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Foreword

When a scientist, engineer or economist tries to selve a practical problem, he or she must
find equations which give a mathematical description of this problem, a process which is
called mathematical modeling. Most of the quantities which one encounters in life are
quantities of change, and therefore, more often than not, the equations in a mathematical
model contain derivatives and thus turn out to be differential equations.

This course is an introduction into the broad field of differential equations, covering
merely the basic and most important aspects of ordinary differential equations. It is meant
as a foundation to help you solve and understand the many more advanced equations
which you may encounter in your future studies. The Jocus Hes on the techniques for
solving such equations, and numerous exercises are included in this text to help you apply
and practise these techniques. Because of time constraints only a limited number of
practical examples can be presented, which nevertheless show the power and ommnipresence
of differential equations.

Here, a note on how to study is in order. Many students like to read a mathematics
book like a novel and try to memorize the formulas and examples given in the text. This is
not bow you should study mathematics. The lectures and textbook only introduce you to
the concepts, but it is when you {ry to solve a problem where most of the learning takes
place because then you must think about the various aspects of the problem by yourself.
Do not be discouraged if first you have no idea of how to attack a problem — think about
it, compare it with the examples, discuss it with your friends, or ask the tutors or the
lecturer for help. As all this takes time it is important that you study regularly from the
beginning of the term on; be prepared to spend at least three hours of problem solving for
every lecture hour. Experience has shown that students who actively solve all the assigned
exercises will succeed in this course.

You will also notice that solving a differential equation quite often requires you to
integrate, and are therefore advised to review the techniques of integration which you
learnt in Calculus I, right now at the beginning of the course.

Eckart Schulg
December 2542

il



Chapter 1

)ifferential Equations

1.1 Introduction

Definition An equation containing an unknown function and some of its derivatives is
called a differential equation.

e.q.
d .
Zz“.% +oy = e* (L.1)
Py dy
E + ﬂ?y(a—:];) = {0 (1.2
yHI +2€$y" +yyr o 4 (}“3)
v oy 4 (cosfz)y = o° (1.4)

In the above examples, y is an unknown function of z. Therefore, z is called the
independent variable and y the dependent variable. All these equations are called ordinary
differentiol equations (ODE) because they contain only one independent variable.

e.g.
du v

é;“+-8_-£ = v (15)
Fw  BPw  w

5?+m+§§5 = 0 {1.6)

U = Cugy {1.7)

These equations are called partial differential equations (PDE) because u, v and w are
functions of several variables and the equations contain their partial derivatives.

Definition The order of a differential equation is the order of the highest order derivative
which occurs in the equation.

e.g. & {1.1) and (1.5) are of first order
e (1.2), (1.6) and (1.7) are of second order
e (1.3) and (1.4) are of third order
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Definition An ordinary differential equation of the form
an{2)y™ + an_1 (@)™ + o tar(o)y +ao(a)y =b(z)  (an(z) £ 0)

is called a linear equation of order n.

A linear equation can not contain products of y and its derivatives, such as y?, yy/,
LN
Yy, ete.

e.g. e {1.1) and (1.4} are linear.
o (1.2} and (1.3) are not linear (called nonlinear).

In this course, we will study the most common ordinary differential equations. Just as
there are many different methods to integrate, there are many different methods to solve a
differential equation. Our task will be to choose the best method which solves a given
differential equation.

1.2 An Easy Equation

The simplest differential equation is of the form

dy
7 = f@) (1.8)

This equation can be solved by simple integration. Its general solution is
y=/f(m)dm+c (1.9)

dy

du

o If %f =e¢® then y= fe® do+e.
(We can not evaluate this integral !)

eg. e lf Z£ =cosz then y=sinz+ec

1.3 Separable Equations

A differential equation which can be written as

dy _ glz)
de — J(y) (110

is called separable. Here, f is a function of y and g is a function of =.

e.g. The equations

T 7 yd_x = cosy-lnz

are separable.



1.3. SEPARABLE EQUATIONS 3

To solve a separable equation, we move all terms which contain y to the left side and all
the terms which contain z to the right side of the equation. This step is called separating
the variables,

fly) dy = g(z) dz
Then we integrate both sides,
ff(y) dy = fg(ﬂ:) dz +c.
Note that we have combined the two integration constants to one integration constant,

which is written on the right-hand side of the equation.

Example 1 Find the solution to

dy ¥
T = o7 (1.11)
Solution.  First we separate the variables,
3 1
Then we integrate,
1 1
/ 72 dy = f = dz +c¢
1
—— = — — ..I._ e
y x
Finally, we solve for y,
1
v = w% +c
We simplify this fraction, and get the general solution
x
Y5 1w (1.12)
(]

We see that there are infinitely many solutions, depending on the value of ¢. All these
solutions together form the general solution. If we fix a value for ¢, then we obtain a
particulor solution.

For example, if we choose ¢ == 1, then we obtain the particular solution

Remark We can always test whether we have found the correct solution by substituting it into the
differential equation. If we take the derivative of (1.12), then we get

dy _ (1—cz)—z(=c) _ 1

de (1 —cx)? T (L—cx)?

On the other hand,
2

7= (55) & - ooy
£2  Nlwecx/ & ~ (1—ex)?
This shows that we have found the correct solution of (1.11).
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Example 2 Find the general solution to
dy T

dz 1 — g2

Solution.  First separate the variables,
(1-y*)dy = 2°dz

/(lwyz)dy = fm2d$+c

Then integrate,

Multiply by 3,
Sy—yt—2 = o

where we have set ¢; = 3¢. This solution is called an implicit solution because we can
not solve for y directly. O

Example 3 Find the general solution to
dy

dz ky
Solution.  Separate the variables
4y = kdr
Yy
and integrate
Ay == / kdz
ki
so that
njy| = kz+C (1.13)
Exponentiate,
yl = %,
To eliminate the absolute value, we square
y? = gRCe2he
and take positive or negative roots,
y = Zebeke, (1.14)
Setting ¢ = =e® we have the general solution
y = ce™™.
O
Remark Some books don’t bother to write the absolute value when integrating, and obtain
lny = kx+C
in (1.13} or
y=e"e.
This is not the complete solution because the solutions y = ~e“e*® are missing ! However, when setting

¢ = e, these solutions reappear because we can choose ¢ < 0. So the omission of the absolute value in
(1.14) can be justified, although it is not good practise.
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Example 4 Find the solution to
% =y (1.15)
which satisfies
y(0) = -1 (1.16)
Solution. By example 3, equation (1.15) has general solution
y = ce” (1.17)
We have one other condition : If z =0 then y = —1. If we substitute these numbers
into (1.17) then we obtain
~1=ce®
¢c= 1
The particular solution which satisfies condition (1.16) is
y = —e”,
d

If we graph all the solutions y = ce® of equation (1.15), we obtain a one-parameter
family of curves, where the constant ¢ is called a parameter. The extra condition (1.16)
selects the one solution whose graph passes through the point (0,-1). Such a condition is
called an tnitial condition or a one-point boundary condition.

LI T T - 7 T
2 o= o=8 o =2 s

c=0.1

b

=02 o6 o2B o4 =2 ol 205 202

-3 -2 -1 G 1 2 3

z

The one-parameter family y = ce®.

In general, a first order differential equation

Flz,y,y) =0

together with an initial condition

#{To) = Yo

is called an initial value problem (IVP).
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Example 5 Solve the initial value problem

dy

- = 0 [T
2g = oSV y(0) =7

Solution. It is WRONG to simply integrate and write

y o= fcosyd:n = siny+c

because on the right side we have the variable y and not 2 | Instead, we separate the
variables in differential equation (1.18)

= dzx

cosy

/Secydy = /dﬂ:+C

Injsecy +tanyl = z+C

Now we integrate both sides,

and exponentiate
C

€T

isecy + tany| = e“e

Eliminate the absolute value,

€T

secy +tany = ce
where ¢ = £e%. We have found the general solution of the differential equation in
implicit form. Finally, the initial condition y(0) = 7 gives us

~140 = ¢

so that ¢ = —1. The solution of this initial value problem is
secy + tany + e = 0.
0

Remark I we consider y the independent variable, and = the dependent variable, then we can rewrite
the above problem as

g% = secy z(m) =1,
Here we can integrate both sides with respect to y and obtain
T = In|secy +tany|+C

Exponentiate as usual,
e® = cfsecy+tany)
where ¢ = +e®. Finally, the condition z(%) = 0 gives
& = (=140
so that ¢ = —1. Of course have the same solution as above,

e’ +secy +tany = 0.

We can also write a differential equation in differential form,
P(z,y) dz + Q(z,y) dy = 0

which is equivalent to writing
dy _ _Plz,y)
dx Q(z,y)
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Example 6 Find the general solution to

zsinydr — (z* + 1) cosy dy = 0.
Selution.  To solve, we separate the variables:
(2% + 1)cosydy = zsinydz
cosy z

dy = ——dz
sin ¥ Y x2+1

" cosy @
dy = de + C
]siny Y f$2+1 e

Injsiny| = %ln(wZ-}-l)-i-C' = vl +1+C

Now we integrate,

Exponentiate,
Isinyl = e“Vz2 +1

Eliminate the absolute value by squaring and taking roots,
siny = $ev/a? 41,

and set ¢ = +e® to obtain the general solution

siny = eva?+ 1 (1.18)

Remark If we take the inverse sine function in (1.18) and write
y = sin"fey/z? 41

then we loose some of the solutions because the sine function is not one-to-one. Therefore, we leave
solution (1.18) in implicit form.

Exercises

1. Solve the following differential equations:

()J’—eawwm () (1+2)3 =4y
(b) zy’ (k) 2\/—5@1 1yl
() y-i-ytanﬂ:—o 1) ¢ = /6lzy
(@) ¥ —ytanz =0 (m) ayy’ =y -1
(¢) ylnydr —xdy =10 ) (1+2%)dy+(1+y*)dz=0
(f) (L+2%)y =tan"" 2 (0) 28y +¢° =0
(8) ¢ +2zy =0 {(p) ¢'siny = 2?
(h) % =ysinx (@ (12 - Dzde+ (z+2ydy =0
(i)J+2$?2_0 (r) tan@dr +2r df =0
2. Solve the following initial value problems.
(a} ¢ = we® y(1) =3 (c) (a®—4)y' =1 y(1) =0
(b) y' = e¥= y(0) = 0 (d) zyy' = (z+Dp+1) yB)=0

2 2 " I R
{e) 8cos” yde+csc”xdy =0 y(m) =7
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1.3.1 Homogeneous Equations

A differential equation of the form

dy y
- = F[= 1.19
is called a homogeneous equation.
e.g. The equation
dy 1+1%
de ~ 1-— z

is homogeneous.

A homogeneous equation can be solved by setting

Y e UL

Taking derivatives and using the product rule,

gl 1 U+ a:d—
dz dz
Substituting into (1.19) we obtain
dy
vkao = F(v)

which is a separable equation. To see this, lel us separate the variables,

dv

= = Fy) -
e (v} —v

1 1
o) o T 5™

This equation can now be solved by integration.

