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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 Human heavily and increasingly used fossil fuel for power in daily life. This 

causes deterioration of the environment, leading to many problems such as the global 

warming, particulate pollutant (2.5 microns or smaller in size), and air and water  

pollutions. Moreover, the main fossil fuels, such as coal, oil, and natural gas reserves 

are getting lower in the next few decades. Therefore, alternative energy resources are 

the urgent task for a sustainable world. Photovoltaic solar cell is one of the most 

promising approaches of havesting solar energy by conversion of solar energy into 

electricity. 

 The development of solar cells has been achieved from decades ago. Presently, 

dye-sensitized solar cells (DSSCs), the third-generation solar cells, have attracted a 

great attention due to their easy and low-cost fabrication and relatively high efficiency 

followed the first two generations, Si-based and Cd-based solar cells (O'Regan and 

Grätzel, 1991; Tang, 1986; Yu et al., 1995). Recent development of DSSCs is the 

introduction of organic-inorganic halide perovskites such as CH3NH3PbI3 (MAPbI3) as 

the absorber layer in DSSCs (Kojima et al., 2009). It attracted vast attention on account 

of a significant improvement in power conversion efficiencies (PCEs) that have risen 

from 4% up to 22% in a short period of research time (Im et al., 2011; Kim et al., 2012; 

Lee et al., 2012; Burschka et al., 2013). 
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Perovskites of the general formula ABX3 have played a central role in the 

evaluation of materials chemistry and condensed matter physics over the last 70 years 

(Kieslich et al., 2014). This family of solid-state materials covers a wide range of 

intriguing properties, including both application-oriented phenomena and fundamental 

physics and chemistry (Kieslich et al., 2015). 

 

Figure 1.1 Illustration of the ideal cubic ABX3 perovskite structure. Monovalent A-site 

cation,  divalent B-site cation, and  X-site anions are located at the corner of the unit 

cell (deep blue sphere), at the body center of the unit cell (green sphere), and at the face 

center of the unit cell (red sphere), respectively. 

 

By definition, a perovskite generally refers to a class of materials with chemical 

formula ABX3 with the crystal structure shown in Figure 1.1. Calcium titanium oxide 

(CaTiO3) is an example of materials with such structure. Perovskites take their name 

from the natural mineral, which was discovered in 1839 and named after mineralogist 

L.A. Perovski (1792-1856) (De Graef and McHenry, 2012). The ideal cubic perovskite 
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structure (as illustrated in Figure 1.1) which consists of a monovalent A-site cation 

(deep blue sphere) located at the corner of the unit cell, a divalent B-site cation (green 

sphere) located at the body center of the unit cell, and X-site anions (red sphere) located 

at the face center of the unit cell. Victor Goldschmidt was the first to describe the 

perovskite crystal structure by using the concept of tolerance factor (Goldschmidt, 

1926). In ideal cubic-symmetry perovskites, the B cation is in 6-fold coordination, 

surrounded by an octahedron of the X anions, and the A cation is in 12-fold 

cuboctahedral coordination. A- and B-cations are different positive charges 

compensated by the negative X-anions. The size of the ions has to obey the Goldschmidt 

criterion. The detail of the Goldschmidt condition is discussed further in Section 3.2  

Materials with perovskite structure are very common because of the adaptability 

of this structure toward A, B, or X site substitution, which allows for the great variability 

in materials and properties (Kieslich et al., 2014). The most abundant inorganic 

perovskites are oxides (ABO3) which have many interesting properties, including phase 

transition, ferroelectricity, supper-conductivity, elastic properties etc. (Tao and Irvine, 

2006; Scott et al., 2008; Pérez-Tomas et al., 2019; Lu et al., 2018; Tao et al., 2004; Lan 

et al., 2016). Previously, we used the first principles calculation to study some 

interesting properties such as elastic properties of oxide perovskites (ABO3). The 

pressure-dependent of sound velocities and elastic properties of the cubic PbBO3 (B = 

Ti, Zr) under pressure were studied (Pandech et al., 2013). The elastic constants of 

cubic phase of perovskite ATiO3 (A = Be, Mg, Ca, Sr, and Ba) and PbBO3 (B = Ti, Zr, 

and Hf) were systematically calculated by using the energy-strain relation. The 

calculations of elastic constants by using the energy-strain relation were explained in 

detail by using the SrTiO3 as an illustration case (Pandech et al., 2016). The elastic 
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constants have found to be linearly increased with the applied pressure. The effects of 

cation species on the elastic properties were also investigated (Pandech et al., 2015). 

The compressive elastic constant, (C11) is maximum when the cation atoms A and B 

have comparable size. Oxide perovskites (ABO3) are fastinated materials and there are 

some interesting properties worth to be explored such as the electronics properties 

under pressure (Tariq et al., 2015; Liu et al., 2011).  

Perovskite compounds may refer to the compound ABX3 having similar 

structure as ABO3. Some perovskite structures can form with sulfur (or other group VI 

elements) (Snyder et al., 1992). More common alternatives to oxide are obtained by 

replacing oxygen atoms with atoms of group VII, for examples of fluorides (such as 

NaMgF3, KMgF3 and KZnF3). Particularly relevant is also the group of organic and/or 

inorganic halide perovskites (e.g., CsPbI3, CH3NH3PbI3, CH3NH3PbB3, and 

CH3NH3PbCl3) can be formed (Poglitsch and Weber, 1987). 

The class of perovskite materials so-called halide perovskites has been known 

for decades and has been studied, in particular, on dielectric properties (Weber, 1978; 

Poglitsch and Weber, 1987; Xu et al., 1991). However, in 2009, this class of materials 

has been used in solar cell application for the first time by Miyasaka’ s research group 

(Kojima et al., 2009). They fabricated the light absorber part based on A = CH3NH3 

(Methylammonium, MA), B = Pb and X = Br or I  in a dye-sensitized solar cell as shown 

in Figure 1.2. The power conversion efficiency (PCE) of their solar cell was only 3.8% 

and the cell was stable for only a few minutes due to a corrosive liquid electrolyte. After 

the work of Miyasaka, a few research groups attempted to improve the PCE and the 

stability of halide perovskite solar cell, but a few improvements of PCE to 6.5% by 

Park’s group in 2011 (Im et al., 2011). However, because the advantage in low cost of 
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materials and simple to manufacture of the halide perovskite solar cell, then there are 

three breakthroughs which triggered and renewed interest in the halide perovskite solar 

cell research in 2012. First, Kanatzidis’ research group (Chung et al., 2012) used A = 

Cs instead of MA to solve the stability of the perovskite solar cell and achieved more 

than 10% PCE. After that, in August of the same year, Park’s research group in South 

Korea cooperated with Grätzel’s research group in Switzerland reported 9.7% of PCE 

with 500 hours of stability in CH3NH3PbI3 (Kim et al., 2012). In October 2012, Snaith 

and Miyasaka ’s research groups (Lee et al., 2012) reported that the halide perovskite 

was stable if put it in contact with a solid-state hole transporter and reported 10.9% of 

PCE. In 2013, 15% PCE perovskite solar cell was achieved in Grätzel’s research 

(Burschka et al., 2013) by using mesoscopic/sensitized architecture and in Snaith’s 

research group (Docampo et al., 2013) by using planar architecture. In 2014, Yang’s 

research group (Zhou et al., 2014) reported about 19.3% PCE in their planar thin-film-

architecture-based solar cell and in the same year the National Renewable Energy 

Laboratory (NREL) reported a non-stability efficiency of 22.1% from the researchers 

in Korea Research Institute of Chemical Technology (KRICT) in early 2016 (National 

Renewable Energy Laboratory, 2016; Polman et al., 2016). From the pioneer work of 

Miyasaka et al., the PCE of halide perovskite solar cells significantly improved from 

3.8% to above 20% in year 2009 to 2016, making them the new type of photovoltaic 

materials. 
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Figure 1.2 (a) Mesoscopic/sensitized halide perovskite solar cell with mesoporous 

(MP) TiO2. (b) Planar halide perovskite solar cell without a mesoporous TiO2 layer. 

FTO, TF, and HTM stand for fluorine doped tin oxide (FTO), thin film (TF), and hole 

transporting material (HTM) (Jung and Park, 2015).  

 

 Although the halide perovskite solar cells achieve the great PCE, however, the 

fundamental reasons behind the successive PCE of the halide perovskite solar cells are 

still not well understood and under controversy. The present of the organic molecules, 

CH3NH3
+, leads to the complicated crystal structure of the materials. Especially, at a 

high-temperature range, the molecules are randomly re-oriented. The influences of 

molecular orientations on the structural and electronic properties are rarely 

investigated. Even though, some works attempt to understand the effect of the organic 

molecule, MA+ cation on the physical properties of these materials. For examples, 

Bechtel et al. (Bechtel et al., 2016) performed the density functional theory (DFT) for 

the MAPbI3 to mapping out the energy landscape of the MA+ cation as a function of 

molecular rotational variables, such as a polar angle  and azimuthal angle  of the CN 
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axis of the molecule vs. the [001] and [100] cubic axes, the rotation angle  of the 

molecule about its axis and also the displacement of the molecule from its center along 

its axis. Their main finding is that the displacement of the molecule and the translation 

along its direction away from the nominal center of the dodecahedral site are quite 

important. The optimum orientations found in their work are close to [100] and [111] 

directions. But in their work, the main inorganic framework of Pb-I is kept being as a 

simple cubic structure. In reality, the rotation of MA+ cation can distort the structure 

and might change the electronic properties of these materials. Motta et al. (Motta et al., 

2015) also performed the DFT study of molecular orientations on the structural and 

electronic properties of the MAPbI3. It has been found that the molecular orientations 

are sensitive to the initial orientation of the molecule being along [100] or [111]. The 

molecule will rotate from [100] orientation toward [110] or equivalent direction and 

consequently affect the electronic band structure of the material. Base on these two 

works, the high temperature, α-phase is considered. Quarti et. al. (Quarti et al., 2014) 

present the DFT study of an interplay of orientational order and electronic properties of 

the room temperature, β-phase of MAPbI3. In their work, various orientations of the 

MA+ cations are considered, such as a polar (ferroelectric) structures with the MA+ 

orientations giving rise to a net dipole alignment and other an apolar (antiferroelectric) 

structures with the MA+ orientations giving a non-dipole alignment. They found that a 

ferroelectric-like orientations which leading to a quasi I4cm structure are preferred 

stability structure than that antiferroelectric structure.   
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1.2 Research Objectives 

 In this thesis, we have conducted a van der Waals-corrected density functional 

theory (vdW-DFT) calculations to examine the importance of vdW interactions on the 

structural parameters and the electronic properties of the studied halide perovskite 

materials. The selected materials are CH3NH3BX3 (B = Pb, Sn, Ge and X = I, Br, Cl). 

The structural relaxation and electronic band structure calculations are carried 

out by using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functionals. It is 

well known that even the PBE with vdW corrected DFT can significantly underestimate 

the gap. Therefore, the more accurate Heyd-Scuseria-Ernzerhof (HSE) screened hybrid 

functional (HSE06) and the quasiparticle self-consistent GW method are used to 

calculate the band structures. The investigation on the calculation results obtained from  

different level of functionals will be discussed. 

Finally, spin-orbit coupling is known to be important in particular in the Pb- and 

Sn-based compounds thus, the effect of both GW self-energy corrections and spin-orbit 

coupling (SOC) on the electronic structure in relation to the orientation of the MA 

molecules and their corresponding induced structural distortions are studied. The SOC 

can induce symmetry breaking and affect the location of CBM in k-space. 

1.3 Thesis Outline 

This thesis covers the theoretical study of structural and electronic properties of 

selected halide perovskite materials, ABX3 (A = CH3NH3 : B = Pb, Sn, Ge: X = Cl, Br, 

I). The calculations are performed within the framework of DFT as implemented in 

Vienna Ab initio Simulation Package (VASP). The exchange-correlation functional of 

Perdew, Burke and Ernzerhof (PBE) is used for structural relaxation. The non-local 
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hybrid exchange-correlation function (HSE06) is used for electronic structure 

calculations. Additionally, the band structures are calculated by using the all electron 

full- potential linearized muffin- tin orbital ( FP- LMTO)  method as implemented in 

Questaal Suite (https://www.questaal.org.). The calculated results with different level 

of functionals are discussed.  

Chapter II, the theoretical approaches used in this thesis are discussed in detail. 

It begins with the introduction to the density functional theory (DFT) and its 

requirements. The approximations methods used in DFT are discussed. 

Chapter III covers the calculation of structural parameters compared with other 

theoretical and experimental values, crystal structures, formability, and phases 

transition of studied halide perovskite materials.  

Chapter IV covers the effects of the methylammonium cation rotations on the 

structural and electronic properties of studied materials. The influences of van der 

Waals-correction on DFT calculations and the calculated results with different level of 

functionals are discussed in detail.  

Chapter V, the main findings in this work are summarized. Based on our results, 

future interesting researches on structural and electronic properties of halide perovskite 

materials are suggested for various applications.  

 



 

 

CHAPTER II 

THEORETICAL APPROACH 

 

For atomistic calculations of materials, in-depth information could be derived 

from the electron wave functions. In principle, the electronic wave functions of the 

system are obtained by solving many-body Schrödinger equations. However, in 

practice, it is nearly impossible to directly solve the full set of Schrödinger equations 

of the many-electrons problem. The method of approximations is need to simplify the 

complicated many-body problems into solvable ones. In this chapter, the theories, 

approximation methods, and software used in this thesis are briefly explained. 

2.1 Electronic Structure Problem 

 A central goal of most electronic structure theories is to seek for the solution to 

the non-relativistic time-independent many-body Schrödinger equation as,  

    ( )    ( ), , , , .A i i A i iH R r E R r  =    (2.1) 

For a system containing M nuclei and N electrons, the many-body wavefunction ( ) is 

a function of all spatial coordinates of nuclei (  , 1, 2,...AR A M= ). The Hamiltonian      

( H ) is a sum of all possible interactions between electrons and nuclei. In the atomic 

unit, H  can be expressed as,  

 
2 2

1 1 1 1 1 1

1
.

2 2

N M N N M M N M
i A A B A

i A i j i A B A i AA A B i Ai j

Z Z Z
H

M R R r Rr r= = =  =  = =

 
= − − + + −

− −−
       (2.2)
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Where MA is the ratio of the mass of nucleus A to the mass of an electron, and ZA is the 

atomic number of nucleus A. The 2

i  and 2

A  are the Laplacian operators. The first two 

terms in the Eq. 2.2 represent the kinetic energies of all electrons and nuclei, 

respectively. The third and fourth term are the Coulomb repulsion between electrons 

and between nuclei, respectively. The fifth term is the Coulomb attraction between 

electrons and nuclei. The time-independent many-body Schrödinger equation in Eq. 2.1 

is relatively simple but nearly impossible to solve (Martin, 2004). There are numerous 

attempts to find reasonable approximations to reduce the complexity. The first well 

known important approximation is the Born-Oppenheimer approximation (Born and 

Oppenheimer, 1927) obtained by decoupling the dynamics of the electrons and nuclei.   

2.2 Born-Oppenheimer Approximation 

 Considering Newton’s law of motion, a proton mass is approximately 2000 

times larger than the mass of an electron. Therefore, the electrons are much lighter than 

the nuclei such that the timescale of the dynamical response of the electrons is a few 

orders of magnitude faster than that of nuclei. Basically, this allows us to separate or 

decouple the dynamics of the electrons and the nuclei. This modest approximation is 

called the Born-Oppenheimer approximation. In practice, the nuclei are treated as static 

classical particles with respect to the electrons that are treated as quantum particles. As 

a result, the kinetic energies of nuclei (the second term of Eq. 2.2) can be neglected and 

the potential energies arising from Coulomb repulsion between nuclei (the fourth term 

of Eq. 2.2) is a constant for fixed configuration of the nuclei. The full Hamiltonian in 

Eq. 2.2 is reduced to the electronic Hamiltonian ( eH ),  
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2

1 1 1 1

1
.

2

N N N N M
i A

e

i i j i i A i Ai j

Z
H

r Rr r= =  = =


= − + −

−−
     (2.3)  

The solution to above Schrödinger equation involving the electronic Hamiltonian             

( eH ) becomes  

    ( )    ( ), , , , .e e A i i e e A i iH R r E R r  =    (2.4) 

In Eq. 2.4, the electronic wavefunction (
e ) depends on nuclear coordinates ( AR ) 

only parametrically, thus the configuration of nuclei  AR can be fixed. For simplicity, 

electronic spatial and spin coordinates ( ,i ir  ) can be put together into one variable 

 ix  (i.e.,    ,i i ix r = ) and the Eq. 2.4 can be rewritten as  

  ( )  ( ).e e i e e iH x E x =    (2.5) 

The total energy for some fixed configurations of the nuclei including the constant 

nuclear repulsion term leads to, 

 
1

.
M M

A B
Total e

A B A A B

Z Z
E E

R R= 

= +
−

   (2.6) 

With the Born-Oppenheimer approximation, the electronic structure problem is reduced 

to solving less complicated problem, Eq. 2.5. Note that, the Born-Oppenheimer 

approximation is certainly not universally valid and it may break down in some cases 

when there are multiple potential energy surfaces close to each other in energy. Since 

the motion of the electrons is correlated to each other, which essentially requires the 

treatment of 3N variables for an N-electrons system, this makes the Schrödinger 

equation involving the electronic Hamiltonian ( eH ) still complex. The main concern 

is how to properly describe the interactions between the electrons. Many approximate 
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methods have been developed to solve Schrödinger or Schrödinger-like equations by 

mapping the N-electron Schrödinger equation into one-electron Schrödinger equations 

moving in an effective potential that are feasible to solve. The approximation schemes 

can be divided into two main approaches: (i) the wavefunction based methods, where 

the many-electron wavefunction is the central variable, for example, the Hartree-Fock 

approximation (Hartree, 1928), and (ii) density-functional theory (DFT), where the 

electron density is treated as the central entity rather than the many-body wavefunction. 

