
A T h e s i s S u b m i t t e d i n P a r t i a l F u l f i l l m e n t o f t h e R e q u i r e m e n t s f o r t h eD e g r e e o f M a s t e r o f S c i e n c e i n A p p l i e d M a t h e m a t i c sS u r a n a r e e U n i v e r s i t y o f T e c h n o l o g yA c a d e m i c Y e a r 2 0 2 1

 



�� � � � � � � � � � � 	 
 � � 
 � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � �� � � � � � � � � � � �  � ! " � �� � � � �� # � $ ! � � � � � � � � � � % � & � � �� � � �� � � � � � � � � $ ' � ' � �	 � & � � � �	�( � � � �� � � � 2 5 6 4

 



MULTICLASS SUPPORT VECTOR MACHINES FOR DIABETIC

RETINOPATHY DIAGNOSIS

Suranaree University of Technology has approved this thesis submitted in

partial fu[fitlment of the requirements for a N4aster's Degree.

Thesis Examining Committee

55.;t*J
(Asst. Prof. Dr. Jessada Tanthannuch)

Chairperson

(Assoc. Prof. Dr. Eckart Schulz)

l\4ember (Thesis Advisor)

M
(Asst. Prof. Dr. Pisamai

It/ember

F7:

k,,'poom

(Assoc. Prof. Dr. Chatchai Jothityangkoon)

Vice Rector for Academic Affairs

and QuaLity Assurance

bon arr^w Puilrnnnkl
J,t

(Asst. Prof. Dr. Benjawan Rodjanadid)

Member

Panu Yinmtrsng

(Asst. Prof. Dr. Panu Yimmuang)

Ir4ember

(Prof. Dr. Santi Maensiri)

Dean of lnstitute of Science

 



infi ril{ura , d'yrvroinnnrnoiultfiurfionr:if,oduT:naorrlrilrrL!'r14r1u (A/uLTl-

CLASS SUPPORT VECTOR IMACHINES FOR DIABETIC RETINOPATHY DIAGNOSIS)

rJ ,o d d
olor:Elfiil5nul : l0.rF11fin:1a1:u n:.rdnnrivr gari, tlo rarir.

rirrirdry: T:noomriymrulr4?1uld'v\noinrrnunoiultfiu/naqvrinr:m'orf;uloil:smvualunnla

"!, @eu t i d - , <'rvruluv!u[ur]:sunfl{,?Tv!floielL?nrnoirurtfiu 5 :rluuufrrrrrneil{rfudrvirnr:orutunq!

4 :vuvto.rT:noomr rymruruxrurf,nlijurio u dolafrtflunr:irn:rsri6only!riruo;u?vFr?{Et1tU

400 nrvr 6rr{Judola dl6'iuq.nfiuffu Messidor ud'rornrfurnienrdolarflor6'uIeu1{nr:LrunUU

nruA'nuruv 13 niln-fluruv iravldnrua'nuilvfiruursarfiaqr"Lunr:rirnirrioladrr,liunr:sirutunqltlu

qlhnoimnnrmoirntfil il!'ir nr:s:rrrunl:noortlruFlrullr'rlurLUU?utt:{firirrnrttrrriurirrvirri'u

97 .44o/o rfiol{dnnoirrr?nrrroirLxtfiuvr"fiurroiruauuurnrdrduu iirr,riunr:tricTilroiorurnrrroi

rLilflfiuuu!Fifier:utraraorvirriu 99.060/o nr:6'nf;utorLUlvalunara"Lu q :vuvrofl:noortlruerulit

turumult'rlfirfinrrm:.u*iurir nrrut: nrrilqirrflts uraverm:rtfiutn:raraofiructflv{oimr'rnumoi
< Ja o o

ruilrlfrufrfrrounmuurn"tunr:riruunrirnl:a-Fteutouurr,rfiqriorafir Inu"[dnauudnr:fihBu1o
Ut

,iq,dquad4d4rl:v mvuar u nalafr :?il:vuvyxor nlauJoirnauluo'ano36runr: 16o n nara zua nr: uiliuu rfr uua qj

oddJd4uuia-@--4j
Lu tn 6ufl 9l Ll.r o LU : u LJ tv u u n u ? o u a il n v! }J v! Lu'i't u? 0 u 0 u I

4

fi1lJ1',t1'1nilnfl',tAn:

iln1:flnu1 2564

44iu4
a1uil01Jounflnu'r

a r afi ofi o o r or: rifi rJEnur

 



JIGA/E NAIV1GYAL : A/ULTICLASS LEAST SQUARE SUPPORT VECTOR AIACHINES

FOR DIABETIC RETINOPATHY DIAGNOSIS. THESIS ADVISOR : ASSOC. PROF. ECKART

SCHULZ, Ph.D. 130 PP.

Keywords: DIABETIC RETINOPATHY/SUPPORT VECTOR MACHINE/A/ULTICLASS DECISION

STRATEGY

This work app[ies five variants of the support vector machine for the classifica-

tion of the four stages of nonproliferative diabetic retinopathy. Four hundred eye fundus

images from the lvlessidor repository are preprocessed and thlrteen features extracted.

The features best suited as inputs for support vector machine ctassification are identi-

fied. The binary classification of severe diabetic retinopathy a[one achieves an accuracy

of 97.44o/owhen optimized for accuracy, using the standard support vector machine with

Gaussian kernet. When optimized for sensitivity, the improved version of twin support

vector machine achieved the highest sensitivity of 99.060/o. iVulticlass decision into all 4

stages of diabetic retinopathy achieves highest accuracy, sensititivity, specificity and preci-

sion with the twin bounded support vector machine ctassifier in one-versus-one decision

configuration, by using a noveI decision strategy that includes distances from the decision

hyperplanes in the ctass selection atgorithm. The resuLts compare favorably with data

pubtished in the Literature.

SchooI of A/athematics

Academic Year 2021,

Student's Signature

Advisor's Signature ( -__---

 



ACKNOWLEDGEMENTS

This thesis would not have seen the light if not for my kind and humble advisor
Assoc. Prof. Dr. Eckart Schulz. He has groomed me with his well-experienced supervision,
guidance, knowledge and moral support in the courses that he have taught and in partic-
ular, in this research project. I would always cherish all those long and fruitful discussions
on this research. Moreover, I have always appreciated professor’s kind insights, wise and
careful decisions on the project. I have learned from him on how to analyze and think
critically when it comes to comprehending and learning new course materials, and learn-
ing mathematics through details and preciseness. Besides, I would also like to offer my
sincere gratitude for rendering personal help when I had several health issues during my
study. For all this, I am always grateful to my advisor and I could not have imagined
having better advisor and mentor during my study.

I would also like to express my appreciation to Asst. Prof. Dr. Jessada Tanthanuch
for his generous support, guidance and knowledge that he shared in the class. I am also
thankful to Prof. Dr. Sergey Meleshko and Assoc. Prof. Dr. Sayan Kaennakham for their
teachings and valuable comments on the courses that I have undertaken with them.
And a big thank you to all the committee members and the lecturers at the School of
Mathematics, Suranaree University of Technology.

I would also like to offer my profound gratitude to His Majesty’s Secretariat, the
office of Gyalpoi Zimpon, Youth Welfare and Education, Bhutan, for granting a King’s
scholarship to pursue this study. The opportunity has been fulfilling and I pledge to serve
my nation in my full capacity.

I also thank the management of my workplace, College of Science and Tech-
nology, Royal University of Bhutan, for the financial aid for my quarantine expenses in
Thailand.

Special acknowledgement also goes to the Vithebundit scholarship offered by
Suranaree University of Technology without which this study would not have been pos-

 



IV

sible.
I also personally thank my classmates especially Mr. Titayawat Khumwong and

Ms. Warapron Srisup for their invaluable help during my difficult times when I was ill. To
my Vietnamese friends, Mr. Nhieu, Mr. Dông, Mr. Behn and Ms. Quynh, thank you for your
friendship during my stay at SUT.

Finally, I take this opportunity to wholeheartedly thank my parents, family mem-
bers and friends for their encouragement, motivation and inspiration.

Jigme Namgyal

 



CONTENTS

Page
ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X

CHAPTER
I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II SUPPORT VECTOR MACHINES . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Binary classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Hard margin support vector machines . . . . . . . . . . . . 8
2.2.2 Slack variables . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 The kernel trick . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 The dual problem . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Least squares support vector machines . . . . . . . . . . . . . . . . . 19
2.4 Twin support vector machines . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 The linear twin support vector machine . . . . . . . . . . . 22
2.4.2 The nonlinear twin support vector machine . . . . . . . . 24
2.4.3 The dual problem for the twin support vector machine . . 28
2.4.4 The twin bounded support vector machine . . . . . . . . . 30

2.5 Least squares twin support vector machines . . . . . . . . . . . . . . 32

 



VI

CONTENTS (Continued)

Page
2.5.1 Improved least squares twin support vector machine . . . 34
2.5.2 Robust energy-based least squares twin support vector

machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 Analysis of the RELS-TVSM . . . . . . . . . . . . . . . . . . 37

2.6 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 37
III MULTICLASS SUPPORT VECTOR MACHINES AND DECISION STRATEGIES . 39

3.1 Multiclass support vector machines . . . . . . . . . . . . . . . . . . . 39
3.1.1 One versus all (OVA) . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 All versus one (AVO) . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 One versus one (OVO) . . . . . . . . . . . . . . . . . . . . 42
3.1.4 Directed acyclic graph (DAG) . . . . . . . . . . . . . . . . . 43

3.2 Reviewing performance results from the literature . . . . . . . . . . . 43
3.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 A new strategy for multiclass twin support vector machines – deci-
sion by minimum average distance . . . . . . . . . . . . . . . . . . . 48
3.3.1 The minimum average distance vote . . . . . . . . . . . . 49
3.3.2 The minimum average distance vote as a tie breaker . . . 51

IV THE STRUCTURE OF HUMAN EYE AND DIABETIC RETINOPATHY . . . . . . 52
4.1 The structure of the eye and vision functions . . . . . . . . . . . . . 52
4.2 Diabetic retinopathy . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Clinical features of diabetic retinopathy . . . . . . . . . . . 54
4.2.2 Classification of diabetic retinopathy . . . . . . . . . . . . 55

V IMAGE PROCESSING TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Digital image processing . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Morphological image processing . . . . . . . . . . . . . . . . . . . . . 59
5.3 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

 



VII

CONTENTS (Continued)

Page
5.4 Image representation and description . . . . . . . . . . . . . . . . . . 66

VI RESEARCH METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Retinal image preprocessing . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Colour normalization . . . . . . . . . . . . . . . . . . . . . 70
6.3 Retinal blood vessels segmentation . . . . . . . . . . . . . . . . . . . 71
6.4 Microaneurysms detection . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 Haemorrhages detection . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6 Exudates detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.7 Optic disc segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.8 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VII RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . 87

7.2 Detection of severe nonproliferative diabetic retinopathy . . . . . . . 88
7.2.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.2 Accuracy optimization . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Sensitivity optimization . . . . . . . . . . . . . . . . . . . . 89

7.3 Grading of nonproliferative diabetic retinopathy . . . . . . . . . . . . 91
7.3.1 Multiclass performance metrics . . . . . . . . . . . . . . . 91
7.3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.3 Classification results . . . . . . . . . . . . . . . . . . . . . 93
7.3.4 Parameter influence on accuracy . . . . . . . . . . . . . . 97
7.3.5 Unbalanced dataset mitigation . . . . . . . . . . . . . . . . 101

 



VIII

CONTENTS (Continued)

Page
7.4 Comparison with results in the literature . . . . . . . . . . . . . . . . 102
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VIII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
APPENDICES

APPENDIX A MATLAB CODES FOR PROCESSING OF THE EYE IMAGES . . 116
CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

 



LIST OF TABLES

Table Page
2.1 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1 Performance comparison of multiclass SVMs and twin SVM variants. . 46
3.2 Comparisons between maximum-vote (mv) and minimum average

distance (md) in one-versus-one multiclass decisions. . . . . . . . . . 50
7.1 Accuracy optimized binary classification for NPDR detection. . . . . . 90
7.2 Sensitivity optimized binary classification for NPDR detection. . . . . . 90
7.3 Multiclass classification (one-versus-one). . . . . . . . . . . . . . . . . 95
7.4 Multiclass classification (one-versus-all and all-versus-one). . . . . . . 96
7.5 Binary classification results comparisons with literature. . . . . . . . . 104
7.6 Multiclass classification results comparisons with literature (one-

versus-one). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

 



LIST OF FIGURES

Figure Page
2.1 A hard margin SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 A soft margin SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Making data linearly separable. . . . . . . . . . . . . . . . . . . . . . 14
2.4 A Least Squares SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 A Twin SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 A linear Least Squares Twin SVM. . . . . . . . . . . . . . . . . . . . . 33
2.7 Flowchart of the SVM variations. . . . . . . . . . . . . . . . . . . . . 36
3.1 DAG decision making (N = 4) . . . . . . . . . . . . . . . . . . . . . . 43
4.1 Cross-sectional anatomy of the eye. (source: WHO, 2020) . . . . . . 52
4.2 Ophthalmoscopic appearance of the eye. . . . . . . . . . . . . . . . 53
4.3 Digital eye fundus photographs. (a) Normal. (b) Mild NPDR. (c) Mod-

erate NPDR. (d) Severe NPDR. . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Image colour normalization. (a) Input image. (b) Reference image.

(c) Colour normalized image. . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Flowchart of retinal vessels segmentation. . . . . . . . . . . . . . . . 71
6.3 Thick vessels extraction. (a) Original image. (b) Colour normalized.

(c) Green channel image. (d) Optimized top-hat transformed im-
age. (e) Homomorphic filtered image. (f) Thick vessels extracted by
thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Thin vessels extraction and final segmentation. (g) Optimized top-
hat for thin vessels. (h) Homomorphic filtered. (i) 2-D match filtered.
(j) Contrast adjusted before thresholding. (k) Thin vessels after bi-
narization. (l) Blood vessels segmented after adding image (f) and
(k) and noise reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Flowchart showing detection of microaneurysms. . . . . . . . . . . . 76

 



XI

LIST OF FIGURES (Continued)

Figure Page
6.6 Microaneurysms detection. (a) Original image. (b) Green compo-

nent. (c) Complement of (b). (d) Background estimation. (e) Sub-
traction of (d) from (c). (f) Contrast adjusted. (g) Morphologically
reconstructed image. (h) Binarized image. (i) Microaneurysms de-
tected after connected component analysis. . . . . . . . . . . . . . . 78

6.7 Flowchart of haemorrhages detection. . . . . . . . . . . . . . . . . . 79
6.8 Haemorrhages detection. (a) Original colour normalized image. (b)

Inverted green channel image. (c) Background corrected. (d) Homo-
morphic filtered. (e) Thresholded image. (f) Blood vessels subtrac-
tion and connected component analyzed leading to haemorrhages
segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.9 Flowchart illustrating segmentation of exudates. . . . . . . . . . . . . 81
6.10 Exudates detection. (a) Original image. (b) Exudates highlighted

on green component after background illumination correction by
close-open filtering. (c) Lower intensity pixel values suppressed. (d)
Binary image containing exudates and optic disk. (e) Optic disk mask.
(f) Exudates detected after removing OD region by OD mask in (e). . . 82

6.11 Optic disk segmentation. (a) Original image. (b) Red channel image.
(c) Background suppressed (b) after colour normalization. (d) Bina-
rized and morphologically closed image. (e) Canny edge detection
and circular Hough transform. (f) OD mask. . . . . . . . . . . . . . . . 84

7.1 Flowchart of the proposed methodology. . . . . . . . . . . . . . . . 88
7.2 Confusion matrices from classifications using TBSVM and LSTSVM. . . 94
7.3 Effect of (C, σ) on accuracy of SVM. . . . . . . . . . . . . . . . . . . 97
7.4 Effect of (C1 = C2, σ) on accuracy of TWSVM (OVO). . . . . . . . . . 98
7.5 Effect of (C1 = C2, σ) on accuracy of TWSVM (OVA and AVO). . . . . 98

 



XII

LIST OF FIGURES (Continued)

Figure Page
7.6 Effect of (C1 = C2, σ) on accuracy of LSTSVM (OVO). . . . . . . . . . 99
7.7 Effect of (C1 = C2, σ) on accuracy of LSTSVM (OVA and AVO). . . . . 100
7.8 Confusion matrices from classifications using SVM and TWSVM. . . . . 101
A.1 Matlab code: Retinal blood vessels segmentation. . . . . . . . . . . 117
A.2 Matlab code: Haemorrhages detection. . . . . . . . . . . . . . . . . . 120
A.3 Matlab code: Microaneurysms detection. . . . . . . . . . . . . . . . . 122
A.4 Matlab code: Exudates detection. . . . . . . . . . . . . . . . . . . . . 125
A.5 Matlab code: Optic disk segmentation. . . . . . . . . . . . . . . . . . 127

 



CHAPTER I
INTRODUCTION

The eye is a very delicate organ, yet of great importance in a person’s daily life.
While defects of the eye do not affect ones overall physical health directly, they may im-
pair the interaction with the environment to an extreme degree and make it very difficult
to manage even simple daily chores. With increasingly sedentary lifestyles and longevity
being observed, the share of the population that suffers from health issues affecting the
eye such as high blood pressure or diabetes, has risen worldwide to previously unknown
levels.

The World Health Organization (WHO) reported that around 422 million people
in the world suffer from Diabetes Mellitus (2014 estimates). This figure is expected to
rocket to an even higher number by 2030. Diabetes is a chronic health condition due
to insufficient insulin production in the body by the pancreas, or the body cannot utilize
the produced insulin. Diabetes are categorized into type 1 diabetes and type 2 diabetes.
Type 1 diabetes is due to insulin deficiency and some of the symptoms include excessive
urine excretion, vision changes, constant hunger, thirst, and fatigue. Type 2 diabetes is a
consequence when the body is not able to effectively utilize the insulin. The symptoms
are similar to type 1 diabetes, but appear often only late when the disease is quite
advanced. Type 2 diabetes is most common among the patients. Diabetes gradually
affects eyes, heart, kidneys, blood vessels and nerves.

One of the most common microvascular complications in people living with di-
abetes is a condition called diabetic retinopathy (DR). It affects nearly 25-44% of the
patients at some point in their life. This is caused when there is increased glucose level
in the blood vessels of the retina. Other risk factors include high blood pressure and
high serum lipids which are common in diabetic patients. As a consequence, it damages
blood vessels in the retina making it to become leaky or blocked. In the advanced stage
of the disease, abnormal blood vessels appear from the retina which can bleed and cause
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retina scarring which results in permanent vision loss or blindness. It is reported that DR,
in some patients, can occur as early as within three years on average after diagnosis of
diabetes. Moreover, after 20 years of diagnosis of diabetes, every type 1 diabetic patient
suffers from DR, whereas 50-80% of type 2 diabetic patients will suffer DR. It is important
to detect early signs of diabetic retinopathy in a patient, in order to take measures which
can delay or mitigate the deterioration of the eye.

The rapid progress in computing technology achieved in recent years has made
possible the development of a great variety of computing tools to assist physicians in
diagnosis and treatment. An important component of diagnosis is decision making; to
decide whether a patient suffers from some particular ailment and to determine to what
degree.

One of the common tools for decision making in machine learning is the Sup-
port Vector Machine (SVM). Support vector machines have already been employed with
success for diabetic retinopathy classification (Carrera, González, and Carrera, 2017) and
(Kandhasamy et al., 2020). Soon after the development of the first support vector ma-
chines, a modified support vector machine called Least Squares Support Vector Machine
was introduced by Suykens and Vandewalle in 1999. One of its advantages is that the
training process is simpler, since there are only equality constraints in the mathematical
optimization problems of the model. Later-on, further modifications appeared, among
them the Twin Support Vector Machine and the Least Squares Twin Support Vector Ma-
chine. It is thus worthwhile to test how well these modified support vector machines
perform for diabetic retinopathy analysis and classification.

1.1 Literature review

The machine-aided detection of diseases of the eye is an ongoing and very active
field of research. The techniques consist of two essential steps: Image preprocessing, to
identify, highlight and extract the relevant features from an image, followed by the model
selection and training. Neural networks and support vector machines are popular tools
employed for this latter task.
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Acharya et al. (2008) proposed an automated grading of diabetic retinopathy
stages by a multiclass directed acyclic graph support vector machine algorithm. A total
of 300 retinal fundus images with 60 subjects each from normal, mild, moderate and
severe non-proliferative diabetic retinopathy, as well as proliferative diabetic retinopathy
were used. Histogram equalization was applied as a preprocessing technique. The pre-
processed grayscale images were then converted to 1 dimensional data using a Radon
transform. Then 18 features were extracted using higher order spectra from which four
features were selected using statistical p-test. On classification, an accuracy and sensitivity
of 82% each, and specificity of 88% were obtained.