Example 1 Solve the equation

dy z+y

il o .20

dz Ty (1.20)
Solution. I we rewrite the equation as

dy 1+4

LA 21

dz 1-4 (1:21)

we see that it is homogeneous. We therefore substitute
¥ =z

Taking derivatives,
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Substituting into (1.21) we obtain

v+xdv 14w
d 1—-v
Now we separate the variables,
xdv 1+4v 14+ ?
—_— = e T——
dx 1—w 1—w
1—-w
dv = —~dz
1+ w2 ¢

To integrate, we split the first term,

1 1 2u 1
- dv = —dz
(1+v2 21+v2) vo=

and integrate,

1
tan_lvmgln(l—l—vz) = lnlz|+c

Now resubstitute v = f;,

tan“l(%) = Inyf1+ (%)2 +hnlz|+e¢

and simplify to obtain the general solution (in implicit form),
2
tan™! (-J—) = Iny2? +y? 4 ¢
x

0

Sometimes it is difficult to see whether a differential equation is homogeneous. For
example, equation (1.20) is homogeneous, but we only notice this when the equation is
written in form (1.21). We will now look for a criterion to determine whether an equation
is homogeneous.

Definition A function f(z,y) is homogeneous of degree n if

f(tz, ty) =1"f(z,y) (1.22)

e.g. o f(r,y)=2"+zy. Since
Fltz,ty) = (to)® + () (ly) = *(2* + o) = £ f(z,7)

this function is homogeneous of degree 2.

e g(r,y) = /5% +y*. Since
gltz, ty) = /(22)? + (ty)* = tg(z,y) (t>0)

this function is homogeneous of degree 1.
o hiz,y) = /¥ +y/z. Since

h(te, ty) = (t2)VE + (ty)Vis = 2 hiz,y) (t>0)

this function is homogeneous of degree %
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o F(z,y) = @y + zy is not homogeneous. In fact,
Fta, ty) = (t)2(ty) + (ta)(ty) = 212’y +97) # £ F(a,)

This function is not homogeneous because the two terms have different
exponents: We think of 2%y as a term with exponent 2+ 1 = 3, while y* has
exponent 2 only.

Remark Careful: We are using the word homogeneous in two situations:
1. A homogeneous equation is a differential equation of form (1.19).

2. A homogeneous function is a function that satisfies condition (1.22).

Theorem 1 Consider the equation
P(z,y) dz + Q(z,y) dy = 0. (1.23)

If P and @ are homogeneous funciions of the same degree, then (1.23) is a homogeneous
equation.

Proof: Let us rewrite this equation as

dy  Plzy)
dz— Qlz,y)

Because P and ¢ are homogeneous of the same degree n, we can now write

dy _ Plwazl  oPLYL)  POLY

da Qlz,z ¥4y =  27Q(L,L) ~ QL)

Now we set

P(1
F(S) -y 4 ( ’S)
Q(1,9)
and obtain d
Y Y
el == F 25N
dx (m)
which is a homogeneous equation.
Example 2 Solve ihe initial value problem
(z° +3zy +y¥)de —aldy = 0 (1.24)
y(1) = 0.

Solution.  Here,
P(z,y) = 2* 4 3zy +¢* and Qz,y) = —z°

Beth functions are homogeneous of degree two. Therefore, equation (1.24) is
homogeneous. We can rewrite it as

d 2+ 3 2 2
Gy _ rheryTy 1+3%+y

1.2
dx x? (1.25)

a2
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Now set

so that

Substitute into (1.25) and obtain

d
v+3:-3 = 1+ 3 +0°

dx
Separate the variables
dv 5
z— = {1 *
1'cl:z: (d+v)
1 1
dv = —d
(I+wv)? ¢ P
and integrate
= Injel +¢
1+v ’
~1
1+w i BT
Injz| + ¢
Now solve for v,
-1
= —— 1
Iniz| +¢
and resubstitute,
AN\ U
g Injz]+ec

Multiply by = to obtain the general solution

Infz| + ¢

Finally, we use the initial condition: if z = 1 then y = 0, so that

The particular solution of this initial value problem is

bt

¥y = 1—lInz

Remark When solving an initial value problem we are only interested in a solution which is defined on
an interval. The largest interval on which the above solution is defined and which contains z = 1 is
(0,00). This is why we have omitted the absolute value in Inz.
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Exercises

1. Solve the following equelious
(a) (w+y)y' =2~y (g) 2%y —3zy—-2y" =0

{b) zy' =: ¥ +22(acy)12/2 {h) zsin % y' = ysin % +z
G 0 =y

(€) zy' =2z + 3y (j) =y’ = Va2 +y?

(f) (z* - 2y*)dx +2ydy=0

() (VEFT+VEH) do+ (VF=T - VET) dy =0
Supplementary exercises:
2. Show that a substitution z = az + by + ¢ changes
y' = flaz +by+c)

into a separable equation. Use this idea to solve
(a) ¥ = (4o +y)° () ¢ =sin’ (z —y+1)
(b) (z+yhy' =1 (d) v = (z+y+ 1)
3. Consider the equaiion
dy ax + by +¢
bt AR o (ol Sl
dz (dm + ey + f)

(a) If ae # bd then find constants h and k such that the substitution

z=z—h y=w-—Fk

changes $ZFEC 6 an expression G(%). Use this substitution to obtain a homogeneous

7 doteyt+f
equation
di w
& = Fle)
(b) If ae = bd then show that the substitution
v = az + by

gives a separable equation
flwyde = glz)dz

{c) Use this to solve the following equations

i gg___:c—!-y%—tl it dy z+y-—1

"dx z-y-~6 “dr x4y +2

. ﬂiﬂzm+y+4 iv. 2z —-2y)dr+(y—1)dy=0
dr  z+y—6

v. (20 43y~ 1)dz - (dz+ 1) dy =0
1.4 Linear Eguations
The general form of a first order linear differential equation is

a1 (Z‘)gﬂg + ap{z}y = b(z)
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where ai(z) # 0. If we divide by a)(2) we obtain the equation in standard form,

dy

s oy = olw) (1.26)

where p = 22 and g = b

a1
e.g.

d
L (tanz}y = sin2x
di

is a first order linear equation in standard form.

To find the solution of equation (1.26), we multiply it by
h(z) = ef Pla)ds (1.27)

and obtain
M)+ @)y = al@)h@). (1.28)

Because the derivative of h(z) is

dh - EI__ {efp(a:)d:r] | _ efp(ﬁ?}dl' p(m) = h(m)p(l‘),

dz dz
(we have used the chain rule), equation (1.28) really is of the form
dy dh
h(':,)&g + Y= g(z)h(z). (1.29)

A good look shows that the left-hand side is the derivative of the product h{z)y:

d
o | ha)v] = a@)h).
We can now integrate

and solve for y,
1
y = —h(m)[/q(m)h(m) d$+c].

We resubstitute (7.27) and obtain the general solution to the linear equation (1.26):

y=e [P ] /lq(m)efp(z) “ dg -+ c | (1.30)

Remark The function h(z) is called an integrating factor because it allows us to integrate the left-hand
side of equation (1.28). We usually do not use formula (1.30) because it looks complicated. Instead, we
do the steps which have led us to the formuia:

1. Write the equation in standard form.
2. Multiply each side by the integrating factor

h(z) = e P22
3. Write the left-hand side as the derivative of a product:
d
= (o)) = gla)h(a)

4. Integrate both sides.
5. Solve for y.
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BExample 1 Solve the linear differential equation

y 3y = 2xe” (1.31)

Solution.  Here, p(z) = 3. To find an integrating factor, first integrate

/p(w)d:r = /3dﬂ:=3m

(Because we only need one integrating factor, we could choose ¢ = 0 as integrating
constant) and then exponentiate,
by = of P e
Multiply equation {1.31) by the integrating factor h{z},
¥y + 3%y = 2.
We recognize the left-hand side as the derivative of &%y,

g [eamy] = 2r.

Now integrate,
ey = 2% 4 e
and solve for ¥ 10 obtain the general solution

y = o™ 4 e

Example 2 Solve the differential equation

dy 1
il =+ ;y = 3. (1.32)

Solution.  This is a linear equation with p(z) = 4. To find the integrating factor we compute

i
[p(a:}dm:/——dmmlnm
r) r
Now exponentiate,
h(z) = el = |g]

For the purpose of an integrating factor we may drop she absolute value, and simply
multiply (1.32) by h(z) = =,

a:ég+y = 32°

dx

We recognize the left-hand side as the derivative of the product wy,
d
I [zy] = 32

Integrate,
Ty = /3$2d3:+c =z +e¢

The general solution is
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Example 3 Solve the initial value problem
y' +yltanz) = sin 2z y{0) =1 (1.33)

Solution.  This is a linear equation with p{z) = tanz. First compute the integrating factor,

]p(sz) dmz/tan.’cdﬂ:m/:iu: dr = ln|secx]

hiz) = el Pz _ guisecal - | sec ]

For the purposes of an integrating factor we may drop the absolute value. So we
multiply the differential equation in {1.33) by A{z) = secx and obtain

(secz)y’ + (secatanz)y = sinlw secw

2sinzcoszx
r I
SECI)Y + (SECL) Y = e
( Yy +( 'y P,

[(secm)y]' = 2sing

We integrate,
(secx)y = —2cosx + ¢

and multiply by cosz to obtain the pgeneral solution
y = —2cos® z + ccosz.
Finally, use the initial condition: if © = 0 the y = 1. Then,

1 = —2¢08° 04 ccosl
c = 3

The solution of this initial value problem is

2
y = 3cosx — 2cos” 2,

1.4.1 Bernoulli Equations

An equation

Y+ o)y = alely (1.349)

where n is 3 real number, is called a Bernoulli equation. We exciude the case where n =0
or n = 1, because then the equation is already linear.

A Bernoulli equation can always be changed into a linear equation as follows:
Multiply (1.34) by y~™,

y"“% +pla)y' ™ = q(x) (1.35)

Now change the independent variable and set

u =1
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By the chain rule,
du (1 —n)y""”gy
; dx

Substitute into (1.35) and get

Multiply by 1 — n and get

% + (1 —n)plz)u = (1 —n)g{z)

which is now a linear equation.

Example 4 Solve
A
dz

Sotution.  This is a Bernoulli equation. (n=3). So first multiply by y~2

b

dy
B — =2 1.36
YT Y x (1.36)
Now set,
%= y"2
By the chain rule,
du e
i I P i
da 3 dx
or
v W
2dz dx
Substituting into (1.36) we get
2de
Multiply by -2,
3—2 — 2uw —2x

This is now a linear equation. To solve it, we use the integrating factor

ef ~2de 23

and obtain
-2mg}£ - 26_2:':‘11. — _2$6—2$
i
d .
Eg—:[e"“u] = e
Integrate, using integration by parts,
e ¥y = / ~2xe™* dr + ¢

1
= 5(22, +1)e* 4+ ¢



1. Solve the following linear

1.4. LINEAR EQUATIONS

Now solve for wu,

Finally, we resubstitute v =y~

or in explicit form,

17
+ ! + ce*®
u = T+ =
2
and obtain the general solution,
1 1
= = z+5+ce™”
e
V2
i it ny = 2C
2 + 1+ ¢ e (&1 )
0

Exercises

equations:
(a) » +y=1

(b) f+y=e"

{c) v =2y =¥

(d) zy' +y =cosu

dy 4
{e) T dy =1
1
Hv+y= —
£ ¥ +y oo

(g) (14 2%) dy + 2zy dz = cotz dz

. Solve the following initial value problems:
(a) ' +2y =2, y(0)=1
(b) zy —y ==,  y(i)=2
(c) ¥ ={1~yjcosw, y(m)

G

. Solve the following eguations:
(a) vy + 22y® = 62

(b) 2y’ + 6y = 3zy?/?