2.3 Density Functional Theory 

The density functional theory (DFT) is the widely adopted method to describe 

the interactions between the electrons in the many-electron Schrödinger equation. The 

key idea of DFT is to describe the complicated many-body electron interactions through 

its density ( )n r instead of its wavefunction

 
i . Using the electron density ( )n r  over 

the electron wavefunction offers a great advantage of much-reduced dimensionality. In 

contrast to the many-body wavefunction, the electron density always depends on 3-

dimension regardless of the number of electrons in the system. The DFT has become 

the most widely used electronic structure method nowadays especially in the 

computational materials science and condensed matter physics community. 

 The DFT has been successively applied to wide range of material structures 

such as standard bulk  materials, nanostructures, molecules, and complex materials, for 

example, proteins and carbon nanotubes (Lee et al., 2002; Fox et al., 2014; Christian 

Wagner et al., 2012). The central idea of DFT is to describe the complicated many-

body electron interactions through its density, ( )n r (Parr and Yang, 1989). Based on 

variational principle, the electron charge density serving as the variational parameter 
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(Hohenberg and Kohn, 1964) is used to seek for the ground state wave functions of the 

system. The comprehensive discussion of the DFT can be found in the excellent review 

articles (Parr, 1983; Ziegler, 1991; Geerlings et al., 2003; Jones and Gunnarsson, 1989) 

and textbooks (Parr and Yang, 1989; Dreizler and Gross, 1990; Martin, 2004). The brief 

explanation of DFT is following. 

 First, the electron density is defined as  

 
2

1 2 1 2( ) ... ( , ,..., ) ...N Nn r N x x x d dx dx=      (2.7) 

where  ix  represent both spatial and spin coordinates. ( )n r  determines the probability 

of finding any of the N electrons within the volume r  but arbitrary spin while the other 

N-1 electrons have arbitrary positions and spin in the state represented by  . This is a 

nonnegative simple function of three spatial variables (x, y, and z). It is clear that Eq. 

2.7 integrates to the total number of electrons,  

 ( )N n r dr=   . (2.8)  

2.3.1 Thomas-Fermi Model 

In 1920s Thomas and Fermi proposed the model to describe the electronic 

energy in term of electronic density (Thomas, 1927; Fermi, 1927). In their model, the 

kinetic energy of electrons is derived from the quantum statistical theory based on the 

uniform electron gas, but the electron-nuclei and electron-electron interactions are 

described classically. Then, the kinetic energy of the electrons is defined as,  

   5 3( )FT n C n r dr=   , with ( )
2 3

23
2 2.871

10
FC = = . (2.9)  
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In this approximation, the kinetic energy of the electrons is expressed in terms of the 

electron density ( )n r . Therefore, the total energy including the interactions between 

electron-nuclei and electron-electron, in terms of ( )n r , can be expressed as,  

   5 3 1 2
1 2

1 2

( ) ( )( ) 1
( )

2
F

n r n rn r
E n C n r dr Z dr dr dr

r r r
= − +

−
      (2.10)  

The second and third terms are the electron-nuclei and electron-electron interactions, 

respectively. The Thomas-Fermi model proposes that the total energy is solely 

determined by the electron density.  

2.3.2 The Hohenberg and Kohn Theorem 

In 1964, Hohenberg and Kohn first derived the fundamentals of the density 

functional theory which redefines the electronic Hamiltonian as a function of electron 

density ( )n r  (Hohenberg and Kohn, 1964). The theorem based on two principles: (i) 

Uniqueness theorem, there exists a one-to-one correspondence between initial 

condition, external potential ( )extV r , and solution, electron density ( )n r ; and (ii) 

variational principle, the ground-state total energy can be found by variational of 

electron density/wavefunction.  

Consider a certain system consisting of electrons moving under the external 

potential,
 

( )extV r , Hohenberg and Kohn proposed that the ground state energy and all 

properties of electron wavefunction in the external potential can be determined from 

the electron density, ( )n r . The ground-state energy of many-electron wavefunction can 

be written as (Hohenberg and Kohn, 1964) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )3

,

,

ne ee

ext HK

E n r T n r V n r V n r

E n r V r n r d r F n r

       = + +
       

   = +
   

 (2.11) 

where  

 ( ) ( ) ( )HK eeF n r T n r V n r     = +
     

. (2.12) 

In Eq. 2.11, the ( )extV r is the external potential generated by the interactions between 

nuclei and electrons. ( )HKF n r 
 

is an unknown function, but it is a universal function 

of the electron density ( )n r . It does not depend on the external potential and includes 

all kinetic energy and electron-electron interaction terms (Parr and Yang, 1989) 

 The difficulty to determine the ground state energy in the Hohenberg and Kohn 

theory is an unknown function ( )HKF n r 
 

. In principle, the introduction of ( )HKF n r 
 

 

is to reformulate the interacting many-electron system to a non-interacting one such 

that the complexity of manybody interactions is buried inside ( )HKF n r 
 

. It still to be 

the major problem to determine the universal function ( )HKF n r 
 

. However, it enables 

one to understand the roles of these interactions on the ground-state wavefunctions by 

applying different kinds of approximations to ( )HKF n r 
 

. For sufficiently simple 

functional of ( )n r , determining the ground state energy and density in a given external 

potential ( )extV r  would be possible if the ( )HKF n r 
 

 is known (by approximation rather 

than exact) since it requires merely minimization of a functional of the three-

dimensional density function. 
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2.3.3 The Kohn and Sham Equation  

In 1965, Kohn and Sham (Kohn and Sham, 1965) published a paper that coined 

the density-functional theory into real-world practice, a practical electronic structure 

theory. The main complication of the Thomas-Fermi theory is the description of the 

kinetic energy. Similar to Hartree-Fock approximation (Hartree, 1928), the problem has 

been addressed by introducing the idea of non-interacting electrons moving in an 

effective filed. They proposed that the universal function ( )HKF n r 
 

 in Equation 2.12 

can be defined as a sum of three parts, the kinetic energy of non-interacting electrons 

(Ts), the Hartree energy (EHatree), and all the many-body quantum effects are put 

together into the exchange and correlation energy (Exc). Therefore, the ground-state 

energy functional which obtained in the previous section can be written as, 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3

3

,

.

ext HK

Hartree

ext s xc

E n r V r n r d r F n r

E n r V r n r d r T n r E n r E n r

   = +
   

       = + + +
       




 (2.13) 

Where the third term in Eq. 2.13, ( )HartreeE n r 
 

 is the electron-electron Coulomb 

energy (also often referred to as Hartree energy) can be defined as, 

 ( )
( ) ( )'2

3 3 '

'
.

2

Hartree
n r n re

E n r d rd r
r r

  =
 

−
   (2.14) 

The second term in Eq. 2.13,
 

( )sT n r 
 

 is the kinetic energy of the non-interacting 

system with the same density. Note that, it is not to be confused with the exact kinetic 

energy function ( )( )T n r 
 

. The difference between ( )T n r 
 

 and ( )sT n r 
 

 is 
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supposed to be small so that it is inserted into the exchange-correlation energy, the last 

term, ( )xcE n r 
 

 in Equation 2.13 (Parr and Yang, 1989).  

The above-mentioned effective potential of considered electronic structure 

problem is defined as,  

 

( )
( ) ( ) ( ) ( ) 

( )

( ) ( )
( )

( )

'

3 '

'
.

Hartree

ext xc

eff

eff ext xc

n r V r dr E n r E n r
V n r

n r

n r
V n r V r d r v r

r r





   + +
     =

 

  = + +
 

−





  (2.15) 

Where ( )xcv r is the exchange-correlation potential which is defined as,  

 ( )
( )

( )
xc

xc

E n r
v r

n r





 
 

= . (2.16) 

Finally, the  Kohn-Sham DFT has changed our perspective in the seeking for the 

solutions of many-electron system by solving a single-electron problem Schrödinger-

like equation. The ground state solution of an electron in the effective potential ( )effV r

is expressed as,  

 ( ) ( ) ( )
2

2 .
2

eff i i iV r r r
m

  
 
−  + = 
 

  (2.17) 

Here  i  are the Kohn-Sham one-electron orbitals and the electron density for this 

system is given by (Kohn and Sham, 1965) 

 ( ) ( )
2

1

,
N

i

i

n r r
=

=   (2.18) 

where N is the number of electrons. Finally, the total energy can be determined from 

the electron density through  
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( ) ( )

( ) ( ) ( )
'

'
1

1

2

N

i xc xc

i

n r n r
E E n r v r n r dr

r r


=

 = + + −
 

−
   . (2.19)  

Eq. 2.15, 2.17 and 2.18 are the notable Kohn-Sham equation. Note that the ( )effV r  

depends on the ( )n r  through Eq. 2.18. Therefore, the Kohn-Sham equation must be 

solved self-consistently.  

Initially, a guess of ( )n r  is used to construct 
effV , which is an important function 

needed to define the Kohn-Sham equation in Eq. 2.17. The Kohn-Sham equation then 

can be solved to obtain the wavefunctions i . Then the obtained i  are used to construct 

an improved ( )n r . The improved ( )n r is used to construct new
 effV  in Eq. 2.17. This 

sequence of improving solutions is iteratively computed until convergence is reached, 

i.e., the ( )n r remains unchanged (or the difference between the iterations is smaller 

than some tolerance). Finally, the total energy is calculated from Eq. 2.19 with the most 

recent electron density.  

The Kohn-Sham equation is considered to be exact since there is no 

approximation imposed. The exact ground state density and total energy could be 

obtained if the Kohn-Sham energy functional is known. Unfortunately, the exchange-

correlation (xc) functional (Exc) is not known exactly. It includes i) the non-classical 

aspects of the electron-electron interactions and ii) the difference between the kinetic 

energy of the real system and the fictitious non-interacting system. Therefore, different 

levels of approximation are involved in order to approximate Exc. 
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2.4 The Exchange Correlation Functions 

The form of the exchange-correlation energy functional has to be known in 

order to solve the Kohn-Sham equations in Eq. 2.15 and Eq. 2.17. However, the exact 

form ( )xcE n r 
 

 is not known. Since the birth of DFT some sort of approximations for 

( )xcE n r 
 

 have been used. By now there is an almost endless list of approximated 

functionals with varying levels of complexity. Generally, two popular approximations 

of ( )xcE n r 
 

; the local density approximation (LDA) and the generalized gradient 

approximation (GGA) are usually used. The details of the exchange-correlation 

functions are described below. 

2.4.1 The Local Density Approximation (LDA) 

LDA was introduced by Kohn and Sham in 1965 (Kohn and Sham, 1965) and 

it is the most widely used approximation in crystalline solid materials. It is assumed 

that the electron density can be treated locally as a uniform electron gas. Within LDA, 

the ( )xcE n r 
 

 depends on the value of the electron density at a particular point r  in 

the system and the exchange-correlation energy is defined as (Parr and Yang, 1989),  

 ( ) ( ) ( ) 3 ,LDA

xc xcE n r n r n r d r   =
      (2.20) 

where ( )xc n r  
 

 is the exchange-correlation energy per particle of a homogeneous 

electron gas with the density ( )n r . The ( )xc n r  
 

 can be written as a sum of exchange 

and correlation energy 

 ( ) ( ) ( ) ,xc x cn r n r n r       = +
     

  (2.21) 
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where ( )x n r  
 

 and ( )c n r  
 

 are the exchange and correlation energy density of a 

homogeneous electron gas of density ( )n r , respectively.  The analytical form of the 

exchange energy ( )x n r  
 

of a homogeneous electron gas was derived by Dirac in 

1930 (Dirac, 1930) and written as 

 ( ) ( )
1/3

1/3 3 3
, .

4
x x xn r C n r C



   = − =     
  (2.22) 

The correlation energy ( )c n r  
 

 is much more complicated and generally obtained by 

parametrization of many-body systems (Gell-Mann and Brueckner, 1957)) (Ceperley 

and Alder, 1980). For a homogeneous electron gas with different densities, the 

correlation energy was calculated by Ceperley and Alder (Ceperley and Alder, 1980) 

by means of quantum Monte Carlo calculations. Modern LDA functionals tend to be 

exceedingly similar, differing only in how their correlation contributions have been 

fitted to the many-body free electron gas data. For example, the Vosko-Wilk-Nusair 

(VWN) (Vosko et al., 1980), Perdew-Zunger (PZ) (Perdew and Zunger, 1981), and 

Perdew-Wang (PW) (Perdew and Wang, 1992) functionals are based on common LDA 

functionals.  

In principle, the LDA is supposed to be valid only for slow varying electron 

density system. Fortunately, the LDA works surprisingly well for broader range of 

system, especially for metals. A partial explanation for this success of the LDA is 

systematic error cancellation. Typically, in inhomogeneous systems, LDA 

underestimates correlation but overestimates exchange, resulting in unexpectedly good 

values of LDA

xcE  . This error cancellation is not accidental, but systematic, and caused by 
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the fact that for any density the LDA satisfies a number of so-called sum rules 

(Gunnarsson and Lundqvist, 1976; Gunnarsson et al., 1976; Ziegler et al., 1977; Burke 

et al., 1998).  

In general, LDA tends to overestimate cohesive energies by ∼15-20% and 

underestimates lattice constants by ∼2-3% for metals and insulators. Problem with 

LDA becomes more severe for weakly bonded systems, such as vdW interactions and 

H-bonded systems. Long-range vdW interactions are completely omitted in LDA. 

2.4.2 Generalized Gradient Approximation (GGA) 

Since there are quite a number of limitation in LDA. There are many great 

efforts to develop approximation method beyond the local uniform densities system. 

The first attempt was the so-called gradient-expansion approximations (GEA) where  

gradient of the electron density ( ( )n r ) is included for approximation of  the exchange-

correlation energy. The gradient corrections of the form ( )n r , ( )
2

n r , ( )2n r , 

etc., are systematically imposed to the LDA in order to capture rapidly varying electron 

densities. In practice, including of the low-order gradient corrections rarely improves 

on the LDA, and often even worsens it. Higher-order corrections are exceedingly 

difficult to calculate. To correct the gradient of electron density, instead of using the 

power-series-like gradient expansions one could introduce more general functions of 

( )n r  and ( )n r . Therefore, generalized gradient approximation (GGA) was proposed 

to take into account the variation of electron density around the nuclei. In this 
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approximation, the exchange-correlation energy ( )xcE n r 
 

 is written as a function of 

the electron densities and their gradients ( )n r , (Kohn, 1999)  

 
3( ) ( ), ( ) ( ) .GGA GGA

xcE n r f n r n r n r d r   =       (2.23) 

The GGA is often called the semi-local functionals due to their dependence on 

the ( )n r . For many properties, for example, geometries and ground-state energies of 

the molecules and the solid, GGAs give better results than the LDAs. Especially for the 

covalent bonds and weakly bonded systems, many GGAs work better than LDAs. 

Because of the flexibility in the choice of GGAf  , there are many developed GGA 

functionals depending on the studied systems. 

The functional form of GGAf  is taken as a correction to LDA exchange and 

correlation. Within the GGA the exchange energy takes the form  

 ( ) ( )( ) 3( ) ( ) .GGA unif GGA

xc x xE n r n r n r F s d r  =     (2.24) 

( )GGA

xF s  in the above equation is the exchange enhancement factor and tells how much 

exchange energy is enhanced over its LDA value for a given ( )n r . The choice of the 

( )GGA

xF s  makes one GGA differ from another. There are many forms of the ( )GGA

xF s  

to approximate the ( )GGA

xcE n r 
 

. One of very popular GGA exchange functionals 

applied in this thesis is the Perdew-Burke-Ernzerhof (PBE) functional which has the 

following form (Perdew et al., 1996): 

 
2

( ) 1
1

GGA

xF s
s




 
= + −

+
  (2.25)  

 



24 

 

In PBE,   and   are the parameters obtained from physical constraints (non-

empirical). 

2.4.3 The Hybrid Functionals  

The hybrid functionals are the developed functionals beyond the LDA/GGA 

functionals. In these functionals, the “exact exchange” which calculated from the 

Hartree-Fock functional is added to some conventional treatment of the DFT exchange 

and correlation. The philosophy behind the hybrid functionals is simple and rooted in 

the “adiabatic connection” formula, which is a rigorous ab initio formula for the 

exchange-correlation energy of DFT. There are many forms of the hybrid functionals 

in DFT such as PBE0 (Adamo and Barone, 1999), B3LYP (Kim and Jordan, 1994; 

Stephens et al., 1994), and HSE (Heyd et al., 2003).  

In this thesis, the Heyd-Scuseria-Ernzerhof (HSE) functionals are used in 

electronic properties calculations. The HSE retains only short-range (SR) Fock 

exchange and preserves the accuracy of PBE0 while avoiding the cost and pathologies 

of long-range (LR) Fock exchange. The HSE functionals define a 2-dimensional space 

of DFT functionals, set by the fraction of Fock exchange, a, at zero electron separation 

and length scale, 
1 −
, on which the short-range Fock exchange is computed as,  

 ( ) ( ) ( ) ( ), , ,1 .HSE HF SR PBE SR PBE LR PBE

xc x x x cE aE a E E E  = + − + +  (2.26)  

a is so-called the mixing parameter and   is an adjustable parameter controlling the 

short-range Fock exchange. Generally, the standard values of 
1

4
a =  and 0.2 =  

(usually referred to as HSE06) have been shown to give good results for most systems.  
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2.5 Van der Waals Density Functional 

 The problem for the local and semi-local functional of DFT is that it takes into 

consideration only the electronic density at point ~r (and its immediate vicinities). The 

density and its gradient expansion of variations arise more than 3-4 Å away from the 

point being evaluated. That is where attractive van der Waals (vdW) interactions arise.  