As a typical sign of advanced diabetic retinopathy is the growth of new blood
vessels, Welikala et al. (2015) focus on the detection of new abnormal blood vessels.
They use two support vector machines, one to distinguish new blood vessels from normal
blood vessels, and a second one to distinguish new blood vessels from exudates. A
genetic algorithm is used for feature selection. Image regions are identified as new blood
vessels only when both machines agree.

Imani et al. (2015) use the variance of shearlet coefficients to first identify whether
the blood vessels in an image are of sufficient quality for automatic processing. This is
followed by morphological component analysis using shearlet and curvelet transform to
separate out retinal vessels and exudates. Then they extract local features and compare
them to a database of these features that has been created from a pool of training images,
achieving an accuracy of 92.82% for binary classification.

Carrera et al. (2017) have proposed computer assisted diagnosis of non-
proliferative diabetic retinopathy stages using digital processing of retinal images and
multiclass support vector machine. In total 400 optic fundus, 152 normal, 30 mild, 69
moderate and 149 severe non-proliferative diabetic retinopathy cases were considered.
For feature extraction, blood vessels were segmented and their densities obtained, mi-
croaneurysms and hard exudates were isolated. Eight features were extracted and fed to
the support vector machine classifier. On performance evaluation, a sensitivity of 94.6%
and a predictive capacity up to 94% were reported.

James et al. (2018) have introduced a method to detect exudates by morpholog-
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ical operations, blood vessels and haemorrhages by complement function, and microa-
neurysms by edge detection techniques. Relevant features were obtained and multilay-
ered feed forward neural network was used for classification.

Hui et al. (2019) use two deep convolutional neural networks to construct fea-
tures from an image. Combined with other features directly extracted directly from
the image, they train a multiclass support vector machine for severity grading, includ-
ing non-proliferative and proliferative diabetic retinopathy and report an overall accuracy
of 86.17%.

Sarki et al. (2020) give a comprehensive review of recent publications on diabetic
eye and other eye disease detection through deep learning. Practically all publications
reviewed make use of convolutional neural networks. Of the referenced papers, Ghosh
et al. (2017) obtain an accuracy of about 95% for binary classification, and of 85% for
multiclass detection on a data set which includes proliferative retinopathy. Hemanth et
al. (2020) obtain a binary classification accuracy of 97%.

Kandhasamy et al. (2020) have presented a multi level set segmentation algorithm
and support vector machine with selective features along with genetic algorithm for dia-
betic retinopathy severity grading. Mathematical morphological operations and principal
component analysis were used for clustering before the feature extraction. They reported
area under receiver operating curve of 98.01% on average for all severity levels.

Hierarchical severity grading system for detection and classification of non-
proliferative diabetic retinopathy was studied by Bhardwaj et al. (2020), where they em-
ployed support vector machine and k-nearest neighbor classifiers. From statistical analy-
sis 12 optimal features were obtained and fed to respective classifiers. It was concluded
that the k-nearest neighbor classifier achieved best performance accuracy and computa-
tion time both in classifying diabetic and non-diabetic retinopathy images and in grading
severity level of diabetic retinopathy cases.

An interracial DR screening artificial intelligence (AI) created model was developed
by Katada et al. (2020). Convolutional neural network and support vector machine were
used to train the model on American fundus dataset. They showed that the trained AI
model exhibited higher sensitivity and specificity even when tested on 200 another racial
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Japanese subjects in detection of referable diabetic retinopathy.
Dandapat et al. (2021) compare support vector machine, K-nearest neighbor and

convolutional neural networks for binary diabetic retinopathy detection and obtain accu-
racies of 96.62%, 94.38% and 94.74%, respectively.

Overall, most publications using support vector machine focus on binary classifi-
cation, and use the regular support vector machine. There are only few reports on the
multiclass detection of diabetic retinopathy by support vector machines. It should be
noted that the results in the literature are not directly comparable as they may be using
different datasets.

1.2 Research objectives

The purpose of the proposed research is to develop and test models for dia-
betic retinopathy detection and classification by support vector machine methods, and
in particular,

1. to classify different stages of diabetic retinopathy using multiclass support vector
machines,

2. to compare the performance of the various support vector machine models for
this task,

3. to evaluate the best multiclass decision strategy, with the aim to

4. improve on the performance of current support vector machine models.

1.3 Thesis outline

This thesis is organized as follows. The following chapter, Chapter II, gives a com-
prehensive review of the support vector machine and some of its variations. Chapter III
discusses multiclass classification by support vector machines and presents a new type
of decision strategy for multiclass twin support vector machines. Chapter IV presents the
structure of the human eye and the problem of diabetic retinopathy. Chapter V discusses
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the image pre-processing methods which were used to enhance the eye fundus images.
Chapter VI explains the methodologies used in the classification of the eye fundus images.
Chapter VII presents the results together with a discussion, and Chapter VIII constitutes a
summary of this work.

 



CHAPTER II
SUPPORT VECTOR MACHINES

This chapter presents a review of the concepts and detailed explanations of the
theory of the support vector machines encountered in this thesis. These include the
standard support vector machine, the least squares support vector machine, the twin
support vector machine and some of their variants.

Troughout we work mainly in Rn. The inner product in any Hilbert space is de-
noted by ⟨·, ·⟩. When working in Rn this is mostly the usual dot product, which can also
be expressed in matrix product form,

⟨x,y⟩ = yTx, x,y ∈ Rn.

All norms are those induced from the inner product, ∥x∥ =
√

⟨x,x⟩.

2.1 Binary classification

The mathematical principle of classification is as follows: Working in Euclidean
space, vectors x ∈ Rn represent data to be classified. In binary classification, the space
Rn is split into two disjoint sets,

Rn = A+ ∪ A−, (A+ ∩ A− = ∅),

and one seeks a function f : Rn → {±1} called decision function which separates these
two sets:

f(x) =


+1, x ∈ A+

−1, x ∈ A−.

In multiclass classification, the space Rn is split into a finite number of disjoint sets,

Rn =
N∪
i=1

Ai, (Ai ∩ Aj = ∅ for i ̸= j),
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and the decision function sought should yield

f(x) = i if x ∈ Ai (i ∈ {1, . . . N}).

The sets A+, A−, respectively A1, . . . AN are called classes, and a value y = f(x) is
called the label (or sometimes simply class) of a vector x.

2.2 Support vector machines

2.2.1 Hard margin support vector machines

Support vector machines (SVM), introduced by Vapnik and co-workers (1998), are
machine learning techniques popularly used for classification and regression analysis. Al-
though SVMs are classically designed for binary classification problems, the method can
also be extended to multiclass classification problems.

The basic, hard margin support vector machine is a simple tool for binary classi-
fication. The assumption is that the sets A+ and A− are open half spaces separated by
a hyperplane. A hyperplane H in Rn is an affine subspace of codimension 1, i.e.

H = xo + V,

where V is a linear subspace of Rn of dimension n − 1, so that dim(V ⊥) = 1. Up to
a scalar multiple, there is thus a unique nonzero vector w ∈ Rn with w ⊥ V . For any
x ∈ Rn,

x ∈ H ⇐⇒ x = xo + v (∃v ∈ V ) ⇐⇒ x− xo ∈ V ⇐⇒ w ⊥ (x− xo)

so that

H = {x ∈ Rn : ⟨w,x⟩+ b = 0} where b = −⟨w,xo⟩.

Thus, the pair (w, b) uniquely determines the hyperplane, which we may denote as
H(w, b). By a hyperplane H separating the sets A+ and A− one means that after
choosing the appropriate direction for w, then

A+ = {x ∈ Rn : ⟨w,x⟩+ b > 0} and A− = {x ∈ Rn : ⟨w,x⟩+ b < 0}.
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Then the decision function will be

f(x) = sgn(⟨w,x⟩+ b
)
.

The length of the vector w may be normalized as explained further below.

In general, all machine learning tools depend on internal parameters. In the basic
support vector machine these are the vector w (which determines the direction of the
hyperplane) and the bias b (which determines its location in space). The appropriate
values of the internal parameters are obtained by a process called training.

In training one starts from a collection of data (i.e. vectors x) whose labels are
known: Given is a training data set

Γ = {(x1, y1), (x2, y2), . . . , (xl, yl)},

where xi ∈ Rn, yi ∈ {+1,−1}, i = 1, 2, . . . , l. We now describe how to find the
parameter values that best separate the training data Γ according to their labels.

Training a SVM means that one searches for a hyperplane H = H(w, b) which
separates and has largest distance from the positive and negative training sets

D+ = {xi : (xi, yi) ∈ Γ, yi = 1} and D− = {xi : (xi, yi) ∈ Γ, yi = −1}.

First of all, these two sets must be linearly separable, that is, there must exist a hyper-
plane H = H(w, b) so that

sgn (⟨w,xi⟩+ b) = yi ∀xi ∈ D = D+ ∪D−.

Second, the hyperplane should be equidistant from the two sets. It is not difficult to
show that the distance from a vector x to a hyperplane H = H(x, b) is

d(H, x) =
|⟨w,x⟩+ b|

∥w∥
.

The distance from H to the sets D+ and D− is

d(H,D+) = min
xi∈D+

|⟨w,xi⟩+ b|
∥w∥

and d(H,D−) = min
xi∈D−

|⟨w,xi⟩+ b|
∥w∥

.
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Let x+ ∈ D+ and x− ∈ D− denote the data points in D+ and D−, respectively, that
are closest to H , i.e.

d(H,D+) = d(H,x+) =
|⟨w,x+⟩+ b|

∥w∥
=

⟨w,x+⟩+ b

∥w∥
,

d(H,D−) = d(H,x−) =
|⟨w,x−⟩+ b|

∥w∥
= −⟨w,x−⟩+ b

∥w∥
.

(2.1)

The two hyperplanes parallel to the desired H(w, b) passing through x+ and x− are

H+ : ⟨w,x⟩+ b+ = 0 where b+ = −⟨w,x+⟩ and

H− : ⟨w,x⟩+ b− = 0 where b− = −⟨w,x−⟩.

Then b+ < 0 while b− > 0. From here on, one agrees to normalize the vector w so that

b− − b+ = ⟨w,x+ − x−⟩ = 2. (2.2)

The vectors x+ and x− are called support vectors as they lie in the supporting hyper-
planes H+, respectively H−. The requirement d(H,D+) = d(H,D−) now gives that

b =
−⟨w,x+⟩ − ⟨w,x−⟩

2
=

b+ + b−

2
.

Then for x ∈ D+ one has by (2.1) and since ⟨w,x⟩+ b > 0 that
⟨w,x⟩+ b

∥w∥
= d(H,x) ≥ d(H,D+) =

⟨w,x+⟩+ b

∥w∥

so that

⟨w,x⟩+ b ≥ ⟨w,x+⟩+ b = −b+ +
b+ + b−

2
=

b− − b+

2
= 1 (x ∈ D+). (2.3)

Similarly, for x ∈ D− one has, since ⟨w,x⟩+ b < 0, that
⟨w,x⟩+ b

∥w∥
= −d(H,x) ≤ −d(H,D−) =

⟨w,x−⟩+ b

∥w∥

and thus

⟨w,x⟩+b ≤ ⟨w,x−⟩+b = −b−+
b+ + b−

2
=

−b− + b+

2
= −1 (x ∈ D−), (2.4)

with equality in the case of support vectors. That is,

yi
(
⟨w,xi⟩+ b

)
≥ 1 (i = 1, . . . , l)
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as required. Furthermore, (2.3) and (2.4) show that the supporting hyperplanes have
equations

H+ = {x ∈ Rn : ⟨w,x⟩+ b = 1} and H− = {x ∈ Rn : ⟨w,x⟩+ b = −1}.

Figure 2.1 A hard margin SVM.

In general, there are many hyperplanes H(w, b) with corresponding supporting
hyperplanes H+(w, b) and H−(w, b) separating the training data. One chooses the
hyperplaneH which maximizes the distance betweenH+ andH− (This distance is called
the margin). Since this distance is

d(H+, H−) = d(H,x+) + d(H,x−) =
⟨w,x+⟩+ b

∥w∥
−⟨w,x−⟩+ b

∥w∥
=

b− − b+

∥w∥
=

2

∥w∥

then the margin will be largest, if the normalized vector w has smallest norm. To obtain
a differentiable function one minimizes ∥w∥2 instead of ∥w∥, which is equivalent, and
then solves the convex quadratic programming problem with affine inequality constraints,

min
w,b

1

2
∥w∥2

yi
(
⟨w,xi⟩+ b

)
≥ 1 (i = 1, . . . , l).

(2.5)

Observe that the normalization condition (2.2) is implicitly contained in the inequality
constraint. There are standard software routines to numerically solve such an optimization
problem.
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In practice, the training data is often not properly linearly separable. There are
two tools to overcome this problem: Adding slack variables and the kernel trick.

2.2.2 Slack variables

If the training data is nearly linearly separable, except for some outliers, then slack
variables ξ1, . . . , ξl are introduced. Problem (2.5) is modified to the convex quadratic
programming problem

min
w,b,ξ

1

2
∥w∥2 + C

l∑
i=1

ξi

yi
(
⟨w,xi⟩+ b

)
≥ 1− ξi (i = 1, . . . , l)

ξi ≥ 0, (i = 1, . . . , l)

(2.6)

where ξ = (ξ1, . . . , ξl)
T ∈ Rl is the vector of slack variables, and C > 0 is a penalty

parameter which controls the trade-off between maximizing the margin (i.e. minimizing
∥w∥) and minimizing the misclassification. A value 0 < ξi < 1 means that the corre-
sponding training point xi is still correctly classified, but lies on the wrong side of the
corresponding supporting hyperplane H+, respectively H−. A value of ξi ≥ 1 means
that xi is misclassified, as it lies on the wrong side of the separating hyperplane H , or on
H itself. This type of SVM is called a soft margin support vector machine.

In Figure 2.2, the data points x3,x4 and x5 have non-zero slack variables. ξ3 < 1,
while ξ4 > 2 and ξ5 > 1. Thus, the point x3 is still correctly classified, while x4 and x5

are not. x1 and x2 are support vectors.

2.2.3 The kernel trick

When the training data is far from being linearly separable, one may employ a
mapping

Φ : Rn → H

of Rn into a real Hilbert space H of higher finite or infinite dimension. The training sets
D+ and D− will be mapped to

D̃+ =
{
Φ(x) : x ∈ D+

} resp. D̃− =
{
Φ(x) : x ∈ D−}
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Figure 2.2 A soft margin SVM.

and the separating hyperplane will now be located in H. Modifying (2.6), one thus has to
solve a problem, called the primal problem,

min
w∈H,b,ξ

1

2
∥w∥2 + C

l∑
i=1

ξi

yi
(
⟨w,Φ(xi)⟩+ b

)
≥ 1− ξi (i = 1, . . . , l)

ξi ≥ 0 (i = 1, . . . , l)

(2.7)

and decision function will thus be of the form

f(x) = sgn(⟨w,Φ(x)⟩+ b
)
. (2.8)

Observe that in the above, the inner product and norm are those in H.

Figure 2.3 shows training data which is not linearly separable, but can easily be
mapped into a higher dimensional space so that it becomes linearly separable.

2.2.4 The dual problem

Because H may have very high or even infinite dimension, it may not feasible
to solve the minimization problem (2.7) directly. Instead, one solves another simpler
problem, called the dual problem, using the theory of convex optimization. We briefly
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Figure 2.3 Making data linearly separable.

review some of its concepts, simplified as they apply here. Details and proofs can be
found in the books by Boyd and Venderberge (2004) and Deng, Tian, and Zhang (2013).

Consider a convex optimization problem with affine constraints*,

min
x∈Rn

f0(x)

subject to

fi(x) = aTi x+ pi ≤ 0, i = 1 . . .m

hj(x) = cTj x+ qj = 0, j = 1 . . . s

where the function f0 : Rn → R is continuously differentiable and convex, ai, cj ∈ Rn

and pi, qj ∈ R. This problem can be restated in vector form,

min
x∈Rn

f0(x)

subject to

f(x) = Ax+ p ≤ 0

h(x) = Cx+ q = 0

(2.9)

where f and h are vector valued functions, A and C are matrices and p and q are
*In SVMs the constraints are of affine type; this restriction simplifies the exposition somewhat.
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vectors:

f =


f1
...
fm

 , h =


h1

...
hs

 , A =


aT1
...
a⊤m

 , C =


cT1
...
c⊤s

 , p =


p1
...
pm

 , q =


q1
...
qs

 .

The feasible region S is the subset of Rn satisfying the constraints, and is convex as the
constraints are affine. Next construct a function L(x,λ,ν) : S ×Rm×Rs → R called
the Lagrangian by

L(x,λ,ν) = f0(x) + ⟨λ,f(x)⟩+ ⟨ν,h(x)⟩

and define the Lagrange dual function g : Rm × Rs → [−∞,∞) by

g(λ,ν) = inf
x∈S

L(x,λ,ν).

The newly introduced variables λ and ν are called Lagrange multipliers. Then g(λ,ν)

is a concave function. The dual problem of (2.9) is
max
λ,ν

g(λ,ν)

subject to

λ ≥ 0

(2.10)

which is again a convex optimization problem. There is a connection between the optimal
solutions of problem (2.9) and its dual problem (2.10) through Theorem 2.1 below. But
first we give a definition.

Definition 2.1. A triple (x∗,λ∗,ν∗) ∈ S × Rm × Rs is said to satisfy the Karush–Kuhn–
Tucker (KKT) conditions if

(KKT1) f(x∗) ≤ 0

(KKT2) h(x∗) = 0

(KKT3) λ∗ ≥ 0

(KKT4) λ∗
i fi(x

∗) = 0 (i = 1, . . . l)

(KKT5) ∇xL(x
∗,λ∗,ν∗) = ∇xf0(x

∗) +
m∑
i=1

λ∗
i∇xfi(x

∗) +
s∑

j=1

ν∗
j∇xhj(x

∗) = 0.
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Here, ∇xL denotes the gradient of L(x,λ,ν) with respect to x, λ∗ = (λ∗
1, . . . λ

∗
m) and

ν∗ = (ν∗
1 , . . . ν

∗
s ). In case there is no inequality constraint, i.e. f = 0, then only the two

conditions (KKT2) and (KKT5) are non-vacuous, and they constitute a reformulation of the
usual method of Lagrange multipliers given equality constraints.

Theorem 2.1. 1. Problems (2.9) and (2.10) both have solutions x∗ and (λ∗,ν∗), re-
spectively.

2. For any such solution pair, f0(x∗) = g(λ∗,ν∗).

3. The pair x∗ and (λ∗,ν∗) forms a solution to (2.9) and (2.10) if and only the KKT
conditions hold.

Now apply the above the KKT conditions to the SVM optimization problem (2.7).
Setting x = (w, b, ξ)T , m = 2l and s = 0 then λ = (α,β)T , α,β ∈ Rl, and the
Lagrangian becomes

L(w, b, ξ,α,β) =
1

2
∥w∥2+C

l∑
i=1

ξi−
l∑

i=1

αi

[
yi
(
⟨w,Φ(xi)⟩+b

)
+ξi−1

]
−

l∑
i=1

βiξi.

Let 1 = (1, 1, . . . , 1)T be the constant vector and y = (y1, . . . , yl)
T ∈ Rl the vector of

labels. Then the Langrangian can be rewritten as

L(w, b, ξ,α,β) =
1

2
∥w∥2+ ⟨C1−α−β, ξ⟩−

l∑
i=1

αiyi⟨w,Φ(xi)⟩− b⟨y,α⟩+ ⟨1,α⟩

and hence

∇(w,b,ξ)L(w, b, ξ,α,β) =


w −

l∑
i=1

αiyiΦ(xi)

−⟨α,y⟩

C1−α− β

 .

Now if x = (w, b, ξ)T minimizes L for some fixed (α,β) (with a finite minimum), then
necessarily, ∇(w,b,ξ)L(w, b, ξ,α,β) = 0 at this point, and in particular,

w =
l∑

i=1

αiyiΦ(xi), ⟨α,y⟩ = 0 and C1−α− β = 0. (2.11)
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Substituting these into L we obtain the dual function

g(α,β) = min
w,b,ξ

L(w, b, ξ,α,β)

=
1

2

∥∥∥∥∥
l∑

i=1

αiyiΦ(xi)

∥∥∥∥∥
2

−
l∑

i=1

αiyi

⟨
l∑

j=1

αjyiΦ(xj),Φ(xi)

⟩
+

l∑
i=1

αi

= −1

2

l∑
i=1

l∑
j=1

αiαjyiyj ⟨Φ(xj),Φ(xi)⟩+
l∑

i=1

αi

which is quadratic. In fact, it is of the form

g(α,β) = g(α) = −1

2
αTΩα+ ⟨1,α⟩

where Ω is the l × l symmetric and positive semidefinite matrix

Ω = [qij], qij = yiyj⟨Φ(xi),Φ(xj) ⟩.