(c) 3’y +y® =e*

(d) 2y +y= 2"y’

(h)
(@
)
(k)
(1)
(m)
(n)

y 4y =2ze® 4z

y' +ycotx = 2zescn
2y — s dr =z dy
y—x-+aycotr+ay =0
dy

- -
rinz)y +y = 32*
(

(y — 22y —2*) de + 2 dy =0

2oy = Bae®

Ty + 3y = 227,
Yy =1+2+y+ay,
(2% + 4y + 3zy = =,

y(2) =1
y(0) =0
y(0) =1

zy?y’ + 4% = zcosy
zdy +ydr = zy° de
2oy’ + yPe ™ = 2xy

. Solve the following equations using appropriate substitutions:

{(a) ze¥y = 2(e¥ 4 x%e?®)
(b) (2zsinycosy)y’ = 4o® + 3sin’ y
() (x+e¥)y =xe¥ 1

. ‘Which of the equations in section 1.3, exercise 1 and section 1.3.1, exercise 1 are linear 7 If
an equation is linear, solve it by the method of this section.

Supplementary exercises:

. A differential equation of the form

'

Y

is called a Riccati equation.

= ple)y® + qle)y + r(z)
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{a}) Show that if we know one solution y; of this equation, then the substitution

1
y=y + -
v
will transform it into a linear equation
vk [g{®) + 2p(z)n v = ~plz).

(b) Show that y; = z is a particular solution of each of the following equations, and then
find the general solution by applying the above substitution.
Ly +yt =142 iy +2zy =1 +4+2% +¢°

7. One of the solutions of y'sin2x = 2y + 2cosz remains bounded as z —+ 7/2, Find is.

1.5 Exact Equations

Assume we have a family of curves,

fle,y) =c (1.37)

If we take the total differentiol on both sides we obtain the diflerential equation

df =de
or
af ofr
B dx + 3y dy =0 (1.38)

Therefore, the solution of the differential equation (1.38) is f(z,y) = ¢

e.g. The family
22 = ¢

is the solution to the differential equation
2zy* dz + 3x*y  dy =0

because <= (22°) = 2zy® and %j (z%y®) = 3z

Now suppose we are given a differential equation

M(z,y)dz + N{z,y) dy =0 (1.39)
If we can find a function f{z,y) which satisfies
ar af
By = M(z,y) and oy N(z,y) (1.40)
then by the above comments, the solution must be of the form
flzy)=ec

If such a function exists, then we call equation (1.39) an ezact differential equation, and
M(z,y) dz + N(z,y) dy

an ezact differentiol.
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Example I Is the equation
yde+axdy = 0 (1.41)
exact 7 Try the function f{zy) = oy

of of

=y and — =z
gz Y

We see that equation (1.41) can be written as

of . Of . _
Bsz -+ '@dy—o

50 that it is indeed an exact equation. Its general solution must be
flay=c

that is,

Ty =c.

So to solve equation (1.39), we must
1. determine whether the equation is exact, and if it is exact,

2. find the function f(z,y).

The next theorem answers the first question:

Theorem 2 Suppose, M, N, %]:f and % are continuous on a rectangle in the zy-plone.
Then the equation

Mz, y)dz + N{z,y) dy =0
is exact if and only if
oM _ on
By O

Remark The functions we are usnally using are all continuous as required. The words "if and only if”
have the following meaning:

e If M(z,y)de+ N{z,y)dy =0 is exact, then 28 = &Y,

ay N

o If %?’” = % then M{z,y)dr+ N{z,y)dy =10 is exact.
Once we have determined whether an equation is exact, we can integrate one of the two

equations in (1.40) to find the function f(z,y).

Example 2 Find the general solution of

(3z? + 4y dz + (222 + 2¢) dy = 0
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Solution.
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First check whether this is an exact equation. Here,

M
M{z,y) = 32* + 4y so that %;— =4g
N
N(z,y) = 22% + 2y so that —— =dr
gz
Since %%"'- = %% this is an exact equation.
The general solution of an exact equation is f{z,y} = ¢ where
d d
5;:}: = M(x,y) and 55 = N{z,¥) (1.42)

To find £, let us integrate the function M(z,y),

floy) = [ M{z,y) dz + 9()

! /(33;2 + dxy} de + gly)

= 2*+22% + gy)

Where does the term g(y) come from 7 Because we are integrating with respect to r,
the word "constant” means independent of x only; the integration “constant” may
really be a function of y. To determine the value of this function g(y), we make use of
the second equation in (1.42}. We take the derivative of f{z,y) with respect to y,

LY vy
B_y_zm +g'(v)

and compare it with N. We obtain

2% +g(y) = L = Nisy) = 207 +3y
dy
Thus,
9'(y) =2
and integrating,
g(y) =y* + 1. (1.43)

Therefore, f(z,1) =2° + 2z%y + 1> + ¢, and the general solution is
P roaty e = ¢
Combining the two constants into one, we get

2+ 228 4+t = &

Remark Because the integration constant ¢; can be combined with the constant ¢ to a new constant ¢,

we may omit to write the constant ¢; in step (1.43) .
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Example 3 Solve the initial value problem

(2z cosy + 3z%y) dx + (2 — 2¥siny —y)dy = 0 y(0) = 2

Solution.  First check whether the equation is exact.

M
M(z,y) = 2z cosy + 3z°y i —2zsiny + 3z°
N
N(z,y) = 2% —z¥siny —y %=3z2——2msiny
Since %"5{ = %_{;:i this is an exact equation.
The general solution of an exact equation is
fla,y) =c
where o7 o7
32 = Mz, y) and 3y = N(z,y)

To find f, we integrate M (we could also integrate N1}
faw) = [My) ot

= /(2m cOsY -+ 3m2y) dz + gly)
= g° cosy + m3y + 9(y)

To determine g, take the derivative of f with respect io vy,

-g—i = —z"siny + 2% + ¢'(y)
and compare it to IV,
a
E‘{- =N{z,y) =2* — 2’ siny — y
We see that
!
gy} =~y
2
=\
The general solution is
2
z%cosy +a’y ~ 3”-'2“ =c

Finally, we must find the particular solution which satisfies the initial condition
#(0) = 2. Substituting these values into the solution we get:

4

0+0- 3= c
c= —32
The solution is )
xzcosy+m3yw% = -2,
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Example 4 Find the general solution to
emzy(l + 22%y) da + 23e® dy = 0
Solution.  First check whether the equation is exact.
M(z,y}=e"¥(1+2%) and  N{z,y)=ae""?

Taking partial derivatives,

M .
% = ™ Up?(1 + 2ay) + €%V222 = 8 Y(32” + 2a'y)
oN ; ‘
B = 32e" YV 4+ 2e" Vay = e ¥(3z” + 2z'y)

Since %;1 = %—f this is an exact equation.

The general solution of an exact equation is
flzy)=c
where
of af

Be = Mz, y) and 7 = N{z,y).

To find f we could integrate M,

fwy) = [ M@ dotot) = [0+ 2% ot gtw)

However, this looks quite difficult (although it is not impossible to do!). We better
integrate the function N with respect to y,

flzy) = fN(:c,y) dy + h(z) = f:sse"zydy+h(:c) = :cexzy—i—h(:n).

To find h, we must now compare the derivative gﬁ; with M,
13

5 b =Y+ szyemzy +h'{z) = 6”2“{1 + 2z%y) + B'(x).

The comparison with M (z,y) shows that
AN e N h( TG0

The general solition is

Remark If we solve for y explicitly, then we obtain

k(g
L L T
If # > @ then c must be > 0, and this can be written as

é—Inzx

y = 073 (€=Inec)

If £ < 0 then ¢ must be < 0 and this can be written as
1 - E—In(—x) -
y = »;2-11'1(:;) = _I2 (C=1D.(—C))

Combining both cases we get

y:
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1.5.1 Integrating Factors

An equation which is not exact can sometimes be changed to an exact equation. Let us
first explain this idea by an example.

Example 1 Consider the equation

yde + (2%y —z)dy = 0 {1.44)
Is this equation exact 7
Miz,y) =1y so that 83_.7\5 =1
Nz, y) =2y —= o that %—j;T:Zmy—l

Since % #* %5’5, this equation is not exact.
Now look what happens when we multiply this equation by ;15: We obtain

Y i
2 dz + (y m)dy = 0. (1.45)
Since
8y 1 8 i1
@Zﬁ)zﬁ pnd “55:@_5):?’

this is now an exact equation ! We know that its solution is f(z,y) = ¢ where
)
flmy) = /%dﬂg(y) = -, T9W

To find g, we compare %% and the dy-term in (1.45),

ix T N\
By $+9(y) =y-
Therefore,
g =y
9ly) = %

O

In the above example, the given equation (1.44) is not exact, but can be changed to the
exact equation (1.45) by multiplying with the function :,Elg This function 15 therefore called
an integrating factor.
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Definition Consider a differential equation
M{z,y)dz + N{z,y)dy =0 (1.46)
A function F'(z,y) such that
FMde+FNdy =90 (1.47)

is exact is calied an integrating factor.

Most differential equations can be made exact in this way, however, it is usually difficult
to find an integrating factor F{z,y). In the following we will discuss two special cases
where an integrating factor can easily be found.

Let us assume that F(z,y) is an integrating factor for (1.46). Because (1.47) is exact,
we know by theorem 2 that

(FM), = (FN),

By the product rule,
FyM + FM, = FyN + FN, (1.48)
e Suppose, ' = F'{z) is a function of z only. Then F, =0 and (1.48) becomes
FyN = FM, — FN,

dF 1 My~ N,

T F T 7 (1.49)
Since %% + is a function of x alone we see that
M, — N,

—J—Kf%i (1.50)

is also a function of x alone.

Now we reverse the argument: Assume, (1.50) is a function of x alone. Let I = F(z)
be any solution of equation (1.49). Then (1.48) is true which shows that (1.47) is an
exact equation. That is, F' is an integrating factor for (1.46).

To find a solution of equation (1.49) we set

oMy~ N

Alz) I

and separate the variables: .
7 dF = A(x) dz

Integrating (we choose the integrating constant ¢ = 0), we obtain
InF = f Alz) dz

j - efA(a:)dm

e If F = F(y) is a function of y alone, we can obtain a similar formula, which is shown
in the next theorem:
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Theorem 3 Consider an eguation
M(z,y)dz + N(z,y)dy =0

a) If

aM _ 9N

Alg) = 2=

1§ a function of x only, then

is an integrating factor.

b) If

is o function of y only, then
Fly) = of Bl dy

is an integrating factor.