In fact, the standard LDA and GGA functionals do not properly account for non-local 

electronic correlation effects such as vdw forces. These forces are important 

interactions in many sparse materials (Marom et al., 2010; Graziano et al., 2012). 

Typically, vdWs are also important for system of the molecule on the metal surfaces 

(Carrasco et al., 2014; Carrasco et al., 2013; Carrasco et al., 2011), three- and two-

dimensional solid (Kaloni et al., 2012; Kaloni et al., 2014; Motta et al., 2015), and the 

molecular complexes (Kaloni et al., 2016; Tkatchenko et al., 2012). They are widely 

accepted models examining the impact of vdW interactions on the binding of the 

weakly interacting system. A general outcome from these investigations is that the 

inclusion of vdW forces to GGA functionals often results in improved binding energies 

and adsorption distances that are in better agreement with available experimental data. 

 In general, vdW-inclusive in DFT methods can be classified into two groups 

(Grimme et al., 2016): (i) approaches based on semi-empirical corrections typically 

complemented by a dispersion correction to the Kohn-Sham energy, and (ii) non-local 

correlation density functionals, which directly modify the Kohn-Sham Hamiltonian.  

 The first generations of the dispersion correction methods are DFT-D and DFT-

D2, the detailed of these methods can be found in the articles of Grimme et al. (Grimme, 

2004; Grimme, 2006). In DFT-D2 method, the correction term takes the form,  
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 ( )6'

,6 ,6
1 1 ,

1
,

2

at atN N
ij

disp d ij L

i j L ij L

C
E f r

r= =

= −   (2.27) 

where the summations over all atoms 
atN  and all translations of the unit cell 

( )1 2 3, ,L l l l= , the “prime” indicates that i j  for 0L = , 
6ijC  denotes the dispersion 

coefficient for the atom pair ij , 
,ij Lr  is the distance between atom i located in the 

reference cell 0L =  and atom j in in the cell L, and the term ( )ijf r  is a damping 

function whose role into scale the force field such as to minimize contributions from 

interactions within typical bonding distances. In Eq. 2.27, the parameters 
6ijC  and 

0ijR  

are computed by using the following combination rules: 

 6 6 ,ij ii jjC C C= +   (2.28) 

 
0 0 0 ,ij i jR R R= +  (2.29) 

the values of 6iiC  and 0iR  are tabulated for each element and are insensitive to the 

particular chemical situation. In the origin DFT-D method of Grimme, the Fermi-type 

damping function is used:  

 ( )
( )( )0

6
,6 1

,

1
ij R ij

d ij d r s R

s
f r

e
− −

=

+

 (2.30) 

whereby the global scaling parameter 
6s  has been optimized for several different DFT 

functional such as PBE ( 6 0.75s = ) BLYP ( 6 1.2s = ) and B3LYP ( 6 1.05s = ). The 

parameter RS  usually fixed at 1.0.  

The DFT-D3 method of Grimme et al. (Grimme et al., 2010) is used in the 

thesis. In this method, the vdW-energy expression is given as, 
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 ( ) ( )6 8'

,6 , ,8 ,6 8
1 1 , ,

1
,

2

at atN N
ij ij

disp d ij L d ij L

i j L ij L ij L

C C
E f r f r

r r= =

 
= − +  

 
   (2.31) 

Unlike in the DFT-D2, the dispersion coefficient 
6ijC  is geometry-dependent as they 

are adjusted on the basis of geometry (coordination number) around atoms i and j. In 

this method, the damping function takes the form:  

 ( )
( )( )

,

, 0

,
1 6

n

n
d n ij

ij R n ij

s
f r

r s R
−

=
+

 (2.32) 

where 
8

0

6

ij

ij

ij

c
R

c
= , the parameters 

6 , 
8 , 

,8Rs  are fixed at values of 14., 16., and 1., 

respectively, and 
6s , 

8s  and 
,6Rs  are adjustable parameters whose values depend on the 

choice of exchange-correlation functional. 

2.6 Bloch’s Theorem and Plane Wave Basis Sets 

Even with the DFT and a simple exchange-correlation function, the direct 

calculation of large number of electrons in the electric field from an almost infinite 

number of ions is still impossible. In a direct calculation of a real system, the wave 

function has to be calculated for every single electron in the system which is in the 

order of 1023 electrons.  In addition, to fully describe each electron wave function, the 

basis set, if not carefully chosen, could be infinitely large. However, the fact that 

crystalline has a periodicity of ions can be used to reduce the computational effort based 

on Bloch’s theorem (Ashcroft and Mermin, 1976; Blöchl, 1994). By using this theorem, 

it is possible to express the wave function of an infinite crystal in terms of the periodic 

function with the same periodicity, the primitive unit cell. 
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Bloch’s theorem uses the periodicity of a crystal to describe the real space 

electron wave functions in terms of a periodic function.  Bloch’s plane wave function 

can be written as a product of the wave part, ik re   and a periodic part, ( )nk
u r (Kittle, 

1996),  

 ( ) ( ),ik r

nk nk
r e u r =   (2.33) 

where  

 ( ) ( ).nk nk
u r u r R= +  (2.34) 

Equation 2.33 and 2.34 are the well-known as Bloch’s theorem, where r  is the position 

in the crystal, R  is the lattice translation vector in the crystal, k  is the wave vector, n 

is the band index representing different solutions that have the same wave vector k . 

Using the Fourier transform of the periodic function to the reciprocal space, the wave 

function in Equation 2.11 can be written in the sum plane waves form as (Kittle, 1996), 

 ( ) ( ) ( )
,

i k G r

nk nk
G

r u G e
+ 

=  (2.35) 

where G  is the reciprocal lattice vectors. This allows the calculations to be done in the 

reciprocal space. In order to limit the number of plane wave used for the expansion, the 

plane waves used in the calculations are those with the kinetic energy smaller than the 

energy cutoff, Ecutoff, (Martin, 2004),  

 
2

2
.

2
cutoffk G E

m
+    (2.36) 

The value of required energy cutoff depends on the required accuracy of the 

results and the complication of the wave functions which is mainly related to the 

elements under study. 
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2.7 Special k-point in the Brillouin Zone 

The Brillouin zone is the Wigner-Seitz cell in the reciprocal lattice, which is 

defined by the planes that are the perpendicular bisectors of the vectors from the origin 

to the reciprocal lattice points. The first Brillouin zone is the smallest unit cell in the 

reciprocal space corresponding to the crystal unit cell in real space (Martin, 2004). In 

principle, we have to compute the wave functions at every k-point, infinitely many, in 

the first Brillouin zone. In practice, it is impossible to do calculations with the infinite 

number of k-points. Since the wavefunctions are quite similar for k-points in the same 

vicinity, it is possible to sampling a limited number of k-points in the first Brillouin 

zone as a representative set based on crystal symmetry. There are various k-point 

sampling methods introduced for different crystal symmetries. In this work, we 

employed the sampling method introduced by Monkhorst and Pack (Monkhorst and 

Pack, 1976). 

2.8 Pseudopotentials 

Electrons in materials can be divided into two types based on their bonding role: 

core electrons and valence electrons. The core electrons are in the inner shell of each 

atom where the potentials decrease rapidly. The valence electrons are in the outer shell. 

The valence-electron wavefunctions are orthogonal to the core-electron wavefunctions. 

A set of plane-waves (PWs) with a certain value of Ecutoff, that is enough to describe the 

valence region, is not guaranteed to properly describe the core region due to rapid 

varying wavefunctions. The wavefunctions in the core region have a fast oscillation 

characteristic (Heine, 1980). However, the physical and chemical properties of 

materials depend mainly on the interactions of the valence electrons between the atoms. 
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As a matter of fact, it is reasonable to replace all-electron full-potentials with 

pseudopotentials that consider only the valence region and provide more computational 

efficient. In the pseudopotential approach, the core electrons are approximated to be 

“frozen”. The properties of the systems are calculated based on an assumption that core 

electrons are independent of structural modifications and irrelevant in the chemical 

bonding . In the pseudopotential scheme, the deep core potential part is replaced by a 

smooth pseudopotential, ( )PSV r  as illustrated in Figure 2.1. Removing the core 

electrons from the calculations should not seriously affect the bonding properties in 

materials because the core electrons should remain almost inacted under all 

deformations. The corresponding set of pseudo wavefunctions, ( )PS r  and all-electron 

wavefunctions, ( )r  are matched outside a selected core radius, rc. Inside rc,  ( )PS r  

does not have the fast oscillation features and low cutoff energy of the plane waves is 

considered to be enough. As a result, the wave function which is the solution to 

pseudopotential becomes very smooth in the core area as illustrated in Figure 2.1.    
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Figure 2.1 Illustrations of the pseudopotential and the pseudo wavefunction. The blue 

dash lines represent the real electrons wavefunction (top), ( )r , and real potential 

(bottom), ( )V r . The red solid lines represent the corresponding pseudo wave functions 

(top), ( )PS r  based on the pseudopotential (bottom), ( )PSV r . The cutoff radius, rc 

represents a critical radius at which all-electron and pseudo wavefunction/potential are 

matched. 

2.8.1 Norm-conserving Pseudopotentials  

Mathematically, the pseudopotential replaces the core potential by fictitious 

function such that a number of requirements are needed to impose to the 

pseudopotential. The crucial requirement of the pseudopotential is the norm-conserving 

conditions. This is to ensure that the integration of both pseudo and all-electron 
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wavefunctions within the core region be the same (Hamann et al., 1979). The norm-

conserving conditions are defined from the following list of conditions (Martin, 2004). 

(i). Inside the core, the real and pseudo wavefunctions reproduce the same 

charge density, this can be defined as, 

 * 3 * 3

0 0

( ) ( ) ( ) ( )
c cr r

AE AE PS PSr r d r r r d r   =  .  (2.37) 

The left-hand and right-hand side of Eq. 2.37 represent charge density derived by the 

all-electron and pseudo wavefunctions, respectively, are the same inside the core. 

Whereas the all-electron and pseudo wavefunctions are the same outside the core, 

 ( ) ( )AE PSr r =  ; 
cr r .  (2.38) 

(ii). The eigenvalues should be conserved, i.e., 

 AE PS =   (2.39) 

 (iii) The logarithmic derivatives of all-electron and pseudo wavefunctions and 

their first-order energy derivatives match at rc. 

The logarithmic derivative for an angular momentum l, can be written as  

 
' ( ; )

( ) ln ( ; ) ,
( ; )

c

l
l l

r l

rd
D r

dr r

 
  

 
= =   (2.40) 

where ( ; )l r  is the solution of the radial Kohn-Sham equation for a fixed potential 

and fixed energy ε. 

The norm-conserving pseudopotentials, VPS can be divided into the local 

potential, ( ( )PS

locV r ) and the non-local potential, ( ( )PS

nonlocV r ) (Kleinman and Bylander, 

1982) as,  

 ( ) ( ) ( ) .PS PS PS PS

loc nonloc loc l l l

l

V V r V r V r V = + = +   (2.41) 
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The non-local part is the deviation from the all-electron potential and is confined inside 

rc. The projector l  acts on the wavefunctions with angular momentum (l), which is 

localized within rc. 

2.8.2 Ultrasoft Pseudopotentials 

Although pseudopotentials allow the expansion of pseudo wavefunctions using 

a set of plane waves as a basis, there are still quite a large number of plane waves 

required to produce accurate wave functions. A small increase in the number of plane 

waves used in the basis set significantly impact the computational resource.  To reduce 

the number of plane waves needed, an ultrasoft pseudopotentials (USPPs) approach 

were introduced.  The USPPs approach was introduced by Vanderbilt in 1990 

(Vanderbilt, 1990), in order to allow the calculations to be performed with the lowest 

possible cutoff energy for a plane-wave basis set. 

The norm-conserving requirements have been relaxed in USPPs, to obtain 

shallower potentials and smoother wave functions in the core region.  Instead of using 

the plane wave to describe the full valence electron wave function, an only a small 

portion of the wave function is calculated within the USPPs scheme. This allows one 

to reduce substantially the planewave cutoff energy in the calculations (Meyer, 2006).  

2.8.3 Projector Augmented Waves 

The projector augmented waves (PAW) method was proposed by Blöchl 

(Blöchl, 1994). In this method, a smooth wavefunction ( ) is created. There exists a 

linear transformation which relates the all-electron wave function ( ) to the smooth 

wavefunction ( ) by the linear transformation operator,  through the relationship, 
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 .  =   (2.42) 

Utilizing the linear transformation of PAW method, the all-electron wavefunction (

) can be written as  

 ( ) ,mm m

m

p    = + −   (2.43) 

where 
m  is the localized all-electron partial wave for state m, m  is the localized 

smooth partial wave for state m, and 
m

p  is the localized projection operator. The 

linear transformation operator   can be written as,  

 ( )1 .mm m

m

p  = + −   (2.44) 

In Eq. 2.44, the linear transformation operator  can be used to add back the core 

potential of an all-electron wavefunction to a smoothed wavefunction. Note that 

Equation 2.22 can be for the core as well as valence states (Martin, 2004).  

2.9 Hellmann-Feynman Theorem 

The Hellmann-Feynman theorem derives from the relationship between the 

derivative of the total energy and the derivation of the Hamiltonian. If   is a parameter 

in the Hamiltonian, ( H ), we can write the derivative of energy with respect to   as   

 ,
E H

H H H
 

     
    

    
= = + +

    
 

 ,
E H

E E
 
   

   

   
= + +

   
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 ,
E H

E    
  

  
= +

  
 

 .
E H

 
 

 
=

 
  (2.45) 

where ( )   is an eigenfunction of H . Equation 2.45 is a well-known Hellmann-

Feynman theorem (Hellmann, 1937). It shows that the derivative of the total energy 

with respect to a parameter   can be calculated using the derivative of the operator 

instead.  If   is R, the forces are obtained and the Hellmann-Feynman force theorem is 

written as, 

 
3( )

( ) ,ext II II
i

i i i i i

V r E EE H
F n r d r

R R R R R
 

   
= − = − − = − −

      (2.46) 

where 
IIE is the electrostatic nucleus-nucleus (ion-ion) interactions.   

2.10 The Vienna Ab initio Simulation Package (VASP) 

In this thesis, the calculations were performed by using the Vienna Ab initio 

Simulation Package (VASP) developed by Kresse, Hafner and Furthmüller (Kresse and 

Furthmüller, 1996a; Kresse and Furthmüller, 1996b; Kresse and Furthmüller, 2012). In 

VASP, the electron wavefunctions are described by using the plane waves (PWs) basis 

set. The ultrasoft pseudopotentials (USPPs) (Vanderbilt, 1990) and projector 

augmented wave (PAW) (Blöchl, 1994) potentials needed for the calculations are 

included in the package. In this thesis, the pseudopotentials (without PAW) that are 

sufficient to provide a good description of elastic properties are mainly employed.  The 

k-point samplings are based on the Monkhorst-Pack approach (Monkhorst and Pack, 
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1976) The main computational part for solving the Kohn-Sham equation self-

consistently utilized an iterative matrix-diagonalization scheme such as a conjugate 

gradient scheme (Teter et al., 1989; Bylander et al., 1990) and block Davidson scheme 

(Davidson, 1983). The Broyden/Pulay mixing scheme (Pulay, 1980; Johnson, 1988) is 

an efficiency used for mixing the original and new electronic charge density during the 

self-consistency calculation loops. The computational scheme used by the VASP codes 

is illustrated in Figure 2.2. More details can be found in the manual of VASP (Kresse 

and Furthmüller, 2012) and an article by the developers (Kresse and Hafner, 1994; 

Kresse and Furthmüller, 1996b).  
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Figure 2.2 The self-consistency scheme used in the VASP codes. 
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2.11 GW Approximation 

 When considering an electron in the electron gas, the electrons already in the 

electron gas try to avoid the new electron via the electrons repulsion and the Pauli 

exclusion principle. In electrons repulsion and the Pauli exclusion principle give rise 

the exchange and correlation energy. However, the exchange-correlation energy terms 

in LDA and GGA do not involve any dynamic excitations, so both LDA and GGA are 

only suitable to study the ground-state properties. In DFT, one focuses on the mean-

field average of the exchange-correlation energy resulting from the interactions as it 

enters the total energy of the system. In this thesis, one part of the electronic properties 

of the studied materials is calculated by using the GW approximation. In this section, 

the GW approximation is briefly described.  

According to the limitation of DFT in excited state calculation, another 

approach, so-called many-body perturbation theory is needed to use in the excited state 

calculation. In this approach, the central quantity is ( )2 2 1 1, ; ,G t r t r , the electron 

propagator. It gives the probability amplitude to create an electron at the position 1r  at 

the time 1t  from the ground state, subsequently travelling to another position 2r  at a 

time 2t  where it is annihilated. Its Fourier transform from time to energy describes a 

spectral function with peaks at the quasiparticle energies. These are the excitation 

energies for an electron which we conventionally call “the band structure”. The above 

describes the motion of an added electron to the first available empty state, as would be 

measured in an inverse photoemission. On the other words, the above describes the 

motion of a hole in the occupied bands. The effects from the interaction of electron and 

hole with another electrons as it propagates are embodied in the so-called self-energy 
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operator, which describes all interactions beyond the Hartree potential. In 1965, Hedin 

(Hedin, 1965) proposed the method to calculate the self-energy in terms of the screened 

Coulomb interaction W. In his GW approximation, the product of G and W is the 

electron self-energy, which usually denoted by  . The Green’s function or propagator 

can be written in terms of a quasiparticle wave function. The quasiparticle excitation 

energies and wavefunction can be obtained from 

 ( ) ( ) ( ) ( ) ( ) ( )
2

' ' ', , .
2

GW GW

ext H i i i i iV r V r r dr r r r r    
 
− + + +  = 
 

   (2.47)  

The Eq. 2.47 closely resembles the Kohn-Sham equation in DFT but this is deceiving. 