The dual problem is then of the form

max
α,β

g(α) = −1
2
αTΩα+ ⟨1,α⟩

subject to
⟨α,y⟩ = 0, C1−α− β = 0

α ≥ 0, β ≥ 0

(2.12)

where the inequalities in the last row are just (KKT3). This problem can be simplified:
Since the objective function is independent of β and α,β > 0 it suffices to solve

max
α

g(α) = −1
2
αTΩα+ ⟨1,α⟩

subject to
⟨α,y⟩ = 0

0 ≤ α ≤ C1

This is usually formulated as a minimization problem,

min
α

1
2
αTΩα− ⟨1,α⟩

subject to
⟨α,y⟩ = 0

0 ≤ α ≤ C1

(2.13)
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Note that the size of this dual problem depends on the number of training data points,
but is independent of the dimension of the Hilbert space H. After solving this problem
for a maximizer α, then the w-part of the minimizer of (2.7) can be computed by (2.11).
Indeed, one has:

Theorem 2.2. Let α be the solution to the optimization problem (2.13). Suppose, there
exists j with 0 < αj < C . Then the components w and b in the solution of the primal
problem (2.7) are

1) w =
l∑

i=1

αiyiΦ(xi) and

2) b = yj −
l∑

i=1

αiyi⟨Φ(xi),Φ(xj)⟩

(2.14)

This method of solving the dual problem has a fundamental advantage in that
one need not know the map Φ at all ! In fact, define a map K : Rn × Rn → R called
the kernel by

K(x,x′) = ⟨Φ(x),Φ(x′)⟩ (x,x′ ∈ Rn).

Then the entries of the matrix Ω in the dual problem (2.13) are of the form

qij = yiyjK(xi,xj)

and the decision function (2.8) becomes

min
α

f(x) = sgn(⟨w,Φ(x)⟩+ b
)
= sgn

(⟨
l∑

i=1

αiyiΦ(xi),Φ(x)

⟩
+ b

)

= sgn
(

l∑
i=1

αiyiK(xi,x) + b

) (2.15)

where b is as in (2.14),
b = yj −

l∑
i=1

αiyiK(xi,xj).

for some j with 0 < αj < C . This shows that once the kernel is known, the dual
problem can be solved and the decision function obtained without knowledge of the map
Φ. There are various ways to construct kernels without knowledge of the corresponding
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Hilbert space H or the map Φ, see (Deng, Tian, and Zhang, 2013). A popular kernel is the
Gaussian kernel, also called RBF kernel

K(x,x′) = e−∥x−x′∥2/2σ2

.

When Φ is the identity mapping, then K(x,x′) = ⟨x,x⟩, and we recover the support
vector machine (2.6). This is called the linear kernel.

2.3 Least squares support vector machines

Least squares support vector machine (LSSVM) is a variant of the SVM and was proposed
by Suykens and Vandevalle (2003). Different from a standard SVM, a least squares SVM
deals with solving a system of linear equations rather than solving the convex quadratic
programming problem. In this view, the problem is simpler and faster to train as compared
to the standard SVM.

Consider again training data

Γ = {(x1, y1), (x2, y2), . . . , (xl, yl)}

where xi ∈ Rn, yi ∈ {+1,−1}, i = 1, 2, . . . , l, and the corresponding positive and
negative training sets:

D̃+ = {Φ(xi) : (xi, yi) ∈ Γ, yi = 1} and

D̃− = {Φ(xi) : (xi, yi) ∈ Γ, yi = −1}.

The intuition of LSSVM is that the parallel supporting hyperplanesH+ andH− should be
placed so that the training points in D̃+ and D̃− are as close as possible to their respective
supporting hyperplanes (“proximal”), while at the same time maximizing the margin and
minimizing the classification error. Figure 2.4 shows that in a LSSVM, the hyperplanes H+

and H− pass through the central region of each training data class.
Thus, one poses the primal problem

min
w∈H,b,ξ

1

2
∥w∥2 + C

2

l∑
i=1

ξ2i

yi(⟨w,Φ(xi)⟩+ b) = 1− ξi (i = 1, . . . , l)

(2.16)
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Figure 2.4 A Least Squares SVM.

and where ξ = (ξ1, . . . , ξl)
T . As with a soft margin SVM, a value of ξi ≥ 1 of a slack

variable means that the corresponding data xi is misclassified. However, unlike in the
soft margin SVM, ξi can also be negative. The error term∑ ξ2i now measures how far the
ensemble of data points Φ(xi) is located from their respective supporting hyperplanes,
and squaring increases the penalty quadratically with distance. For convenience in differ-
entiation, the penalty factor is written in the form C

2
. We note that this primal problem

has equality constraints only.
The Lagrangian function is thus

L(w, b, ξ,α) =
1

2
∥w∥2 + C

2
∥ξ∥2 −

l∑
i=1

αi [yi(⟨w,Φ(xi)⟩+ b) + ξi − 1]︸ ︷︷ ︸
hi(w,b,ξ)

where α = (α1, . . . , αl)
T is a Lagrange multiplier, y = (y1, . . . , yl)

T , 1 = (1, 1, . . . , 1)T

and hi(w, b, ξ) = 0 are the constraints in (2.16). Because there are no inequality con-
straints, one can use the standard method of Lagrange multipliers by first solving the
equation

∇(w,b,ξ)L(w, b, ξ,α) = 0
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which is 
w −

l∑
i=1

αiyiΦ(xi)

⟨α,y⟩

Cξ −α

 = 0.

From the third component of this gradient one obtains that ξ = 1
C
α, from the second

that yTα = ⟨α,y⟩ = 0 and from the first that

w =
l∑

i=1

αiyiΦ(xi).

Exchanging the symbols i and j above and substituting w and ξ into the constraints
hi(w, b, ξ) = 0, one must solve the system of equations for α,

yi

l∑
j=1

αjyj⟨Φ(xj),Φ(xi)⟩+ yib+
1

C
αi − 1 = 0 (i = 1, . . . l)

yTα = 0

In matrix form, y Ω +
1

C
I

0 yT


 b

α

 =

1

0


where Ω ∈ Ml×l(R) is again the symmetric matrix Ω = [qij]i,j where

qij = yiyj⟨Φ(xi),Φ(xj)⟩ = yiyjK(xi,xj), i, j = 1, . . . , l,

with appropriate kernel function K .
Solving this system of equations yields α and b. The decision function is then

f(x) = sgn(⟨w,Φ(x)⟩+ b
)
= sgn

(
l∑

i=1

αiyiK(xi,x) + b

)

which takes the same form as the decision function (2.15) of the usual support vector
machine. Again, knowledge of the kernel is enough; one need neither know the Hilbert
space H nor the map Φ.
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2.4 Twin support vector machines

Recall that the purpose of the least squares support vector machine is to cluster
the data close to two parallel hyperplanes. In a twin support vector machine the two
hyperplanes need no longer be parallel. This variant of support vector machine was first
introduced in (Jayadeva et al., (2007)).

2.4.1 The linear twin support vector machine

We first discuss the linear twin support vector machine. Here, one searches for
hyperplanesH1 andH2, so that the positive data points inD+ are closest toH1, while at
the same time the data from D− lie beyond the −1 margin of H1, up to slack variables.
Similarly, the negative data points in D− should be closest to H2, while those from D+

should be beyond the −1 margin of H2, up to slack variables.
Relabel the training data so that

D+ = {x1, . . . ,xp} ⊆ Rn and D− = {xp+1, . . . ,xp+q} ⊆ Rn

so that p + q = l. For example, to find H1 : ⟨w1,x⟩ + b1 = 0 one is to solve the
minimization problem

min
w1,b1,ξ1,...ξq

1

2

p∑
i=1

|⟨w1,xi⟩+ b1|2

∥w1∥2
+ C1

q∑
j=1

ξj

subject to

− (⟨w1,xp+j⟩+ b1) ≥ 1− ξj (j = 1, . . . , q)

ξj ≥ 0 (j = 1, . . . , q)

(Compare with (2.7)) The first term in the objective function forces the positive data points
to be proximal to the hyperplane, while the the second term minimizes the sum of
the slack variables belonging to the negative data points. Division by ∥w1∥2 can been
removed to make this a convex problem; this can be countered by a different optimal
choice of the parameter C1.
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Figure 2.5 A Twin SVM.

In addition, by reversing direction of the vector w1 which also reverses the sign
of b1, the minus sign on the second line can be removed, to obtain

min
w1,b1,ξ1,...ξq

1

2

p∑
i=1

|⟨w1,xi⟩+ b1|2 + C1

q∑
j=1

ξj

subject to

⟨w1,xp+j⟩+ b1 ≥ 1− ξj (j = 1, . . . , q)

ξj ≥ 0 (j = 1, . . . , q)

(2.17)

Similarly, the hyperplane H2 : ⟨w2,x⟩+ b2 = 0 can be found by solving

min
w2,b2,η1,...ηp

1

2

p+q∑
i=p+1

|⟨w2,xi⟩+ b2|2 + C2

p∑
j=1

ηj

subject to

⟨w2,xj⟩+ b2 ≥ 1− ηj (j = 1, . . . , p)

ηj ≥ 0 (j = 1, . . . , p)

(2.18)

This is simpler expressed in matrix form: Let X1 be the p× n-matrix whose rows consist
of the data in D+, and X2 the q × n matrix whose rows consist of the data in D−. That
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is,

X1 =


xT
1

...
xT
p

 and X2 =


xT
p+1

...
xT
p+q

 .

Then (2.17) and (2.18) can be expressed in the Euclidean norm as
min

w1,b1,ξ

1

2
∥X1w1 + b1e1∥2 + C1e

T
2 ξ

subject to

X2w1 + b1e2 ≥ e2 − ξ, ξ ≥ 0

(2.19)

and 
min

w2,b2,η

1

2
∥X2w2 + b2e2∥2 + C2e

T
1 η

subject to

X1w2 + b2e1 ≥ e1 − η, η ≥ 0.

(2.20)

where w1,w2 ∈ Rn, b1, b2 ∈ R, e1 = (1, 1, . . . , 1)T ∈ Rp, e2 = (1, 1, . . . , 1)T ∈ Rq ,
while ξ = (ξ1, ξ2, . . . , ξq)

T and η = (η1, η2, . . . , ηp)
T are the vectors of slack variables.

A data point is now classified to belong to the class whose hyperplane is closest.
Thus, the decision function is

f(x) =


1 if |⟨w1,x⟩+ b1|

∥w1∥
≤ |⟨w2,x⟩+ b2|

∥w2∥

−1 else.
(2.21)

Often one uses the simplified decision function

f(x) =


1 if |⟨w1,x⟩+ b1| ≤ |⟨w2,x⟩+ b2|

−1 else.
(2.22)

2.4.2 The nonlinear twin support vector machine

Just as with the regular support vector machine, one may map the given data into
a higher dimensional Hilbert space by a map

Φ : Rn → H

 



25

with corresponding kernel

K(x,x′) = ⟨Φ(x),Φ(x′)⟩ .

As before, the training sets D+ and D− will be mapped to

D̃+ =
{
Φ(x) : x ∈ D+

} resp. D̃− =
{
Φ(x) : x ∈ D−} .

Because the vectors in D̃ = D̃+ ∪ D̃− form a finite dimensional subspace of H, one
may choose H to be the span of these vectors, so that H is of finite dimension. Hence
following (2.17) and (2.18) , the twin hyperplanes H1 : ⟨w1,Φ(x)⟩ + b1 = 0 and H2 :

⟨w2,Φ(x)⟩+ b2 = 0 in H can be found by solving the systems

min
w1,b1,ξ1,...ξq

1

2

p∑
i=1

∣∣⟨w1,Φ(xi)⟩+ b1
∣∣2 + C1

q∑
j=1

ξj

subject to

⟨w1,Φ(xp+j)⟩+ b1 ≥ 1− ξj (j = 1, . . . , q)

ξj ≥ 0 (j = 1, . . . , q)

(2.23)

and 

min
w2,b2,η1,...ηp

1

2

p+q∑
i=p+1

∣∣⟨w2,Φ(xi)⟩+ b2
∣∣2 + C2

p∑
j=1

ηj

subject to

⟨w2,Φ(xj)⟩+ b2 ≥ 1− ηj (j = 1, . . . , p)

ηj ≥ 0 (j = 1, . . . , p)

(2.24)

with w1,w2 ∈ H. The simplified decision function (2.25) will then be of the form

f(x) =


1 if

∣∣⟨w1,Φ(x)⟩+ b1
∣∣ ≤ ∣∣⟨w2,Φ(x)⟩+ b2

∣∣
−1 else.

(2.25)

while the normalized decision function (2.26) will be

f(x) =


1 if

∣∣⟨w1,Φ(x)⟩+ b1
∣∣

∥w1∥
≤
∣∣⟨w2,Φ(x)⟩+ b2

∣∣
∥w2∥

.

−1 else.
(2.26)
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The difficulty here, however, is that the mapping Φ is unknown in general; only
its kernel is known. Since H is spanned by the vectors in D̃, one expresses w1 and w2

as linear combinations of the elements in D̃, e.g.

w1 =

p+q∑
k=1

ukΦ(xk), w2 =

p+q∑
k=1

vkΦ(xk). (2.27)

This permits to express the vectors w1 and w2 as coordinate vectors u1,u2 ∈ Rp+q ,

u1 =


u1

...
up+q

 ∈ Rp+q and u2 =


v1
...

vp+q

 ∈ Rp+q.

Note that the coordinates uk, vk are not unique in general, because the collection of
vectors Φ(xk) need not be linearly independent in H ! The inner products in the left-
hand sums of (2.23) and (2.24) become⟨

w1,Φ(xi)
⟩
=

p+q∑
k=1

uk

⟨
Φ(xk),Φ(xi)

⟩
=

p+q∑
k=1

K(xi,xk)uk

⟨
w2,Φ(xi)

⟩
=

p+q∑
k=1

vk
⟨
Φ(xk),Φ(xi)

⟩
=

p+q∑
k=1

K(xi,xk)vk

and similarly, the inner products in the inequality conditions become
⟨
w1,Φ(xp+j)

⟩
=

p+q∑
k=1

K(xp+j,xk)uk

⟨
w2,Φ(xj)

⟩
=

p+q∑
k=1

K(xj,xk)vk.

(2.28)

Thus, (2.23) and (2.24) can be expressed in matrix notation as
min

u1,b1,ξ

1

2
∥X1u1 + b1e1∥2 + C1e

T
2 ξ

subject to

X2u1 + b1e2 ≥ e2 − ξ, ξ ≥ 0

(2.29)

and 
min

u2,b2,η

1

2
∥X2u2 + b2e2∥2 + C2e

T
1 η

subject to

X1u2 + b2e1 ≥ e1 − η, η ≥ 0.

(2.30)

 



27

where now X1 is a p× (p+ q) matrix and X2 is a q × (p+ q) matrix,

X1 =
[
K(xi,xk)

]
1≤i≤p,1≤k≤p+q

X2 =
[
K(xp+i,xk)

]
p+1≤i≤p+q,1≤k≤p+q

and again, b1, b2 ∈ R, e1 = (1, 1, . . . , 1)T ∈ Rp, e2 = (1, 1, . . . , 1)T ∈ Rq , while
ξ = (ξ1, ξ2, . . . , ξq)

T and η = (η1, η2, . . . , ηp)
T are the vectors of slack variables. Finally,

using (2.28) the decision function (2.25) can be expressed as

f(x) =


1 if

∣∣∣∣∣
p+q∑
k=1

ukK(xk,x) + b1

∣∣∣∣∣ ≤
∣∣∣∣∣
p+q∑
k=1

vkK(xk,x) + b2

∣∣∣∣∣
−1 else

which can be simplified to

f(x) =


1 if

∣∣⟨u1,K(x)
⟩
+ b1

∣∣ ≤ ∣∣⟨u2,K(x)
⟩
+ b2

∣∣
−1 else

(2.31)

where K(x) is the vector (K(x1,x), K(x2,x) . . . , K(xp+q,x)
)T ∈ Rp+q . Observe

that the two sets of equations (2.19), (2.20), (2.22), respectively (2.29), (2.30), (2.31) have
the same form. To obtain the normalized decision function (2.26) we observe that

∥w1∥2 = ⟨w1,w1⟩ =

⟨
p+q∑
i=1

uiΦ(xj),

p+q∑
k=1

ukΦ(xk)

⟩

=

p+q∑
i,k=1

ui ⟨Φ(xi),Φ(xk)⟩uk = uT
1Xu1.

(2.32)

and similarly,
∥w2∥2 = uT

2Xu2

where X is the (p+ q)× (p+ q) Gramian matrix

X =

X1

X2

 = [K(xi,xk)
]
1≤i,k≤p+q

.

Thus the normalized decision function (2.26) becomes

f(x) =


1 if

∣∣⟨u1,K(x)
⟩
+ b1

∣∣√
uT

1Xu1

≤
∣∣⟨u2,K(x)

⟩
+ b2

∣∣√
uT

2Xu2

−1 else.
(2.33)
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2.4.3 The dual problem for the twin support vector machine

Next we discuss the dual problem for the nonlinear twin support hyperplanes,
applying Theorems 2.1 and 2.2. The linear case will be a special, simplified version and
is omitted.

We start with problem (2.29)-(2.30). To simplify notation, we set

X̃1 =
[
X1 e1

]
∈ Mp,p+q+1 X̃2 =

[
X2 e2

]
∈ Mq,p+q+1,

X̃ =

X 0

0 1

 ∈ Mp+q+1,p+q+1,

ũ1 =

u1

b1

 ∈ Rp+q+1 ũ2 =

u2

b2

 ∈ Rp+q+1.

(2.34)

Then (2.29) can be expressed as
min
ũ1,ξ

1

2
∥X̃1ũ1∥2 + C1⟨e2, ξ⟩

subject to

e2 − ξ − X̃2ũ1 ≤ 0, −ξ ≤ 0.

(2.35)

while (2.30) can be expressed as
min
ũ2,η

1

2
∥X̃2ũ2∥2 + C2⟨e1,η⟩

subject to

e1 − η − X̃1ũ2 ≤ 0, −η ≤ 0

(2.36)

Proceeding in a similar way to the discussion after Theorem 2.1, the Lagrangian of (2.35)
now is

L(ũ1, ξ,α,β) =
1

2

∥∥∥X̃1ũ1

∥∥∥2 + C1⟨e2, ξ⟩+ ⟨α, e2 − ξ − X̃2ũ1⟩+ ⟨β,−ξ⟩

=
1

2

⟨
X̃T

1 X̃1ũ1, ũ1

⟩
−
⟨
X̃T

2 α, ũ1

⟩
+ ⟨α, e2⟩+ ⟨C1e2 −α− β, ξ⟩

for α,β ∈ Rq , α,β ≥ 0. Now the matrix X̃T
1 X̃1 is only positive semidefinite. In order

to be able to invert it lateron, one adds a small multiple of the identity matrix,

L(ũ1, ξ,α,β) =
1

2

⟨(
X̃T

1 X̃1 + δIp+q+1

)
ũ1, ũ1

⟩
−
⟨
X̃T

2 α, ũ1

⟩
+ ⟨α, e2⟩

+ ⟨C1e2 −α− β, ξ⟩
(2.37)
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for some small positive δ. By (KKT5), its gradient must vanish,

0 = ∇(ũ1,ξ)L(ũ1, ξ,α,β) =

(X̃T
1 X̃1 + δIp+q+1

)
ũ1 − X̃T

2 α

C1e2 −α− β

 .

This gives(
X̃T

1 X̃1 + δIp+q+1

)
ũ1 − X̃T

2 α = 0 and C1e2 −α− β = 0. (2.38)

The first equation can be solved for ũ1:

ũ1 =
(
X̃T

1 X̃1 + δIp+q+1

)−1

X̃T
2 α (δ small). (2.39)

Eliminating β = C1e2 −α from the second equation, using the fact that α,β ≥ 0, one
obtains

0 ≤ α ≤ C1e2. (2.40)

Now substituting (2.39) and the second equation of (2.38) into the Lagrangian (2.37), (here
(ũ1, ξ) takes the role of x∗ and α that of (λ∗,ν∗) in Theorem 2.1) one obtains

g(α) =
1

2

⟨(
X̃T

1 X̃1+δIp+q+1

)(
X̃T

1 X̃1+δIp+q+1

)−1
X̃T

2 α,
(
X̃T

1 X̃1+δIp+q+1

)−1
X̃T

2 α
⟩

−
⟨
X̃T

2 α,
(
X̃T

1 X̃1 + δIp+q+1

)−1
X̃T

2 α
⟩
+ ⟨α, e2⟩.