Example 2 Find the general solution to the equation

Bzy +y°)de + (2° +zy) dy = 0 (1.51)

Solution.  First check whether this equation is exact.

oM d 2
ez e (3 = 2
By 6y(3my+y ) 3z + 2y
N 0, .
2N Y Py, = 9
o P (2° + zy) @y
So the equation is not exact. We must Jook for an integrating factor.
oM N
= 2y) — (2 =
T T Br+2y)—2z+y)=z+y
Then,
aM _ an
oy T or _ vty 1
N ?4zy

is a function of & alone. By the theorem, we obtain an integrating factor
1 .
F(z) =ef’~ dz _ glow o

(To be precise, we get f(z) = e™I%l = {z], but for the purpose of an integrating factor
we may omit the absolute value.) Multiply equation {1.51} by z, and obtain the exact
equation

(3z%y + xy®) dr + (2 + 2Py) dy = 0 (1.52)

Its solution is f{z,y) = c where

fla,y) = /(3w2y+$y2) dz +g(y) = 'y +
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Differentiate, and compare with the dy-coefficient in {1.52},

a
8_{1 = o’ + 2%y = 2° + 2% +¢'(y).

Therefore,
7'(y)

gly) = 0

The general solution to equation {1.51) is
22y

Example 3 Solve the equation
(1.53)

2zy dz + (dy 4+ 32%) dy = 0

First we check whether the equation is exact.
oM _
By
So this equation is not exact. Let us try to find an integrating factor. Now

aM 9N
By ER -4z

N T dy+32°

Solution.
aN

2 and —_—
T an o Gx

contains both variables, © and y, and we can not use it to get an integrating factor.

However, . -
Fi

8y ~oe _ 4z 2

-~ M —2zy i

is a function of y only. Therefore, we can use the integrating factor
Fly) = ef 34y _ 2ty i

We multiply equation (1.53) by this function and obtain
2xy° dx + (4y° + 3222 dy = 0 (1.54)

This equation is now exact. Its solution is f(z,y) = ¢ where

flz,y) = f29:y3 de +gly) = «*v° + g(y)

Comparing 2L with the dy-coefficient in (1.54),
8y

) .
9 _ st gly) = 4 + 30ty

By

we obtain
g'(y) = 4°
9ly) =y'
We have found that f(z,y) = z%y® + y*, so that the general solution is

zhy? +yt=c
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Exwercises

1. Check whether the following equations are exact and solve them if they are exact.

(a)
(b)

(c)
(d)

(e)
) @ +y/e)de+ (Y +1lnz)dy =0
)

)

)

)

2z + 3y} de + B~ 4)dy =0
(322 — 2y") dx + (6¢° — day) dy = 0
(2% —dae +5)dr + (4 — 2y +4dey) dy =0
cosz cos® y da + 2sin xsiny cosy dy = 0

{(sinztany + 1) dz — coszsec’ y dy = 0

{(g) (e"siny +tany) dz + (e“cosy + zsec® y) dy =
(h) (sinzsiny —xe¥) dy = (e¥ + cosz cosy) dz

22(1 + /22 —y)de = Jax? —ydy

(6% + 1) cosr dr + 28 sinr df = 0

{
{i

2. Determine whether the following equations are exact. If not, find an integrating factor.
Then solve the equations.

(a) 2zyde+ (y° —a¥)dy =0 (

(b) (zy~1)dz+ (22 —zy)dy =0 {1

(c) ydz + (2xy —e ) dy =0 (i) (3z% ~y))dy — 2xydz =0
(d) (z+3y*)de+2aydy =0 () (y+ycosay)de + (z +zcosay) dy =0
(&) ydz + {20 ~ye¥) dy = 0 k) (y—z¥)de+(z+y*ydy =0

423 3) (3:1: ) §
f)y {—+=~)de+|=+4y) dy=0 B 3¢*(1+1n dm+(——m2)d =0
() (yg . 7T dy ( ( ) i

Supplementary exercises:
3. The equation

4% — 2z° . 8y
day? — 28 4y — 2%y

is both, homogeneous and exact. Solve it as

a) a homogeneous equation.

(
{b) an exact equation.

1.6 Reduction of Order

The general form of a second order differential equation is
F(z,y,9,y") =0

If some of the variables are missing then such an equation may be reduced to a first order
equation. We have two cases to consider:
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Case 1: The dependent variable y is missing
In this case, the differential equation is of the form
G(.‘E,’y’,‘y”) =0 (155)

If we consider i the dependent variable, then this is really a first order equation ! We
therefore substitute

V=Y

Then differentiating with respect to z,
'U, — yﬁ

so that (1.55) changes to the first order equation

Glz,v,v") =0
Example 1 Solve the equation
'y dy 2
cY_%Y -3 .
T T b (1.56)
Solution.  The variable y is missing. We therefore set
yo
T dx
so equation (1.56) changes to
T 911—) — v = 3z’
dz h
This is a linear equation. Divide by x to bring it into standazd form,
dv 1
a‘;; - _E_U = 3z

We choose the integrating factor

AR o |
z
and multiply by this factor to obtain
1d
il AW
N
AR
S x g 2
de Lz
Integrate,
3
—y=3r+c¢C
W

v =23z"+cx
We must not forget to resubstitute,
y' =32+ ex

To find y, integrate once more
y = /(3x2+ca;) de = 2° 4+ cz* +d
where we have set ¢, = ¢/2. o

Remark You may notice that the general solution contains two constants, ¢, and d. This is typical for

seconrd order equations.
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Case 2: The independent variable z is missing
In this case we have a differential equation
H(y,y',y") =0 (1.57)

Because z is missing, we may think of y as the independent variable, and of ¢ as the
dependent variable. We choose the same substitution as in case 1,

V=Y

but consider v as a function of the variable y now ! What does 3" change to 7 By the
chain-rule,
d dv  dv dy dv
o By L B Y Ry s
V' = i ) de dy dz dyv

and (1.57) becomes the first order equation

H(y,v,j—Zw) =0

Example 2 Solve
(y + l)yn " (y-')Z =0

Solution.  Clearly, the variable z is missing. We therefore make y the independent variable, and
v =y’ the dependent variable. The equation changes to

(y-iml)%vmv2 =0 (1.58)
or dividing by v,

dv
1) ——v =20
(y+1) o
This equation is both separable and linear. Let us solve it by separation of variables,

1 1
=y =
TN Sy

dy
Integrate,
Inje] = mjy+1|+C

and exponentiate,
bl = ¢y + 1

As usual, we set k = £¢¥ depending on the effect of the absolute value, and get

Now we must resubstitute v = f};,
dy
dy _ 1.
T kly + 1) {1.60)

This equation can be solved by separation of variables,

dy

| = kdzx
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Inly+1 = ke+ D
y+1 = et
where ¢ = +eP. The solution is thus
y = ce® — 1 (1.61)

0

Remark Note that it would be wrong to simply integrate in {1.60) because on the right side there is the
variable y ! In fact, at this stage we always have a separable equation because the variable z is missing.

Remark When we divided by » in (1.58) we lost the solution v = 0 which integrates to y = consi. This

solution appears again in {1.59) when we set £ = 0.

Exercises

1. Solve the following equations:

(a) zy" + 2y = 6z {) ay" +y =da

{(b) y" + tanzy’ = cosz (2) w" + (W) =0

(c) " —2yy' =0 (h) oy" =y + ')
@ y"y* =y (i) y"~4dy=0

(e) 2yy" =1+ (y')? () =*¢" = 2zy' + (v')*

2. Find the particular solutions of the following problems:

{a) {2+ 2y )" + 22y =0 y(0)y=1, 3 {0)=0
) w'" =v*y + @) w0 =1, ¥{0)=1
(c) y" =y'e¥ y(0)=0, '@ =1

3. Solve each of the following equations using both methods of this section.
(a) v’ =1+ (@) (b) ¥+ ) =1

1.7 Applications

Let us now discuss some simple applications of differential equations to physical systems.

1.7.1  Orthogonal Trajectories

Suppose, two curves in the plane intersect at a point P. The angle of intersection is the
angle at which their tangents at P intersect.

Let m; and mq denote the slopes of these tangents. The angle is a right angle (= 90°)
if and only if
1

My = ——
my

In many interesting applications (e.g. electric field theory) we have the following
problem: Given a one parameter family

F(z,y,c) =0 {1.62)
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of curves in the plane, find another family
Glz,y,¢) =0 (1.63)

of curves which intersect the curves of (1.62) at right angles. The curves of (1.63) are
called orthogonal trajectories.
Suppose, the curve of the family (1.62) which passes through a point (z,y) has slope

dy
— = gy = f(z

dz 1 f( 79)
Then its orthogonal trajectory must have slope

dy 1 1

dz - —;—r;l- B f(may)

Solving this differential equation, we can find the orthogonal trajectory through (z,y).

slope = —1/f{xy)
\\\ ' /

~ ~ slope == f{x,¥)

orthogonal trajectories

Example 1 Find the orthogonal trajecteries to the family of parabolas
y = ca® {1.64)
Solution.  First we must find the differential equation of this family. Take derivatives,
dy
— = 201 1.65
7y = 2eE (1.65)

We must eliminate the parameter ¢. To do this, solve (1.64) for ¢

_ ¥
TR
and substitute into (1.65)
dy y 2y
A e 2
dz (a:2 ) T
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This is called the differential equation of the family of parabolas. It follows that an
orthogonal trajectory must satisty the differential equation

dy _ _ =
dx 2y
This is a separable equation. Solving,
2udy = —vdx
5 2
y= Y + ¢

The orthogonal trajectories are ellipses

Example 1: The orthogonal trajectories are ellipses.

Exercises

1. Find the orthogonal trajectories of

(a} the family of hyperbolas zy =c¢,

(b) the family of circles (z —c)® + 3% = 2,
(c¢) the family of ellipses =~ 2% ~ ay + ¥° = ¢,

(d) the family of parabolas 2cy+2> =c (¢ > 0).

2. In each exercise, sketch the family of curves. Find the orthogonal trajectories and sketch
them as well

(a) y = ce” (b} y=2z+ce™® (€) ¥*=ce®+a+1

3. When two straight lines with slopes m; and ms intersect, then the angle # between the lines
is

m —

tanf = a7

14+ mimsa

¥ind the family of curves which intersects the family
(a) s—~2y=c (b) 2 +y*=c
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at an angle of 45°.

Supplementary exercises:

4. Experiments show that the electric lines of force of two opposite charges of the same
strength at {—1,0) and (1,0) are circles through {—1,0) and {1,0}. Show that these circles
have equations z2 + (y —¢)®> = 1+ c®. Show that the equipotential lines (s=orthogonal
trajectories) are the circles {x 4+ d)® +y® = d* — 1.

1.7.2 Growth Processes

Exponential Growth Let z(t) be a quantity that changes with time. Assume that the
rate of change of this quantity is proportional to the amount present. (Examples of this
sttuation are radioactive decay, population growth, some chemical processes.) We get a
differential equation

dx

= = ko (1.66)

I k> 0, the quantity increases with time — we have growth, and if & < 0, the guantity
decreases with time — we have decay.
We already know that equation (1.66) has general solution
z = cekt

If x, denotes the amount present at time ¢ = 0, then

so the solution of (1.66) is

T = moem

The quantity z changes exponentially; we therefore call (1.66) the equation of
exponential growth (decay). The constant k is sometimes called the growth coefficient.