At first sight, it appears that the exchange-correlation potential is replaced by a non-

local and energy-dependent self-energy operator term. However, the meaning of both 

equations is different. The Kohn-Sham equation describes the energies of fictitious non-

interacting particles in the effective potential which happen to have the same density as 

the real interacting electrons in the external potential and it is used only as an 

intermediate step to obtain the ground-state total energy. While the Eq. 2.47 describes 

the actual excitation energies that would be probed by one-particle spectroscopies, such 

as photoemission and inverse photo-emission.  

Resemblance of the Eq. 2.47 and the Kohn-Sham equation is exploited in 

practice to solve the Eq. 2.47. It is usually solved by perturbation theory starting from 

the Kohn-Sham equation. In that sense, the electron self-energy provides a shift of the 

Kohn-Sham one-electron eigenvalues as well as a lifetime through its imaginary part. 

Assuming the wavefunctions of the Eq. 2.47 are the same as those in Kohn-Sham 

equation in Eq. 2.17, the eigenenergy of Eq. 2.47 is   

 ( ) ( )', ,GW LDA LDA GW LDA LDA

i i i i xc ir r V r     = +  −
 

 (2.48)  
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Expanding the   around 
LDA

i , we have  

 ( ) ( )', ,GW LDA LDA LDA LDA LDA

i i i i i xc iZ r r V r     = +  −
 

  (2.49) 

where ( )
1

'1 , , LDA
i

LDA LDA

i i iZ r r
 

  


−

=

  
= −      

 is the renormalization factor. 

However, this means that the result still depends on the starting point of LDA, as we 

will be discussed next section. The problem is addressed by the so-called quasiparticle 

self-consistent GW method.   

2.12 Quasiparticle Self-consistent (QS) GW Approximation 

From Eq. 2.48, we can see that the accuracy of the GW calculations depends on 

the starting point. The so-called quasiparticle self-consistent GW (QSGW) formalism 

was proposed by Van Schilfgaarde et al. (van Schilfgaarde et al., 2006) to rectify this 

problem. The starting point for GW approach is defined in terms of the zero-th order 

Hamiltonian, which is usually taken to be the DFT Kohn-Sham equation 

 ( ) ( ) ( ) ( )
2 2

0 .
2 2

i eff i ext H xc i i iH r V r V V V r r    
    

 − +  − + + + =   
   

  (2.50)  

It provides the corresponding Green’s function 0G   

 
0

0

1
G

H i 
=

− 
  (2.51)  

where, with small  , the   sign depends on whether   , or    with   is the 

chemical potential or Fermi level. Once 0G  is determined, we can then calculate the 

electron self-energy and the following “Hamiltonian” 

 ( ) ( )
2

0 .
2

ext HH V V G 


 = − + + +    (2.52)  
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This is the operator entering the quasiparticle equation Eq. 2.47. Because it is energy-

dependent and contains the complex ( ) , it is actually a non-hermitian operator. This 

is solved in perturbation theory and will thus be the more accurate, the closer the 0H  

is to H . Next, Van Schilfgaarde and Kotani (van Schilfgaarde et al., 2006) came up 

with a prescription to obtain a new 0H  from the self-energy  . The new 0H  is 

defined in terms of non-local and energy independent exchange-correlation potential 

xcV  in the following way   

 ( ) ( ) 1
Re Re

2xc

QSGW

i i i j j j

ij

V       =  +        (2.53)  

where Re signifies the Hermitian part; i  and i  are eigenfunctions and eigenvalues 

in Eq. 2.50. It allows the eigenstates of the original 0H  to become intermixed, so that 

the final solutions may be farther away from the DFT starting point of 0H . The new 

0H  then defines a new 0G  , which gives a new  , a new 
xc

QSGWV  and the set of equations 

can be iterated to convergence. This ultimately makes the method independent of the 

starting point and the eigenvalues of the 0H  converge to those of the quasiparticle 

equation. Of course, the actual energy-dependent self-energy ( )  still contains 

additional information on the lifetime and possibly even a more complex spectral shape 

than a simple broadened quasiparticle peak. It may contain for example satellite 

structures. In this way, QSGW provides better accuracy than one-shot GW and should 

not be dependent on the starting point.  
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2.13 Full-Potential Linear Muffin-Tin Orbital (FP-LMTO) Method 

 The Muffin-Tin Orbital (MTO) method is one method used to solve the single-

particle Schrödinger equation with periodic boundary condition. In full-potential linear 

muffin tin orbital (FP-LMTO) method, the unit cell is divided into atom centered muffin 

tin spheres and a interstitial region outside these spheres. Inside the muffin tin spheres, 

the potentials can be solved numerically by means of expansions in spherical harmonics 

(Methfessel et al., 1989). In the interstitial region, the potential is calculated by using 

numerical integration which results in the matrix elements (Methfessel et al., 2000),  

 ( ) *( ) ( ) ( )IR

ij i j

IR

V H r V r H r dr=    (2.54)  

where 
( )IR

ijV  is the matrix element potential in the interstitial region, the functions ( )iH r  

(or ( )jH r ) is the envelope functions, which are augmented inside the muffin tin sphere 

to obtain the final basis function, ( )V r  is the interstitial potential and IR denoted the 

interstitial region. The results also depend on how the suitable interstitial region is 

chosen. The general way of obtaining the interstitial region is presented as follow. The 

basis functions and the interstitial potential are smoothly extended through the atomic 

sphere in some manner. Then these smooth functions are replaced into Eq. 2.54 to 

integrate for the potential of the interstitial region. Finally, the unwanted contributions 

inside the spheres are subtracted in conjunction with the augmentation step. In FP-

LMTO, the smooth extension must be built for the sphere on which the function is the 

centered by matching an analytical expression (i.e. a polynomial) at the sphere radius 

(Methfessel et al., 2000). Alternatively, Hankel functions can be used to represent 

interstitial quantities. These functions make basis function quite similar to the real basis 
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functions. Moreover, a smoothed Hankel functions that are bent more than normal 

Hankel functions near the muffin tin sphere, is introduced. This smoothed Hankel 

functions lead to the smaller basis functions. A different approach (to the interstitial 

potential matrix elements) is to re-expand the product of any two envelopes as a sum 

of an auxiliary atom-centered basis function. The matrix element in Eq. 2.54 then 

reduces to a linear combination of integrals of the auxiliary atom centered basis function 

times the interstitial potential. In this way the three-center integrals in Eq. 2.54 can be 

reduced to a sum of two-center integrals (Methfessel et al., 1989). The expansion can 

be obtained approximately by using Gauss’s theorem to fit on the surfaces of the 

muffin-tin spheres (Methfessel et al., 1989; Methfessel et al., 2000). For further details, 

see Ref. (Methfessel et al., 2000). 

 

 

 

 



 

 

CHAPTER III 

CRYSTAL STRUCTURE AND PHASE TRANSITION OF 

HALIDE PEROVSKITE MATERIALS AND RELATED 

PEROVSKITE MATERIALS 

 

3.1 Crystal Structure and Phase Transitions 

Naturally, the crystal structures of perovskite materials are temperature 

dependent (Ksepko and Ratuszna, 2018; Yoshiasa et al., 2016; Cheng et al., 2003; 

Ravel et al., 1998). For example, the structures of a well-known oxide perovskite such 

as BaTiO3 are changed as changing of the temperature. Above 120 °C (Curie 

temperature, Tc), the cubic structure could be observed (Han et al., 2013). Below the Tc 

(around the room temperature), BaTiO3 exhibits the tetragonal phase with an 

accompanying movement of the Ti atom inside the O6 octahedra which may be 

considered to be responsible for the dipole moment and hence for the spontaneous 

polarization of these type of materials. When the temperature cooled to ~0°C, the 

tetragonal is transformed into an orthorhombic structure (Ravel et al., 1998). 

Additionally, the crystal structures of the ABO3 perovskites can depend on the cations 

atom. For example, CaTiO3 exhibits the orthorhombic Pbnm structure, while the 

MgTiO3 has the trigonal 3R  structure and the SrTiO3 exhibits the cubic 3Pm m  

(Culbertson et al., 2020). 
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The effects of cation species on the structural and elastic properties of ABO3 

perovskites (A = Be, Mg, Ca, Sr, and Ba ; B =Ti, Zr, and Hf) were also studied (Pandech 

et al., 2015). The lattice constants of the studied materials were found monotonically 

increased with the cations size. Additionally, the C11 elastic constant (represents a 

longitudinal compression or stifness) was found to increase with the A-site cation until 

it reaches maximum when the atomic size of the cations are compable. The details of 

the elastic constants calculations could be found in Appendix. 

For the so-called halide perovskites, the B-site occupied by Pb and Sn and form 

the Pb- and Sn-based halide perovskite materials. The crystal structures of Pb- and Sn-

based halide perovskite materials are also temperature-dependent. Their exact 

structures are still unclear because of the complexity introduced by the MA+ cation 

group. Experimentally, many research groups have attempted to identify the structures 

of the materials using neutron powder diffraction (NPD) and also synchrotron X-ray 

powder diffraction (Weller et al., 2015; Whitfield et al., 2016). At high temperature the 

-structure is cubic (with space group 3Pm m  if the molecular orientations are 

ignored or MA  is replaced by a symmetric Cs ion), as shown in Figure 3.1 (a) and (b). 

However, the Pb or Sn ferroelectric displacement in its octahedron or the MA in-phase 

orientation can lead to a non-centrosymmetric tetragonal P4mm space group (Stoumpos 

et al., 2013). The -phase occurs by alternatingly tilting the octahedra clock and 

counterclockwise about a single axis, thereby doubling the unit cell to a 2 2 1   

cell and making the system tetragonal. In CsSnI3 this leads to the P4/mbm group 

because the tilts are in phase in the c-direction. However, with the additional 

ferroelectric symmetry breaking of the MA ions, the space group becomes I4cm. Others 

however assigned the I4/mcm spacegroup (Weller et al., 2015; Stoumpos et al., 2013) 
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to this phase in MAPbI3, as shown in Figure 3.1(c) and (d). This phase occurs in SrTiO3 

where it also exhibits rotation of the octahedra about the z-axis but which alternates 

between a clock and counterclockwise along with c-axis thereby doubling the cell again 

to 2 2 2   . On the other hand, the I4/mcm phase which does maintain an inversion 

symmetry could also result from alternating the MA dipole orientations (Quarti et al., 

2014). The transition temperature to this phase depends on the material and occurs at 

~180 K in MAPbI3 (Weller et al., 2015), and 200 K in MASnI3 (Stoumpos et al., 2013). 

Finally, a second transition occurs at a lower temperature to an orthorhombic -phase 

in which octahedral tilts occur about two orthogonal axes and the cell is doubled in the 

c-direction, as shown in Figure 3.1(e) and (f). The full space group determination in 

this phase has not been achieved for the different organic ions but is Pnma in case of 

the symmetric A ion and is thus assumed to be derived from this phase (Weller et al., 

2015). In MAPbI3, this transition occurs between 100-150K (Weller et al., 2015) while 

for the Sn case it occurs closer to 100K (Stoumpos et al., 2013). In the low-temperature 

structure, the BX6 octahedra are strongly deformed and restrict the rotational motion of 

MA+ cations (Weller et al., 2015). In this case, the organic cations are fully ordered and 

pinned and can rotate only along the C-N axis (Weller et al., 2015; Whitfield et al., 

2016). When the temperature increases, tetragonal and cubic structures appear. In the 

high-temperature structures, the organic cations become free to rotate inside the 

dodecahedral cages and organic cations are disordered (Weller et al., 2015; Whitfield 

et al., 2016). Nuclear magnetic resonance (NMR) measurements (Knop et al., 1990) 

have shown that the exact location of the MA-cations cannot be determined in the cubic 

phase, the reorientation time of the MA-cations is in the order of picoseconds. 
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Therefore, the presence of organic molecules and their mobility is a challenge in the 

study of these types of materials. 

 
Figure 3.1 The crystal structure of (a-b) high-temperature α-phase, (c-d) intermediate 

temperature β-phase, and (e-f) low-temperature γ-phase of the MAPbI3. Left panel 

represents an arbitrary view and right panel represents the top view.   
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Table 3.1 Summary of phases as the temperature change of studied materials observed 

in experiments.  

Materials/Phase 
Temperature 

(K) 
Crystal system Space group Lattice (Å) Volume (Å3) 

CH3NH3PbI3      

a >327.4 cubic Pm3m a = 6.328 253.5 

 a 162.2-327.4 tetragonal I 4/mcm 
a = 8.855 

c = 12.659 
992.6 

 a <162.2 orthorhombic P na21 

a = 8.861 

b = 8.581 

c = 12.620 

959.5 

 b  400 tetragonal P4mm 
a = 6.3115 

c = 6.3161 
251.60 

 b 293 tetragonal I4cm 
a = 8.849 

c = 12.642 
990.0 

CH3NH3PbBr3      

 a >236.9 cubic Pm3m a = 5.901 206.3 

 a 155.1-236.9 tetragonal I 4/mcm 
a = 8.322 

c = 11.832 
819.4 

 a 149.5-155.1 tetragonal P 4/mmm 
a = 5.894 

c = 5.861 
 

 <149.5 orthorhombic P na21 

a = 7.979 

b = 8.580 

c = 11.849 

811.1 

CH3NH3PbCl3      

 a >178.8 cubic Pm3m a = 5.675 182.8 

 a 172.9-178.8 tetragonal P 4/mmm 
a = 5.656 

c = 5.630 
180.1 

 a <172.9 orthorhombic P 2221 

a = 5.673 

b = 5.628 

c = 11.182 

357.0 

CH3NH3SnI3      

 b 293 tetragonal P 4mm 
a = 6.2302 

c = 6.2316 
241.88 

 b 200 tetragonal I4cm 
a = 8.7577 

c = 12.429 
953.2 

 b      

CH3NH3SnBr3      

c Room tempt. cubic Pm3m a = 5.89  

      

      

CH3NH3SnCl3      

 c Room tempt. monoclinic  

a = 5.69 

b = 8.23 

c = 7.94 

 

      

      

CH3NH3GeI3      

d Room tempt trigonal R3m 

a = 8.5534 

b = 8.5534 

c = 11.162 

 

      

      

      

a
Experimental study by Poglitsch and Weber (Poglitsch and Weber, 1987) 

b
Experimental study by Stoumpos et al. (Stoumpos et al., 2013) 

c
Experimental and theoretical study by Chiarella et al. (Chiarella et al., 2008) 

d
Experimental study by Stoumpos et al. (Stoumpos et al., 2015) 
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3.2 Formability of Perovskite Structure 

Although, there are many different types of perovskite materials with ABX3 

chemical formula, the formability of the perovskites based on various requirements (i) 

charge neutrality between the cations and anions, i.e. N(A) + N(B) = 3N(X), where N 

represents the valence of the A, B, and X ion respectively. (ii) the stability of BX6 

octahedra, which can be predicted by the octahedral factor,  (Li et al., 2008). (iii) the 

ionic radii of A, B, and X which needed to meet the requirements for the Goldschmit 

tolerance factor, t (Goldschmidt, 1926).  

The two important factors,  and t are based on the ionic radii of A, B, and X 

ions. The octahedral factor,  which is the ratio of ionic radii of B-site (rB) and the X-

site (rX) as defined below (Li et al., 2008) 

 
B

X

r

r
 =   (3.1) 

It can be used to assess whether the B-site cation can fit within the BX6-octahedra hole, 

which can be estimated the stability of the BX6-octahedra framework. The radius of an 

octahedral hole (rhole) formed within the six-closed pack rigid spheres of rX is rhole = 

0.414 rX. Based on the Pauling’s first rule (the radius ratio rule) (Pauling, 1929), the B-

site cation with the  smaller than 0.414 will not be in contact with six X-site anions, 

which results in the instability of BX6-octahedra framework leading to a lower 

coordination number. For the  slightly greater than 0.414, the octahedral geometry is 

more stable since the B-site cation is still in contact with six X-site anions. However, 

the  rises and reaches to 0.592, a 7-coordinated capped octahedron will be more 

favourable. Therefore, to stabilize the BX6-octahedral, it requires that 0.414    0.592 

(Li et al., 2008).   
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The Goldschmit tolerance factor, t (Goldschmidt, 1926) based on the ionic radii 

of A, B, and X ions, is used to predict the mismatches in the size of the A, B, and X 

ions are tolerated to form perovskite structure. It can be defined as  

 
( )

( )2

A X

B X

r r
t

r r

+
=

+
 (3.2) 

where rA , rB , and rX  are the ionic radii of the respective involved A, B, and X ions. 

Based on the ionic size restrictions for the involved cations and anions, stability and 

formability range for the ABX3-perovskite structures can be empirically derived for the 

tolerance factor in the range of 0.8  t  1.0 (Goldschmidt, 1926). For a tolerance factor 

is 0.9  t  1.0, the perovskites with the cubic structure are formed predominantly. If 

0.8  t  0.9, the perovskite structures would be distorted within the orthorhombic, 

tetragonal, and orthorhombic structures. In the lower-range, t < 0.8, indicates that the 

A-site cation is too small for the formation of perovskite structure, alternative structures 

such as the ilmenite-type FeTiO3 are formed instead. In the upper-range, t >1.0, 

indicates that the A-site cation is too large to form a three-dimensional perovskite, the 

hexagonal structures are introduced instead comprising the layers of face-sharing 

octahedral (Travis et al., 2016; Kieslich et al., 2014).   

 In halide perovskites, the B-site cation is usually occupied by Pb or Sn atom. 

