Characterization of Pd-Ni/SiO₂ Catalysts Prepared from Organometallic Cluster Precursor

Paper # 485

(this paper has not been reviewed for technical content)

Jatuporn Wittayakun* and Jarunan Wongwiwattana

School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

Tohru Mori and Yutaka Morikawa

Chemical Resource Laboratory, Tokyo Institute of Technology, Nagatsuta Campus, Yokohama, Japan

ABSTRACT

The Pd-Ni/SiO₂ catalysts were prepared by impregnation of two precursors on silica: an acetonitrile solution of [PPh₄]₄[Pd₁₃Ni₁₃(CO)₃₄] (1) and a mixture of palladium and nickel salts. Both catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis, and temperature-programmed reduction (TPR). In addition, the metal loading was determined by ICP and the number of active sites was measured by hydrogen adsorption experiment. The cluster's carbonyl ligands were removed by heating at the 80°C for 10 minutes while the counter cations, [PPh₄]⁺ on were removed by heating at 400°C. XRD peaks of Pd-Ni/SiO₂ prepared from the cluster shifted slightly possibly due to Pd-Ni alloy formation. From TPR experiment, it was found that the reduction temperature of Ni in the Pd-Ni/SiO₂ catalysts prepared from cluster was significantly lowered than that of the Ni/SiO₂ reference indicating that Pd and Ni were still intact. When the two metals formed Pd-Ni alloy, some Pd coordination sites were taken by Ni and lowered the hydrogen adsorption sites. As a result, Pd-Ni/SiO₂ catalysts prepared from salt solution adsorbed hydrogen better than that from cluster.