Example 1 Radioactive Decay The radioactive element Thorium-234 decays at a quick rate,
Experiments show that within 7 days an initial amount of 100 mg of Thorium-234
decays to only 82.04mg.

a) Find the amount of Thorium-234 present after ¢ days
b} Find the half-life of Thorium-234.
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Let z denote the amount of Thorium-234 present at time ¢ (in days). We assume that
the rate of change is proportional to the amount present. We have an initial value

problem

dx
= = -k =1
o T z{0) 00

whose solution is
z(t) = 100e~*

Note the minus sign which indicates decay. Now let us use the condition z(7) = 82.04
to obtain

82.04 = 100e~7F
_In0.8204

k -7

=~ (.02828

So after ¢ days,
’L(t) - 1008w0.02828t
milligrams of Thorium-234 are left. The half-life is the time when only 50% of the
original amount is left. So we solve
50 = 100(3“0.0282&

_ In05
T —0.02828

The half-life is 24.5 days. ]

a2 24.5

Example 2 Population Growth A small amount of bacteria is placed into & nutrient solution.

Solution.

After one hour, the bacteria population has tripled. When will the population have
grown to 100 times its original size ?

Let z(t) denote the population at time ¢ (in hours), and z, denote the population at
{ = 0. Assuming an unlimited supply of nutrients, we may assume that the population
grows at a rate proportional to its present size,

dx
— = Lz
dt
so that
z(t) = z,et

We know that (1) = 3z,. Substitute into the equation,

Jah =t !
E=1In3
so that
’L(t) - $0(_3“113

The population has increased to 100z, when

100z, = z,et'™®

- In 100

3 2~ 4.18 hours
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Logistic Growth The equation of exponential growth used in the last example is realistic
only for small populations, as it does not take conditions such as limited food supply,
migration, etc. into consideration. Another commonly used equation is the logistic
equation:

dw
dt

We can explain this equation as follows: The rate of change of the population is

= kx(m —x) (1.67)

e proportional to the present population z, and

e proportional to the difference between the present population z and the largest
possible population m.

To solve the logistic equation, we separate the variables,

; dr = kdi
z(m — z)

and integrate,

f mdx = /kdt-l—c

We solve this integral by partial fraction decomposition,

/i[-lw- ! }dm:[kdmc
T |@ m — I

so that after integration,
i

—In l = ki+c
m lm—z
Multiply by m and exponentiate,
A (1.68)
m—z
where we have set ¢ = $e“". Solve for z,
pog kmi
& = 25 (1.69)
1+ Cebmt
Now assume, we have an initial population z(0) = z,. Then by (1.68),
x
v 2=
m— T,
We substitute into (1.69) and obtain
mmaiga: ehmt mmoekmt
r = < = .
14 ~fa.ghmt (m — To) + Toehmt

kit

Finally, we multiply by e and obtain the solution

Ty
) = . 1.70
z(®) To -+ (M — zo)e~kmt (1.70)

Note that z(t) — m as t — co. This means that the population will approach the largest
population possible.
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Example 3 Bacteria are cultivated in a laboratory. An initial population of 1000 bacteria

Solution.

doubles within one day. Find the population of bacteria at time ¢ if

1. there is unlimited food supply,
2. there is enough food for only 100,000 bacteria.

In each case, when will the population: have grown to 80,000 bacteria 7

To make computations easier, let z(¢) denote the population of bacteria in thousands.
The given data says that 2, = 2(0) = 1 {(the initial population is 1,000) and z(1) = 2
(after one day, the population is 2,000.

1, If there is unlimited food supply, then we choose the equation of exponential

growth,

dz

= ook

a -
whose solution is

z(t) = z,et = oM

Then z(1) = 2 gives

2 = eb

so that the population at time ¢ is
o(t) = (8} = 2
The population has reached 80, 000 when
80 = 2

or
t = log,80 =6.32 (days)
2. If there is food for only 100,000 bacteria, then we choose the equation of logistic
growth with m = 100. By (1.70), the solution is

100-1

20 = T —1)e 00w

The condition z(1} = 2 gives

o 100
T 14 99e—100k
so that
~100k _ 9
198
Therefore,
—100k = In X112 —~0.7033
Utae? =~ '
Thus, the population at time ¢, in thousands, is
10
2(t) = v

1 + 9Qe—0.7035C
The population will have reached 80,000 when
100

80 = 1 + 99e—0.7033
or
o-oross — 20 1
80-99 396
—1n 396

—5555 = 8.5 (days).
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The picture below shows the graphs of both solutions. We notice that for small values
of t, both solutions are nearly identical. After day 3, however, the population increases
much faster in case of exponential growth.

120 ; .

max. population m

m
o

exponential —=

~o |ogistic growth
growth

population (0G0}
o
&

£
o

20 +

0 2 4 6 8 10 12 14
time {days)

Example 3: exponential growth compared with logistic growth.

Exercises

1.

Newton’s Law of Cooling says: A hot body cools at a rate which is proportional to the
difference between the body’s temperature and the surrounding temperature.

A body is heated to 110°C and placed into air at 10°C. After 1 hour its temperature is
60°C. When will the body have cooled to a temperature of 30°C ?

. A bottle of water is taken from the refrigerator at a temperature of 6°C, and placed into a

room at temperature 22°C. After 10 minutes, the temperature of the water has risen to 14°C.

(a) Find the temperature of the water afier 20 minutes.

(b) When will the water temperature have risen to 21°C ?
(Note that Newton’s law of cooling applies for warming as well)

Radium has a half-life of 1600 years. What percentage of the original amount will be left
after 2400 years 7 after 8000 years 7

Radioactive carbon C-14 has a half-life of 5568 years. Plants accumulate this isotope during
their life spans, and the accumulated C-14 decays after their deaths. A fossile plant contains
only 0.2% of its original amount of C-14. How old is this fossile plant ?

A city had a population of 100,000 in the year 1980, and of 120,000 in the year 1990.
Assuming that the population increases exponentially, what population can we expect in the
year 2020 7

The population z(t) of a certain country increases because of two factors:

¢ the population growths naturally because of births, with growth coefficient k;

e every year, ] persons are immigrating to the country.

Thus, we get the equation
dz
— =k I
7 z -+
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(a) Tf the country has a population of 50 million in the year 2000, a growth coefficient of
k = 4% and an annual immigration of 500,000 persons, what will the population be in
the year 2005 7 { the year 2055 7 )

b) repeat these computations, if the growth coefficient is 1%.
P p ) g

7. A highly contagious disease is spreading in a town of 15,000 people. At time ¢ = 0, there are
5,000 people who have the disease, and the disease is increasing at a rate of 500 per day.
How long will it take for another 5,000 people to get the disease 7 (Because the number of
people to be infected is limited, we assume that the disease spreads according to the logistic
equation.)

8. In a chemical reaction A -+ C, substance A is converted to substance € at a rate which is

proportional to the amount of substance 4 present. (This is called a first order reaction.)
After 5 minutes, 10% of the original amount of chemical 4 has been converted.

(a) How many percent of chemical 4 will have been converted after a total of 20 minutes ?
(b) When will 60% of chemical A have been converted ?

9. In a first order chemical reaction A — €, an unknown quantity of substance 4 is converted
to stbstance C. After 1 hour, 50 g of substance A remain, and after 3 hours, only 25 g of
substance 4 remain.

(a) How many g of substance A were initiaily present ?
(b) How many g of substance A will remain after 5 hours ?
(¢) After how many hours will only 2 g of substance A remain 7

10. A moon rock was found to contain equal numbers of potassium and argon aioms. Assuine
that all argon is the result of radicactive decay of potassium, and that one of every nine
potassium atom disintegrations yields an argon atom. What is the age of the rock, assuming
that originally the rock contained only potassium ? (The half-life of potassium is 1.28 x 10°
vears.)

1.7.3 Chemical Reactions

Consider a chemical reaction
A4+ B = C

where « grams of substance 4 and § grams of substance B react to form 1 gram of a new
substance C.

This is called a second order reaction, i substance C is formed at a rate which is
proportional to the amounts of A and of B present,

== = k-aft) - bE). (1.71)

Here, a(t) and b(t) denote the amounts of substances A and B present at time ¢, and z(f)
the amount of substance € which has been formed since time ¢ = 0.

If a, and b, denote the initial amounts of substances A and B respectively, then the
amount of A left at time ¢ is

a(t) = initial amount — amount converted at time t = a, — ax{t),
and similarly, the amount of B left at time £ is b{t) = b, — fz(t) . Thus, (1.71) becomes
dz

- = k(a, — az)(b, ~ )

This equation is separable, and has initial condition z(0) == 0.
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Example 1 1g of substance 4 and 3g of substance B react to form 4g of substance C. Initially,
10g of substance A and 15g of substance B are present. After 15min, 5g of substance
¢ have been formed. Find the amount of substance ¢ formed at time ¢.

Solution. Here, a, = 10, b, = 15, o = 0.25 and 4 = 0.75. We therefore must solve the equation

% = k(10 — 0.25z)(15 — 0.75x)
which can be simplified to

dx =
il k(40 — 2)(20 — )

where we have set & = I%k- To solve it, we separate the variables,

1

Before we can inteprate we do a partial fraction decomposition on the left side:

i __A B
(40— 2)(20 —2) ~ 40—z 20—z

1= A(20 — z) + B(40 — &)

If & = 40 we obtain

1
1= """*20.4 or A= """2-6
If z = 20 we obtain i
1 =208 or B = 3%
Therefore, (1.72) becomes
1 1 1 -
— — do = kdt
20(20_:.3 40_1-) v

Maultiply by 20 and integrate,
—In (20 — z) +In (40 — 2) = 20kt + ¢

Exponentiate, B
& e, 20kt
0L\
Now let us use the initial condition (0} = 0. I gives us
40~-0
TEZ P tadn 4 Sy
T
so that

40 — x 0,20k
55 = 2

To find the value of k, use the second condition z(15) = 5,

40 -5 .
— 9g2015:F
W—5 -°

3_5 _ 20k 15
iz = 2(=™)

20k _ (15
e = (0
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Therefore,
40 — z T,
= 28
20 -2 (6)

Now solve for =,

40w$=:%mwmﬂéﬁ

4ﬂ9ﬁ—gzxmﬁéﬁ—g

The solution is

Remark Note that as ¢ — oo,

5
15

9.

lim z{f) = lim 40
t—3 o0 i+ o0

b=

by I'Hopital’s rule. This makes sense: Because there is initially only 15g substarce B, at most 20 g of
substance ¢ can be formed.

Exercises

1. Do example 1 again, but assume now that the amount of substance A is kept constant at
15g. (For example, the substances are dissolved in water and substance A is oversaturated.)
Find the time when 19g of substance € have been formed.

2. Do example 1 again, but assume now that initially only 5g of substance A are present. Find
the time when 19g of substance C have been formed.

3. The rate at which a certain substance dissolves in water is proportional to the amount
undissolved, and proportional to the difference ¢; — o, where ¢; is the concentration of a
saturated solution, and ¢ the concentration of the actual solution. In a saturated solution,
50 g of water dissolve 20 g of the substance.