Therefore, to achieve a more stable perovskite structure the tolerance factor should be 

closed to 1.0, thus an extremely large A-site cation is needed for given B-site and X-

site ions. In cases Pb- and Sn-based halide perovskite, Cs is considered as large as A-

site cation, it is almost the largest group I-element in the periodic table. However, it is 

still not large enough to hole the stable cubic or tetragonal structure in a wide range of 

temperatures. Therefore, the A-site must be replaced by a slightly larger monovalent 
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molecule than that Cs atom, such as CH3NH3
+ (MA+) or CH(NH2)2

+ (FA+) to stabilize 

the perovskite structure. This can explain the better photovoltaic performance of 

CH3NH3PbI3 with respect to CsPbI3. For the MA lead halide systems, a cubic structure 

(see Figure 3.1 a-b) is expected when the t lies between 0.89 and 1.0. Generally, small 

t could lead to lower-symmetry tetragonal (Figure 3.1 c-d) or orthorhombic (Figure 3.1 

e-f) structures., whereas larger t (t > 1) could destabilize the tree-dimensional (3D) B-

X network, leading to a two- dimensional (2D) layer structure. Importantly, by 

increasing the temperature it is possible to increase the effective size of the ions, thus 

changing the effective tolerance factor. This makes it possible to activate 

transformations thermally from lower to higher symmetry crystals, as shown in Table 

3.1.  

 In cases of organic-inorganic halide perovskites, such as CH3NH3PbI3, the 

challenge in determining tolerance factor lies in estimating the ionic radii of the 

molecular cation. In particular, assuming free rotational freedom around the molecule 

center of mass, a rigid sphere model is applicable to the organic cation and leads to a 

consistent set of effective ionic radii as shown in Table 3.2.  

By using the effective ionic radii as shown in Table 3.2, we estimate the 

tolerance factor, t and the octahedral factor,  of studied materials and tabulated in 

Table 3.3. For the cases of Pb- and Sn-based halide perovskites, the calculated t factor 

lies in 0.9 to 1.0 range and the calculated  factor lies in 0.54 to 0.66 range respectively, 

confirming the stability of the perovskite structure. Whereas the calculated t factor of 

Ge-based halide perovskites is slightly larger than 1, indicating that the crystal structure 

of CH3NH3GeI3 is more distorted and cannot stable in cubic symmetry, instead it 
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observed in trigonal (with R3m space group) in the room temperature (Stoumpos et al., 

2015), as summarized in Table 3.1. 

 

Table 3.2 Effective ionic radii of the organic molecular cation (A-site) and Shannon 

ionic radii of inorganic cations (B-site) as well as effective ionic radii of anions (X-site) 

(Shannon, 1976; Kieslich et al., 2014). 

A-site 

cations 

Effective 

radius (pm) 

B-site 

cations 

Effective 

radius (pm) 

X-site 

anions 

Effective 

radius (pm) 

CH3NH3
+  217 

Pb2+ 119 I- 220 

Sn2+ 110 Br- 196 

Ge2+ 73 Cl- 187 

 

Table 3.3 Calculated tolerance factor, t and octahedral factor,  of studied materials. 

MA cation refers to CH3NH3
+.   

Materials Tolerance factor (t) Octahedral factor () 

MAPbI3 0.91 0.541 

MAPbBr3 0.93 0.607 

MAPbCl3 0.94 0.657 

MASnI3 0.94 0.500 

MASnBr3 0.95 0.561 

MASnCl3 0.97 0.608 

MAGeI3 1.05 0.332 

MAGeBr3 1.09 0.372 

MAGeCl3 1.11 0.403 
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3.3 Calculated Lattice Parameters 

3.3.1 Structural Optimization 

 In the structural optimization, the total energies as a function of unit cell volume 

were calculated as shown in Figure 3.2. The equilibrium volume (V0) and the bulk 

modulus (B0) and its pressure derivative (B0’) can be obtained by fitting the calculated 

results to the Birch-Murnaghan’s equation of state (Birch, 1947; Murnaghan, 1944), 

which is labeled in Eq. 3.3. The details of structural optimization and also the elastic 

constants calculations which represented by the case of cubic SrTiO3 can be found in 

the work of Pandech et al. (Pandech et al., 2016) as presented the Appendix. The elastic 

constants can provide us information for prediction of the polarization and 

polarizability of these materials. 

 

Figure 3.2 Calculated energy of cubic perovskites ABX3. as a function of unit cell 

volume (V) obtained from PBE calculation. The equilibrium volume (V0) and the bulk 

modulus (B0) and its pressure derivative (B0’) can be obtained by fitting the calculated 

results to the equation of state. 
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 (3.3) 

In cases of organic-inorganic halide perovskite materials, such as CH3HN3PbI3, 

the complexity of the crystal structure was introduced by the present of the freely 

rotating organic molecule inside the structure. There are several theoretical studies 

suggested that the van der Waals interaction is significantly important in the structural 

optimization and also consequently in electronic properties calculations (Motta et al., 

2015; Li and Rinke, 2016; Bechtel et al., 2016). In this thesis, the vdW interaction 

within zero damping DFT-D3 method of Grimme (Grimme, 2004) is considered for 

collecting the hydrogen bonding between the organic molecules and the halide anions.  

The calculated lattice parameters of studied halide perovskite materials with 

PBE functional are shown in Table 3.4 - Table 3.6, compared with other available 

calculations and experiments form the literatures. It can be seen that our calculated 

values are in good agreement with the previous studies. Although in comparison with 

the experimental values, the lattice constants calculated with PBE functional are 

overestimated. These behaviours are commonly observed in the calculations of other 

materials as well. However, the disagreement between the calculated lattice constants 

and experimental values is less than 2% when the vdW interaction is considered in 

structural optimization. But, if one does not include the vdW interaction, the 

disagreements will become larger than 5%, that is the crystal structures are not properly 

described. The calculated lattice constants without including the vdW interaction are 

also listed in the parenthesis in Table 3.4 - Table 3.6. 
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Table 3.4 Calculated lattice constants (in Å) of MAPbX3 halide perovskite materials in different phases compared to other theoretical and 

experimental results. The numbers in parenthesis are obtained without vdW interactions.  

 

Materials Symmetry 
Lattice constants (A) 

Present-PBE Another cal. Expt.(Poglitsch and Weber, 

1987) 

CH3NH3PbI3 

Cubic [ ] 
a = 6.34 (6.48*) 6.22(Yuan et al., 2015) a = 6.33 

 

Tetragonal [ ] 
  a = 8.86 

c =12.66 

Orthorhombic [ ] 

a = 8.59 

b = 9.24 

c = 12.55 

a = 8.56(Lee et al., 2015) 

b = 8.84(Lee et al., 2015) 

c = 12.59(Lee et al., 2015) 

a = 8.58 

b = 8.86 

c = 12.62 

CH3NH3PbBr3 

Cubic [ ] 
a = 5.96 (6.08*) 6.03(Yuan et al., 2015) a = 5.90 

 

Tetragonal [ ] 
  a = 8.32 

c = 11.83 

Orthorhombic [ ] 

a = 7.89  

b = 8.95 

c = 12.09 

 a = 7.98  

b = 8.58 

c = 11.85 

CH3NH3PbCl3 

Cubic [ ] 
a = 5.71 (5.83*) 5.99(Yuan et al., 2015) a = 5.67 

 

Tetragonal [ ] 
   

Orthorhombic [ ] 

a =7.22  

b = 8.58 

c = 11.48 

 a =5.67  

b = 5.63 

c = 11.18 

Pm3m

I4 /mcm

Pnma

Pm3m

I4 /mcm

Pnma

Pm3m

I4 /mcm

Pnma
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Table 3.5 Calculated lattice constants (in Å) of MASnX3 halide perovskite materials in different phases compared to other theoretical and 

experimental results. The numbers in parenthesis are obtained without vdW interactions. 

 

Materials Symmetry 
Lattice constants (A) 

Present-PBE Another cal. Expt. 

CH3NH3SnI3 

Cubic [ ] 

a = 6.25 (6.42*) 6.32(Bernal and Yang, 

2014)/6.16(Yuan et al., 

2015) 

a = 6.23(Stoumpos et al., 

2013) 

 

Tetragonal [ ] 
   

Orthorhombic [ ] 

a = 8.35  

b = 9.17 

c = 12.56 

  

CH3NH3SnBr3 

Cubic [ ] 

a = 5.89 (6.08*)  6.00(Chiarella et al., 

2008)/5.96(Bernal and Yang, 

2014)/5.99(Yuan et al., 

2015) 

a = 5.88(Chiarella et al., 

2008) 

 

Tetragonal [ ] 
   

Orthorhombic [ ] 

a = 7.64  

b = 8.84 

c = 11.60 

 

  

CH3NH3SnCl3 

Cubic [ ] 
a = 5.68 (5.98*) 5.88(Yuan et al., 2015) a = 5.72 

 

Tetragonal [ ] 
   

Orthorhombic [ ] 

a = 7.16  

b = 8.43 

c = 11.72 

  

Pm3m

I4 /mcm

Pnma

Pm3m

I4 /mcm

Pnma

Pm3m

I4 /mcm

Pnma
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Table 3.6 Calculated lattice constants (in Å) of MAGeX3 halide perovskite materials in different phases compared to other theoretical and 

experimental results. The numbers in parenthesis are obtained without vdW interactions. 

 

 

 

Materials Symmetry 
Lattice constants (A) 

Present-PBE Another cal. (Sun et al., 

2016) 

Expt.(Stoumpos et al., 2015) 

CH3NH3GeI3 Trigonal [R3m] 

a = b = 8.42 

c = 11.24 

 = 90.1 

 = 98.8 

 = 120.1 

a = 8.69, b = 8.87 

c = 11.53 

 = 88.27 

 = 91.71 

 = 121.55 

a = 8.55, b = 8.55 

c = 11.16 

 = 90.0 

 = 90.0 

 = 120.0 

CH3NH3GeBr3 Trigonal [R3m] 

a = b =7.90 

c = 11.05 

 = 90. 0 

 = 89.9 

 = 120.1 

a = 8.34, b = 8.49 

c = 10.92 

 = 88.51 

 = 91.01 

 = 121.53 

 

CH3NH3GeCl3 
Trigonal [R3m] 

a = b =7.70 

c = 10.80 

 = 90. 7 

 = 89.4 

 = 120.2 

a = 8.07, b = 8.42 

c = 10.42 

 = 88.44 

 = 91.17 

 = 122.63 

 

    

 



 

 

CHAPTER IV 

EFFECTS OF THE VAN DER WAALS INTERACTIONS 

ON STRUCTURAL AND ELECTRONIC PROPERTIES 

OF CH3NH3(Pb,Sn)(I,Br,Cl)3 HALIDE PEROVSKITES 

 

4.1 Introduction 

 Perovskites are crystalline materials with an ABX3 structure similar to the 

CaTiO3 mineral. The A-site cations are 12-fold coordinated and divalent B-site cations 

are 6-fold coordinated. In the class of organic-inorganic halide perovskite materials, the 

A-site is a monovalent organic cation, e.g. methylammonium (CH3NH3
+, MA+), the B-

site is a divalent metal, e.g. Pb2+, Sn2+, Ge2+ and the X-site is occupied by the halogen 

ions e.g. I-, Br-, Cl-. Recently, hybrid halide perovskite materials have emerged as new 

promising materials in photovoltaic applications. This class of materials has been 

known for a long time and has been studied in relation to their very particular dielectric 

properties (Poglitsch and Weber, 1987). However, the first application of organo-halide 

perovskite materials in photovoltaics can be traced back to 2009, with the work of 

Kojima and co-workers (Kojima et al., 2009). After the pioneering work, the number 

of applications of the hybrid perovskite in photovoltaics rapidly increased, especially 

in the case of lead-halide perovskite materials (Stoumpos et al., 2013; Park et al., 2015; 

Weller et al., 2015). Notably, the solar cell efficiencies of halide perovskites have risen 

very quickly to about 20 % where they become competitive with Si solar cells 
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(Sahoo et al., 2018; Tonui et al., 2018; Shi and Jayatissa, 2018). However, numerous 

challenges remain about their stability and structural transformations. 

 The crystal structures of Pb- and Sn-based halide perovskite materials are 

temperature dependent. Their exact structures are still unclear because of an increasing 

degree of deformations introduced by the MA+ cation group. The crystal structures and 

phase transitions upon the temperature of the studied ABX3 perovskites were explained 

and summarized in Section 3.1. For the organic-inorganic halide perovskite materials, 

the MA-cation group resides within the network of corner-sharing BX6 octahedra and 

are stabilized by vdW interactions. Some previous theoretical works (Egger and Kronik, 

2014; Li and Rinke, 2016; Yin et al., 2014; Brivio et al., 2014) have already revealed 

the importance of the inclusion of the vdW interactions in these types of materials on 

structural properties, at least, by including dispersive forces description to exchange-

correlation term. The effect of the MA orientations on the electronic structure is under 

debate. The MA is considered to cause little direct effect on the band edge states. This 

is due to the characteristic of the states near the band edges that are either Pb-s, I-p 

mixed at the VBM and Pb-p like at the CBM. Conversely, the MA orientations 

indirectly affect the crystal structure by lifting octahedral symmetry which leads to 

splitting of the states near the band edges. 

 In this work, we conducted a vdW-corrected density functional theory (DFT) 

calculations to examine the importance of vdW interactions on the MA-cation structural 

properties and consequently to the electronic properties of the MABX3 (B = Pb, Sn; X 

= I, Br, Cl) halide perovskite materials. It is expected that the vdW interactions in DFT 

calculations impact the MA-cation orientation, which influences the structural 

properties of the inorganic network and consequently affects the electronic properties 
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of the materials. The PBE with vdW-corrected DFT is a widely accepted approach to 

obtain the structural properties that are in good agreement to the measurement but the 

main drawback is the underestimation of the band gap.  To address this underestimation, 

the quasiparticle self-consistent GW method, more accurate and computational 

intensive method, is used to perform the electronic structure calculations for the 

structures obtained from PBE with vdW-corrected DFT. Additionally, spin-orbit 

coupling is known to be important in the Pb-based compounds. Therefore, we 

investigate the effect of both GW self-energy corrections and spin-orbit coupling on the 

electronic structure in relation to the orientation of the MA molecules and their 

corresponding induced structural distortions. The spin-orbit coupling in combination 

with the electric field induced symmetry breaking arising from the dipolar molecules 

leads to the Rashba effect, which can affect the conduction band minimum location in 

k-space. In order to investigate solely the effect of the orientations of the MA-cation on 

the electronic structures, the cubic primitive cell of the MABX3 (12 atoms per unit cell) 

is used in all calculations. The orientations of the MA-cation have significantly affected 

to the BX6 inorganic framework and consequently effect to the electronic properties of 

the materials. It has been found that the results are in good agreement with the other 

calculations which using the supercell approach.    

4.2 Computational Methods 

Throughout this work, the structural properties of studied materials are 

predicted using the first-principle DFT which is implemented in the Vienna ab initio 

simulation package (VASP) code (Kresse and Furthmüller, 1996; Kresse and Joubert, 

1999). The semi-local generalized gradient approximations (GGA) combined with the 

 



61 

 

Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996) functional are used as the 

primary exchange-correlation functional. The vdW corrections were also employed to 

study their effects on the structural and electronic properties of the studied materials. 

The projected augmented wave (PAW) (Kresse and Joubert, 1999; Blöchl, 1994) 

method with plane-wave basis set energy cut-off of 520 eV is employed in all 

calculations (Kresse and Joubert, 1999). The conjugate gradient algorithm (Golub and 

Ye, 1999) is used in the structural optimization until the energy difference between the 

iterations is less than 10-4 eV. The Monkhorst-Pack scheme (Monkhorst and Pack, 

1976) of k-points is used in the Brillouin-zone integrations. An 888 mesh is used in 

the structural optimization and electronic properties calculations. Recent studies (Egger 

and Kronik, 2014; Li and Rinke, 2016; Yin et al., 2014) revealed that vdW force plays 

an important role in a range of materials with weak interaction, such as organic-

inorganic halide perovskite compounds, especially in their geometry optimization. 

Therefore, to study the effects of internal interaction between the MA+ cation and BX6 

inorganic framework, we performed the full structural relaxation (volume and atomic 

position are allowed to relax) including vdW-interactions using the zero damping DFT-

D3 method described by Grimme et. al. (Grimme et al., 2010) as described in section 

2.5 and then we used the relaxed structures to calculate the corresponding electronic 

band structures both at the DFT and many-body perturbation theory GW level. 

The cubic primitive cell of the MABX3 (12 atoms per unit cell) has been used in 

this work. As a matter of fact, under working temperature, the MA molecules are nearly 

free to rotate inside the cuboctahedral BX6. It is more important to investigate the range 

of the change in energy level near the band edge. In this work, various MA orientations 
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within the cubic unit cell have been studied in order to determine the range of variation 

of electronic structures as molecules rotating inside the perovskite cage. 