Because the matrix X̃T
1 X̃1 + δIp+q+1 is self-adjoint, this simplifies to

g(α) =
1

2

⟨(
X̃T

1 X̃1 + δIp+q+1

)−1

X̃T
2 α, X̃T

2 α

⟩
−
⟨(

X̃T
1 X̃1 + δIp+q+1

)−1

X̃T
2 α, X̃T

2 α

⟩
+ ⟨α, e2⟩

= −1

2

⟨(
X̃T

1 X̃1 + δIp+q+1

)−1

X̃T
2 α, X̃T

2 α

⟩
+ ⟨α, e2⟩.

Setting
Ω = X̃2

(
X̃T

1 X̃1 + δIp+q+1

)−1

X̃T
2 ∈ Mq(R)

and expressing the inner product in terms of matrix multiplication, the dual problem (2.13)
is here 

max
α

[
g(α) = −1

2
αTΩα+ ⟨α, e2⟩

]
subject to

0 ≤ α ≤ C1e2.

 



30

Expressed as a minimization problem,
min
α

1
2
αTΩα− ⟨α, e2⟩

subject to
0 ≤ α ≤ C1e2.

(2.41)

In a similar way, the dual problem of (2.36) is
min
γ

1
2
γTΓγ − ⟨γ, e1⟩

subject to
0 ≤ γ ≤ C2e1

(2.42)

where
Γ = X̃1

(
X̃T

2 X̃2 + δIp+q+1

)−1

X̃T
1 ∈ Mp(R).

Once these optimization problems have been solved, then ũ1 can be found using (2.39),
and similarly,

ũ2 =
(
X̃T

2 X̃2 + δIp+q+1

)−1

X̃T
1 γ. (2.43)

Finally, the decision functions (2.31) and (2.33) remain. The former can be written using
(2.4.3) as

f(x) =


1 if

∣∣⟨ũ1, K̃(x)
⟩∣∣ ≤ ∣∣⟨ũ2, K̃(x)

⟩∣∣
−1 else

(2.44)

where now K̃(x) =
(
K(x1,x), K(x2,x) . . . , K(xp+q,x), 1

)T ∈ Rp+q+1.

2.4.4 The twin bounded support vector machine

In contrast to the usual support vector machines, twin support vector machines do
not maximize the margins of the respective hyperplanes. Shao et al. (2011) introduced
a regularization term to (2.19) and (2.20) to obtain the twin bounded support vector
machine (TBSVM). An alternative name would be improved twin support vector machine.
In the linear case, (2.19) and (2.20) are modified to

min
w1,b1,ξ

1

2
∥X1w1 + b1e1∥2 + C1e

T
2 ξ +

C3

2

(
∥w1∥2 + b21

)
subject to

X2w1 + b1e2 ≥ e2 − ξ, ξ ≥ 0

(2.45)
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and 
min

w2,b2,η

1

2
∥X2w2 + b2e2∥2 + C2e

T
1 η +

C4

2

(
∥w2∥2 + b22

)
subject to

X1w2 + b2e1 ≥ e1 − η, η ≥ 0.

(2.46)

The added terms C3

2
(∥w1∥2 + b21) and C4

2
(∥w2∥2 + b22) help maximize the margins.

We focus on the nonlinear version. Using notation (2.34) together with (2.32), then
(2.35) and (2.36) become

min
ũ1ξ

1

2
∥X̃1ũ1∥2 + C1⟨e2, ξ⟩+

C3

2
ũT

1 X̃ũ1

subject to

e2 − ξ − X̃2ũ1 ≤ 0, −ξ ≤ 0

(2.47)

and 
min
ũ2η

1

2
∥X̃2ũ2∥2 + C2⟨e1,η⟩+

C4

2
ũT

2 X̃ũ2

subject to

e1 − η − X̃1ũ2 ≤ 0, −η ≤ 0

. (2.48)

The Lagrangian of (2.47) looks like that of (2.35) with just one added term,

L(ũ1, ξ,α,β) =
1

2

∥∥X̃1ũ1

∥∥2+C1⟨e2, ξ⟩+
C3

2
ũT

1 X̃ũ1+⟨α, e2 − ξ − X̃2ũ1⟩+⟨β,−ξ⟩

and after adding a small multiple of the identity matrix ,

L(ũ1, ξ,α,β) =
1

2

⟨(
X̃T

1 X̃1 + C3X̃ + δIp+q+1

)
ũ1, ũ1

⟩
−
⟨
X̃T

2 α, ũ1

⟩
+ ⟨α, e2⟩+ ⟨C1e2 −α− β, ξ⟩.

(2.49)

It vanishes when

0 = ∇(ũ1,ξ)(ũ1, ξ,α,β) =

(X̃T
1 X̃1 + C3X̃ + δIp+q+1

)
ũ1 − X̃T

2 α

C1e2 −α− β

 .

The solutions are obtained just as in the twin SVM case: Setting

Ω = X2

(
X̃T

1 X̃1 + C3X̃ + δIp+q+1

)−1

X̃T
2 ∈ Mq(R) and

Γ = X1

(
X̃T

2 X̃2 + C4X̃ + δIp+q+1

)−1

X̃T
1 ∈ Mp(R)
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one solves the dual minimization problems (2.41) and (2.42) to obtain the solutions (2.39)
and (2.43) for the respective hyperplanes,

ũ1 =
(
X̃T

1 X̃1 + C3X̃ + δIp+q+1

)−1

X̃T
2 α

ũ2 =
(
X̃T

2 X̃2 + C4X̃ + δIp+q+1

)−1

X̃T
1 γ

and the decision functions are still (2.33) in the normalized case, respectively (2.44) in the
non-normalized case.

2.5 Least squares twin support vector machines

One may also modify the twin support vector machine to least square form. As
with the regular support vector machine (SVM), the penalty term in the least squares twin
support vector machine (LSTSVM) will be quadratic, and the constraints become equality
constraints. Again, we only present the more general and difficult nonlinear case. The
discussion parallels that of the twin support vector machine. Modifying (2.23) and (2.24)
one obtains the problems

min
w1,b1,ξ1,...ξq

p∑
i=1

∣∣⟨w1,Φ(xi)⟩+ b1
∣∣2 + C1

2

q∑
j=1

ξ2j

subject to

⟨w1,Φ(xp+j)⟩+ b1 = 1− ξj (j = 1, . . . , q)

(2.50)

and 

min
w2,b2,η1,...ηp

p+q∑
i=p+1

∣∣⟨w2,Φ(xi)⟩+ b2
∣∣2 + C2

2

p∑
j=1

η2j

subject to

⟨w2,Φ(xj)⟩+ b2 = 1− ηj (j = 1, . . . , p).

(2.51)

The equality constraints together with the penalty terms try to place the data of
the “other” class proximal to a parallel hyperplane at margin −1. The decision function
remains of the form (2.25). Expressed in matrix notation (compare with (2.29) and (2.30)),
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Figure 2.6 A linear Least Squares Twin SVM.

the above optimization problems become
min
ũ1,ξ

1

2
∥X̃1ũ1∥2 +

C1

2
∥ξ∥2

subject to

e2 − ξ − X̃2ũ1 = 0

(2.52)

and 
min
ũ2,η

1

2
∥X̃2ũ2∥2 +

C2

2
∥η∥2

subject to

e1 − η − X̃1ũ2 = 0.

(2.53)

The Lagrangian of (2.52) is

L(ũ1, ξ,α) =
1

2

∥∥∥X̃1ũ1

∥∥∥2 + C1

2
∥ξ∥2 + ⟨α, e2 − ξ − X̃2ũ1⟩

=
1

2

⟨
X̃T

1 X̃1ũ1, ũ1

⟩
+

C1

2
∥ξ∥2 −

⟨
X̃T

2 α, ũ1

⟩
+ ⟨α, e2⟩ − ⟨α, ξ⟩

for α ∈ Rq . The computations that follow are similar to the least square support vector
machine (LSSVM). The gradient of the Lagrangian vanishes when

0 = ∇(ũ1,ξ)(ũ1, ξ,α) =

X̃T
1 X̃1ũ1 − X̃T

2 α

C1ξ −α

 .

which gives
X̃T

1 X̃1ũ1 = X̃T
2 α and ξ =

1

C1

α. (2.54)
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Substituting the second equation of (2.54) into the equality condition of (2.52) and mul-
tiplying by X̃T

2 one obtains

X̃T
2 X̃2ũ1 +

1

C1

X̃T
2 α = X̃T

2 e2.

Then the first equation in (2.54) then gives(
X̃T

2 X̃2 +
1

C1

X̃T
1 X̃1

)
ũ1 = X̃T

2 e2.

Again, the above matrix my not be positive definite, hence adding a small multiple of the
identity matrix one obtains

ũ1 =

(
X̃T

2 X̃2 +
1

C1

X̃T
1 X̃1 + δIp+q+1

)−1

X̃T
2 e2. (2.55)

Similarly, the solution of (2.53) is

ũ2 =

(
X̃T

1 X̃1 +
1

C2

X̃T
2 X̃2 + δIp+q+1

)−1

X̃T
1 e1. (2.56)

The decision function remains unchanged from (2.31), respectively (2.33).

2.5.1 Improved least squares twin support vector machine

In a way similar to that leading to the twin bounded support vector machine,
Xu et al. (2012) added a regularization term to the least squares twin support vector
machine (2.52) and (2.53) to obtain the improved least squares twin support vector ma-
chine (ILSTWM) (which was re-introduced as regularized least squares twin support vector
machine by Ali et al. (2022)),

min
ũ1,ξ

1

2
∥X̃1ũ1∥2 +

C1

2
∥ξ∥2 + C3

2
ũT

1 X̃ũ1

subject to

e2 − ξ − X̃2ũ1 = 0

(2.57)

and 
min
ũ2,η

1

2
∥X̃2ũ2∥2 +

C2

2
∥η∥2 + C4

2
ũT

2 X̃ũ2

subject to

e1 − η − X̃1ũ2 = 0.

(2.58)
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Considering the definition of the vectors ũ1 and ũ2 in (2.34), this extra term again attempts
to maximize the margin. The Lagrangian of (2.57) is

L(ũ1, ξ,α) =
1

2

∥∥∥X̃1ũ1

∥∥∥2 + C1

2
∥ξ∥2 + C3

2
ũT

1 X̃ũ1 + ⟨α, e2 − ξ − X̃2ũ1⟩,

and after adding a small multiple of the identity matrix,

L(ũ1, ξ,α) =
1

2

⟨(
X̃T

1 X̃1 + C3X̃ + δIp+q+1

)
ũ1, ũ1

⟩
+

C1

2
∥ξ∥2

−
⟨
X̃T

2 α, ũ1

⟩
+ ⟨α, e2⟩ − ⟨α, ξ⟩

for α ∈ Rq . Its gradient vanishes when

0 = ∇(ũ1,ξ)L(ũ1, ξ,α) =

(X̃T
1 X̃1 + C3X̃ + δIp+q+1

)
ũ1 − X̃T

2 α

C1ξ −α

 .

which gives(
X̃T

1 X̃1 + C3X̃ + δIp+q+1

)
ũ1 = X̃T

2 α and ξ =
1

C1

α. (2.59)

Substituting the second equation of (2.59) into the equality condition of (2.57) and mul-
tiplying by X̃T

2 one obtains

X̃T
2 X̃2ũ1 +

1

C1

X̃T
2 α = X̃T

2 e2.

Then the first equation in (2.59) gives(
X̃T

2 X̃2 +
1

C1

X̃T
1 X̃1 +

C3

C1

X̃ +
δ

C1

Ip+q+1

)
ũ1 = X̃T

2 e2.

The matrix on the left is positive definite because we have added δ > 0, and one obtains

ũ1 =

(
X̃T

2 X̃2 +
1

C1

X̃T
1 X̃1 +

C3

C1

X̃ +
δ

C1

Ip+q+1

)−1

X̃T
2 e2. (2.60)

Similarly, the solution of (2.58) is

ũ2 =

(
X̃T

1 X̃1 +
1

C2

X̃T
2 X̃2 +

C4

C2

X̃ +
δ

C2

Ip+q+1

)−1

X̃T
1 e1. (2.61)

The decision functions are still identical to (2.31) (or equivalently to (2.44)) in the non-
normalized case and to (2.33) in the normalized case.
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Figure 2.7 Flowchart of the SVM variations.

2.5.2 Robust energy-based least squares twin support vector machine

Tanveer et al. (2016) have added a parameter to the constraints of the improved
LSTSVM to obtain the Robust energy-based least squares twin support vector machine
(RELS-TSVM): 

min
ũ1,ξ

1

2
∥X̃1ũ1∥2 +

C1

2
∥ξ∥2 + C3

2
ũT

1 X̃ũ1

subject to

E1e2 − ξ − X̃2ũ1 = 0

(2.62)

and 
min
ũ2,η

1

2
∥X̃2ũ2∥2 +

C2

2
∥η∥2 + C4

2
ũT

2 X̃ũ2

subject to

E2e1 − η − X̃1ũ2 = 0.

(2.63)

The additional scaling parameters E1 and E2 will place the data of the “other” class
proximal to a parallel hyperplane at margin −E1, respectively −E2 instead of −1. The
solution steps are essentially identical to the improved least squares twin support vector
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machine, and give

ũ1 =

(
X̃T

2 X̃2 +
1

C1

X̃T
1 X̃1 +

C3

C1

X̃ +
δ

C1

Ip+q+1

)−1

X̃T
2 E1e2. (2.64)

Similarly, the solution of (2.58) is

ũ2 =

(
X̃T

1 X̃1 +
1

C2

X̃T
2 X̃2 +

C4

C2

X̃ +
δ

C2

Ip+q+1

)−1

X̃T
1 E2e1. (2.65)

2.5.3 Analysis of the RELS-TVSM

At a first look, it appears that introduction of the parameters E1 and E2 gives
two more parameters to fine tune the twin SVM. This is, however, not the case. The
parameters E1 and E2 simply lead to a scaling of the hyperplane vectors ũ1 and ũ2 by
these parameter values, as can be seen by comparing the pairs of equations (2.60) and
(2.64), respectively (2.61) and (2.65).

Thus, the normalized decision function (2.33) remains unchanged: That is, when
using the normalized decision function then the RELS-TVSM coincides with the improved
least squares support vector machine and the two parametersE1 andE2 are superfluous.

On the other hand, when using the non-normalized decision function, there is
one change. Write the decision function (2.31) (i.e. (2.44)) in the form

f(x) =


1 if

∣∣⟨ũ1, K̃(x)
⟩∣∣∣∣⟨ũ2, K̃(x)
⟩∣∣ ≤ 1

−1 else
(2.66)

it is obvious that its outcome depends on the ratio E1

E2
. That is, one may choose E2 = 1

and there will be only one additional parameterE1 that needs to be optimized in training.

2.6 Performance evaluation

There are various metrics available to evaluate the performance of machine learn-
ing classification models. We specifically focus on the metrics based on the confusion
matrix. For a two-class problem, the confusion matrix is given in Table 2.1, where

• TP (true positive) is the number of positive data classified as positive.
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• TN (true negative) is the number of negative data classified as negative.

• FP (false positive) is the number of misclassified negative data.

• FN (false negative) is the number of misclassified positive data.

Table 2.1 Confusion matrix.

Predicted negative Predicted positive
Actual negative TN FP
Actual positive FN TP

For the evaluation of classifier performance, some of the commonly used mea-
sures based on the above confusion matrix are:

1. Accuracy, also known as a recognition rate, is the ratio of the total number of
correctly classified samples to the total number of input samples.

Accuracy/Recognition rate =
TP + TN

TP + TN + FP + FN
(2.67)

2. Sensitivity, also known as recall or true positive rate, is ratio of the number of
correctly classified positive samples to the total number of positive samples.

Sensitivity/Recall = TP

TP + FN
(2.68)

3. Specificity or true negative rate is defined as the ratio of the number of correctly
classified negative samples to the toal number of negative samples.

Specificity = TN

TN + FP
(2.69)

4. Precision, also called positive predictive value, is the ratio of the number of true
positive predictions to the total number of positive predicted samples.

Precision =
TP

TP + FP
(2.70)

Precision and recall are the most commonly usedmetrics in diagnosis of medical problems
since misclassification of an unhealthy sample as a normal sample is fatal as compared
to healthy sample being classified as disease-free.

 



CHAPTER III
MULTICLASS SUPPORT VECTOR MACHINES AND DECISION

STRATEGIES

In this chapter we first review the various multiclass support vector machines
with regards to decision strategies. We then compare the performance of the various
variations of multiclass support vector machines and decision strategies, using our own
results and those published in the literature. We finally propose a new strategy which
we call minimum average distance for multiclass decisions and compare its performance
with the common strategies.

3.1 Multiclass support vector machines

In real world scenarios one often deals with data that is separated into multiple
classes. Because support vector machines perform binary classification, one usually de-
composes a multiclass decision problem into an ensemble of binary decision problems.
There are several ways of decision making in multiclass problems by combining the binary
decisions, namely:

1. One versus all,

2. All versus one,

3. One versus one,

4. Directed acyclic graph.

For the rest of this section, we consider an N−class problem whose training data
set is given by

Γ = {(x1, y1), (x2, y2), . . . , (xl, yl)}
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where xk ∈ Rn, yk ∈ {1, 2, . . . , N}, k = 1, 2, . . . , l. Then the problem is to obtain a
decision function f(x) : Rn → {1, 2, . . . , N} that can predict an appropriate label y for
an input x:

f(xk) = yk

for all training data.
Much of the presentation in this section is based on (Abe, 2010). For each i, let

Di denote the training data belonging to the i-th class, that is,

Di = {x : (x, i) ∈ Γ}, i = 1, . . . , N.

Throughout we assume that all support vector machines involved in a multiclass
problem use the same kernels and the same parameter values. This means in particular
that the map Φ is identical throughout.

3.1.1 One versus all (OVA)

This method is also called “one against the rest”. For each of the data classes, one
trains a support vector machine separating the given class from the union of the remaining
classes. One thus obtains N support vector machines with N decision functions fi(x)
so that

fi(x) =


1 if x is in class i

−1 if x is not in class i,
(i = 1, . . . , N). Now if fi(x) = 1 for a unique i, then this will be the class to which x

belongs. However, it may happen that fi(x) = 1 for more than one i, or that fi(x) = −1

for all i, so that x becomes unclassifiable.
This can be overcome, though, by looking at “continuous” decision values.

1. (The case of single hyperplane SVMs) Recall that the equations

gi(x) = ⟨wi,Φ(x)⟩+ bi

are a signed measure of the distance of the point Φ(x) from the separating hyper-
plane gi(x) = 0. One may thus interpret its value as the likelihood of x belonging
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to class i. Thus, the input data x is assigned the class label

io = arg max
i=1,...,N

gi(x)

2. (The case of twin hyperplane SVMs) Recall that each of the N twin support vector
machines has two hyperplanes. Modifying the notation (2.25), then

g+i (x) =
∣∣⟨w+

i ,Φ(x)⟩+ b+i
∣∣

determines the distance of Φ(x) from the hyperplane of class i, while

g−i (x) =
∣∣⟨w−

i ,Φ(x)⟩+ b−i
∣∣

determines the distance of Φ(x) from the hyperplane of the remaining classes.
The input data x is assigned the class label

io = arg min
i=1,...,N

g+i (x),

to select the class of the hyperplane to which x is closest. In the spirit of (2.26)
one may also choose

g+i (x) =

∣∣⟨w+
i ,Φ(x)⟩+ b+i

∣∣
∥w+

i ∥

representing the actual distance.

3.1.2 All versus one (AVO)

This strategy only applies to twin hyperplane SVMs. In contrast to the one-versus-
all strategy, one selects the class where the vectorΦ(x) is farthest away from the “other”
hyperplane: Thus, the input data x is assigned the class label

io = arg max
i=1,...,N

g−i (x) = arg max
i=1,...,N

∣∣⟨w−
i ,Φ(x)⟩+ b−i

∣∣ .
Alternatively using real distances,

io = arg max
i=1,...,N

∣∣⟨w−
i ,Φ(x)⟩+ b−i

∣∣
∥w−

i ∥
.
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3.1.3 One versus one (OVO)

Here one determines the decision functions for all combinations of class pairs.
Let the decision function for class i against class j be denoted by fij(x) so that

fij(x) =


1 if x is in class i

−1 if x is in class j,

for j ̸= i. Then clearly, fji(x) = −fij(x). Hence, for an N -class problem, N(N − 1)

2
decision functions are required.

Consider the regions

Ri = {x ∈ Rn | fij(x) = 1, j = 1, . . . , N, j ̸= i}, i = 1, . . . , N

That is, for each i, Ri is the region of data where the i-th machine wins over all remaining
machines. Clearly, these regions are disjoint, and if x ∈ Ri then x ∈ Class i.