(a) If 10 g of the substance is placed in 50 g of water, and half of it dissolves within 30
minutes, how much will be dissolved after one hour 7

(b) Answer the same question when 30 g of the substance is placed into 50 g of water.

1.7.4 Mixing

Let us simply give an example:

Example 1 Initially, a tank contains 25 | of water in which is dissolved 2 kg of salt. (Water in
which salt is dissolved is called brine.) Saltwater which contains 0.2 kg of salt per liter
flows into the tank at a rate of 5 | per minute. Every minute, 3 ! of the saltwater flow
out of the tank. How much salt does the tank contain at time #? (The mixture inside
the tank is kept uniform by stirring.)
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Solution. Let xz(t) denote the amount of salt contained in the tank at time ¢. We have

dzx
—_— = BN = T
p IN ~ ZOUT
where
miy = rate at which salt enters the tank
zourT = rate at which salt leaves the tank
Let use compute these guantities.
The amount of salt entering the tank is
2w = volume of water flowing in - concentration of salt in inflowing water

or
v = 5 l/min - 0.2 kg/l = 1kg/min

Similarly, the amount of salt leaving the tank is
zour = volume of water flowing out - concentration of salt in outflowing water

What is the concentration of the outflowing water 7 This water comes from the inside
of the tank, and so has concentration

amount of salt in tank T

volume of brine in tank ~ V(t)

where V' (¢) denotes the volume of brine in the tank. Now the initial volume is
V(0) = 25, and every minute, 5 liters of brine flow in, and 3 liters flow out. Thus,
V(t) =254 (b —3)t and

. o(t)
Tour = 3 5e
We get the differential equation
dx 3z
= IIN — ,’EOUT = 1

dt
with initial condition =(0) = 2.
This equation is linear. We rewrite it as

dx 3

'&E'*'mfb‘:l (1.73)

Choose the integrating factor
of i - inesvn - (o5 1 293
Multiplying by this factor, equation {1.73) becomes
d a K1
p ((25 + 2t)>x ) = (25+2¢)7

Integrate,

(25+28)%z = 2 2 (25 +26)% +¢

ot bo
[ ] et

and solve for z,
¢

z = 0.2(25 + 28) + —————
( ) (25 +26)%
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Now we use the initial condition z{0) = 2. We get

e C
2 = 0225+0)+ ——— = 5+ —
B +0)+ oyt 125
Then,
¢ = —375
The solution is 375
{25 + 2t)%

Exercises

1. A tank of 200 1 capacity is initially full of water in which there is dissolved 4 kg of a
chemical. Water containing 50 g per liter of this chemical flows in at a rate of 5 1/min.
Water flows out from the tank at a rate of 7 1/min. How much of the chemical is in the tank
when the tank is half-full 7 (The mixture in the tank is kept uniform by stirring)

2. A tank contains 100 1 of water in which 5 kg of salt are dissolved. We want to reduce the
concentration in the tank to 0.01 kg/l by pouring in pure water at the rate of 20 1/min and
allowing the mixture to flow out at the same rate. How long will this take ? (Assume the
mixture in the tank is kept uniform by stirring.)

3. A tank contains 40 liters of pure water. Saliwater which containg 3 kg of salt per liter flows
in at a rate of 2 liter per minute. The stirred mixture flows out at a rate of 3 liters per
minute. Find the amount of salt in the tank at time {. When is this amount largest ?

4. The air in a room 20m x 10m x 3m contains 0.2% carbon dioxide (COs}. We want to
reduce the concentration of carbon dioxide in the room by pumping outside air containing
0.05% of carbon dioxide into the room. At what (constant) rate must the outside air be
pumped in so that after 30 minutes, the air in the room contains 0.1% of carbon dioxide 7
{Hint: At what rate does air leave the room ? Think !)

1.7.5 Mechanics

Let us look at the falling body problem as an example of motion where friction is present.

Example 1 A man {called a sky diver) jumps from an airplane, opens a parachute and falls
towards the earth. The following information is given:

o At some time (which we call { = 0), the man falis with velocity v, = 10 m/s.
¢ The weight of man and equipment is W = 712 N.

o The air resistance R is proportional to the square of the velocity,
R=—bv* where b= 30N sec?/m?

(This is a reasonable assumption for high velocities. The minus sign indicates
that the force of resistance has opposite direction to the velocity.)

Find the velocity v(t} at time t > 0.

Solution.  There are two opposing forces acting on the sky diver,
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1. the weight W = myg, directed downward J, and
2. the frictional force R, directed upward 1.

(g denotes the earth acceleration and m the mass of man and equipment.) The total

force is
F=W+R=mg—t?

By Newton's second law, this force results in an acceleration given by F = mfi—f. Thus,

dv 3
meo = mg — by (1.74)
Let us first simplify this equation,
a9
or
duv b, o o gm
= ok R
i W ) { 5 )
This is a separable equation, so separate the variables,
du b
7R T Tm®

Use partial fraction decomposition on the left side,

1 1 1 b
%( vk vk )d” R
and integrate,
1 b
% (1n|vw-!.,f-~1n|v+k:[) = —azf+c,J
v -k 2kb
ln|v+k = --—Et'i‘cl (C1:2kco)
g £ \\[f Bl _ 2kb
Iv +kl T _— (p= m )
Set ¢ = e to eliminate the absolute value,
v—k
AN N )
N ce {1.75)
and solve for v,
v—k = (v k)ce™
v(l—ce™) = k(l+ce ™)

The general solution of equation (1.74} is thus

14 ce™®
1~ ce Pt

u(t) = {1.76)

Now find the particular solution satisfying the initial value v{0) = vp. It is best to
start from equation (1.75). We obtain

v, —k

vy + k

c (L77)
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Finally, let us substitute the given numbers. We get

54 {712
k= 5= Emﬁl.S?m/sec
kb

_2kb  2-4.87-30
T W/ 727

g Yok _10-487
T v+ k  10+487

1+ 0.345¢~40%

D = 4.02/sec

rz 0.345

’U(t) = 4,87 W IT}/SEC
Note that in (1.76), tli}m v(t) = k. This limit represents the velocity where weight and
o0
force of friction have equal size and is called the terminal velocity. [}
Exercises

1. A ball falls from rest towards the earth from a heighs of 1000 m. Assume the air resistance
is proportional to the velocity v. I the terminal velocity is 245 m/sec, find the velocity v(t).

2. A ball of mass 100 g is thrown vertically upward from a point 60 cm above the ground with
an initial velocity of 150 cm/sec. It rises and then falls back towards the ground. The air
resistance is 200v (in dynes).

(a) Find the time when the ball starts falling back to the ground.
{b) Find the velocity with which the ball falls back to the ground.
(¢) When does the ball hit the ground? {Find an approximation of the time only.)

3. A motor boat weighs 5000 N. The motor exerts a constant force of 200 N in the direction of
motion. The water resistance is equal to 1.5 times the velocity, and the boat starts from rest.

{a) Find the velocity of the boat after 20 seconds.
(b) Find the velocity of the boat after one hour.

(c) ¥ the motor breaks down after 5 minutes (so that the boat is coasting), find the
velocity of the boat after the breakdown.

1.7.6 Electric Circuits

Let us look at simple electric circuits. We will use the following components:

e a generator, or a battery, providing an electromotive force F(t) (measured in wvolt).

We will denote the current flowing through a stinicn Q) Qi
component by I(t) (measured in ampere) E(t)

e a resistor. The voltage drop across a resistor is proportional to the current flowing
through it,

Er=RI © vV VY ©
R
R is the resistance measured in ohm.
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e an inductor. The voltage drop across an inductor is proportional to the rate of change
of the current through it,

il o0
EL = LE
L
L is the inductance measured in henry.

e a capacitor. The voltage drop across a capacitor is proportional to the charge @
which it is holding,

Ec=é:Q O—_H—O

C
C is the capacitance measured in forad,

and the charge @@ is measured in coulomb. Note that the current flowing through the
capacitor is the rate of change of charge on it,

dQ
I=-2
dt

Integrating I, we may also write the equation of a capacitor as

1
Eo = =
B Ve

¢
Qt.) + | I(r) d’r]
ta

where ()(t,) is the charge on the capacitor at time ¢,.

We will make use of Kirchhoff’s Voltage Low: The sum of all voltage drops around a
closed loop is zero.

Example 1 Consider the RL-circuit in the picture below. By Kirchhoff’s law,

E(t) = Er+Ep = RI-E—L%
or dividing by L,
dl R 1
pn + EI = «EE(t) (L.78)

This is & linear equation, and its solution is given by (1.30),

I(t) = e %t [f%e%fdt +c] (1.79)

Special case: Assume, the electromotive force is constant, E(t) = E,. We have

Ity = e"%t[%fe%tdt +c]

0 — &
— +eett

R
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Now assume further that the initial current is given, I(0) = I,. We get

E,

I, = i + e

s0 that
c = [ —&
= L-3

and thus

E, E .
I(t) = 3+ (Io - E) e Et

If t = oo then I{t} — %. This non-vanishing part is called the steady state current.

The vanishing part (I, ~ ) e~ P! is called the transient current. We see that the
steady state current is independent of the initial current.

i

R
PO V.| GR—
b Eo/R

E®
e}
4
L
RL-circuit with constant elecéromotive force.
Exercises

1. Solve example 1, but assume that the electromotive force is periodic, E(t) = F, sin (wt), and
the initial current is zero. Find the steady state current and the transient current.

2. Find the current flowing through an RC-circuit

(a) in general,

(b) if the electromotive force is constant, E{t) = FE,, and the initial charge on the capacitor
is zero, @(0) = 0.

(c) if the electromotive force is periodic, E(t) = E, sin (wt), and the initial charge on the
capacitor is zere, @(0) = 0.

Also, find the steady state and transient currents.

A

o)
E(t%)

it
1y

C

RC-circuit,
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1.8 Existence of Sclutions

In the previous sections we have seen some methods of solving first order ordinary
differential equations. There exist many more types of first order differential equations;
you have only seen the most important ones.

One question remains: Do there exist solutions other than those we have found 7 The
next theorem answers this question.

Theorem 4 Consider an initial value problem

dy
7p = L) y(o) = Yo (1.80)
z
where F and g—g are continuous on some rectangle in the zy-plane containing the point
(Zo: Yo)-
Then there exists a unique solution y = f(x) to this initial-value problem. This solution
is defined on some interval (z, — h,z, + h) containing z,.

Remark Note that the theorem says the following two things:
e FEristence. Every initial value problem (1.80) has at least one solution, and

® Uniqueness. There can not exist two distinct solutions te an initial value problem (1.80).

For this reason, i$ is called an ezistence and uniqueness theorem. However, the theorem does not tell us
how to find the solution.

Graphically, the theorem says that for every first order initial value problem, there exists
exactly one solution whose graph passes through a given point {z,,v,) in the zy-plane.

Example 1 We have seen in example 1 of section 1.3 that the equation

d _ v

de =~ z?

has general solution

P
>u’(1»0.25'xg ------
KH{140.25%) -
*/(1-0.5%%) -
X(1+0.5°K) voer

The solutions of example 1, section 1.3.
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Why do all of the curves pass through the point (0,0) 7 Why does none of the curves
pass through the points (0,c) with ¢ # 0 7 Does this contradict the theorem ?