It is well known that the GGA-PBE usually underestimates band gaps of 

semiconductors. Fortunately, for MAPbI3 the GGA-PBE without spin-orbit coupling 

(SOC) gives unexpectedly good agreement of the calculated bandgap with the 

experimental value. This is due to a compensation of the errors of the GGA-PBE and 

the lack of spin-orbit coupling. For confirmation, the more accurate Heyd-Scuseria-

Ernzerhof (HSE) screened hybrid functional (HSE06) (Heyd et al., 2003) is also used 

to calculate the band structures without including SOC for the band gaps. It is well 

known that the DFT-method treats core electrons by effective pseudopotential. To study 

the effects of the core electrons, the all-electron full-potential methods is needed to 

properly explain the electronic properties of the materials. Subsequently, to compare 

the results with the DFT method we also calculated the band structures using the all-

electron full-potential linearized muffin-tin orbital (FP-LMTO) method (Methfessel et 

al., 2000; Kotani et al., 2007) as implemented in Questaal Suite 

(https://www.questaal.org.). In this method, the band structures are calculated using the 

quasiparticle self-consistent GW method (Kotani et al., 2007; van Schilfgaarde et al., 

2006). The GW method is a many-body perturbation theoretical method introduced by 

Hedin (Hedin, 1965; Hedin and Lundqvist, 1970) in which the self-energy is 

approximated in terms of the one-electron Green’s function G and screened Coulomb 

interaction, W, schematically  = iGW. While the GW self-energy operator is energy-

dependent and non-hermitian, in the quasiparticle self-consistent (QS) GW approach, 

we replace it by an energy–independent but still non-local operator, determined in a 
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self-consistent manner. With independent particle Hamiltonian H0, and its eigenvalues 

and eigenfunctions at hand, both the Green’s function G0 and the polarization function 

P0 could be obtained. The screened Coulomb interaction is then given by  

 1 ,W v −=  (4.1) 

where the dielectric function is derived by  

 1 v = − .  (4.2) 

The irreducible polarizability (  ) is derived as  

 .
p

iGG
V





= = −    (4.3) 

The self-energy is obtained as = iG0W0. This quantity is actually obtained from the 

basis set of the eigenstates of H0. A correction to the exchange-correlation potential is 

then derived by 

   ( ) ( )  01
Re

2
xc ij i ij j xcij

v v  =  + −  (4.4) 

which is added to the previous H0 to obtain a new H0. The procedure is iteratively 

computed until 0xcv =  and henceforth quasiparticle self-consistent. When the 

convergence condition is reached, the quasiparticle energies are the same as the Kohn-

Sham eigenvalues. The energy dependence of the GW self-energy and its imaginary 

part or lifetime is thus ignored but the quasiparticle energies are correctly including the 

dynamical effects of the electron-electron interactions.  
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4.3 Results and Discussion 

 4.3.1 Structural Relaxation 

The molecular orientations in the cubic phase of MAPbI3 have been studied by 

Motta et al. (Motta et al., 2015) and Bechtel et al. (Bechtel et al., 2016). It is worth 

mentioning that both works are particularly relevant to our study.  

I) Motta et al. (Motta et al., 2015) performed a full structural optimization of 

MAPbI3 within GGA and including vdW corrections. It has been found that the results 

are sensitive to the initial orientation of the molecule being along [100] or [111].  In the 

former case, it rotates toward a [110] or equivalent direction, while in the latter case, it 

remains in the [111] direction. Both the [110] and [111] orientation are reported to be 

energetically favorable orientations. It is interesting to extend that approach to other 

halogens and to the case of Sn instead of Pb.  

II) More systematic approach to map out the energy landscape regarding the 

orientation of the inserted molecule has been done by Bechtel et al. (Bechtel et al., 

2016). All possible rotation degrees of freedom of the molecule have been 

comprehensively carried out in term of polar angle  and azimuthal angle  of the C-N 

axis of the molecule with respect to the [001] and [100] cubic axes, and the rotation 

angle  of the molecule about its own axis and the displacement of the molecule from 

its center along its own axis. The energy landscape of the molecule as a function of 

those mentioned variables has been mapped out while keeping the inorganic framework 

fixed. Their main finding is that the displacement of the molecule (translation along its 

own direction away from the nominal center of the dodecahedral site) is important to 

 



65 

 

the structural optimization. The optimum orientations found in their work are close to 

[100] and [111] directions.  

Based on two mentioned works, the structures starting from either [100], [110] 

or [111] orientation of the molecule are fully relaxed by allowing a shift of the molecule 

and the distortions of the framework. Subsequently, the energy landscapes are mapped 

out by performing constrained calculations where the molecule is constrained at some 

angle (inspired by the energy landscape studies of Bechtel et al. (Bechtel et al., 2016) 

but the molecule is free to rotate and displace relative to the inorganic framework). The 

calculations of all configurations are then performed with and without vdW corrections 

to ascertain their importance. The structural properties are discussed together with the 

effect of the vdW corrections on the electronic band structure, accordingly. 

Ferroelectric ordering was found to be slightly energetically preferable by Quarti et al. 

(Quarti et al., 2014). On the other hand, Weller et al. (Weller et al., 2015) reported the 

disordered alternating non-polar orientation of the MA molecules. 

 Let us start the discussion by presenting the relaxed crystal geometries. Initially, 

the structural optimizations have been performed at the level of the GGA-PBE 

calculations with and without including the vdW interaction for revealing the effects of 

internal interactions between the organic cation and the BX6 inorganic framework. We 

perform a full structural relaxation without any symmetry constraints from the ideal 

cubic perovskite structure with staggered H-atoms arrangement adopted from Motta et 

al.’s calculation (Motta et al., 2015), as depicted in Figure 4.1. The relaxations have 

been performed with various initial configurations of the MA-cation, namely oriented 

along the [100], [110], or [111] directions, as listed in Table 4.1. We note that the 

relaxation process is extremely sensitive to the initial MA-cation orientation. For 
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example, when we started the relaxation with the MA+ cation oriented along the [111] 

direction, the relaxed structure preserves its original MA+ cation orientation in both 

cases of with and without including vdW interaction, as depicted in Figure 4.2(c) and 

(d), respectively. This result is similar to that of Motta et al. (Motta et al., 2015). The 

calculated change in angle () of the C-N axis with respect to its initial orientation 

direction is very small, as shown in Table 4.1. In contrast, if we start the structural 

relaxation with the MA+ cation oriented along the [100] direction, the relaxed structure 

does not preserve its original MA+ cation orientation, instead, it may end up with the 

MA+ cation orientated along a [10-1] direction, as depicted in Figure 4.2(a) and (b). The 

reason why particularly the [10-1] direction is favoured as opposed to the in-principle 

equivalent [110] or [101] depends on the particular chosen orientation of the molecule 

about its own axis. As we will show later the H atoms are in such positions to favour 

rotating in this particular direction by optimizing the hydrogen bonds with the halogen. 

This is why the vdW interactions are important. In this case, the MA+ cation shifts down 

along the x-z plane (see the inserted picture in Figure 4.3) with the calculated change in 

angle, () around 18 (in case of MAPbI3) when including the vdW interaction, as 

shown in Table 4.1. But, if one does not include the vdW-interaction in the calculation, 

the calculated  in this case is around 7.8 and the relaxed structure is less distorted 

as shown in Figure 2 (b). Including the vdW interaction, the calculated  of the C-N 

axis with respect to the [100] direction increases when the halogen atom is changed 

from I- to Br- to Cl- in both Pb- and Sn-based cases, as shown in Figure 4.3. The increase 

of the angle indicates a stronger interaction between the organic MA+ cation and the 

BX6 inorganic framework and causes the relaxed structure to become more distorted, as 

indicated by a B-X-B bond angle tabulated in Table 4.1. The calculated lattice 
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parameters, when including the vdW interaction, are in very good agreement with the 

experimental values, with an error less than 1%. If the calculation does not include the 

vdW interaction, the calculated lattice parameters are larger than the experimental 

values by an error more than 3% (comparing calculated results in Table 4.1 and 

experimental results in Table 3.1).  

 

 

 

Figure 4.1 Illustration ideal cubic structure of CH3NH3BX3 with staggered H-atoms 

arrangement in CH3NH3 molecule which is oriented along the [100] direction viewed 

along (a) a-crystallographic axis and (b) arbitrary crystallographic axis. Green, cyan, 

blue, orange, and red spheres represent the B-site atoms, X-site atoms, N-atom, C-atom, 

and H-atoms respectively.    
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Figure 4.2 Illustration of relaxed structures of the cubic CH3NH3PbI3 with and without 

vdW-interaction (Left and right panel) for different orientations of the MA+ cation. (a) 

and (b) represent the relaxed structure of the MA-cation initially oriented along the 

[100] direction, (c) and (d) represent the relaxed structure of the MA-cation initially 

oriented along the [111] direction. The pictures are viewed along the y-axis or showing 

the x-z plane. 
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Table 4.1 Calculated lattice constants a, b, and c (Å), unit cell volume V (Å3), deviate 

angle from the given initial MA-orientation,  (degree), relative energy (meV), B-X-

B bond angle (in degree) and hydrogen bond lengths (Å) of MABX3. The numbers in 

parenthesis are obtained without vdW interactions.  

 

Compounds 
Int. MA 

orient. 

 

Calculated structural parameters 

B-X-B 

bond 

angle 

 

H-bonding 

Rel. E  a b c V HN-X HC-X 

MAPbI3 

[100] 0.00 
18 

(7.8) 

6.34 

(6.48) 

6.30 

(6.43) 

6.38 

(6.49) 

254.7 

(270.2) 

169.5 

(174) 

2.72 

(2.8) 

3.36 

(3.6) 

[110] 14.4 
9 

(5.6) 

6.34 

(6.48) 

6.40 

(6.57) 

6.27 

(6.32) 

252 

(270.4) 

175 

(175) 

2.75 

(2.8) 

3.40 

(3.6) 

[111] 21.0 
0.9 

(0.5) 

6.34 

(6.47) 

6.34 

(6.47) 

6.34 

(6.47) 

255.3 

(270.4) 

178 

(178) 

2.71 

(2.7) 

3.38 

(3.6) 

MAPbBr3 

[100] 0.00 
23 

(12.7) 

5.94 

(6.03) 

5.89 

(6.03) 

6.03 

(6.13) 

211 

(222.8) 

169.1 

(172) 

2.45 

(2.5) 

3.31 

(3.4) 

[110] 18.6 
6.8 

(4.6) 

5.98 

(6.08) 

5.98 

(6.08) 

5.89 

(6.03) 

209.8 

(221) 

174 

(173) 

2.55 

(2.5) 

3.50 

(3.5) 

[111] 35.4 
0.9 

(1.2) 

5.97 

(6.08) 

5.97 

(6.08) 

5.97 

(6.08) 

212.7 

(223.4) 

177 

(177) 

2.41 

(2.5) 

3.10 

(3.5) 

MAPbCl3 

[100] 0.00 
26 

(17.5) 

5.67 

(5.74) 

5.63 

(5.73) 

5.79 

(5.90) 

184.7 

(193.8) 

168 

(171) 

2.3 

(2.4) 

3.17 

(3.2) 

[110] 23.1 
6.6 

(4.6) 

5.73 

(5.83) 

5.73 

(5.83) 

5.63 

(5.73) 

184.2 

(193.9) 

174 

(175) 

2.3 

(2.4) 

3.3 

(3.2) 

[111] 46.4 
0.8 

(1.3) 

5.73 

(5.83) 

5.73 

(5.83) 

5.73 

(5.83) 

187.6 

(197.2) 

175 

(176) 

2.3 

(2.4) 

2.9 

(3.2) 

MASnI3 

[100] 0.00 20.1 6.26 6.19 2.27 243 172 2.7 3.3 

[110] 6.4 8.5 6.26 6.26 6.17 241.3 172 2.8 3.4 

[111] 20.3 0.01 6.24 6.24 6.24 243.4 177.4 2.7 3.3 

MASnBr3 

[100] 0.00 26.5 5.89 5.80 5.95 202.9 170.6 2.43 3.2 

[110] 9.00 8.6 5.91 5.91 5.80 201.6 171 2.45 3.1 

[111] 34.6 0.03 5.88 5.79 5.95 204.5 176 2.47 3.05 

MASnCl3 

[100] 0.00 28.4 5.72 5.55 5.75 182.6 171 2.25 2.89 

[110] 8.92 4.6 5.71 5.71 5.54 179.2 172 2.25 2.86 

[111] 33.17 0.03 5.70 5.70 5.70 185.4 176 2.26 2.85 
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If we focus on the relaxed structures, the significant difference between these 

structures is the deformation of the BX6 octahedra. In the case of initially [100]-

orientation, the relaxation of the MA+ cation induces the deformation and a symmetry 

reduction of the inorganic BX6 octahedra. Such distortion causes the B-X-B bonds to 

not lie parallel to the crystal directions but instead be slightly tilted by ~10 from the 

ideal cubic structure when vdW interaction is included (see Table 4.1). However, when 

excluding vdW interaction, they only tilted by ~5 from the ideal cubic structure. In the 

case of [111]-orientation, the B-X-B bond angles are very close to 180, indicating that 

the relaxed structure preserves a high symmetry cubic structure. In this case, the relaxed 

structure of the [111]-orientation is still simple cubic (see Table 4.1). In contrast, the 

relaxed structure of the initially [100]-orientation becomes tetragonal (c/a  1).  

Additionally, the calculated hydrogen bond lengths are listed in Table 4.1. The 

results show that the hydrogen atoms on the NH3-side are closer to the BX6 inorganic 

framework than those of the CH3-side. It can be implied that the hydrogen atoms in 

NH3-side dominate the strong interaction with the BX6 inorganic framework. Although 

the relaxed structure is sensitive to the initial MA+ cation configuration, it is worth to 

notice that the energy difference between these configurations is very small. The energy 

difference is calculated to be in the 21- 50 meV range in favour of a direction near the 

[100] direction, which is consistent to the previous studies of MAPbI3 (Motta et al., 

2015; Bechtel et al., 2016). The lowest energy structure we found (MAPbI3 case) is 

consistent with lowest energy structure calculated by Qiaoling Xu et al. (Xu et al., 

2019) which using 222 supercell calculations, where the MA-cations are found in 

favoured oriented to [012] direction with the relative energy ~60 meV per formula unit 
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and experimental results done by Hutter et. al. (Hutter et al., 2017). Indeed, it can be 

implied that these MA+ cation configurations represent the local energy minima.  

 

 

Figure 4.3 vdW-calculated tilting angle of the MA-cation with respect to the initially 

[100] orientation (), as represented in an inserted picture.    

 

After the full structural relaxation of the initially [100]-orientation has been 

done, it is still unclear why the MA+ cation rotated downward in the x-z plane instead 

of other directions. Therefore, we have chosen the MAPbI3 case as an example for 

further study. We performed the ground state energy calculation as a function of the 

rotational angle of C-N axis with respect to the [100] direction including the vdW 

interactions. Several pathways namely [100]→[10-1], [100]→[110], and [100]→[111] 

are considered. In the calculations, the staggered H-atoms arrangement is applied and 

C-N axis is fixed at each rotational angle while the other atoms and also cell volume 
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are allowed to relax. The calculated energies as a function of rotational angle in 

different pathways are depicted in Figure 4.4. From the plot, we can see that the 

calculated energies in [100]→[10-1] pathway decrease until the rotational angle is 

around 20 and then the energy increases. This is consistent with the full unconstrained 

minimization presented above. At the lowest energy structure, three hydrogen atoms in 

NH3-side bond with I- atoms almost equally, as depicted in Figure 4.4(a). The energy 

difference between [100]- and [10-1]-orientation is very small, 3.5 meV. On the other 

hand, the calculated energies in the [100]→[110] pathway slightly fluctuate with the 

rotational angle and end up with the energy 10 meV higher than that of the [100]-

orientation. In this case at the lowest energy point, one of the hydrogen atom in NH3-

side bonds with the I- atom stronger than other two hydrogen atoms, as depicted in 

Figure 4.4(b). In case of [100]→[111] pathway, the calculated energy slightly increases 

and then decreases until the rotational angle is around 22, then increase and end up 

with the energy 9 meV higher than that of the [100]-orientation. In this case, at the 

lowest energy structure, two of hydrogen atoms on the NH3-side show stronger bonds 

with the I- atoms than the other hydrogen atom, as depicted in Figure 4.4(c). The lowest 

energies along the [100]→[110] and [100]→[111] pathways are ~7 meV higher than 

along the [100]→[10-1] pathway. In addition, we can see that the energy difference in 

15-25 range of the [100]→[10-1] pathway is very shallow, indicating several local 

minima around that point. The difference in these different pathways lies in the way the 

molecule’s H is positioned relative to the halogen atoms along these paths. The more 

complex behaviour for other than the optimal rotation pathway (a) shows that there is 

some optimal orientation of the molecule about its own axis such that it best optimizes 

the H bonds with the halogens.  
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Figure 4.4: Calculated relative energy (for MAPbI3 case) as a function of the rotational pathway of C-N axis with respect to [100] direction. 

(a) Represents [100]→[10-1], (b) represents [100]→[110], and (c) represents [100]→[111]. The C-N atoms are fixed at each rotational 

angle while the other atoms are allowed to relax.  The inserts show the orientation and the hydrogen bond lengths (red dashed lines) that 

can form with the nearest halogen atoms near the minimum configuration.  
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From our calculated ground state energies in different pathways, we conclude 

that the fully structural relaxation process of the initially [100]-orientation with the 

given staggered H-atoms arrangement including the vdW interaction ends up with the 

MA+ cation rotated downward in the x-z plane from [100] toward [10-1] in a local 

minimum energy near the [100] direction with the deviate angle,  listed in Table 4.1. 

4.3.2 Electronic Properties 

The significant differences in the structural geometries are expected to impact 

on the electronic structure of the studied MABX3. First, let’s pick MAPbI3 as an 

example to explain the effect of the vdW interaction on the electronics properties of the 

studied materials. The electronic band structures along high-symmetry points of the 

Brillouin zone calculated by using the GGA-PBE without SOC with different MA+ 

cation orientations of the MAPbI3 are depicted in Figure 4.5. Our GGA-PBE calculated 

band structures reveal that the orientations of the MA+ cation have a profound impact 

on the nature of the bandgap of MAPbI3. In case of the [111]-orientation, the relaxed 

structure keeps the high symmetry of the cubic structure and gives the direct bandgap 

at the R-point (0.5, 0.5, 0.5) of the Brillouin zone both with and without vdW 

interaction, as depicted in Figure 4.5(b) and (c). On the other hand, in the case of the 

initially [100]-orientation, the relaxed structures are strongly distorted due to the cation 

rotation and consequently affect the band structure: the conduction band minimum 

(CMB) shifts along with the R→  line, the bandgap becomes indirect, as depicted in 

Figure 4.5(c). These results are in good agreement with  Motta et al (Motta et al., 2015). 