However, these regions do not cover the whole space Rn. It may thus be possible
that some data point x does not lie in any of these regions, hence is unclassifiable. One
therefore modifies the strategy: instead of choosing the class that “always wins” one
chooses the class that “wins most often”: For each i, set

fi(x) =
N∑

j=1,j ̸=i

sgn(fij(x)) + 1

2
,

where here

sgn(x) =


1 if x ≥ 0

−1 if x < 0.

The function fi(x) indicates how many times machine i “wins” over the other machines.
Then x gets the class label

io = arg max
i=1,...,N

fi(x)

This is also called the maximum vote strategy. Observe that the maximizer io need not
be unique. In this case, one can assign the sample point x to any maximizing io.
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3.1.4 Directed acyclic graph (DAG)

This is a modification of the one-versus-one strategy. The decisions are made
moving along a directed acyclic graph. This is best explained by the example of Figure
3.1. Suppose, there are N = 4 classes. Each vertex represents one of the 6 decision
functions fij . Decisions are made following from the root node to one of the end nodes,
and requires only 3 decisions instead of 6.

In general, one still needs to train N(N−1)
2

machines. However, only N − 1 deci-
sions are required.

1 vs 4

1 vs 3 2 vs 4

1 vs 2 2 vs 3 3 vs 4

1 2 3 4

1 4

1 3 2 4

1 2 2 3 3 4

Figure 3.1 DAG decision making (N = 4)

3.2 Reviewing performance results from the literature

There is a bulk of literature introducing variations of support vector machines
and evaluating their performances by numerical experiments for multiclass data. One
difficulty in assessing the best suited type is that the published performance data may
use different datasets and thus the results are not comparable.

Tomar and Agarwal (2015) and Ali et al. (2022) present performance comparisons
of various support vector machine variations for multiclass data, under different multi-
class strategies. They are using highly unbalanced datasets downloadable from the UCI
database. Their results seem to show that overall, the least square SVM based models
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exhibit better performance than the usual SVM or twin SVM based models, and in some
cases achieve 100% accuracy. One problem in their presentation, however, is that in the
case of the usual SVM / twin SVM models they only consider the basic models, and do
not explain the multiclass decision strategies.

We have run their tests for some of the datasets, and our results do not confirm
theirs in many instances. In particular, our computations never achieved 100% accuracy
as claimed by the authors for some datasets, and our results do not allow the conclusion
that least square SVM models give better accuracy in general. The following table shows
a comparison of our results with those presented in Ali et al. (2022). All models are
nonlinear using the RBF kernel

K(x,y) = exp
(
−∥x− y∥2

2σ2

)
(respectively K(x,y) = exp (−γ∥x− y∥2

)
).

In each case, initially parameter optimization was performed by grid search (parameters
Ci for the model, kernel parameter σ). Then ten runs of ten-fold cross validation were
performed using the optimized parameter values. Table 3.1 lists the average accuracies
and standard deviations obtained in our computations over the ten runs. The accuracy
values correspond to the “accuracy-1” of Chapter 7, and all results listed are percentages.
Computations were performed with Matlab R2019b on a Macbook Air notebook, Intel I5
1.8GHz CPU and 8GB Ram.

The following SVMs are included:

• SVM: The usual support vector machine as outlined in section 2.2.

• TWSVM: Twin support vector machine as outlined in section 2.4

• TBSVM: Twin bounded support vector machine as outlined in subsection 2.4.4

• LSTSVM: Least squares twin support vector machine as outlined in section 2.5

• ILSTSVM: Improved least squares twin support vector machine as outlined in sub-
section 2.5.1

Ali et al. (2022) have published results for only a subset of these SVMs, the missing
data are labeled by ‘n/a’ in the table.
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3.2.1 Discussion

Balance dataset: The one-versus-one decision strategies come out on top, with accu-
racies above 99.5% in case of the regular SVM, twin SVM and twin bounded SVM. The
least-squares SVMs tend to have lower accuracies. It is noticeable that in our test with
the regular SVM, using the libsvm library, an accuracy of 99.8% could be achieved, whereas
Tomar and Agarwal (2015) and Ali et al. (2022) show an accuracy of 84.59% only. Unfortu-
nately, the authors do not explain what type of one-vs-one decision strategy they apply.
The results presented by these authors suggest that least-squares based twin SVMs show
substantially better performance, which is contradicted by our results.

Hayes-Roth dataset: The accuracies of all SVM types and all decision strategies are in
similar ranges: 84.48%–87.34%, with the twin bounded SVM giving the best accuracy.
Again, our results differ substantially from those by Ali et al. (2022). They claim to have
achieved an accuracy of 100% using the improved least squares twin SVM and at all
decision strategies.

Ecoli dataset: The accuracies of all SVM types and all decision strategies are in similar
ranges: 85.81%–89.91%, with the twin bounded SVM giving the best accuracy. Interest-
ingly, the all-versus-one strategy gave best results. Overall, our results are somehow
better than those by Ali et al. (2022).

Glass dataset: The one-versus-one strategy appears to be best for all SVMs. This is a
dataset where the twin support SVMs perform noticeably better than the regular SVM.
The best accuracy of 74.55% was achieved with the twin bounded SVM. Ali et al. (2022)
claim to have achieved a performance of up to 98.47% accuracy. This is in contradiction
to all published results known to us and unlikely to be true. The Glass dataset is highly
unbalanced, and there are no publications showing accuracies in the upper 80% range or
higher.

Iris dataset: The accuracies of all SVM types and all decision strategies are in similar
ranges: 97.6%–98.67%, with the twin bounded SVM giving the best accuracy. Overall, our
results are in alignment with those by Ali et al. (2022).
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Table 3.1 Performance comparison of multiclass SVMs and twin SVM variants.
Dataset SVM SVM TWSVM TWSVM TWSVM TWSVM

(OVA) (OVO) (OVA) (AVO) (OVO) (DAG)
(C, γ) (C, γ) (C1 = C2, σ) (C1 = C2, σ) (C1 = C2, σ) (C1 = C2, σ)

acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%)

Balance 29, 2−1 21, 2−7 25, 24 24, 24 25, 21 25, 21

99.26 ± 0.97 99.98 ± 0.16 96.91 ± 1.93 97.15 ± 2.12 99.97 ± 0.7 99.78 ± 0.64

10−2, 24 10−6, 22

(Ali et al.) n/a 84.59 ± 6.67 n/a 89.22 ± 5.88 n/a n/a

Hayes-Roth 212, 2−7 25, 2−5 22, 28 2−2, 24 22, 23 22, 23

86.34 ± 6.57 86.27 ± 8.58 86.19 ± 8.92 86.32 ± 7.75 86.6 ± 7.7 85.92 ± 9.21

10−3, 24 10−4, 24

(Ali et al.) n/a 72.30 ± 4.08 n/a 73.35 ± 3.26 n/a n/a

Ecoli 23, 20 20, 24 2−1, 27 21, 27 2−3, 25 2−3, 25

89.14 ± 5.04 89.4 ± 4.27 88.84 ± 5.14 89.17 ± 4.83 89.18 ± 4.31 89.24 ± 5

10−6, 21 10−6, 27

(Ali et al.) n/a 83.35 ± 6.28 n/a 82.01 ± 5.17 n/a n/a

Glass 215, 2−1 29, 21 2−4, 21 2−13, 2−2 2−4, 20 2−4, 20

71.96 ± 10.56 71.49 ± 10.32 70.09 ± 9.44 69.29 ± 9.32 72.79 ± 8.2 73.78 ± 7.83

10−4, 20 10−6, 21

(Ali et al.) n/a 71.03 ± 6.02 n/a 69.52 ± 5.15 n/a n/a

Iris 21, 2−3 28, 2−10 2−1, 22 21, 25 2−2, 26 2−2, 26

98.27 ± 3.37 98.67 ± 2.68 97.73 ± 3.45 97.8 ± 3.29 98.27 ± 3.23 98.27 ± 3.23

100, 22 100, 21

(Ali et al.) n/a 97.33 n/a 98.00 ± 2.26 n/a n/a
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Table 3.1 (Continued).
Dataset TBSVM TBSVM TBSVM LSTSVM LSTSVM LSTSVM LSTSVM ILSTSVM ILSTSVM ILSTSVM ILSTSVM

(OVA) (AVO) (OVO) (OVA) (AVO) (OVO) (DAG) (OVA) (AVO) (OVO) (DAG)
(C1 = C2, (C1 = C2, (C1 = C2, (C1 = C2, σ) (C1 = C2, σ) (C1 = C2, σ) (C1 = C2, σ) (C1 = C2, (C1 = C2, (C1 = C2, (C1 = C2,

C3 = C4, σ) C3 = C4, σ) C3 = C4, σ) C3 = C4, σ) C3 = C4, σ) C3 = C4, σ) C3 = C4, σ)

acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%)

Balance 2−14, 2−18, 2−1 23, 2−18, 24 24, 2−13, 21 2−15, 21 2−6, 2−1 23, 22 23, 2−2 2−17, 2−17, 2−1 2−8, 2−15, 20 24, 2−12, 2−1 24, 2−12, 2−1

97.78 ± 1.79 96.08 ± 2.61 99.5 ± 0.96 97.6 ± 1.64 91.76 ± 0.95 96.37 ± 2.16 96.59 ± 1.92 96.82 ± 2.23 92.85 ± 2.61 97.33 ± 1.9 97.12 ± 1.87

10−7, 23 10−7, 21 101, 2−2 10−7, 23 10−5, 10−3, 23 101, 10−3, 21 10−2, 10−4, 2−2 10−2, 10−4, 23

(Ali et al.) n/a n/a n/a 93.75 ± 5.15 86.89 ± 4.02 88.21 ± 3.2 95.05 ± 4.4 95.68 ± 2.93 92 ± 0.76 98.56 ± 0.90 98.57 ± 2.04

Hayes-Roth 24, 20, 21 2−2, 2−5, 22 210, 2−7, 23 20, 22 2−1, 24 23, 26 23, 26 21, 2−8, 21 2−1, 2−6, 20 25, 2−9, 26 25, 2−9, 26

86.14 ± 8.23 86.37 ± 8.52 87.34 ± 9.23 84.46 ± 8.48 86.25 ± 8.14 86.4 ± 8.9 85.59 ± 9.27 85.92 ± 7.26 86.05 ± 7.46 86.9 ± 9.54 85.81 ± 8.78

10−3, 23 10−4, 25 10−4, 24 10−4, 24 10−3, 10−4, 23 10−4, 10−5, 25 10−4, 10−5, 24 10−4, 10−5, 24

(Ali et al.) n/a n/a n/a 71.43 ± 3.08 72.86 ± 2.53 76.38 ± 3.63 79.92 ± 3.05 100 ± 0 100 ± 0 100 ± 0 100 ± 0

Ecoli 2−1, 2−14, 27 20, 2−16, 23 2−2, 2−14, 26 2−4, 21 2−2, 2−2 2−2, 2−2 2−2, 2−2 20, 21, 2−1 20, 21, 2−1 2−3, 2−8, 22 2−3, 2−8, 22

89.16 ± 5.35 89.91 ± 4.64 89.61 ± 4.9 86.97 ± 5.33 87.6 ± 5.59 87.22 ± 4.58 87.13 ± 4.96 89.88 ± 4.79 89.91 ± 4.84 89.67 ± 5.06 85.81 ± 8.78

10−6, 21 10−5, 21 10−5, 21 10−5, 21 100, 10−3, 21 100, 10−3, 21 100, 10−2, 21 10−5, 10−2, 21

(Ali et al.) n/a n/a n/a 84.38 ± 6.26 82.67 ± 5.35 74.78 ± 5.56 76.13 ± 4.77 85.13 ± 4.80 88.67 ± 6.28 88.99 ± 4.95 88 ± 4.78

Glass 20, 2−1, 2−1 2−2, 2−12, 20 2−4, 2−9, 20 2−1, 21 2−4, 20 2−3, 21 2−3, 21 2−4, 2−8, 20 24, 2−4, 20 2−3, 2−8, 20 2−3, 2−8, 20

72.73 ± 8, 47 71.6 ± 9.29 74.55 ± 9 71.62 ± 7.87 72.49 ± 9.2 73 ± 9.97 74.16 ± 6.8 73.59 ± 8.42 73.5 ± 8.9 74.07 ± 8.7 74.16 ± 8.79

10−7, 20 10−5, 21 10−5, 27 10−7, 27 10−4, 10−5, 20 10−2, 10−3, 21 10−2, 10−3, 27 10−2, 10−3, 27

(Ali et al.) n/a n/a n/a 86.85 ± 5.32 94.82 ± 4.61 92.56 ± 5.3 95.89 ± 3.71 96.95 ± 4.04 98.47 ± 2.51 98.01 ± 3.39 76.63 ± 2.07

Iris 2−1, 2−5, 23 2−1, 2−2, 22 20, 2−6, 25 22, 22 2−12, 25 23, 28 23, 28 2−1, 2−6, 22 2−12, 2−12, 25 2−1, 2−7, 24 2−1, 2−7, 24

97.8 ± 3.29 98.4 ± 3.01 98.67 ± 2.84 97.67 ± 3.83 97.6 ± 4.08 98.47 ± 2.82 98.4 ± 3.01 98 ± 3.35 97.73 ± 3.93 98 ± 3.48 98 ± 3.48

10−1, 23 100, 22 10−2, 23 100, 23 10−1, 10−1, 23 100, 10−1, 22 101, 10−2, 23 100, 100, 23

(Ali et al.) n/a n/a n/a 97.75 ± 2.57 96.45 ± 2.26 96.82 ± 2.03 98.21 ± 1.83 97.90 ± 4.76 98.12 ± 3.09 98.08 ± 3.10 98.30 ± 3.78
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We have tried to contact the authors of both papers to clarify the reasons for the
discrepancies, but have not received an answer.

Decision strategy:
The one-versus-one decisions tend to show the best accuracies. The exception

is the Ecoli dataset, where the all-versus-one strategy gives the best accuracy, if only a
small margin. The DAG variation of the one-versus-one strategy shows accuracies that are
comparable with the regular one-versus-one strategy.

Single hyperplane SVM versus twin hyperplanes SVM: Both types of support vector ma-
chines show similar accuracies. The exception is the Glass dataset, where the twin SVM
has an edge in accuracy of 1.3%.

Improved versus non-improved twin SVMs: Introducing the additional regularization pa-
rameters C3 and C4 increases the accuracy in the great majority of all cases, by up to
2.3%.

Twin versus least-squares twin SVMs: The least squares versions of the twin SVM tend to
show lower accuracies for all datasets with the exception of the Ecoli dataset where the
improved least squares twin SVM can match the twin bounded SVM.

3.3 A new strategy for multiclass twin support vector machines –
decision by minimum average distance

As indicated in subsection 3.1.3, in one-versus-one classification one uses the
maximum vote strategy. In the case of twin support vector machines, decisions are arrived
at by converting continuous values, namely distances, into discrete decisions: ±1. We
therefore propose an alternative decision process which takes the continuous values into
consideration, called the average minimum distance strategy.

We recall the maximum vote algorithm for the twin support vector machines.
First consider the decision between any one pair of classes, class i and class j (i ̸= j).
Modifying the notation (2.25), the decision is made by considering hyperplanes

gij(x) = ⟨wij,Φ(x)⟩+ bij
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and
gji(x) = ⟨wji,Φ(x)⟩+ bji,

and the decision i-versus-j is determined by

fij(x) = −fji(x) =


1 if |gij(x)| ≤ |gji(x)|

−1 else.
Then the number of votes in favour of the i-th class is

fi(x) =
N∑

j=1,j ̸=i

sgn(fij(x)) + 1

2
, (i = 1, . . . , N)

and the winning class is that of the maximal number of votes,

io = arg max
i=1,...,N

fi(x). (3.1)

When io is not be unique, then a “tie-breaker” is needed.

3.3.1 The minimum average distance vote

Next we describe the new minimum average distance vote. Recall that

|gij(x)| = |⟨wij,Φ(x)⟩+ bij|

is the unnormalized distance of vector Φ(x) from the hyperplane gij(x) = 0. Alterna-
tively, one may work with the real distances,

|gij(x)| =
|⟨wij,Φ(x)⟩+ bij|

∥wij∥
.

We therefore set

fi(x) =
1

N − 1

N∑
j=1,j ̸=i

|gij(x)|, (i = 1, . . . , N)

which is the average distance of Φ(x) from the class i hyperplanes in all the i-versus-j
twin SVMs. Then x is assigned to the class which has smallest average distance,

io = arg min
i=1,...,N

fi(x),

A comparison of accuracy between this method and other one-versus-one deci-
sions is given in Table 3.2. It shows that for three out of the five data sets, the minimum
average distance vote gives better accuracy. In case of the Balance dataset, 100% accu-
racy could be achieved.
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Table 3.2 Comparisons between maximum-vote (mv) and minimum average distance (md) in one-versus-one multiclass decisions.

Dataset TWSVM TWSVM LSTSVM LSTSVM ILSTSVM ILSTSVM TBSVM TBSVM
(OVO-mv) (OVO-md) (OVO-mv) (OVO-md) (OVO-mv) (OVO-md) (OVO-mv) (OVO-md)
(C1 = C2, σ) (C1 = C2, σ) (C1 = C2, σ) (C1 = C2, σ) (C1 = C2, (C1 = C2, (C1 = C2, (C1 = C2,

C3 = C4, σ) C3 = C4, σ) C3 = C4, σ) C3 = C4, σ)

acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%) acc±std(%)

Balance 25, 21 28, 20 23, 22 2−4, 2−2 24, 2−12, 2−1 2−11, 2−12, 2−1 24, 2−13, 21 211, 2−11, 20

99.97± 0.7 100± 0 96.37± 2.16 97.34± 1.75 97.33± 1.9 98.3± 1.42 99.5± 0.96 99.95± 0.28

Hayes- 22, 23 24, 23 23, 26 2−4, 26 25, 2−9, 26 2−3, 2−12, 25 210, 2−7, 23 29, 2−16, 24

Roth 86.6± 7.7 86.16± 7.81 86.4± 8.9 86.5± 9.74 86.9± 9.54 86.64± 9.01 87.34± 9.23 86.6± 8.72

Ecoli 2−3, 25 2−1, 24 2−2, 2−2 2−2, 2−2 2−3, 2−8, 22 20, 20, 2−2 2−2, 2−14, 26 2−2, 2−3, 20

89.18± 4.31 89.55± 4.51 87.22± 4.58 86.86± 5.66 89.67± 5.06 89.58± 4.48 89.61± 4.9 89.91± 4.42

Glass 2−4, 20 2−4, 20 2−3, 21 2−3, 21 2−3, 2−8, 20 2−1, 2−6, 2−1 2−4, 2−9, 20 2−4, 2−9, 20

72.79± 8.2 73.37± 8.48 73± 9.97 75.34± 8.43 74.07± 8.7 72.75± 9.24 74.55± 9 74.3± 8.99

Iris 2−2, 26 2−2, 26 23, 28 21, 27 2−1, 2−7, 24 2−1, 2−7, 24 20, 2−6, 25 2−1, 2−3, 23

98.27± 3.23 97.53± 3.5 98.47± 2.82 98.67± 2.84 98± 3.48 98.13± 3.15 98.67± 2.84 98.4± 3.3
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3.3.2 The minimum average distance vote as a tie breaker

In the maximum votes strategy (3.1) it may happen that the largest number of
votes is obtained for more than one class. The usual strategy is to pick any of these
classes randomly as winner. As an alternative, we propose to use the minimum average
distance as a tie breaker. We will consider this method later in this thesis.

 



CHAPTER IV
THE STRUCTURE OF HUMAN EYE AND DIABETIC

RETINOPATHY

This chapter gives a brief description of the characteristics and stages of diabetic
retinopathy.

4.1 The structure of the eye and vision functions

The eye is a complex and fascinating primary organ of vision. Over 80% of our sensory
input comes through sight. Some of the major parts of the eye along with its functions
are outlined below.

Figure 4.1 Cross-sectional anatomy of the eye. (source: WHO, 2020)

There are three compartments in the eye, namely, the anterior chamber, the
posterior chamber, and the vitreous cavity.
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Figure 4.2 Ophthalmoscopic appearance of the eye.
(source: https://www.worldscientific.com/doi/pdf/10.1142/9789813275607_0001)

The cornea is a clear avascular tissue covering one-sixth of the surface of the eyeball.
Most of the eyes refractive power is produced by the cornea.

The iris is the most anterior part of the uvea - the main vascular layer of the eye. It is
composed of blood vessels and connective tissue and is responsible for its distinctive
color. The contraction and dilation of pupil is allowed due to the mobility of the iris .

The lens is a biconvex structure located behind the pupil. It contributes in focusing light
or an image onto the retina.

The retina is the innermost nervous coat located at the back of the eye. It receives the
focused light from the lens, converts it to neural signals and transmit to the brain.

