salpeter equation 
(Jónsson et al.) was introduced to calculate frequency-dependent complex dielectric 
as a function of photon frequency ( )   

1 2( ) ( ) ( ),i     = +     (4.4) 
where 1( )  and 2 ( )  are real and imaginary parts of the dielectric function, 
respectively. The linear optical properties including refractive index ( )n  , extinction 
coefficient ( )k  , absorption coefficient ( )  , energy-loss function ( )L   and 
reflectivity ( )R   can be calculated as following,   

  

1

22 2

1 2 1( )
2

n
  


 + +
 =
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Due to the intensive computation of BSE calculations, ENCUT =250 and 
KPOINT 3x3x3 were employed for optical calculations. Absorption coefficients of 
MoS2 with different lattice parameters c  and monolayer MoS2 were calculated as 
shown in Figure 4.7. The results show that the absorption coefficient of pristine bulk 
MoS2 (C0) has a peak at 2.4 eV, which perhaps occurs during the direct transition 
between valence and conduction bands at   points. However, there is no peak that 
corresponds to calculated bandgaps of 0.93 or 0.97 eV from Section 3.3 of Chapter III 
due to the competition of the ( )g c vE  −  and ( )g c vE  −  bandgaps. The 
absorption coefficient of monolayer MoS2 occurs at a peak of 1.8 eV, which is a linear 
combination of the direct bandgap ( )g c vE  −  of 1.65 eV and the indirect 
bandgap ( )g c vE  −  of 1.95 eV. The increasing lattice parameter c  corresponding 
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to the alkali metal intercalation indicates blue shifts ranging between 1.8-1.9 eV 
depending on atomic size. These peaks are in the visible range, which shows promise 
as optoelectronic devices. 

However, the intercalation not only increases the lattice parameter c  but 
also contributes electrons to the MoS2 layers. Absorption coefficients of MoS2 with 
lattice parameter c  that equivalence to the MoS2Li were calculated by varying the 
contributed electrons in the dilute limit. The increasing electron contribution leads 
to the red shifts with lower intensity, as indicated in Figure 4.8. Due to the drawback 
of decreasing intensity, we suggest keeping the smallest intercalated alkali metals to 
maximize the absorption coefficient for optoelectronic devices. In the case of high 
concentrations, the lower absorption coefficient enhances transparency in MoS2, 
making it suitable for transparent electrodes such as touchscreen devices. 
 

 
Figure 4.7 Absorption coefficients of MoS2 with different lattice parameters c  
and monolayer MoS2. 
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Figure 4.8 Absorption coefficients of MoS2 where the lattice parameter c  
equivalence to that of MoS2Li with various contributed electrons. 

 



 

CHAPTER V 
CONCLUSIONS AND FUTURE RESEARCH PLAN

 

5.1 Conclusions 
 In this thesis, the electronic and optical properties of MoS2 intercalated alkali 
metal, which is a family member of transition metal dichalcogenide, were calculated 
by employing the first principles method. Crystal structure, electronic structure, 
electronic property and optical property were studied and discussed. The results are 
concluded as follows: 
 Pristine bulk MoS2 and other TMDCs have a honeycomb structure of strongly 
boned layers with weak vdW interaction between layers, allowing exfoliation into 
monolayers. Bulk MoS2 has an indirect bandgap, while the bandgap of monolayer 
MoS2 changes to a direct bandgap due to quantum confinement. To 
study the influence of quantum confinement on the electronic structure of MoS2, 
tensile strain was applied to pristine bulk MoS2 by increasing the lattice parameter c . 
The increasing of c  significantly alters the electronic structure and leads to the 
crossing over to a direct bandgap. These results give us an opportunity to tune the 
size and type of electronic structure of MoS2 and other TMDCs by controlling 
interlayer spacing, such as by applying tensile strain and intercalating alkali metals 
into the interlayer gap. 
 The results of alkali metal intercalated MoS2 indicate two significant effects 
on bulk MoS2, including the expansion of interlayer spacing and the contribution of 
electrons. Due to the interlayer expansion, the lattice parameter c  increased with 
the atomic size of the intercalated alkali metal. However, the increasing lattice 
parameter a  is irrelevant to the atomic size. The high concentration makes the 
lattice parameter a  increase because of charge repulsion from the donated electron. 
The results showed that both bandgap size and type are tunable through 
intercalation. The electronic structures of Li and Na intercalation have an indirect 
bandgap, which is similar to pristine bulk but with a larger bandgap. The same 
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feature of crossing over from indirect to direct bangap that has been found in 
monolayer occurs in K and Rb intercalation. Because K and Rb intercalations greatly 
increase the lattice parameter c , the interaction between layers is considerably 
reduced, reaching the isolated condition. The tunable bandgap, the enchantment in 
conductivity and the improved transparency of MoS2 through intercalation have 
shown promise for optoelectronic, electronic and touch screen devices. 