Please note that the Grimme DFT-D3 approach (Grimme et al., 2010) changes the total 

energy and hence relaxation but not the exchange-correlation potential used for the 
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band structure calculations. In the case of exclusion of vdW interactions, the calculated 

bandgap remains direct for both [100]- and [111]-orientation, as depicted in Figure 4.5 

(a) and (b), respectively. This indicates that the relaxed structures do not present enough 

distortion to modify the band structure significantly and the vdW-correction is 

necessary for the structural relaxation of the halide perovskites systems. 

The vdW-calculated bandgap without SOC of MAPbI3 lies in the 1.45-1.55 eV 

(see Table 2) range close to the experimental value of about 1.55 eV (Kojima et al., 

2009; Lee et al., 2012), while the calculated bandgap without vdW-interaction lies in 

1.6-1.7 eV, slightly larger than the experimental values. The GGA-PBE calculations 

usually underestimate the bandgap of semiconductors. However, as already shown in 

the case of MAPbI3 (Mosconi et al., 2013), the agreement here is due to a fortuitous 

cancellation of the errors of the GGA underestimated bandgap and the lack of spin-orbit 

interaction which would tend to overestimate the gap. To test the robustness of the 

indirect bandgap, we also used the HSE06 hybrid functional to calculate the electronic 

band structures of the MAPbI3  by using the GGA-PBE+vdW-relaxed structures. The 

band structures of the MAPbI3 calculated by the HSE-functional without SOC are also 

depicted in Figure 4.5(e) and (f) and we can see that the indirect bandgap persists when 

the screened hybrid functional is included. Although, the calculated bandgap of the 

MAPbI3 by using the HSE06 lies in 1.90-1.95 (see Table 4.2) eV range, larger than that 

one from the experimental value, as expected. 
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Figure 4.5 Calculated band structures without SOC of the CH3NH3PbI3 for (a-b) PBE 

without including vdW, (c-d) PBE with including vdW and (e-f) HSE with including 

vdW. Left and right panels represented to the MA+ cation initially orientated along 

[100] and [111] directions. The red, skyblue and lime colours of each band represent 

spd-projected wavefunction character of s, p, and d orbitals, respectively. The 

calculated VBM were shifted to zero. 
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Table 4.2 Calculated band gaps (eV) of the studied MABX3 compounds for different 

MA orientations at varied levels of approximation in comparison with available 

experimental data.  

Compounds 
Int. MA 

orient. 

Calculated bandgap 

Expt. 
PBE 

PBE+ 

SOC 
HSE QSGW 

QSGW+ 

SOC 

MAPbI3 

[100] 1.55 0.47 1.99 2.47 1.79 

1.55 [110] 1.50 0.48 - - - 

[111] 1.45 0.44 1.95 2.40 1.65 

MAPbBr3 

[100] 1.93 0.84 2.51 3.13 2.55 

2.30 [110] 1.86 0.84 - - - 

[111] 1.80 0.70 2.43 3.01 2.28 

MAPbCl3 

[100] 2.41 1.30 3.10 3.91 3.49 

2.90 [110] 2.30 1.33 - - - 

[111] 2.31 1.23 3.04 3.80 3.33 

MASnI3 

[100] 0.50 0.10 1.29   

1.20 
[110] 0.47 0.10 - - - 

[111] 0.49 
0.10 1.26 

(0.77) 
  

MASnBr3 

[100] 0.76 0.32 1.90   

2.14 [110] 0.76 0.38 - - - 

[111] 0.75 0.30 1.88   

MASnCl3 

[100] 1.83 1.46 3.10   

3.6 [110] 1.33 1.03 - - - 

[111] 1.49 1.06 2.94   

Note: the HSE band gaps of Pb-based are obtained with 25% exact exchange while the 

HSE band gaps of Sn-based are obtained with 55% exact exchange since based on the 

experimental band gap of MASnI3 and a number in parenthesis is obtained with 25% 

exact exchange. 
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We note that indirect gaps or, more specifically, a displacement of the CBM 

away from the high-symmetry point have previously been obtained due to the Rashba 

(Brivio et al., 2014) effect. However, the results here are obtained without SOC and 

thus have a different origin: namely the distortions of the inorganic framework in 

response to the orientation of the MA molecules. Because of the B-6p contributes to the 

CMB while the X-5p and B-6s contribute to the VMB of these materials. From our 

calculated results, it is clear that the molecular orientation can strongly influence to the 

electronic structure of the hybrid perovskites by affecting the X-B-X inorganic 

framework which take part in frontier orbital and a little bit change the bandgap of the 

materials, which will be discussed in next section. 

For the other studied compounds, the direct bandgaps are also found in case of 

the [111]-orientation, while the indirect bandgaps are found in all cases of distorted BX6 

octahedral due to the cation rotation. However, the GGA-PBE calculations now 

underestimate the bandgap, as shown in Table 4.2, when compared with the 

experimental values. This shows that the good agreement for MAPbI3 is really a 

coincidence and less perfect cancellation of errors occurs in the other cases. At any rate, 

the full band structures in GGA-PBE without SOC have significant errors even for 

MAPI. The electronic band structures of the other compounds are depicted in Figure 

4.6. We can also see that the indirect bandgaps persist for all studied compounds in case 

of initial [100]-orientation when the screened hybrid functional is included. The HSE-

calculated bandgap without SOC of MAPbBr3 and MAPbCl3 lies between 2.43-2.51 eV 

and 3.04-3.10 eV, respectively (see Table 4.2), which is slightly larger than the 

experimental values. The HSE-calculated bandgap without SOC of Sn-based 

compounds lies in the 1.26-1.29 eV range for MASnI3, 1.88-1.90 for MASnBr3, and 
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2.94-3.10 for MASnCl3 which is slightly smaller than the experimental values (see 

Table 4.2).  

 

Figure 4.6 HSE-Calculated band structures without SOC of the other studied 

compounds. (a-b) for MAPbBr3, (c-d) for MAPbCl3, (e-f) for MASnI3, (g-h) for 

MASnBr3 and (i-j) for MASnCl3. Left and right panels represented to the MA+ cation 

initially orientated along [100] and [111] directions, respectively. 
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While the above study indicates that the indirect gap found in the structures 

obtained from the initial [100] direction of the molecule is robust when considering 

different functionals, we need to further study the combined effect of spin-orbit 

coupling and the gap corrections beyond semilocal functionals. In fact, the distortion 

induced shift of the CBM may be related to the closeness of the bands which remain 

nearly degenerate at the R-point when SOC is neglected. One might expect that adding 

SOC could remove this effect. However, when we add spin-orbit coupling alone 

without using hybrid functionals to open the gap, the latter will be so strongly reduced 

that the CBM is then close to the VBM and this may then lead to other artifacts. Instead 

of combining HSE with SOC we decided here to use the QSGW+SO because it is in 

principle an even more accurate approach.  

The band structures of the Pb-based compounds in QSGW approximation and 

at the GGA-PBE relaxed structures are shown in Figure 4.7. We can see from our 

calculated results that the QSGW band structures of the initially [111] MA orientation 

exhibit the direct bandgap at R point both with and without SOC. On the other hand, 

the QSGW band structures of the near [100] MA+ orientation are different: the CBM is 

slightly shifted from R→ as found in our DFT band structures, without SOC.  This 

indirect nature is already obtained in QSGW even without SOC. Nonetheless, the band 

structures are still substantially different when SOC is included, namely, they are spin-

split and the origin of the indirect gap is now clearly affected by the Rashba effect. 
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Figure 4.7 Calculated band structures in QSGW approximation with (red) and without 

(blue) SOC of the (a-b) CH3NH3PbI3, (c-d) CH3NH3PbBr3 and (e-f) CH3NH3PbCl3. 

Left and right panels represented to the MA+ cation initially orientated along [100] and 

[111] directions, respectively. 
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Our calculated QSGW band structures in case of MAPbI3 are qualitatively 

consistent with Brivio et al. (Brivio et al., 2014) results in which the representative 

[100] configuration of the MA+ cation was selected. In their work, a similar spin-

splitting of the CBM and its shift away from the R point is found while for a smaller 

NH3 molecule with less clear molecular dipole orientation instead of the MA this effect 

is not seen. In recent work, the size of this effect was studied as a function of local 

distortions obtained from molecular dynamics snapshots and found to be present even 

in CsPbI3 due to the possibility of local Pb off-centering which like the MA molecules 

also can lead to the required symmetry breaking to have a Rashba effect (Brivio et al., 

2014). Their calculated QSGW bandgaps are 2.70 eV (SOC=0) and 1.67eV (added 

SOC). Our calculated band gaps in QSGW approximation are also listed in Table 4.2. 

We can see that the QSGW band gaps calculated without SOC are much larger than the 

experimental values and the gaps are reduced by approximately 0.70.1 eV when the 

SOC is considered.  We note here that the orientations of the MA+ cation are found to 

have an important impact on the nature of the bandgap also at the level of QSGW 

approximation.  

To further describe the indirect bandgap, let’s define the energy difference 

between the CBM and the conduction band at R-point of Brillouin zone, E  ER – 

ECBM, as shown in an inserted picture of Figure 4.9. The PBE calculated E of the 

studied compounds is depicted in Figure 4.9. From our calculated results, we can see 

that the energy difference, E of the Pb-based compounds is larger than that of the Sn-

based compounds. This is resulting from the more distorted structure of the Pb-based 

compounds compared to the Sn-based ones. We note that the bandgap shifting does not 

occur only with the [10-1]-orientation, the indirect bandgap does appear for the 
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equivalent orientations, for examples, [101], [011], [110]. As shown in Figure 4.8 

below, in the case of the [101]-orientation, the CBM shifts along with the R→M line.  

 

 

Figure 4.8 (a) The calculated band structures of the fully relaxed crystal structure 

including of vdW interaction calculated using the GGA-PBE without SOC of MAPbI3 

for the MA-cation initially orientated along [101] direction shown as the structure (b). 
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Figure 4.9 PBE-calculated energy difference, E between the CBM and the conduction 

band at R-point of Brillouin zone in case of the indirect bandgap. 

 

The MA+ cation has often been assumed to not have any significant contribution 

to the electronic structure around the band edges. From our calculated density of states 

results of MAPbI3, it is obviously seen that the bottom of the conduction band mainly 

consists of the p orbitals of the Pb-atom, while the top of the valence band is mainly 

derived from the p orbital of the I-atoms and the Pb-s orbital, as depicted in Figure 

4.10(b). When considering the organic molecule, the highest occupied molecular orbital 

of the MA+ cation is found deep below the valence band, ~5 eV below the valence band 

maximum (VBM). Thus one may argue that there is no effect of the MA+ cation in the 

optical and electronic response of such materials, rather it does only contribute to their 

structural cohesion by donating its charge to the rest of the system. However, a closer 
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inspection of the density of states projected on the various atoms (Figure 4.10(a)) 

reveals that there is a small contribution of the MA-cation ~0.5 eV below the VBM. 

This indicates that indeed there is an interaction between the MA-cation and the 

inorganic PbI6 octahedral framework, in the form of hydrogen bonding. To further 

understand the effect of the interactions between the MA-cation and the inorganic 

framework in electronics properties of these materials, we removed the MA-cation 

from the PBE+vdW relaxed structure of the initially [100]-orientation and calculated 

the electronic band structures. This is to check the interactions between the MA-cation 

and the framework. Note that, by removing the MA-cation one electron is missing from 

the band, therefore there is a hole in the valence band and the Fermi-level shifted down 

below the VBM. To do charge neutralizing, we added one electron to the system and 

then calculated the band structure. The calculated band structure, in this case, preserves 

the same feature of indirect bandgap as one obtained from the MAPbI3-unit cell, as 

shown in Figure 4.11. This indicates that the MA-cation in the system just donates its 

electron to the inorganic framework, it does not affect the band structure near the band 

edge. But its orientation played a role in the relaxed structure of the inorganic 

framework and causes the structural distortion of the framework leading to the 

symmetry breaking and the CBM is a bit shifted away from high symmetry point. In 

our cases, the rotation of MA-cation can create a variation of the bandgap of MAPbI3 

~0.2 eV (~13% wrt. experimental gap of 1.55eV), as shown in Figure 4.12. Therefore, 

in the real system the cation rotations can slightly change the bandgap (should less than 

13%). The lowest band gap is found to 1.43 eV which corresponded to calculated 

absorption spectrum ~865 nm and the highest band gap is found to 1.64 eV which 

corresponded to calculated absorption spectrum ~756 nm, respectively. It is expected 
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that the variation of the bandgap for this material would be within 0.2 eV. The average 

band gap of MAPbI3 is found to 1.54 eV which corresponded to calculated absorption 

spectrum ~805 nm. From our calculated results, it has been revealed that the vdW-

correction is important to obtain an accurate description of the interactions between the 

MA-cation and the inorganic framework for the structural relaxation of the halide 

perovskites system. This interaction induces the deformation of the PbI6 octahedral 

framework leading to the distorted structure of PbI6 framework; the band structure is 

changed from direct to the indirect bandgap. 

 

Figure 4.10 (a) The calculated total density of states (DOS) (dashed curve) of 

CH3NH3PbI3 for the case of [111]-oriented molecule and projected density of states 

(PDOS) on the Pb-atom (red), I-atoms (green) and CH3NH3 (blue). (b) PDOS on 

orbitals of the Pb-atom and I-atoms. 
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Figure 4.11 (a) The calculated band structures of the PBE+vdW relaxed structure of 

the MAPbI3 unit cell with the MA-cation initially orientated in [100] direction, and (b) 

the calculated band structures of the PBE+vdW relaxed structure of Pb-I host without 

MA-cation in the structure. The black horizontal line in (b) represents the Fermi-level.  
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Figure 4.12 The calculated variation of the bandgap of MAPbI3 (upper panel) as a function of the rotational pathway of C-N axis with respect to 

[100] direction, the calculated relative energy as a function of the rotational pathway (lower panel) are also illustrated. 
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4.4 Conclusion  

In this work, we have performed DFT+vdW correction calculations with 

various initial MA+ cation orientations, namely [100], [110], and [111] for revealing 

the effects of the internal interactions between the MA+ cation and the BX6 inorganic 

framework of the CH3NH3BX3 (B = Pb, Sn; X = I, Br, Cl) halide perovskite materials. 

Our calculations reveal that the vdW-interactions between the MA+ cation and the 

inorganic framework are critical for internal geometry optimization and electronic 

properties calculations. Full structural relaxations including vdW corrected DFT give 

the better agreement of the lattice parameters with the experimental values than 

obtained without them. More importantly, full relaxations including vdW interaction of 

the MA-cation initially oriented along [100] direction give a strongly distorted structure 

of BX6 inorganic framework, which results from the MA+ cation rotation and 

consequently affects the electronic band structure, which changes from direct to the 

indirect bandgap.  On the other hand, the relaxations without vdW correction do not 

present enough distortion of the BX6 inorganic framework, the electronic band 

structures remain direct bandgap.  

This result is found to be robust when considering different halogens and occurs 

in both Sn and Pb based compounds. It is also robust when using a more accurate hybrid 

functional or the GW method. Finally, the indirect gap is maintained for this orientation 

when including both quasiparticle self-energy corrections at the GW level and spin-

orbit coupling. The latter leads to a Rashba effect which spin-splits the bands but the 

indirect nature is already present before adding the SOC. This clearly demonstrates that 

the main origin of the indirect gap lies in the distortions resulting from the structural 

distortions of the organic ion with the inorganic framework. 

 



 

 

CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

5.1  Conclusion  

 In this thesis, first-principles density functional theory (DFT) as implemented 

within the Vienna ab initio simulation package (VASP) code is employed to study the 

structural and electronic properties of ABX3 (A = CH3NH3, shortly MA+, B= Pb, Sn, X 

= I, Br, Cl) halide perovskite materials. van der Waals (vdW) correction to DFT is 

considered for revealing the effects of the internal interactions between the MA+ cation 

and the BX6 inorganic framework of studied materials. The high-temperature -phase 

(cubic structure) is the main analysis structure. Various rotational directions of MA+ 

cation, for examples [100], [110], and [111] etc., have been studied.  

From the results in Chapter V, the vdW-interactions between the MA+ cation 

and the inorganic framework play an important role in internal geometry optimization 

and consequently affects to electronic properties of the studied materials. The 

calculated lattice parameters with full structural relaxation including vdW corrected 

DFT show a good agreement with experimental values. More importantly, full 

relaxations including vdW interaction of the MA-cation initially oriented along [100] 

direction give a strongly distorted structure of BX6 inorganic framework, which results 

from the MA+ cation rotation and consequently affects the electronic band structure, 

which changes from direct to the indirect bandgap. On the other hand, the relaxations
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without vdW correction do not present enough distortion of the BX6 inorganic 

framework, the electronic band structures remain direct bandgap.  

This result is found to be robust when considering different halogens and occurs 

in both Sn and Pb based compounds. It is also robust when using a more accurate hybrid 

functional or the GW method. Finally, the indirect gap is maintained for this orientation 

when including both quasiparticle self-energy corrections at the GW level and spin-

orbit coupling. The latter leads to a Rashba effect which spin-splits the bands but the 

indirect nature is already present before adding the SOC. This clearly demonstrates that 

the main origin of the indirect gap lies in the distortions resulting from the structural 

distortions of the organic ion with the inorganic framework. 

5.2 Future Research Plan 

 In the past few years, research in the field of organic-inorganic perovskite 

materials has been growing rapidly because of their inexpensive raw materials, simple 

fabrication, and their unique optical and electronic properties in photovoltaic 

applications. The organic-inorganic halide perovskites were first used as a light 

absorber in dye-sensitized solar cells in 2009 (Kojima et al., 2009), exhibiting an initial 

power conversion efficiency of ~4. Since then, an efficiency of over 20% was achieved 

in very short development time (Zhou et al., 2014; Yang et al., 2015). In this type of 

organic-inorganic perovskites, Pb-based halide perovskites such as methylammonium 

lead iodide (MA)PbI3 (Feng and Xiao, 2014; Liu et al., 2016; Huang et al., 2018), 

formamidinium (FA)PbI3, (Hu et al., 2014) and mixed halides like MAPbIxCl3-x, 

(Trifiletti et al., 2015) and MAPbIxBr3-x (x =0-3) have until now dominated the 

mainstream research. However, one of the major issues of Pb-based perovskite solar 
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cells is that lead can cause serious pollution of the environment. Thus, finding 

alternative new eco-friendly materials substituting for Pb is necessary. For the most 

similar element to lead (Pb), tin (Sn)-based halide perovskites has also already been 

extensively studied. MASnI3 has a similar structure as MAPbI3 (although in different 

temperature ranges) and is expected to be an excellent light absorber similar to MAPbI3. 