The macula is yellowish oval-shaped and located in the centre of the retina. It is highly
responsive and sensitive to light and color. It ensures central vision to the eye.

The optic nerve, located at the back of the eye, is the largest sensory nerve of the eye.
It is responsible for visual communication from the retina to the brain.
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4.2 Diabetic retinopathy

4.2.1 Clinical features of diabetic retinopathy

Clinically visible features associated with diabetic retinopathy (DR) are discussed
below. From these features found during opthalmoscopic eye examination, ophthalmol-
ogists make an appropriate decision on DR grading.

Microaneurysms. These are tiny sac like structures budding from very small blood vessels
and often appear as tiny red dots. They are formed when there is not enough oxygen
supply to the capillaries in the retina.

Retinal haemorrhages. These are blot-shaped features which result from ruptured mi-
croaneurysms, capillaries and venules. They are observed deep within the retina and may
be transient in appearance.

Hard exudates. They are yellowish deposits, ranging in size from small dots to ring shaped
caused by leakage from abnormal vessels.

Soft-exudates or cotton-wool spots. They are seen as superficial, whitish, fluff-like
patches which result from the obstruction of terminal retinal arterioles. A large number
of soft exudates often indicate the advancing stage of DR.

Intra-retinal microvascular abnormalities (IRMA). These are microvascular loops that
result from their role as shunts between arterioles and venules in areas of increasing
capillary closure.

Venous beading. This is a sign of retinal ischemia and occurs adjacent to an area of
decreased perfusion. It occurs when the disease has progressed to an advanced stage.

Neovascularization. These are new abnormal growth of blood vessels near or from the
optic disc area into the vitreous and towards the centre of the eye. These blood vessels
are fragile and highly permeable.

Vitreous haemorrhages. The newly grown blood vessels rupture and bleed into the
vitreous gel in the centre of the eyeball behind the lens. The severe bleeding may be
associated with total visual loss.
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4.2.2 Classification of diabetic retinopathy

Based on the observations of clinical features, DR is classified into four stages.

1. Mild Non Proliferative Diabetic Retinopathy (NPDR)

This is characterized on observation of a few microaneurysms from fundus eye
images from funduscopy. There is no effect on vision changes and there are no
other significant findings.

2. Moderate Non Proliferative Diabetic Retinopathy (NPDR)

This is characterized on observation of several microaneurysms, haemorrhages, and
cotton-wool spots. Also, a mild degree of venous beading and IRMA can be present.

3. Severe Non Proliferative Diabetic Retinopathy (NPDR)

This is characterized on findings of high degree of severity of microaneurysms, haem-
orrhages, cotton-wool spots, venous beading and IRMA.

4. Proliferative Diabetic Retinopathy (PDR)

This is an advanced stage of DR. Findings such as retinal neovascularization and/or
vitreous haemorrhages can be observed in addition to the observations from NPDR.
Severe visual loss will be noticed by the patients.

In this thesis, only the various stages of nonproliferative diabetic retinopathy are
considered, as patients with proliferative diabetic retinopathy are already noticeably vi-
sually impaired and detection is no longer required.

Figure 4.3 shows normal eye fundus and NPDR eye fundus images.
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Figure 4.3 Digital eye fundus photographs. (a) Normal. (b) Mild NPDR. (c) Moderate NPDR.
(d) Severe NPDR.

 



CHAPTER V
IMAGE PROCESSING TECHNIQUES

In this chapter, we review some of the fundamentals of digital image processing.
These techniques are crucial ingredients in the preparation of the eye images for diabetic
retinopathy detection and classification. Most of the presentation is based on the book
Digital Image Processing using MATLAB by Gonzalez et al. (2009).

5.1 Digital image processing

Digital image representation.
An image can be represented as a two-dimensional function f(x, y), where x, y

are coordinates, and the value of f at the point (x, y) is called the intensity of the image at
(x, y). Colour images are formed by the combination of several individual images. Primary
components of a colour image are red, green, and blue and they are being referred to as
an RGB colour system. Grayscale images have monochrome intensity values (shades of
gray) and can be obtained from a RGB image.

In digital image processing, the image region is divided up into small squares called
pixels. The image f(x, y) is assumed to be constant on each pixel. Thus one represents
an image as a function f(i, j) or fi,j where the integer pairs (i, j) range over the pixel
coordinates. We will switch freely between notation f(x, y) and pixel notation f(i, j)

in our discussion. Often, the intensity levels f(i, j) will also be in a discrete range, e.g.
f(i, j) ∈ {0, 1, . . . , 255}.

In image processing, the term spatial domain means the image plane itself. The
methods related to spatial domain processing involve direct manipulations of image pix-
els. Intensity transformations and spatial filtering are the two most important processing
methods in this domain.
Image histogram
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Suppose a digital image contains in total L possible integer intensity levels. Then
the image histogram is defined as a discrete function

h(uk) = nk

where uk refers to the kth intensity level and nk is the number of pixels with intensity
level uk. One obtains a normalized histogram as

p(uk) =
h(uk)

n
, k = 0, 1, . . . , L− 1.

where n is the total number of pixels in an image. We notice that the function p(uk) is
the probability of occurrence of the image intensity level uk.
Histogram equalization

Let p(uj), j = 0, 1, . . . , L − 1 denote an image histogram. Define a mapping
T : I → [0, 1] called equalization transformation by

sk = T (uk)

=
k∑

j=0

p(uj) =
k∑

j=0

nj

n
, k = 0, 1, . . . , L− 1

where each sk is an integer-output value corresponding to the input value uk. One can
show that the output values sk are approximately uniformly distributed.

The histogram equalization results in an output image with higher contrast since
the histogram gets spread considerably over the entire range of intensity.
Contrast limited adaptive histogram equalization (CLAHE)

In CLAHE, the histogram equalization is carried out in small regions of the image
called tiles instead of the entire image. The processed tiles are then joined using bilinear
interpolation which is effective in overcoming the artificially created boundaries. CLAHE
has an advantage over normal histogram equalization as it can avoid over amplification
of noise in certain regions with homogeneous intensity.
Median filter

To improve the image quality, reducing certain amount of noise is of paramount.
One of the popular spatial filtering techniques (linear and non-linear) is the median filter.
The median filter is a non-linear filter which works by running through all image pixels
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and replacing each pixel value by the computed median value from neighboring pixels.
This filter is most effective in preserving edges of structures in the image and removing
salt-and-pepper noise.

5.2 Morphological image processing

In this section we review a wide range of image processing techniques based on
the shape (morphology) or structure of features in an image. For this purpose, we recall
some basic set theory concepts as follows:

Let A and B be subsets of an additive group G [Here the plane R2].

1. The difference of sets A and B, denoted A−B, is

A−B = {w |w ∈ A,w /∈ B}

2. The reflection of a set B, denoted B̂, is

B̂ = {w |w = −b for b ∈ B}

3. The translation of set A by point z, denoted by (A)z , is defined as

(A)z = {c | c = a+ z for a ∈ A}

Binary image
An image which contains the pixel values 0 or 1 only is called a binary image.

Based on this type of image, we define some important morphological operations.
Dilation

It is an operation that makes objects in an image grow or thicken. The growing
or thickening of objects in the image is controlled by a specific shaped called structuring
element (SE).
Let A be an image and S be a structuring element. Then the dilation of A by S, denoted
A⊕ S, is defined as

A⊕ S = {z | (Ŝ)z ∩ A ̸= ∅} (5.1)
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So, the set A ⊕ S consists of all the original locations of structuring elements such that
the reflected and translated S has at least one element in common.
Erosion

It is an operation which has the effect of making objects in an image shrink or
thin. Similar to dilation, the extent of shrinking or thinning is controlled by a structuring
element. The erosion of an image A by structuring element S, denoted A⊖S, is defined
as

A⊖ S = {z | (S)z ⊆ A}

that is, the set consists of all the points z such that the structuring element S translated
by z fits entirely in A.
Opening

The opening of image A by the structuring element S, denoted as A ◦ B, is
defined as

A ◦ S = (A⊖ S)⊕ S

=
∪

{(S)z | (S)z ⊆ A}

So opening of A by S is the erosion followed by the dilation operation. Morphological
opening has the ability to remove completely those parts of an object in the image
that cannot contain the structuring element. It is also used to remove thin connected
components, bumps and smoothen the contours.
Closing

The morphological closing of A by S, denoted by A•B, is defined as the dilation
of A by S followed by the erosion operation on the result by S, that is,

A •B = (A⊕ S)⊖ S

Closing operations are used to join narrow breaks and fill holes which are smaller than
the structuring element. It also smoothen the contours.
Morphological reconstruction

Morphological reconstruction is transformation by iteration involving two images,
called marker and mask, and a structuring element. The marker image acts as a starting
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point in the iteration, while the mask image constrains it. The structuring element provides
the connectivity of the image in the transformation.

Suppose A and C are mask and marker images respectively and S a structuring
element. Morphologically reconstructing A from C , denoted as RC(A), involves the
following iterations:

1. Initialize u1 to be the marker image, C .

2. Define the structuring element S.

3. Repeat the iterations uk+1 = (uk ⊕ S) ∩ A

until uk+1 = uk

3. RA(C) = uK+1.

It is noted that C ⊆ A.
Opening by reconstruction

The opening by reconstruction of image A using structuring element S is defined
as RA(A ⊖ S). This is a transformation whereby the shape of the object is restored
to its full form from a certain part left behind after an erosion. Though dilating back
after an erosion also has an effect of restoring the shape of an object, its accuracy is
heavily dependent in the nature of the structuring element. In this regard, opening by
reconstruction is most accurate in retaining the shape.
Gray-scale morphology

Binary morphological operations can be extended to gray-scale images, For di-
lation and erosion, they are based on the maxima and minima of the neighbourhood
pixels. In the following the definitions concerning gray-scale morphology, we suppose f

be a gray-scale image and b a structuring element.
Gray-scale dilation

The gray-scale dilation of f by b, denoted as f ⊕ b, is defined as

(f ⊕ b)(x, y) = max{f(x− x′, y − y′) + b(x′, y′) | (x′, y′) ∈ Db}

where Db is the domain of b which is a binary matrix specifying the locations in the
neighbourhood included in the max operation.
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Flat structuring elements are usually used in gray-scale dilation transformation. For such
elements, the height of b is 0 at all coordinates of Db. So

b(x′, y′) = 0, ∀(x′, y′) ∈ Db.

In this case the gray-scale dilation is simply a local-maximum operator and the equation
(5.2) becomes

(f ⊕ b)(x, y) = max{f(x− x′, y − y′) | (x′, y′) ∈ Db}

which is completely specified by pattern of 0s and 1s in the binary matrix representing
Db.
Gray-scale erosion

The gray-scale erosion of f by b, denoted as f ⊖ b, is defined as

(f ⊖ b)(x, y) = min{f(x− x′, y − y′)− b(x′, y′) | (x′, y′) ∈ Db}

where Db has a similar meaning as in dilation but in the sense of min operation.
Using the flat structuring element, the equation 5.2 reduces to

(f ⊖ b)(x, y) = min{f(x− x′, y − y′) | (x′, y′) ∈ Db}

which is a local minimum operator. The minimum is taken over neighbourhood pixels
specified by 1-valued elements in the matrix representing Db.

Morphological opening and closing operations in binary images can also be ex-
tended to gray-scale images.
Opening

The morphological opening of f by b, written f ◦ b, is defined a the erosion of f
by b followed by dilation on the result f ⊖ b. Mathematically,

f ◦ b = (f ⊖ b)⊕ b

The dilation and erosion operations are understood as for the gray-scale image operations.
Closing

The morphological closing of f by b, written f • b, is defined as the dilation
followed by the erosion, that is,

f • b = (f ⊕ b)⊖ b
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In image processing, openings remove small bright objects depending on the shape
and size of the structuring element, while leaving bright and large objects untouched.
Closings, on the other hand, suppress the small dark details in the image. These opera-
tions are often used in combinations in gray-scale images to reduce noise and smoothen
the image.

Morphological reconstruction of gray-scale images follow the same iterative pro-
cedure as outlined for binary images.

5.3 Image segmentation

Morphological image processing, as discussed, involves input images and through
a wide range of techniques, renders an output containing attributes of interest from the
input images. In this view, image segmentation is another major technique. We briefly
review some of the basic techniques in image segmentation.
Edge detection

One of the most common techniques in image segmentation is to detect a rapid
change in the intensity of an image. This is achieved by so called an edge detection. For
the detection of such changes, the first order and second order derivatives of the image
f(x, y) are used. We know that the first order derivative also known as gradient of f is
the vector

∇f =

∂f
∂x

∂f
∂y

 =

fx
fy


The magnitude of this vector is |∇f | =

√
f 2
x + f 2

y .
For the second-order derivative, we use the Laplacian of f , that is,

∇2f(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2

There are several edge detection methods:

• Sobel edge detector.

• Prewitt edge detector.
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• Roberts edge detector.

• Laplacian of log (LoG) detector.

• Zero-crossings detector.

• Canny edge detector.

The Canny edge detector is one of the most popular methods since it outperforms
the other methods. We summarize the procedure of this method below:

• The input image, f , is firstly smoothed and denoised by applying a Gaussian filter.

• For every point (x, y) in the image, the gradient ∇f is computed in a neighbour-
hood of the point. The point is identified as an edge point, if |∇f | has a local
maximum at (x, y) (or is close to the local max). The direction of the edge is then
determined by tan−1

(
fx
fy

)
.

• Points which are not identified as edge points will be assigned an intensity of 0.

• Edge points are classified into two types, weak and strong edge points by choosing
two threshold levels T1 < T2. Edge points (x, y) with f(x, y) ≥ T2 are identified
as strong edge pixels, and those with T1 < f(x, y) < T2 as weak points. Weak
edge pixels are only accepted as edge pixels if they are 8-connected to strong
pixels, a process called edge linking.

Thresholding
In various applications of image processing, thresholding an image to segment a

region of interest plays a key role. Here we discuss the basic concept of image threshold-
ing.
Let f be a gray-scale image. Suppose we are interested in segmenting out a certain re-
gion of image that has intensity of at least T . A point (x, y) with f(x, y) > T is called
foreground or object point, and with f(x, y) ≤ T is called the background point. The
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thresholded image region, also called a binary image , g(x, y), is defined by

g(x, y) =


u if f(x, y) > T

v if f(x, y) ≤ T

By convention, one chooses pixel values u = 1 and v = 0.
If the value of T is kept fixed over the entire image, then the equation (5.3) is called
global thresholding. On the other hand, if the value of T changes over an image, then
the equation (5.3) is referred to as variable thresholding.

Otsu’s global thresholding
Consider an image f(x, y) and its histogram component denoted as

p =
nk

n
, k = 0, 1, . . . , L− 1,

where n is the total pixels in f , nk denotes the number of pixels with intensity level k,
and L refers to the total possible intensity levels in f .
Suppose that we choose a threshold t such that I1 has the pixel values {0, 1, . . . , t} and
I2 with {t + 1, t + 2, . . . , L − 1}. Let m1(t) and m2(t) denote mean intensities of the
sets I1 and I2 respectively, and mG denote the mean intensity of the entire image. Then
the between class variance, σ2

B(t), is defined as

σ2
B(t) = P1(t)[m1(t)−mG]

2 + P2(t)[m2(t)−mG]
2 (5.2)

where P1(t) =
∑t

i=0 pi is the probability of occurrence of set I1 and P2(t) =∑L−1
i=t+1 pi = 1− P1(t) is the probability of occurrence of I2.

This method chooses a threshold t that maximizes the between class variance
σ2
B(t). Rewriting the equation (5.2) as

σ2
B(t) =

[mGP1(t)−m1(t)]
2

P1(t)[1− P1(t)]
,

one can show that the larger the value of σ2
B(t), the higher the chance of a clearly

segmented image with the threshold t.
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5.4 Image representation and description

To describe a region of an image, the texture content in it can be quantified. Then
a texture computed based on statistical and spectral measures can be used to describe
the region.
Statistical measures

In analyzing the texture content in an image, one of the common methods is to
use the statistical moments of the values of image intensity.
Suppose zi is a discrete random variable which denotes the intensity levels of image f .
Correspondingly, define the normalized histogram as

p(zi) =
ni

n
, i = 0, 1, . . . , L− 1

where L is the number of possible intensity levels of f . A component p(zi) can be
viewed as a probability that the intensity value zi will occur.
Description on the shape of histogram can be made by its moments about the mean also
called the central moments. The n-th central moment is defined as

µn =
L−1∑
i=0

(zi −m)np(zi) (5.3)

where m is the mean
m =

L−1∑
i=0

zip(zi)

Based on the statistical moments, we list some of the features that can be used
to represent the image texture content:

1. Mean.
m =

L−1∑
i=0

zip(zi) (5.4)

It is a measure of average intensity of the image.

2. Standard deviation.
σ =

√
µ2 =

√
σ2 (5.5)

It measures the average contrast of the image.
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3. Smoothness.
R = 1− 1

1 + σ2

This measures relative smoothness of the pixel in a region R of the image. Notice
that if σ2 = 0, that is, for a region with same pixel values, R = 0. However, if the
region has large variation in the values of its intensity levels, R = 1.

4. Third moment.
This follows from equation (5.3) when n = 3, that is,

µ3 =
L−1∑
i=0

(zi −m)3p(zi)

This measures the skewness of a image histogram. µ3 = 0 if the histogram is
symmetric, µ3 > 0 if the histogram is skewed to the right about the mean, and
µ3 < 0 if the skewness is to the left.

5. Entropy.
It is a measure of randomness, given by

e1 = −
L−1∑
i=0

p(zi) log2 p(zi)

(Here we take 0 · ∞ = 0).

Gray-level co-occurrence matrix
In the measure of textures in an image, the consideration so far has been solely

on the information of its histogram. The downfall of this is that it doesn’t carry any
information on relative pixel positions with respect to each other. In texture analysis,
consideration of relative positions of pixels is also important in image description.
Let f(x, y) be an image with L intensity levels zi, (i = 0, . . . , L − 1). Let T be an
operator relating two pixels to another. Then the gray-level co-occurrence matrix (GLCM)
determined by T and denoted byG, is the L×Lmatrix whose (i, j)-th entry gij indicates
how many pixel pairs determined by T have identities zi and zj , respectively.

Based on this co-occurrence matrix G of the operator T , we define another four
texture measures determined by T used in image representation:
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6. Energy.
It is the measured sum of squared elements of G, that is,

L∑
i=1

L∑
j=1

P 2
ij such that Pij =

gij
n

where n is the total number of elements in G.

7. Homogeneity.
It is a measure of how close the elements of G lie to the diagonal elements of G,
that is,

L∑
i=1

L∑
j=1

Pij

1 + |i− j|

8. Maximum probability.
It is a measure of the strongest response of the co-occurrence matrix, that is ,

max. probability = max
i,j

{Pij}

9. Entropy.
As before, this also measures the randomness, that is,

e2 = −
L∑
i=1

L∑
j=1

Pij log2 Pij

 



CHAPTER VI
RESEARCH METHODOLOGY

In this research, we have used the Messidor database, first ophthalmologic depart-
ment, which consists of 400 eye fundus colour numerical images acquired using a color
video 3CCD camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45 degree
field of view. The images were captured using 8 bits per colour plane at 2240 × 1488

pixels. All the images are in TIFF format and an Excel file with medical diagnoses is also
provided.

All images were graded based on the severity level of the disease; grade 0 for
normal, grade 1 for mild NPDR, grade 2 for moderate NPDR, and grade 3 for severe NPDR.
In particular, the chosen database contains 152 normal, 30 mild, 69 moderate and 149
severe NPDR fundus eye images.

6.1 Tools

All computations were performed using MATLAB Version 9.7 (R2019b). For the im-
age segmentation processes we use the image processing toolbox, and for binary and mul-
ticlass DR classifications, the statistics and machine learning toolbox, libsvm, and where
available, twin SVM packages were used.

We used a personal Macbook CPU version i5 1.8GHz Dual-Core memory 8 GB
system MacOS 64 bit.

6.2 Retinal image preprocessing

To enhance the image and for the better segmentation outcomes, the fundus
images were processed as follows. Firstly, the images were cropped to 738× 727 pixels
to get the proper field of view and reduce the computational costs. The images in an RGB
colour format had certain degree of variations in the colour. To have some sort of uniform
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threshold level during segmentation processes, all images were colour normalized using
one of the high quality images as a reference image as defined in equation (6.1). Then
the images were examined for sharpness level. Blurry images were sharpened accordingly
since the object of interest cannot be seen clearly let alone detected. Then each colour
band was extracted, namely, the red, green, and blue channels and compared. On
a comparative study, it was discovered that the green channel image provided higher
contrast on the objects of interest from the background. The red and blue channel images
showed poor contrast with noise. For most of the different segmentation processes, we
have used the green channel image except for the optic disc detection where we have
considered the red band.