Answer: The function

is not continuous at & = 0; therefore, the theorem does not apply at the points (0, c).
At all other points, the theorem applies: there exists exactly onme solution curve
through a point {x,, 1) # (0,¢). O

1.9 Review Exercises

The following exercises may help you review the concepts introduced in this section.

Exercises

1. Solve the following differential equations:

dy ev™** dy _ y*+y
() dz  y—1 (&) dr  z2+z
(b} ¥ +ycotz =0 (h) {3z%y +2zy~3)dx + (32% + 2y Hdy =0
{¢} v +ycotx +sine =0 I R g
(1) oo =ate
T R -
(d) (/X +cosz)de + (\/;-Fsma:) dy =0 () (& +e-)da + (¥ + 2ye=")dy = 0
(&) y"=x—y (k) ¥ +2y()°* =0
(f) my' + 2y = 2%y%/?
2. Solve the following initial value problems:
dy 1
(a) 3“;”*“?“=—= y(1) = -2 © ¥ =y -y y0)=1
: T xy dy -
(b) zyy' = 4y® + 322, y{l)=2 (d) ) e Tsecy —tany, y(0)= 5
3. Solve using an appropriate substitution:
(a) ¥ +zy’sec(y™) =0 (b) y' =1+ cos’ (z —y)

The following are multiple choice questions. Choose the answer which is most correct.

4. The equation (1 +z)dy —ydzx =0 is
(a) homogeneous (d) exact
{b) linear and exact (e) separable and exact
(¢c) separable and linear

5.  y = y(2) is the solution to the initial value problem
(14 2)dy —ydz =0, y(0) =1
then y(2) equals
(a) O (b) In2 (¢} 1 (d) 3 (e) e
6. If y = y(z) is the solution to the initial value problem
iy ey =1, y{) =0

then y(e) equals
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10.

11,
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(a) 0 (b} 1/e (c) e (d) 3 (e) &*

. When solving the equation (2,/Ty +y)dz —zdy=0 we

{(a) multiply by the integrating factor evZ¥

{b) multiply by the integrating factor z 1

(¢) substitute v =y

(d) substitute v = yz~!

(e) substitute p = /¥ or u = yz™!

. The equation (2/FF + y)de —ady =0 has general solution

(a) V¥ =Inlz|+c
(b) y =+ 2z — 33/
(¢) y =z(c+In|z))?

) 2/zy~y=2at+c
{e) none of the above

In the following 3 questions, consider the problem

(cosz)y" + {sinx)y’ = 1, y(0)=~1, ¢ (O =1 (x)
When solving this equation, we substitute
(a)'v=g—§ and %m%’ (d) v== and g}i—_ + gﬂ
(b)vz% and g:% (e)’-'.J:—and%“v—f-yj—Z
{c) v‘"—":g—ii and v%:%

After this substitution, and solving for v we get
{a) v=sinz +1
(b) v=(1+a)cosz
(¢) v=sinx +cosz

(d) v=(1—-z)sinz +cosx
I
(&) v= 14y

If y = y(2} is the solution to problem {*), then y(7) equals

(@0 L1 (o -1 (d2 () -3



Chapter 2

Second Order Linear Differential

Equations

2.1 Complex Numbers

You may remember that there exists no real number z which is solution of the equation
1 = —1

To obtain a solution of this and similar equations, we invent new numbers.
The first new pumber is a number which we call ¢. To make the usual arithmetic
operations possible, we must form combinations of numbers of the form

2=z 41ty
where x and y are arbitrary real numbers, and call them complex numbers.
o 7 is called the real part of the complex number z, written Re z.
o y is called the imaginary pert of the complex number z, written Im 2.

If Im =z =0, then z is a real number. If Re 2 =0, then z is called a purely imaginery
number.

e.g. For example,
4 447 is often written 4+ 7i.
4 — 27 is the usual way of writing 4 + i(~2)
7i is an abbreviation of 0+ 47. This is a purely imaginary mumber.
5 can also be written 5 + £0. This is a real number.

Algebraic Operations on Complex Numbers

We can now define algebraic operations such as addition, multiplication, etc.
Let z = ¢ + iy and z; = z1 + iy; be complex numbers. We define

e addition by
z+z = (z+iy)+ (o tip) = (&+31) iy +n)

You can see that we add two complex numbers by adding their real parts and their
imaginary parts.

ol
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e subtraction by

z—z = (z4+iy)— (z1+in) = (z—21) + 2y — 1)

You can see that we subtract two complex numbers by subtracting their real parts
and their imaginary parts.

multiplication by
zz1 = (z+y) (z1+iy) = (ze—yn) + iz +yz1)

Notice that multiplication is done by expanding the brackets formally. Thinking that

i? = —1 we then collect the real and imaginary parts.
e.g.
(443)+{7T+2) = @A+7)+(B3+2) = 11+5¢
(4+3)—(2-i) = @-2+B—-(-1))i = 2+4
(4+3)(2+4) = (4-2—-3-1)+(4-1+3.2)i = 5+ 10
#2 = (O4+1-)0+14) = —140i = —1
Now the equation z* = —1 has the solution z =i ! (And also the solution z = ~4.)

Before we can define division, we define the

complex conjugate of z = z + 1y by

Z=xHwy=z -y
That is, we simply change the sign of the imaginary part. Note that
72 = (z +iy)(z — iy) = (2° — (-y)°) +i(z(~y) +oy) = 2* +y* 2 0.
So zZ is always a real, nonnegative number. We can therefore define the
absolute value, or modulus by

2] = V2Z = /22 + 42

e.g. If z=44 34, then
Z =430 and jzl=v4-4+3-3=5.

Note that zZ = |z|2. Finally, we can define

division by

z] -

S = W 21%
which we often write as _
2 212
z  zz

2+3 _ 2+9(1+1) _ 2-D+i2+1) 1
1—i {1-{1+4) 12 4+ 12 T2

3.
eg. +5i
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The usual rules of arithmetics hold. For example, the distributive law holds,
21 {2y + 2z3) = z120 + 2123

We can represent complex numbers as points or vectors in the plane. Forming the
complex conjugate corresponds to reflection along the z-axis.

{Imaginary
Axis) A ¥
U Z=XHy 3 z=4+43]
;
1
1 Ly
I 0 X
'
I
!
0 T B (Renal Axis) _ i
X -3 z=4-3i
The point z =z iy in the plane. z =4+ 3{ and its conjugate = =4 — 3i.

The Polar and Exponential Representations of a Complex Number

Given a complex number z, let r denote the distance of the point z = z + ¢y from the
origin O, and let ¢ denote the angle which the line Oz forms with respect to the positive
z-axis. By trigonometry,

T =71cosl and Yy = rsind

r=4/z?+y? = |z and tanﬂzg (if z # 0)

Then the polar representation of z is

where

2 = -+ = r(cosf+isind)

(Imaginary
Axis) A y A
RTINS Z=X+ o E z=1+
y : Y 1 :
1 L
I 1
\ I <fb 4
% : :
1 1
1 1
B \ a 1r/4\ g
0 T B (Real Axis) O | =
X ; X
Polar representation re of z =z + 4y and 2 = 1 + 1.
For convenience we set
e = cosf-+ising (2.1)
so that the polar representation becomes
z = ret

Note that for any integer n,
reif+inn) = r{cos (8 + 2n7) +isin (0 + 2nm)) = r{cosf+ising) = re’

This shows that the polar representation is not unique.
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eg. ® If z = +/3 +1 then

1
r=lz| =/ (V32 +12=2 and B:arctan% = %,

so that the polar representation is

T T
= 2(cos — + isin
z (c 6+wm6)

or simply N
z = 2¢'s.

e If 7= —1+14 then

1
r:lzlmv(_1)2+12:\/§ and ta,nﬁ?::-l-zwi

Because z lies in the second gquadrant, we have & = 3n/4 (instead of
f = —m/4). The polar representation is

A= VI cos%r-i-ising})

or simply

In (2.1} we have defined what we mean by €. We use this to define the complez
ezponential function: If z = z + iy is a complex number, we set

¢ = e"e¥ = e{cosy+isiny)

eg. e If z=23+ 2i then
e = 37 = % = edcos2 4+ iedsin?

e If z == imw then
e® = &' = cosw+isinm = ~1

50 that —1 = g |

Now let z == re? be the polar representation of s complex number z. Since r > 0 we
can write r = e” where v = Inr. Thus, we may write

u _if - eu%iﬁ

which is called the exponential representation of z.

e.g. We have seen that z = +/3 + 4 has the polar representation
V34i = 2%
The exponential representation is thus

Vi4+i = em2iF = natid
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One can show that the usual properties of exponentials hold:

eflgft = pFlT2e
z1
€. = pamm
er2
()" = €™ (n integer)

We can define the derivative of the complex exponential function just like in the case of the
usual exponential function. One can show that if f(z) = €, then the derivative is
h) —
o) - i LEEN 1 _

k30 h
Also, if f(z) = e** with a constant, then f'(z) = ae®.

Complex Solutions of Polynomial Equations
One important property of the complex numbers is the following:
Theorem 5 (Fundamental Theorem of Algebra) Every polynomial equation of degree n,
Gt + a1+ .tz ap =0
can be completely factored into n factors
an(z ~ 21)(x ~22) (T —20) = 0
for some complex numbers =1, ... , 2n, and has therefore n solutions (possibly not distinct).
Remark The solutions of & polynomial equation are also called the roots of the equation.
In particular, every quadratic equation
az® + bz +c¢ = 0

factors as
oz —z1){z—2) =0
The complex numbers z; and 2y can be found using the quadratic formula

—b 4 +/b? — dac

Z1,22 =

2a
Note that
real and distinet, if 8> —4ac> 0
z1 and zy are equal and real, if b? — 4ac =0
complex, if b* — 4ac < 0

Example 1 Factor the equation
2z + 224+ 3=0

This equation has sclutions

~2+ V#4273 2220 1, 5
- B 2

21,8y = 5.9 1 —iﬂ:t

and thus factors as

2z -z z—2z) = 2(z+ % —i—\;—g—)($+ % +i§) =0
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Example 2 Find the solution to

22— (4+3)z+ (145 = 0.

By the quadratic formula, the equation has exactly two solutions

4+ 3i = /(4 + 30)% — 4(1 + 59)

Z1,2y = 9
4+3iE3+ 4
= T e, {2'2)
2
Now what is +/3 + 47 7 We must find a number z + iy such that
(x+iy)* =34
(z° — y*) + Zizy = 3 + &
Comparing real and imaginary parts, we need that
-y =3 and = 4
By the second of these equations, y = % Substitute into the first equation,
4
2 —
€ - F =3
gl =3z -4 =0
(2 —4) (2 +1) = 0
Tz ==2 ar T = 4.
Since = must be a real number, we pick z = 2. Then, y = £ = 1. Therefore,
V34 = 244,
and the two solutions of equation (2.2) are now
4+ 3% (2+ )
212 £ B
2
or
2 =34+ 24, zo=1+1.
£
The simplest polynomial equations are of the form
(41281 (2.3)

where z, is a fixed number. By the Fundamental Theorem of Algebra, this equation has n

roots. To find these, we write z, in polar representation,
" =re?