 Alkali metal diffusion in MoS2 was investigated by using the NEB 
method with CINEB improvement. The ABC path is the minimum path of alkali metal 
diffusion where A, B and C points are Hex-site, Mo-top and neighboring Hex-site, 
respectively. The Rel. energy of Li diffusion indicates that there is a local minimum at 
B point and the diffusion barrier is about 0.53 eV. However, the diffusion barrier of Na 
in MoS2 is considerably high at 1.04 eV. The expanded interlayer spacing through 
intercalation results in relatively low diffusion barriers in K and Rb diffusion (0.28 and 
0.26, respectively). This indicates that MoS2 has the potential to be an electrode 
material for ion batteries. Since the atomic size of the intercalated alkali metal 
determines the expansion of interlayer spacing, co-intercalation with a larger atom 
cloud reduces the diffusion barrier of the smaller one. co-intercalation of Na, the 
selectivity of Li is higher than that of the co-intercalation atom. The higher selectivity 
indicates that the atom can diffuse more easily compared to another one. For 
battery applications, Na has the potential to be a good co-intercalation atom 
because, during the deintercalation process, the expander (which is Na in this case) is 
expected to stay in MoS2 to maintain volume and keep the diffusion barrier of the 
charge carrier (Li) low. We suggested that the co-intercalation of Na could enhance 
the performance of Li-ion batteries with MoS2 electrodes. Co-intercalation of Na can 
reduce volume changes during the charged/discharged process, leading to improved 
cycle stability over the long term for rechargeable batteries. 
 The charge density difference (CDD) was introduced to study the charged 
contribution of alkali metal to the MoS2 layers. The results indicate that charge 
accumulated between alkali metal and S atoms indicated covalent bonds between 
alkali metal and S atoms, while charge accumulated at Mo atoms indicated ionic 
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bonds between alkali metal and Mo atoms. The accumulated charge in the MoS2 
layer leads to charge repulsion, which makes the lattice parameter a   increase.  

At the microscopic level, the optical properties of MoS2 and alkali metal 
intercalated MoS2 were calculated by using Bethe-Salpeter equation. The results 
show that the absorption coefficients of pristine bulk and monolayer MoS2 have 
peaks at 2.4 eV and 1.8 eV, respectively. The increasing lattice parameter c  
corresponding to the alkali metal intercalation indicates blue shifts ranging between 
1.8-1.9 eV depending on atomic size. These peaks are in the visible range, which 
shows promise as optoelectronic devices. However, the intercalation not only 
increases the lattice parameter c  but also contributes electrons to the MoS2 layers. 
The increasing electron contribution leads to red shifts with lower intensity. Due to 
the drawback of decreasing intensity, we suggest keeping the smallest intercalated 
alkali metals to maximize the absorption coefficient for optoelectronic devices. In 
the case of high concentrations, the lower absorption coefficient enhances 
transparency in MoS2, making it suitable for transparent electrodes such as 
touchscreen devices. 

 

5.2 Future Research Plan 
 The study of the electronic and optical properties of alkali metal intercalation 
can be extended across the entire family of TMDCs and other 2D layered structure 
materials such as MXenes, etc. The First-principal calculation to study electronic and 
optical properties can be performed using the same approach described in Chapter II.  
 The Python script written for plotting the unfolded band with orbital-
projected needs to be improved further, such as by adding more functions for 
smearing and fixing band crossing interpolation. 
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APPENDIX A 
ORBITAL-PROJECTED BAND STRUCTURE PLOTTING

 
 Orbital-projected band structure is very useful information for studying 
physical properties of materials which includes the contribution of each atomic 
orbital of an atom to each band. However, conventional plots of band structure, 
including spaghetti diagrams, represent only energy and k-point data. Therefore, 
more information needs to be added in terms of colors and smearing. In the case of 
colors, they are used to exhibit each orbital or different atom. In the case of 
smearing, the weights of each orbital are translated into the thickness of the line by 
using a smearing function. This way, the orbital-projected band structure can be 
visualized. A Python script called PROPLOT was written to visualize an orbital-
projected band structure. In this script, Laurent distribution was employed as a 
smearing function and discrete data obtained from VASP were interpolated by using 
Cubic spline method. The Python script for plotting band structure can be download 
by following link: https://www.dropbox.com/s/i8ov7m3sxct4v93/PROPLOT-setup.7z 
?dl=0&fbclid=IwAR0MItXIyEuK66pBu9ixDnjNbQRIptpRZfWEFInOJKNmL1qoDyzkTMIkgus. 
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