6.2.1 Colour normalization

Let f(x, y) be any of the red, green and blue channels of a retinal image and
h(x, y) those of a reference image. Then, as per Chen et al. (2020) the colour normal-
ization of image f using h as a reference is defined by the equation

fcn =
σR

σ
(f − µ) + µR (6.1)

where

• µ and µR are the mean intensities of the corresponding channel of images f and
h respectively as defined in equation (5.4).

• σ and σR are the standard deviations of the corresponding channel of images f
and h respectively as defined in equation (5.5).

• fcn is the corresponding channel of new colour normalized image.

In equation 6.1, the images f and h are first converted to type double from uint8 for
numerical computation. The image composed of the new channels fcn is said to have
similar colour distribution as the reference image h.
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Figure 6.1 Image colour normalization. (a) Input image. (b) Reference image. (c) Colour
normalized image.

6.3 Retinal blood vessels segmentation

Figure 6.2 Flowchart of retinal vessels segmentation.

In the detection of diabetic retinopathy from eye fundus photographs, the de-
tection of blood vessels is important. There are certain abnormalities that those vessels
can present if the eye is diseased. For instance, if the disease has quite advanced to a
later stage, it is observed that there is a change in the shape of those vessels and some
abnormal new growth.

In segmenting the retinal vessels, we closely followed the work by Ramos-Sotos
et al. (2021), where they introduced optimized top-hat transformation and applied ho-
momorphic filtering. However for the thresholding, we have used Otsu’s thresholding
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technique.
The extracted green channel image was first filtered using a Gaussian filter with

a standard deviation of σ = 0.68. This operation enhances the image structures and
suppresses the noise generated from image sharpening. In two dimensions, the Gaussian
filter is mathematically expressed as a convolution by

g(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
,

where σ is the standard deviation. That is, the intensity f(x, y) at point (x0, y0) is re-
placed by

g(x0, y0) =
1

2π2

∫∫
R2

g(x, y) exp
(
−(x− x0)

2 + (y − y0)
2

2σ2

)
dxdy

Of course, this formula is adjusted to account for the discrete pixel coordinates.
We focus on the segmentations of thick and thin vessels separately and merge

them at the end.
Thick vessels extraction

Represent an image of M ×N pixels as an M ×N matrix I = [fij] with integer
pixel values, 0 ≤ fij ≤ 255.

Firstly, the Gaussian filtered image I was inverted, denoted IC , defined as,

IC = U − I,

where U is the M ×N matrix all of whose entries are the maximum pixel values of 255.
Then we define two disk shaped structuring elements, namely S1 and S2, of radius

8 and 16 pixels respectively. Then the morphological opening of IC by S1 was performed,
that is,

Iop = IC ◦ S1, (6.2)

followed by the closing operation on (6.2),

Icl = Iop • S2 (6.3)
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Then the image in (6.3) was subtracted from the IC , resulting in an enhanced image. This
process is called an optimized top-hat transformation. This can be summarized as,

Ith = IC − [(IC ◦ S1) • S2]

= IC − (Iop • S2)

= IC − Icl (6.4)

Next, a homomorphic filter was applied on the image in (6.4) which further enhances
the thick vessels. Homomorphic filtering is a filtering technique in the frequency domain
which enables adjustments on illumination and reflectance components of an image.
The resulting image is then filtered by a median filter to remove salt and pepper noise.
Once again, the filtered image undergoes another optimized top-hat transformation with
disk shaped structuring elements of radius 32 and 64 pixels. This fills small holes in
the vessels and enhances the structures. Finally, the image is binarized using Otsu’s
thresholding method, where the algorithm chooses the threshold automatically. Because
haemorrhages and blood vessels have similar intensity values, the haemorrhages are also
detected together with the blood vessels. To overcome this, we removed components
whose total number of pixels were less than 300. The final image represents the extracted
thick vessels. The whole procedure is depicted in Figure 6.3.
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Figure 6.3 Thick vessels extraction. (a) Original image. (b) Colour normalized. (c) Green
channel image. (d) Optimized top-hat transformed image. (e) Homomorphic filtered
image. (f) Thick vessels extracted by thresholding.

Thin vessels extraction
For this procedure, we also use the optimized top-hat transformation but the

radii of S1 and S2 are taken as 4 and 20 pixels respectively as shown in Figure 6.4. This
is due to the thin vessels spanning over smaller structural regions. Then a homomorphic
filter was applied followed by a two-dimensional matched filtering. The concept of two-
dimensional matched filtering is that it can enhance certain regions of the image that
matches some estimated distribution curve of an image. Thus, this method finds whether
the distribution is correlated to to the local image area. This filter highly enhances the
tiny blood vessels. The image is then binarized and denoised.

Finally, the thick and thin vessels are merged for a complete retinal blood vessels
image.
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Figure 6.4 Thin vessels extraction and final segmentation. (g) Optimized top-hat for thin
vessels. (h) Homomorphic filtered. (i) 2-D match filtered. (j) Contrast adjusted before
thresholding. (k) Thin vessels after binarization. (l) Blood vessels segmented after adding
image (f) and (k) and noise reduced.

6.4 Microaneurysms detection

Microaneurysms are among the most important clinical pathologies in the identi-
fication of diabetic retinopathy. They are the first abnormalities that develop in diabetic
retinopathy, and are present as tiny blobs at the end of capillaries. These are the swollen
tiny vessels. If this is detected early on, patients can delay the progression of the disease
with treatment ultimately saving their eye sight.

Firstly we took the complement IC of the green component of the original image.
Then IC was corrected for the non-uniform background using morphological open-close
filtering called an alternate sequential filtering technique. This method consists of a com-
bination of morphological openings and closings using a series of structuring elements. In
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Figure 6.5 Flowchart showing detection of microaneurysms.

our research, we have chosen flat disk shaped structuring elements Si, i = 1, 2, . . . , 12,
with radius ri = 2, 3, . . . , 13, and performed open-close filtering, that is,

Iocf = (IC ◦ Si) • Si, i = 1, 2, . . . , 12.

The resultant image Iocf yielded a smooth and uniform background. Then the background
image Iocf was subtracted from IC

Ienh = IC − Iocf

where the image Ienh is enhanced background corrected. Further, the contrast adjustment
was made to this image to highlight the tiny regions corresponding to the microaneurysms.
Then this image was morphologically reconstructed using the marker image

Imark = Ienh ⊗ Ibv,

where Ienh is the contrast adjusted, Ibv is the blood vessels mask from Figure 6.4, and the
operation ⊗ is the element wise matrix multiplication. The reconstructed image

Irc = RImark(Ienh)

is subtracted from the contrasted adjusted image Ienh, that is,

Ima = Ienh − Irc
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The image Ima was then binarized, denoted Ibw setting threshold T = 53% of the maxi-
mum intensity obtained by trial and error. The binarized image contains the tiny compo-
nents arising from the microaneurysms, other remnants left behind by the blood vessels
and haemorrhages, background artefacts and some noise. We filter the image Ibw fur-
ther using connected component analysis. Each connected component in the image was
labelled. Then we filter for microaneurysms using the following set of features in the
analysis:

• Area
Total number of white pixels in each connected component.

• Major axis length
Length of major axis of the ellipse approximating the connected component. (To be
precise, this is the ellipse which has the same normalized second central moment
as the region.)

• Minor axis length
Length of the minor axis of the ellipse approximating the connected component.

• Circularity
This is a measure of roundness of an object defined by

Circularity = 4π · Area
P2 ,

where P denotes the perimeter which is computed as the sum of boundary pixels
of an object.

• Eccentricity
This is defined as the ratio of distance between foci of the ellipse to its major axis
length.

Using the features mentioned above, we set that for each connected component
to be considered a microaneurysm, then Area ∈ [5, 22] pixels, Circularity ∈ [1, 2.5], Ec-
centricity ≤ 0.9, and the ratio of major axis length to the minor axis length should be
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in the range [1, 2.5]. This lead to removal of noise and objects which are not microa-
neurysms. The final image contains the detected microaneurysms. The whole process is
illustrated in Figure 6.6.

Figure 6.6 Microaneurysms detection. (a) Original image. (b) Green component. (c) Com-
plement of (b). (d) Background estimation. (e) Subtraction of (d) from (c). (f) Contrast ad-
justed. (g) Morphologically reconstructed image. (h) Binarized image. (i) Microaneurysms
detected after connected component analysis.
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6.5 Haemorrhages detection

Figure 6.7 Flowchart of haemorrhages detection.

We observe that the intensity levels of haemorrhages in the fundus eye images are
similar to the blood vessels and microaneurysms. Due to this fact, the segmentation pro-
cess for the haemorrhages share similar steps to that in the detection of microaneurysms.

Firstly, the inverted green component image was background corrected as in the
equations (6.4) and (6.4). Then the image was filtered with median filter to suppress noise
and the contrast is adjusted. Next, the homomorphic filter was applied which further
enhanced the structure of haemorrhages. The image was then binarized, denoted Ibwh.
Since Ibwh also contains blood vessels, we subtracted the detected blood vessels, that
is,

Ihm = Ibwh − Ibv (6.5)

where Ibv is the retinal blood vessels mask obtained in Figure 6.4.
The image Ihm still contains false positive foreground pixels from the background

and noise. For this, we perform mean intensity pixels analysis by labelling all the con-
nected components:
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Figure 6.8 Haemorrhages detection. (a) Original colour normalized image. (b) Inverted
green channel image. (c) Background corrected. (d) Homomorphic filtered. (e) Thresh-
olded image. (f) Blood vessels subtraction and connected component analyzed leading
to haemorrhages segmentation.

• For each connected component, compute its mean intensity value in the green
channel.

• Remove the blobs or regions whose mean intensity in the green channel is greater
than 95.

Furthermore, some blood vessels can still be observed in the image. To overcome this,
we once again performed the connected component analysis based on eccentricity. We
disposed of those components whose eccentricity /∈ [0, 0.979]. Also the connected
components with area less than 25 pixels were discarded since they overlap with mi-
croaneurysms. The final filtered image contains the retinal haemorrhages as shown in
Figure 6.8.
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6.6 Exudates detection

Figure 6.9 Flowchart illustrating segmentation of exudates.

Exudates in contrast to blood vessels, haemorrhages and microaneuryrsms, have
higher intensity values since they are yellowish bright fluffy patches seen in the diseased
retinal images. Due to this, image colour normalization was not required for this procedure
since it was learned that colour normalization reduces the intensity values of exudates
which is undesired in this case as our main goal was to extract exudates. The overview
of exudates segmentation process is outlined in Figure 6.10. In this procedure, we work
with the green channel image itself instead of inverting it. Background correction is also
necessary. For this we used morphological close-open filtering technique

Icof = (Igch • S1) ◦ S2, (6.6)

where Igch is a green channel image, S1 and S2 are disk shaped structuring elements with
radius 25 and 30 pixels respectively. Then the background corrected image is

Ienhe = Igch − Icof (6.7)

The image Ienhe revealed a high level of contrast between the exudates and background
while other features were significantly suppressed as desired.
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Figure 6.10 Exudates detection. (a) Original image. (b) Exudates highlighted on green
component after background illumination correction by close-open filtering. (c) Lower
intensity pixel values suppressed. (d) Binary image containing exudates and optic disk. (e)
Optic disk mask. (f) Exudates detected after removing OD region by OD mask in (e).

Further structure enhancement was made on the image in (6.7) by the application
of a homomorphic filter, and the resulting image is denoted as Ihf. On Ihf we suppress
the objects with pixel values less than 50 since exudates usually exhibit higher intensity
levels. That is, pixels of intensity below 50 are given a zero intensity. To denoise the
image and remove background artefacts, we labelled the connected components and
examined its mean intensity in the green plane. The regions with mean intensity value
less than 51 were removed. Also, the connected components whose area is less than 5
pixels were discarded since they are usually the noise.

The binarized image still contains the optic disc region since it has similar intensity
values with exudates. Then the optic disc is removed using the optic disc mask created
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from Figure 6.11. The optic disc segmentation is explained in the next section.

6.7 Optic disc segmentation

The optic disk is seen as a bright circular shaped object and it is an entrance to the
major blood vessels supplied to the retina. It carries over a million afferent nerve fibers
from retina to the brain. It displays one of the highest intensity values besides exudates
in the retinal fundus photographs.

For optic disk detection we first colour normalize the input image as in the equa-
tion (6.1). But in this procedure, we decrease the mean value µ of the image f (converted
to type double in the [0, 1] range in computation) by subtracting the value of 0.5. This
has the outcome of significantly suppressing regions with intensity values below the optic
disk’s intensity. Then we extracted the red channel from the colour normalized image
since this channel possesses higher contrast around the optic disk region. The extracted
image was then thresholded and morphologically closed to maintain the connectedness.
The binarized image was further filtered labelling connected components. Each compo-
nent was then examined for the total area and circularity. The conditions set are such
that Area ∈ [3500, 15000] pixels, and the Circularity ≥ 0.7. Then the Canny edge detec-
tion method was employed to get the round edge of the remaining components. Finally,
a circular Hough transform was applied with radius specification given in the range of 45
to 65 pixels. This transformation detected a disk shaped region, which was the optic disk
to be segmented.

6.8 Feature extraction

In classification of DR detection, we have used the following set of features as
input vectors:

1. Area of retinal blood vessels, which is the sum of non-zero pixels in a segmented
image from blood vessels.

2. Area of haemorrhages.
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Figure 6.11 Optic disk segmentation. (a) Original image. (b) Red channel image. (c)
Background suppressed (b) after colour normalization. (d) Binarized and morphologically
closed image. (e) Canny edge detection and circular Hough transform. (f) OD mask.

3. Number of microaneurysms.

4. Area of microaneurysms.

5. Area of exudates.

In addition, we have also employed the following set of statistical texture features and
GLCM features based on the green channel image:

6. Average intensity of the image.

7. Average contrast of the image.

8. Smoothness.

9. Third moment.
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10. Energy.

11. Entropy.

12. Homogeneity.

13. Maximum probability.

14. Entropy from GLCM.

 



CHAPTER VII
RESULTS AND DISCUSSION

In this chapter, we present the results from different classification models, namely,
SVM, twin SVM, twin bounded SVM, least squares TWSVM, and improved least squares
TWSVM, on the detection of non proliferative diabetic retinopathy. We subdivide the
results in two sections; (i) binary classifications for detection of severe NPDR and (ii) mul-
ticlass classifications concerned with grading different stages of NPDR.

7.1 Preliminaries

We begin by discussing the choices of models and model parameters.

7.1.1 Model Selection

Initial experiments showed that the least squares support vector machine (LSSVM)
exhibited lower performance than all the other variations of the support vector machine,
and was therefore excluded from further experiments. In addition, the Gaussian (RBF)
kernel showed superior performance over the linear model or the polynomial kernels.
Therefore, only the Gaussian kernel was considered throughout. This kernel, as indicated
in Chapter 3, is of the form

K(x,y) = exp
(
−||x− y||2

2σ2

)
where σ is the kernel parameter.

7.1.2 Validation

To evaluate the performance of the machine learning models and to overcome
the problem of over-fitting, one commonly uses a technique called cross validation. In
k-fold cross validation, the data is randomly partitioned into k equal folds. From the k
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folds, the first k − 1 folds are used for training the model and the retained k-th fold is
used to test the model. This procedure is then repeated k times; each time a different
fold is chosen as testing fold. The performance measures of the model, such as accuracy
etc., is taken as the average values over the k runs. This procedure ensures that each
sample in the dataset appears in training and testing. Moreover, each sample is used for
testing exactly once.

Each of the results listed in the tables of this chapter is the average over ten runs
of 10-fold validation.

7.1.3 Parameter Selection

The SVM classifiers used in this research heavily depend on the parameters that
are chosen a priori. Therefore, we optimized the parameters for better performance using
the grid search technique.

In the regular SVM there are two parameters, namely, the penalty parameter
C and kernel parameter σ. But for the TWSVM and LSTSVM, there are now penalty
parameters C1 and C2, as well as the kernel parameter σ. Furthermore, the TBSVM and
ILSTSVM have five parameters each which include four penalty parameters C1, C2, C3,
C4 and the kernel parameter σ. To reduce the computational complexity in selecting
parameters, we set C1 = C2 and C3 = C4 throughout. For all the classifiers used, the
penalty parameters searched for came from the set {2i | i = −20,−19, . . . , 15} and
the kernel parameter was chosen from the set {2i | i = −10,−9, . . . , 10}.

Also, since the features in the dataset that we have obtained have varying numer-
ical ranges, they were rescaled to the range of [0, 1] using the following formula:

zi =
xi −min(x)

max(x)−min(x) ,

where

• xi is the i-the data.

• zi is the i-th normalized data.
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• min(x) and max(x) are the minimum and maximum values in the dataset.

Figure 7.1 Flowchart of the proposed methodology.

7.2 Detection of severe nonproliferative diabetic retinopathy

Here the main idea is to separate severe NPDR images from the normal ones. For
this binary classification problem, all 152 normal images and all 149 severe NPDR images
were used.

7.2.1 Feature selection

Besides the selection of optimized parameters, we also optimized for the number
of input features. In the case of binary classification we experimentally identified 7 from
the total of 13 extracted features that gave optimal results and were therefore used.
These are the the number and area of microaneurysms, the area of haemorrhages, the
area of exudates, entropy, the third moment of the green channel image, and finally the
measure of randomness computed from the gray-level co-occurrence matrix (GLCM).

Parameter optimization was performed with respect to two metrics: accuracy and
sensitivity.
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7.2.2 Accuracy optimization

In accuracy optimized classifications, we have employed different variants of SVM
for this problem as shown in Table 7.1; all metrics are reported in % numbers. All the
performance measures are based on 10-fold cross validation. From the table, one can
see that the highest accuracy of 97.44 ± 2.91% was achieved by the regular SVM in
comparison to twin SVMs. On the other hand, when it comes to the specificity and
precision, the TBSVM obtained the highest rates of 98.68 ± 3.12% and 98.71 ± 2.99%
respectively. Of all these different SVMs, the LSTSVMs achieved the least performance
measures.

7.2.3 Sensitivity optimization

In medical diagnosis problems, it is most important to catch as many of those
infected as possible. A false positive result is more acceptable than a false negative
result, as positive results are usually screened further by a specialist. On the other hand,
a false negative result means that an infected person remains undetected. That is, instead
of accuracy one needs to maximize the ratio

Number of positive results among the infected
Total number of infected

which is sensitivity.
In our case, this means that the machine learning models should not classify

eye fundus photographs that show signs of disease as healthy eye images. Therefore,
for this binary problem we alternatively optimized the parameters so that the model
gives better performance in terms of sensitivity. The results from the different SVMs
are shown in Table 7.2. It can be seen that the twin bounded SVM has achieved the
highest sensitivity of 99.06±2.52%, whereas accuracy, precision and specificity measures
dropped substantially. The least drop was observed with the LSTSVM and ILSTSVM which
now have become the leader in all categories other than sensitivity, but still showed good
sensitivity.
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Table 7.1 Accuracy optimized binary classification for NPDR detection.

SVM
(C, σ)

TWSVM
(C1 = C2, σ)

TBSVM
(C1 = C2

C3 = C4, σ)

LSTSVM
(C1 = C2, σ)

ILSTSVM
(C1 = C2

C3 = C4, σ)

Parameters 212, 20 21, 2−1 20.75, 2−8, 2−2 2−6, 20 2−6, 2−12.25, 2−1

Accuracy 97.44± 2.91 96.44± 3.41 96.87± 2.71 95.25± 4.14 96.11± 3.42

Sensitivity 96.65± 4.52 95.31± 5.86 95.04± 4.57 92.69± 7.76 95.78± 6.06

Specificity 98.22± 3.75 97.57± 4.46 98.68± 3.12 97.75± 4.03 97± 4.81

Precision 98.3± 3.48 97.65± 4.19 98.71± 2.99 97.79± 3.85 97.13± 4.41

Table 7.2 Sensitivity optimized binary classification for NPDR detection.

SVM
(C, σ)

TWSVM
(C1 = C2, σ)

TBSVM
(C1 = C2

C3 = C4, σ)

LSTSVM
(C1 = C2, σ)

ILSTSVM
(C1 = C2

C3 = C4, σ)

Parameters 2−4, 29.75 2−6, 27 2−6, 2−13.5, 27.5 2−8.5, 21.5 2−7.25, 2−11, 20.5

Accuracy 90.17± 4.8 91.86± 4.64 91.53± 4.77 93.52± 4.21 94.05± 4.19
Sensitivity 98.35± 3.35 98.8± 2.74 99.06± 2.52 98.6± 2.92 98.66± 3.01

Specificity 82.55± 8.94 85.05± 9.02 84.18± 9.53 88.53± 7.99 89.53± 7.4
Precision 85.1± 6.89 87.17± 6.8 86.56± 7.26 89.89± 6.52 90.63± 6.2
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7.3 Grading of nonproliferative diabetic retinopathy

Since NPDR has three stages as discussed before, we performed multiclass classi-
fication using the same SVM classifiers as in the binary case. We adopted the classification
strategies introduced in Chapter 3, namely, one-versus-all and one-versus-one for all types
of SVMs, and in addition, all-versus-one for the twin SVMs. In addition, we also used the
novel minimum average distance strategy for the twin SVMs.