Experimentally, it was found to have an excellent bandgap for single material absorbing 

layer solar cells of about 1.3 eV (Stoumpos et al., 2013; Umari et al., 2014). However, 

the main problem with Sn-based perovkites is their crystal structural stability. They are 

sensitive to the ambient atmosphere with regards to oxygen and moisture. Sn2+ is easily 

oxidized to Sn4+, which may cause the structure transformation and then reduce their 

photovoltaic performance. Besides the valence transition, other re-arrangements of the 

structure are possible. For example, in CsSnI3, a “yellow phase” in which octahedra are 

edge- instead of corner-sharing is known to occur and to be potentially the ground state 

at room temperature, and this phase does not have suitable properties for photovoltaics 

compared to the perovskite structure because of its much larger gap (Huang and 

Lambrecht, 2013; Huang and Lambrecht, 2014; Huang and Lambrecht, 2016; Chung et 

al., 2012). 

Another potential alternative element for replacing Pb is Ge, which belongs to 

the same group 14 (IVA) metals. One difference of Ge-based perovskites to Pb- and 

Sn-based ones is that the inorganic CsGeX3 (X = I, Br, Cl) compounds crystallize in a 

polar space group at ambient temperature. Stoumpos and co-workers (Stoumpos et al., 

2015) reported the structural and electronic properties of various AGeI3 (A = Cs, 

organic cations), including of MAGeI3. Their experimental results revealed that 

MAGeI3 forms a trigonal structure (with R3m space group) with energy bandgap of 1.9 
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eV, it should not be suitable for using as the absorber in the solar cell. The reported 

crystal structure of MAGeI3 shows the off-centered displacement of Ge-atoms, thus 

ferroelectric properties MAGeX3 (X = Cl, Br, and I) materials are interesting.  

From the theoretical point of view, several computational works have been 

reported for Pb- and Sn-based perovskites, however, the theoretical research in Ge-

based is still temporarily unclear (Huang and Lambrecht, 2016). Huang and Lambrecht 

studied the inorganic CsGeX3 compounds using first-principles calculations at the GW 

level (Huang and Lambrecht, 2016) and also studied their vibrational modes (Huang 

and Lambrecht, 2016). Recently, they further compared the prevalent distortion modes 

of the cubic perovskite for Pb, Sn, Ge and Si-based perovskites and found both the Ge 

and Si-based perovskites to behave differently from the Pb and Sn-based ones (Radha 

et al., 2018). In fact, instead of octahedral rotations, they showed a ferroelectric off-

centering of the group-IV atom along the [111] direction, which leads to the R3m 

structure. For the studies of electronic properties, Ping-Ping Sun and co-workers (Sun 

et al., 2016) used the density functional theory (DFT) method to study the electronic 

properties of MAGeX3 (X = Cl, Br, and I) compared to MAPbI3 and MASnI3. Xiaoqing 

Lu and co-workers (Lu et al., 2016) also used the DFT to study the electronic properties 

of AGeX3  (A= Cs, and organic cations, X = Cl, Br, and I).  

In this work, we plan to systematically study the structural and electronic 

properties of Ge-based perovskites in the trigonal phase (R3m space group) by using 

the hybrid functional DFT method. Two halogen elements Br, and Cl have been 

substituted on the basis of the R3m AGeI3 (A= Cs, and MA) model constructing 

different Ge-based perovskite structure to study their intrinsic properties. According to 
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the off-centering of Ge-atom from the octahedral center, the spontaneous polarization 

of AGeX3 (A= Cs, and MA, X = Cl, Br, and I). will be calculated.  

 The calculations of structural and electronic properties could be performed by 

using the same approaches described in Chapter III. However, the calculations of 

spontaneous polarization can be explained by the so-called “modern theory of 

polarization” (Spaldin, 2012; King-Smith and Vanderbilt, 1993; Resta, 1992; Resta, 

1994). The details of the theory will be discussed in the manuscript prepared soon. 

 Empirically, the tolerance factor, t introduced by Goldschmit (Goldschmidt, 

1926) could be used to predict the crystallographic stability of the perovskite structure 

for ABX3 compounds. Based on the ionic radii of A, B, and X ions, tolerance factor, t 

can be calculated by Eq. 3.2. For the studied Ge-systems, the A-site is an organic cation, 

MA+ with the effective ionic radii 2.17 Å (Shannon, 1976; Kieslich et al., 2014). X is 

the halide anion, where we adopt rI = 2.2 Å, rBr = 1.96Å, and rCl = 1.87 Å. For B-site 

cation, (Ge cation) we adopt rB = 0.73 Å. The calculated tolerance factors of the studies 

MAGeX3 are 1.05 (MAGeI3), 1.09 (MAGeBr3) and 1.11 (MAGeCl3). The tolerance 

factors of the studied Ge-based perovskites are close to the empirically ideal cubic 

perovskite structure. However, the MA organic ion itself has a threefold symmetry and 

thus even for an essentially cubic inorganic framework, one might expect a trigonal 

overall symmetry if the molecules align with the body diagonal of the cubic structure. 

A trigonal symmetry can also occur when the Ge atom has displaced the center of the 

surrounding octahedron along the cubic body diagonal. Thus, there are two reasons why 

the hybrid Ge compounds are expected to have trigonal structures. The important 

parameters are the Ge off-centring and the organic molecule orientation.  
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According to the experimental results by Stoumpos et al. (Stoumpos et al., 

2015), successfully several hybrid germanium iodide perovskite materials were 

successfully synthesized. In the case of CH3NH3GeI3 (MAGeI3), they reveal that the 

MAGeI3 forms a 3D framework with the GeI6 corner-sharing octahedra. The octahedra 

adopt a trigonal distortion in the polar R3m space group. In the observed crystal 

structure, the MA cation orients itself along the rhombohedral crystallographic c-axis. 

The measured lattice constants are a = b = 8.55, c = 11.16 A and the crystallographic 

angles are  =  = 90,  = 120. In such octahedral distortion, the six Ge-I bonds are 

separated into three short ones and three long ones. The measured short bonds are 2.73-

2.77 Å and the long bond is 3.45 Å. 

The optimized trigonal structures of the MAGeX3 (X = I, Br, Cl) obtained in our 

structural relaxation calculations are depicted in Figure 5.1. In the optimized structures, 

the distorted GeX6 octahedra interconnect though a corner-sharing pattern, and the MA 

cations align along the c-axis to balance the GeX3 framework. The calculated lattice 

parameters of the trigonal structures MAGeX3 are reported in Table 5.1. Our calculated 

lattice parameters are in good agreement with the other available theoretical and 

experimental results. The bonding between Ge - X halide atoms represents the covalent 

interaction in the structure. The short ones represent a strong covalent interaction and 

other long ones represent a weak interaction. The calculated Ge-X bond distances of 

the MAGeX3 are also listed in Table 5.1 and compared with the experimental (in 

MAGeI3) and other theoretical results. Our calculated Ge-X bond distances are found 

to be consistent with other available studies. The results indicate the Ge-X bond 

distances decreases with decreasing X-anion size from I to Br and Cl, respectively.  
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By inspecting the relaxed structures of the MAGeX3, we can see that the crystal 

structure becomes more distorted from I to Br to Cl. The Ge-X-Ge bond angle slightly 

decreases from 167.4 to 160.7 to 160.4 when the anion changes from I to Br to Cl, 

respectively (see Table 5.1). As it is known that the MA cation can be stabilized by van 

der Waals (vdW) interaction with the inorganic anions, our calculated hydrogen bonds 

are also reported in Table 5.1. The minimum bond length of HN-X is smaller than that 

of HC-X, which indicates that the HN ion shows a stronger attraction to the halogen 

atom by vdW force. The hydrogen bond between the MA cation and the inorganic 

framework has a significant effect on the geometry of the studied MAGeX3 materials. 

After structural analysis, the electronic properties of the materials were 

calculated. Figure 5.2 shows band structures of the studied MAGeX3 (X = I, Br, Cl) 

materials calculated within the GGA-PBE functional with the valence band maximum 

(VBM) set at 0 eV. The band structures of the studied MAGeX3) materials exhibit a 

direct bandgap located at the A (0, 0, 0.5) position in the Brillouin zone. This k-point 

in the rhombohedral structure corresponds to the R-point at the corner of the BZ in the 

cubic structure. The calculated bandgap of the studied MAGeX3 materials increases 

from 1.14 eV (for MAGeI3), to 1.90 eV (for MAGeBr3), to 2.81 eV (for MAGeCl3). 

The increase of the bandgap results from the higher iconicity of the Br and Cl which 

place the center of the valence band deeper on an absolute energy scale. The VBM is 

an antibonding combination of Ge-s with halogen X-p orbitals while the CBM is a Ge-

p based state as typical in the halide perovskites (Huang and Lambrecht, 2013). Our 

results are consistent with the theoretical results from Xiaoqing Lu et al. (Lu et al., 

2016) Ping-Ping Sun et al. (Sun et al., 2016) as reported in Table 5.2. However, when 

comparing our calculated bandgap from the GGA-PBE calculations with the 
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experimental one, ~1.9 eV. for MAGeI3 (Stoumpos et al., 2015). It is obviously seen 

that the PBE results underestimate the bandgap of these materials. The unavoidable 

underestimated bandgap is the common observable of the GGA-PBE calculations.  

In order to obtain an accurate bandgap, we also studied the electronic properties 

of these materials using the HSE06 hybrid functional, which is found to improve the 

band gaps in most semiconductors. In the original HSE06 functional (Heyd et al., 

2003), the fraction of non-local exchange is set to 25 % and the exact exchange is 

screened by keeping only the short-range part of the exact exchange by means of a 

complementary error function cut-off using a screening parameter ~0.2 Å-1. To further 

improve the gaps, one may treat these parameters empirically. The percentage 

contribution of non-local Hartree-Fock (HF) exchange was determined hereby seeking 

a good agreement between the calculated values and experimental results while keeping 

the screening parameter fixed. In this work, to determine the HF exchange with the 

greatest potential to produce accurate results, we performed hybrid functional 

calculation for the MAGeI3 (whose experimentally band gap is 1.9 eV) with the exact 

HF exchange contribution set to 0 (as a standard DFT calculation), 25, 30, 40 and 50% 

respectively as shown in Figure 5.3. By referencing with the experimental band gap of 

MAGeI3, the ideal exact hybrid functional contribution was found around 37%. We 

then used the same optimized hybrid functional contribution to perform the hybrid 

functional calculation of the other two materials, MAGeBr3 and MAGeCl3. The 

calculated band gaps with hybrid functional are also listed in Table 5.2. The band 

structures of the studied MAGeX3 materials calculated by using the hybrid functional 

HSE06 are shown in Figure 5.4. The band structures still exhibit the direct bandgap at 

the A (0, 0, 0.5) position in the Brillouin zone but the gaps are now significantly larger.
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 To further understand the electronic properties of the studied materials, the 

density of states (DOS) and partial density of states (PDOS) are analyzed. Figure 5.5 

shows the DOS and PDOS calculated by using the GGA-PBE functional of the studied 

MAGeX3 materials with the VBM set at 0 eV. As shown in Figure 5.5, one can see that 

the main contribution to the states near the valence band maximum (VBM) of the three 

Ge-based perovskites comes from the p orbitals of the halogen atoms with an overlap 

of the s orbital of Ge atoms, while the states near the conduction band minimum (CBM) 

is dominated by p orbital of Ge atoms partly overlap with the p orbital of halide atoms. 

It can also be seen that the states near the gap have no contribution from the methyl 

ammonium orbitals as there are no sizable C, N or H contributions here. The highest 

occupied states of the MA cations occurred around -5 to -6 eV below the VBM. 

However, by closer inspection, they also have a weak contribution around -1 to -2 eV 

below the VBM in the valence band region and around +3 to +4 eV above the VBM in 

the conduction band region. This indicates that there are interactions between the MA 

cations and the inorganic framework of GeX6 in the form of hydrogen bonding. 

 Next, because of the off-centering of Ge atom, we plan to study the ferroelectric 

properties of the Ge-based halide perovskites AGeX3 (A = Cs+, MA+, X = I, Br, Cl), for 

example, the spontaneous polarization (ps) due to the displacement of the Ge-cations 

will be calculated and compared to the well-known ferroelectric materials such as 

BaTiO3, PbTiO3, etc. In addition, the relationship between the elastic constants and the 

polarization properties can be further investigated. This information may lead to deeper 

understanding of the structural distortion giving rise to the polarization in the halide 

perovskites.  
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Figure 5.1 Optimized structures of (a-b) MAGeI3, (c-d) MAGeBr3, and (e-f) MAGeCl3 

halide perovskites in R3m crystal structure. The left panel is viewed along ab-plane, the 

right panel is viewed in an arbitrary axis. The I, Br, and Cl atoms are in soft-blue, soft-

yellow, and grey respectively. 
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Table 5.1 Calculated lattice constants (Å), unit cell volume (Å3), Ge-X bond length (Å), Ge-X–Ge bond angle (degree), and hydrogen bond 

distance (Å) of the MAGeX3 in R3m structure compared with available theoretical and experimental results. 

a DFT calculation by Ping-Ping Sun et. al. (Sun et al., 2016) 
b DFT calculation by Xiaoqing Lu et. al. (Lu et al., 2016) 
c Experimental by Stoumpos et al. (Stoumpos et al., 2015) 
d Experimental by Zhang et. al. (Zhang et al., 2015) 

 

Materials 
Lattice parameters Ge-X bond length Ge-X-Ge bond angle Hydrogen bonding 

Present Another cal.a  Another cal. b Expt. c Short Long Ap. Eq. HN-X HC-X 

CH3NH3GeI3 

a = b = 8.42 

c = 11.24 

V = 689.84  

 = 90.1 

 = 90.8 

 = 120.1 

a = 8.69, b = 8.87 

c = 11.53 

V = 757.65 

 = 88.27 

 = 91.71 

 = 121.55 

 

a = b= 8.20 

c = 11.34 

V = 660.12 

 = 90 

 = 98 

 = 120 

a = 8.55, b = 8.55 

c = 11.16 

V = 707.2(2) 

 = 90.0 

 = 90.0 

 = 120.0 

 

2.74-2.78 

2.77d 

(2.73-2.77c) 

2.80b 

3.42-3.47 

3.45d 

(3.45c) 

3.45b 

166.4 

167.7d 

167.4 

167.7d 

3.2-3.4 3.3-3.6 

CH3NH3GeBr3 

a = b =7.90 

c = 11.05 

V = 594.84 

 = 90. 0 

 = 89.9 

 = 120.1 

 

a = 8.34, b = 8.49 

c = 10.92 

V = 659.26 

 = 88.51 

 = 91.01 

 = 121.53 

 

a = b= 7.64 

c = 10.91 

V = 552.01 

 = 90 

 = 98 

 = 120 

 

 2.54-2.56 

2.60b 

3.35-3.38 

3.16b 

160.5 160.7 2.9-3.0 3.1-3.3 

CH3NH3GeCl3 

a = b =7.70 

c = 10.80 

V = 551.81 

 = 90. 7 

 = 89.4 

 = 120.2 

 

a = 8.07, b = 8.42 

c = 10.42 

V = 596.06 

 = 88.44 

 = 91.17 

 = 122.63 

 

a = b= 7.28 

c = 10.61 

V = 487.54 

 = 90 

 = 98 

 = 120 

 

 2.38-2.39 

2.44b 

3.39-3.45 

3.09b 

166.7 160.4 2.8-3.1 3.0-3.2 
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Table 5.2 Calculated energy bandgap of MAGeX3 halide perovskites in R3m structure, compared with available theoretical and 

experimental results. 

Materials 

Bandgap (eV) 

Present Cal. PBE Present Cal. HSE06 Another Cal. a  Another Cal b Expt. 

CH3NH3GeI3 1.14 1.97 1.61 1.20 1.90c 

CH3NH3GeBr3 1.90 3.05 2.81 1.60  

CH3NH3GeCl3 2.81 4.20 3.76 1.91  

a DFT calculation by Ping-Ping Sun et. al. (Sun et al., 2016) 
b DFT calculation by Xiaoqing Lu et. al. (Lu et al., 2016) 

c Experimental by Stoumpos et al. (Stoumpos et al., 2015) 
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                 (a)         (b)             (c) 

 

Figure 5.2 Band structure calculated by GGA-PBE without including SOC of (a) MAGeI3, (b) MAGeBr3, and (c) MAGeCl3 halide 

perovskites in R3m crystal structure. 
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Figure 5.3 Calculated band gap values as a function of variation of Hatree-Fock (HF) 

contribution. The dashed blue lines indicate the point at which the exchange tuning 

theoretically reproduces the experimental band gap.  
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                   (a)                (b)            (c) 

 

Figure 5.4 Band structure calculated by hybrid functional HSE06 without including SOC of (a) MAGeI3, (b) MAGeBr3, and (c) MAGeCl3 

halide perovskites in R3m crystal structure. 

 

 

 

 

 

 

 



 

 

1
0

5
 

 
 

   (a)             (b)       (c) 

Figure 5.5 Calculated density of state (DOS) and partial density of states (PDOS) of (a) MAGeI3, (b) MAGeBr3, and (c) MAGeCl3 halide 

perovskites in R3m crystal structure. 
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