7.3.1 Multiclass performance metrics

The notions of accuracy, sensitivity, specificity and precision can also be defined
in multiclass decision making. To describe these, we let

• Si denote the number of samples in class i,

• S denote the total number of samples, so that S =
∑
i

Si,

• Sij denote the number of samples in class i that have been classified to belong
to class j, so that Si =

∑
j

Sij .

In the confusion matrices of Figure 7.2, Sij is the ijth matrix entry, Si is the sum over all
entries in the i-th row, and S is the sum of all matrix entries.
Accuracy

There are two ways to measure accuracy, which we will label accuracy-1 and
accuracy-2.

• accuracy-1 is measured over the whole dataset. That is

accuracy-1 =
Number of correctly classified samples

Total number of samples

In the confusion matrices of Figure 7.2, this would mean

accuracy-1 =
sum of diagonal entires
sum of all matrix entries .

To be precise,
accuracy-1 =

∑
i Sii∑
i,j Sij

.
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This type of accuracy is used in the papers of Tomar and Agarwal (2015) and Ali et
al. (2021) as well as in Chapter 3.

• accuracy-2 averages over the accuracies of each individual class. Just as in each
run in a one-versus-all type classification, the accuracy of the i-th class versus the
rest is

Acci =
TP + TN

TP + TN + FP + FN
=

Sii +
∑

j ̸=i

∑
k ̸=i Sjk

S

and averaging over all classes,

accuracy-2 =
1

N

∑
i

Acci,

where N denotes the total number of classes. This measure of accuracy is used
in the paper by Carrera et al. (2017).

Sensitivity, Specificity and Precision
The remaining metrics are obtained similarly, averaging over the one-versus-all

metrics:

• The sensitivity of the i-th class versus the rest is

Sensi =
TP

TP + FN
=

Sii

Si

,

and averaging over all classes,

Sensitivity = 1

N

∑
i

Sensi.

• The specificity of the i-th class versus the rest is

Speci =
TN

TN + FP
=

∑
j ̸=i

∑
k ̸=i Sjk∑

j ̸=i Sj

and averaging over all classes,

Specificity = 1

N

∑
i

Speci.
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• The precision of the i-th class versus the rest is

Preci =
TP

TP + FP
=

Sii∑
j Sji

and averaging over all classes,

Precision =
1

N

∑
i

Preci.

All the above metrics are be reported in % values to conform with the literature.

7.3.2 Feature selection

In the multiclass classification, we also optimized for the number of features from
the 13 extracted features. Through experiments, we obtained optimal results when sup-
plying 11 of the 13 features to the classifiers. These are the number of microaneurysms,
the areas of microaneurysms, of haemorrhages and of exudates, energy, homogeneity,
maximum probability, average intensity, average contrast, smoothness and the third mo-
ment of the green channel.

Parameters were optimized for a maximum in the accuracy-1 performance.

7.3.3 Classification results

The classification results are shown in Table 7.3 and Table 7.4. It can be ob-
served that all the performance measures of the various classification models degrade as
compared to the binary classifications.
One-versus-one results

From the one-versus-one classification results in Table 7.3 one notices that the
TBSVM, when coupled with the combined maximum-votes and minimum average dis-
tance tiebreaker (mv-md) decision strategy, obtains the highest score in both, accuracy-1
and accuracy-2 at rates of 75.18±5.52% and 87.59±0.31%, respectively. Other measures
like sensitivity, specificity and precision were also highest for this machine in comparison
to the other methods. Similarly, for the TWSVM, when adding the minimum average dis-
tance method as a tie breaker in the maximum votes strategy (mv-md versus mv), there is
a marginal increase in the performance. Overall the LSTSVM gave the least performance
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rate with an accuracy-1 of 71.35 ± 5.48% and sensitivity of 50.97 ± 1.53%. It can be
noticed, however, that for the two least squares twin SVMs (LSTSVM and ILSTSVM), classi-
fication by the minimum average distance (md) gave noticeably better performance than
the maximum-votes (mv) strategy.

We illustrate this with the confusion matrices for TBSVM (mv+md) and LSTSVM
in Figure 7.2. It is clear from these matrices that the TBSVM performs fairly better in
classifying normal and severe NPDR images than the LSTSVM. Yet, most of the images in
the mild class and nearly half of the images in the moderate class are being misclassified
as normal with the TBSVM. The situation further deteriorates in the LSTSVM as even 17
of the 149 severe images are classified as normal, in addition to misclassified mild and
moderate images.

Figure 7.2 Confusion matrices from classifications using TBSVM and LSTSVM.

One-versus-all and All-versus-one results
For one-versus-all and all-versus-one classifications, the results from different ma-

chines are not significant. Similar to one-versus-one classifications, SVM, TWSVM and TB-
SVM gave better performance in general.
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Table 7.3 Multiclass classification (one-versus-one).

Classifier Parameters Accuracy-1 Accuracy-2 Sensitivity Specificity Precision
C1 = C2, C3 = C4, σ

SVM 28, , 2−1 74.55± 4.98 87.4± 0.15 56.39± 0.47 90.58± 0.11 63.32± 1.81

TWSVM
(mv) 20, , 21 73.57± 5.37 86.79± 0.31 54.15± 0.56 89.96± 0.21 60.51± 2.29

TWSVM
(mv+md) 2−0.25, , 21 74.73± 5.45 87.36± 0.28 56.33± 0.73 90.55± 0.22 64.29± 2.4

TBSVM
(mv) 20, 2−16, 21 74.05± 4.84 87.03± 0.42 55.44± 1 90.29± 0.3 63.75± 4.06

TBSVM
(mv+md) 20, 2−16, 21 75.18± 5.52 87.59± 0.31 56.51± 0.8 90.71± 0.23 66.37± 5.48
LSTSVM
(mv) 2−5, , 20 71.35± 5.48 85.68± 0.74 50.97± 1.53 88.98± 0.54 53.25± 6.24

LSTSVM
(md) 2−4.75, , 2−0.25 73.15± 5.63 86.58± 0.41 53.91± 0.89 89.93± 0.29 52.56± 3.01

ILSTSVM
(mv) 2−5, 2−19, 21 73.03± 4.58 86.51± 0.46 52.67± 0.93 89.74± 0.32 55.98± 6.07

ILSTSVM
(md) 2−5, 2−19, 21 74.33± 4.67 87.06± 0.46 55.13± 1.02 90.46± 0.31 56.03± 8.37
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Table 7.4 Multiclass classification (one-versus-all and all-versus-one).

Classifier Parameters Accuracy-1 Accuracy-2 Sensitivity Specificity Precision
C1 = C2, C3 = C4, σ

one-versus-all
SVM 210, , 2−1.25 73.38± 4.67 86.69± 0.48 53.83± 1.03 89.85± 0.34 60.46± 4.02

TWSVM 2−1, , 20 73.57± 5.07 86.79± 0.39 54.48± 1.11 90.03± 0.3 60.8± 4.38

TBSVM 2−1, 2−13, 20 73.88± 5.03 86.94± 0.47 55± 0.8 90.16± 0.31 62.13± 3.53

LSTSVM 2−1, , 2−3 68.4± 6.04 84.2± 0.53 50.71± 1.09 88.35± 0.36 51.86± 1.55

ILSTSVM 2−1, 2−2, 2−3 71.35± 5.12 85.68± 0.35 51.2± 0.69 88.8± 0.26 67.5± 0.62
all-versus-one

TWSVM 21, , 2−1 70.83± 4.78 85.41± 0.33 52.54± 0.72 89.05± 0.24 58.5± 2.67

TBSVM 21, 2−5, 2−2 72.43± 5.45 86.21± 0.44 53.42± 0.83 89.5± 0.32 61.32± 3.28
LSTSVM 2−3, , 2−1 68.43± 5.23 84.21± 0.56 47.55± 1.18 87.77± 0.49 50.6± 4.45

ILSTSVM 25, 2−2, 2−4 71.95± 6.29 85.98± 0.36 53.77± 0.67 89.39± 0.26 59.83± 2.01
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7.3.4 Parameter influence on accuracy

We compare how changes of the penalty parameters and the RBF kernel param-
eter σ changes the predictive accuracy rate for some of the machines.

Figure 7.3 Effect of (C, σ) on accuracy of SVM.

From Figure 7.3 we see the influence of the penalty parameter C and the kernel
parameter σ on the one-versus-one and one-versus-all SVM recognition rates. In both
cases, the graphs show that the penalty parameter has more of an influence on the
accuracy than the kernel parameter. High values of C are required for good accuracy,
while the kernel parameter σ remains in a medium range. In one-versus-one, the accuracy
remains constantly low for smallC values and then rapidly increases asC becomes larger.
However, in one-versus-all the accuracy shows gradual improvement as C goes higher.
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Figure 7.4 Effect of (C1 = C2, σ) on accuracy of TWSVM (OVO).

Figure 7.5 Effect of (C1 = C2, σ) on accuracy of TWSVM (OVA and AVO).

 



99

For the TWSVM, from Figures 7.4 and 7.5 it can be seen that the situation is
reversed: relatively low values of the penalty parameters and kernel parameter give
good accuracy, and the results are similar for all the different decision strategies. In
contrast to the SVM, the accuracy suddenly degrades as the value of C1 = C2 gets
higher. However, one can notice a slight improvement in the accuracy rate when using
the minimum average distance to break the tie in votes from maximum-votes strategy
(mv-md).

Figure 7.6 Effect of (C1 = C2, σ) on accuracy of LSTSVM (OVO).
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Figure 7.7 Effect of (C1 = C2, σ) on accuracy of LSTSVM (OVA and AVO).
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In case of the LSTSVM, from Figures 7.6 and 7.7 one-versus-one and all-versus-one
seem to require relatively low values of C1 = C2 and σ for good accuracy. The surface
remains flat for the one-versus-one case, and we notice some improvement in the overall
rate of accuracy when using our new method of classifying by minimum average distance
as seen in Figure 7.6 (b). For one-versus-all, a higher penalty parameter gives better
performance.

In all cases, performance is best when the kernel parameter σ is in the neighbor-
hood of 20. An exception are the least square twin SVMs, where σ may be as low as 2−4

which can be seen from Tables 7.3 and 7.4.

7.3.5 Unbalanced dataset mitigation

Since the dataset of 400 images contains only 30 mild and 69 moderate samples
in contrast to the 152 normal and 149 severe samples, there is some data imbalance.
Synthetic minority over-sampling technique (SMOTE) is a standard technique to create ad-
ditional samples for the minority classes. Expecting to improve the model’s performance
we employed the SMOTE technique to deal with this imbalanced data problem. After
obtaining a total of 152 samples for each of the image classes, we performed parameter
optimization and classification by SVM and TWSVM with one-versus-one, maximum-vote
strategy. The confusion matrix in Figure 7.8 shows the results.

Figure 7.8 Confusion matrices from classifications using SVM and TWSVM.
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From the SVM-based confusion matrix which is the better of the two, one obtains
the following measurements:

• Accuracy: 69.90%
(For a balanced dataset, accuracy-1 and accuracy-2 and sensitivity coincide.)

• Sensitivity: 69.90%

• Specificity: 89.97%

• Precision: 70.90%

From this method, the rates of sensitivity and precision improve substantially to
about 70% overall, but the rate of accuracy drops noticeably. Moreover, there is now
the problem that a large portion of the normal images have been dragged into the mild
and moderate classes. Assuming that in practice, most of the eyes examined will be
healthy eyes, this will result in a large number of patients requiring an unnecessary second
examination by an expert, and makes this method of automatic diagnosis inefficient. The
problem is that many of the images in the mild or even moderate category are barely
distinct from normal images, and oversampling further blurs this distinction.

7.4 Comparison with results in the literature

Carrera et al. (2017) have used the Messidor database as well and performed
binary classifications using regular SVM involving normal and severe NPDR graded images as
shown in Table 7.5. They have reflected the rates of accuracy and sensitivity, respectively,
as 92.4% and 94.6% from 10-fold cross validation. However, from their confusion matrix
one can conclude that their results are based on a single run of a 10-fold cross validation.
On the other hand, our results are based on 10 runs of 10-fold cross validation, and we
are reporting the average metrics. Therefore, we believe that our performance measures
are more robust and reliable. The authors also reported binary classification results using
a decision tree (DT). Whether optimized for accuracy or sensitivity, our methods show
better results.
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They have also evaluated and reported their performance measures of multiclass
classifications based on a single run of 10-fold cross validation as given in Table 7.6. They
have obtained an accuracy-2 of 85.1%, sensitivity of 49.4%, and specificity of 88.4%.
Again, we have achieved better results in all performance evaluations.

We believe that our superior results are mainly due to the careful preprocessing
and feature extraction from the images.

7.5 Discussion

In our binary classifications, all types of SVMs produced good results. Twin support
vector machine models do not show any advantage over the regular support vector
machine, but are close behind. The accuracy of 97.44% achieved by the regular support
vector machine compares favorably with other results in the literature. In addition, least-
square based models fall somewhat behind the other models. However, by introducing
the regularization term, the improved least squares twin SVM (ILSTSVM) comes close to
the twin SVM in performance.

On the other hand, when it comes to sensitivity optimization, the least squares
twin SVM and improved least squares twin SVM show the most balanced picture regarding
all the four performance metrics.

In multiclass problems the overall performance is noticeable lower than for the
binary classification. We should note, however, that in binary classification, the mild
and moderate images which are the most difficult ones to classify, had been removed
from the dataset. The twin bounded support vector machine (TBSVM) showed the best
performance in almost all metrics. However, the usual SVM and twin SVM follow close
behind. The least squares based models showed again lower performance, although the
improved least squares SVM managed to catch up in some of the metrics.

One-versus-one decisions tend to be better than the one-versus-all decisions
which in turn tend to be slightly better than the all-versus-one decisions.

The difficulties in the multiclass decisions are mainly due to the fact that most
of the mild and moderate images are not being detected as being in the diseased class.
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Table 7.5 Binary classification results comparisons with literature.

Classifier Accuracy Sensitivity Specificity Precision
Accuracy optimized

(This work) SVM 97.44± 2.91 96.65± 4.52 98.22± 3.75 98.3± 3.48
(Carrera et al.) SVM 92.4 87.3 97.4 97.2∗

(Carrera et al.) DT 92.0 86.6 97.4 n/a
Sensitivity optimized

(This work) TWSVM 91.53± 4.77 99.06± 2.52 84.17± 9.53 86.56± 7.16

(This work) SVM 90.17± 4.8 98.35± 3.35 82.55± 8.94 85.1± 6.89

(This work) ILSTSVM 94.05± 4.19 98.66± 3.01 89.53± 7.4 90.63± 6.2
(Carrera et al.) SVM 80.4 94.6 66.2 n/a
(Carrera et al.) DT 91.0 94.0 88.1 n/a
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Table 7.6 Multiclass classification results comparisons with literature (one-versus-one).

Classifier Accuracy-1 Accuracy-2 Sensitivity Specificity Precision
(This work) TBSVM

(mv+md) 75.18± 5.52 87.59± 0.31 56.51± 0.8 90.71± 0.23 66.37± 5.48
(This work) SVM 74.55± 4.98 87.4± 0.15 56.39± 0.47 90.58± 0.11 63.32± 1.81

(Carrera et al.) SVM 70.25∗ 85.1 49.4 88.4 49.3∗

∗: not published in Carrera et al.’s paper, but easily computed from the published confusion matrix.
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In mild NPDR eye images, the most significant characteristics are the microaneurysms.
Their separating out is the most difficult of all the other segmentation processes since it
depends on a number of factors such as image quality or the basic or advanced image
preprocessing techniques one uses. As for the moderate NPDR images, haemorrhages
and cotton wool spots can be observed as per clinical pathologies in general. However,
the Messidor dataset that we have used contains several NPDR images labeled moderate
which do not exhibit these properties. In addition, only a few microaneurysms are present
in these moderate images, just as in the mild case. Thus, the distinction between these
classes seems subtle. It remains a challenge to improve on the image pre-processing and
feature extraction techniques in order to be better able to detect the mild and moderate
cases.

 



CHAPTER VIII
CONCLUSION

In this research, we have presented the classification of eye fundus images with
regards to the various stages of nonproliferative diabetic retinopathy using support vector
machines.

In the first part, a range of support vector machines were reviewed and evalu-
ated by experiments with regards to suitability for multiclass decisions using 5 standard
datasets. These include the usual support vector machine, the twin support vector ma-
chine, the least squares twin support vector machine and improved versions of the latter
two, called twin bounded, respectively improved least squares twin support vector ma-
chines. While there were noticeable differences among them in accuracy as performance
metric, these usually fell in a range of well below 5%. Overall, the twin bounded least
squares support vector machine showed the best accuracy. For 4 out of 5 of the datasets,
the one-versus-one decision strategy had an edge over the one-versus-all and the all-
versus-one strategies. Surprisingly, the all-versus-one strategy proved to be superior for
the remaining dataset. It turns out that some of our results differ from those published by
a group of other authors; indeed we believe that some of their results cannot be realistic.

We then proposed a new decision strategy in one-versus-one decisions for the
twin support vector machine variations, replacing the “maximum-vote” strategy with a
“minimum average distance from the hyperplanes” strategy. In half of the experiments
this novel strategy gave a slight increase in accuracy.

The second part dealing with the fundus eye images began by delineating the
various image processing techniques for the detection of retinal blood vessels, microa-
neurysms, haemorrhages, exudates, markers for diabetic retinopathy, as well as the optic
disk used in this work. These four markers were extracted from the algorithms as the
most significant features. They were supplemented by another nine features extracted
based on statistical and texture content from the green channel of the image and its
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gray-level co-occurrence matrix. In total 13 features were extracted in total to be fed to
the classifiers.

Then various support vector machine models were employed, first for detection
of severe nonproliferative diabetic retinopathy detection, and next for detection and
multiclass grading of nonproliferative diabetic retinopathy. For the detection of severe
nonproliferative diabetic retinopathy, 7 of the 13 features gave optimal results with an
accuracy rate of 97.44 ± 2.91% from a regular support vector machine. When the goal
was to optimize for the sensitivity, the twin bounded support vector machine yielded
the highest sensitivity of 99.06± 2.52%. In case of nonproliferative diabetic retinopathy
grading, the best performances were recorded using 11 features. The different decision
strategies on regular as well as twin support vector machine models gave almost simi-
lar performances. In particular, the twin bounded support vector machine with a novel
“maximum-vote and minimum average distance as the tie breaker” strategy recorded
highest performance rates. This classifier realized an average accuracy of 87.59% with
a standard deviation of ±0.31%. The performance measures other than accuracy were
also marginally higher on this machine when compared to the other classifiers. The two
twin least square support vector machines showed the least performance of all classifiers,
however, in the one-versus-one decision method, their performance was noticeably in-
creased when our new novel “minimum average distance from the hyperplane” strategy
was applied.

Our results turned out to be superior to those presented in the literature. This
is most likely caused by our careful preprocessing, and the extraction of a total of 13
features from the images. Nevertheless, the detection of mild and moderate diabetic
retinopathy still presents a challenge. Many of the images in the Messidor database
that are classified as mild or moderate which we have used are difficult to distinguish
from healthy images even with the naked eye. It would be worthwhile to investigate
feature extraction methods using machine learning methods, such as convolutional neural
networks for example, to explore the small specific nuances in the images as new features.
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APPENDIX A
MATLAB CODES FOR PROCESSING OF THE EYE IMAGES
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Figure A.1 Matlab code: Retinal blood vessels segmentation.
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Figure A.1 Matlab code: Retinal blood vessels segmentation (continued).
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Figure A.1 Matlab code: Retinal blood vessels segmentation (continued).
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Figure A.2 Matlab code: Haemorrhages detection.
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Figure A.2 Matlab code: Haemorrhages detection (continued).
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Figure A.3 Matlab code: Microaneurysms detection.
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Figure A.3 Matlab code: Microaneurysms detection (continued).
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Figure A.3 Matlab code: Microaneurysms detection (continued).
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Figure A.4 Matlab code: Exudates detection.
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Figure A.4 Matlab code: Exudates detection (continued).
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Figure A.5 Matlab code: Optic disk segmentation.
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Figure A.5 Matlab code: Optic disk segmentation (continued).
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Figure A.5 Matlab code: Optic disk segmentation (continued).
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