One solution is easy to find: Set

Then indeed,

G = (V)" = (9" (2] = ¥
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To find the remaining roots, we add 2_;_,1 consecutively to the exponent,
;8 (8 2m i(Lydz
z = Yretn, 2y = YrelmtE) 7 = Yrelaty)

e 2(k—1) 8 2nel)w
o= WGt R ) g = rela TR

These numbers are all different, and we have for each &,

alk—-1)

(zk)n . (%ez(%+g§_;_1)l))” _ ({1/7:)” (ei%)n (ezi’n‘) n — ?,,eiﬂ = z,

We have thus found all n solutions to equation (2.3).

Example 3 Find the solutions to

2= 4,

Solution.  We write the number —4 in polar form,
2-'4 — 4ei1r

One solution is

zZ1 = {‘/Ze‘% fed \/iei%
The remaining solutions can be obtained by consecutively adding 2L to the exponent,
1= 2€i%= 2’2=\/§8i§f, za:\/ﬁe"s_’r_, z4=\/§ef%"

which can be written as

znn=1+i, m=-1l4i z3=-1—-4, z4=1~1
0
Exercises
1. If 2; =4 —b5i and z; = 2+ 34, find
1
(a.) 1+ 2y {d) o {f) 3z — 60 (h) 023’%
(b) 2125 2 \A\d ., 338
@ Grar @93 G Y
2. Show that
(a) #=-1 (d) =1 (f) ;2:_1
(c) it =1 Gl (6) 7 =1
3. If z =z + iy, find
1 . 2 — 34)?
(a) Re T (¢) (1+1)® (f) Re ﬁ (h) T 2°
(b) Tm 24 (d) Im % @ (Re 2)? (i) (Im z)?
T ©) Re 2 () (0.3+0.4i)?
4. Show that e
() TFHm=F+% b) Tm=5E © (2)==
2 22
Z z
(@ [zl = ] (©) [#f" = 1 o |2 =11
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(g) Verify these formulas for z; = 31 — 34i and 29 = 2 — 5.

5. Find
1
(a) | 0.2 (d) |z (f) |cos# +¢sind|  (h) i§+1
52 E 5+ 7i o
OEE ol W e
(c) |2l B+ &)
6. Represent in polar form and exponential form, and sketch in the plane.
. 5 4 9
() 2 (&) ~1+V3i Q) a9 22
. ) P—1 2 - 2i/3
(b) -2 () —1-1 V3 2+ 3i
() 1+ () 6+ 8 e O s
(d) -3 (h) V3 -1
7. Represent in the form x + iy
(a) 4{cos% +1isin %) (c) 10(cos0.4 + isin0.4)
(b) 2v/2(cos ¥ +isin 3T (d) cos(—1.8) +isin(—1.8)
8. Solve the following equations, using the method of example 2,
(a) 22 +4=0 (c) z* =1 (e) 22— (5+i)2+8+1=0
(b) 22 +z+1—-i=0 (dy 2'=2 (f) 2*=3(14+20)22—8+6i =0
9. Find all solutions to
(a) 2° =1 (b) 28 =1 (€) 22e=1—14 (d) 22 =1+14v3
10. If = is a real number and A = r + is is complex, find the values of
M e)—\:r e SXE
() STt (b) S

2.2 The Homogeneous Equation - Theory
The general second order linear differential equation is of the form
a(@)y” +blz)y +clz)y = f(z)

where a(z) # 0, b{z), ¢(z) and f(z) are functions of z. If we divide by a(z) we obtain this
equation in standard form,

y" -+ plx)y +qlz)y = r(z)

where we have set p = g, g==%2andr= {%.
We say that this equation has constant coefficients if p(z) and ¢(z) are constant. We
say that this equation is homogeneous if r{z) = 0, otherwise it is nonhomogeneous.

Remark The word "homogeneous” has a meaning here which is different from that of a "homogeneous
equation” introduced in chapter 1.

e.g. ¢ The equation
Yy -y’ + 2 = ot

is inear, nonhomogeneous and has constant coefficients.



2.2, THE HOMOGENEQUS EQUATION - THEORY 59

o The equation
yrrm4y:+2y=0
is linear, homogeneous and has constant coefficients.

# The equation
Py" —day + 3y =0

is linear and homogeneous. It does not have constant coefficlents.

In this section, we will study the theory of the homogeneous equation,

¥ +p(z)y +a(z)y = 0 (2.4)

Let us begin by looking at an example.

Example 1 The equation
y' 4y =0. (2.5)
You can easily verify that
Y = COST and Yy = Sinx

are both solutions to this equation. (Just substitute these functions into the equation.)
Now choose arbitrary numbers ¢; and ¢, and set

U cicose + copsing

Then also,
1

Y = —¢] COST — Cp8ing
If we add the iast two equations we obtain
yu +y= 0.
This shows that y =cicosxz+cpsine  is also a solution to eguation (2.5). 3
This observation can be generalized. But let us first make the following definition:
Definition Let y; and ys be two functions. A function
Yy = Cay +caye;

where ¢; and ¢o are arbitrary numbers, is called a linear combination of y; and y».

e.g. ¢ y=3sinzx-+4cosx is a linear combination of sinz and cosz .
e y =12 —0.5e"% {5 a linear combination of &* and e~3% .

Theorem 6 (Superposition Principle) If y; and yo are two solutions of the homogeneous
linear equation

¥ +p(2)y +qlz)y = 0, (2.6)

then every linear combination ciy + cays 15 also a solution.
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Proof: We can quickly prove this theorem by substituting the function

Yy = Ciy1 + Caye

into the equation. Since

Y = ay) + ey
"= ayl + e
we obtain that
v +p@)y +alz)y = (ayl +ewyn) + p() (av + ) + a(@) (an + ey )
= alyl +p)yi +alz)y) + calys +p(o)vs + gl@)ys)
=0 ( by (2.6) ) =0 ( by (2.6) )
= 0 -i" CQ 0 = 0-
Thus, the linear combination ¢;y1 + cays 18 also a solution to equation (2.6). O

Example 1 {coniinued) We have seen that every function

¥ = €1CoST+casing (2.7

is a solution to the equation
y' +y=0

There are two parameters, ¢; and ¢;. To determine particular values for ¢; and c; we
now need two initial conditions. Suppose for example that we have the initial conditions

y(0) =1 and ¥ (0) = . (2.8}
Then the first initial condition gives the equation

1 = e1co50+cesinQ
¢ = 1.

To find ¢y, take derivatives in (2.7),

y' = —cysing + cacosz
and substitute the second initial condition y'{0) =1/2,

1/2 = —c;5in0 4+ ep cosl

cg = 1/2,
We obtain the particular solution
Y =COsI + %sinz.
O

Are there any other solutions to the initial value problem (2.7}, (2.8) 7 The next
theorem says that not.
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Theorem 7 {Existence and Uniqueness Theorem). Consider a second order linear equation

¥' +p(e)y + g(z)y = () (2.9)

with two initial conditions y(zo) = yo and y'(z,) = y,. (This is called an itial value
problem). Assume that p(z), ¢(z) and r{z) are continuous on an intervel I, and that z, is
a point in I. Then there exists exactly one solution which satisfies the initial conditions.
This solution exists over the whole inferval I.

Remark This theorem is the analogue to theorem 4, but now for second order equations, and it says
two things:

¢ Every initial value problem (2.9) has a solution {existence).

e There can be at most one solution (uniqueness).

Definition Two functions f(z) and g(z) defined on an interval I are called linearly
dependent if there exists a constant ¢ such that

g =cf (2.10}
Otherwise they are called linearly independent. Note that ¢ = 0 is permitted.

Remark By g=cf we mean that g{z) = cf{z) for every = in the interval I.

e.g. ¢ f(z) =2z and g(z) = 6z are linearly dependent because g = 3f.

e f(x) = sinz and g(z) = cosz are linearly independent because

sinz
2L £ constant.

A . e” -
e ¢% and e®* are linearly independent because —5 = € ©# constant.
e

To test for linear independence, one can use the following tool:

Definition Given functions f(z) and g(z) we define the Wronskien to be the determinant

W@ = | 18 S8 = 1)@ - e,
Note that W(f,g) is a function of z !
eg. o W{2r6z) = 2; 6; = 12z —-12z = 0
T 2
o W(z,z%) = ; ;m = 2z° ~2* =2°

. cosz  sinz .
o W(cosz,sinz) = . = cos?z+sin’z = 1
—sinz cosz
° W(em:z nm) _. em® en® _ ) (m4n)x
1 € = me™®  pen® = (n mje

Remark Note that the Wronskian W({f, g) in the first example is zero, and in the other examples is
nonzero. (By W(f, g} =0 we mean that W{J,g) is the zero function: W{f,g){z) =0 for every = in I.)
The next theorem explains why:
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Theorem 8 Two functions f{x) and g{z) defined on an interval I are linearly dependent if
and only if W(f,g) = 0.

Proof: Assume first that W(f,g) = 0. This means that for all points z in I,

f@)g' () = f'(@)g(z) =0

We may assume that f # 0. (If f =0 then f =0-g and the two functions are linearly
dependent.) Divide by f2,

I —1f'g _

L

But the left is the derivative of the quotient g/f. Therefore,

0

Integrate both sides,

so that
g=cf
which shows that f and g are linearly dependent.

Now suppose that f and g are linearly dependent. Then there exists a constant ¢ such
that

g=cf
Take derivatives,
gf N cf.f
Therefore,
W(f,9) = fg' —f'g = flef) = fef) =0
That is, the Wronskian is zero. {3
e.g. o Since W{2z,6z) = 0, the functions 2z and 6z are linearly dependent.

-]

Since Wz, #?) = 2? # 0, the functions = and z” are linearly independent.

9

Since W(cosx,sinz) = 1 # 0, the functions cosz and sinz are linearly
independent.

Since W(e™*,e"®) = (n - m)el™*+™ £ 0, the functions e™® and €™ are
linearly independent for m # n.

o

When the functions f and g are solutions of a differential equation, we can say even
maore:

Theorem 9 Let y; and y» be two solutions of the homogeneous equation
y' +p(z)y +alzly = 0 (2.11)

on some interval I. If for only one point z, in I, we have W{y,,yaHz,) =0, then
Wiy, y2){z) =0 or allz in I.
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Proof: Set W = W (y1,y2). Then,

W = (nivh— viye)
= (y1ys +m1ye) — (1vs + Y1)
= nys — Y

Since y; and y» are solutions to (2.11), we also have

yh +p(zys +qlz)ya = 0 (2.12)
¥l +plzhyy +glz)yy = 0O (2.13)

Multiply equation (2.12} by y; and equation (2.13) by —ye, and add the two equations,

(w5 — ¥iw2) + p(@)(miys — vive) + a(@) vy —von) = 0O

or simply,
W't p(z)W = 0

This is a first order linear equation. It’s general solution is by (1.30)
Wiz) = ce™ S Ple) do

or solving for ¢,
c = W(w)efp(m} de

Now if W (z,) = 0 at one point z,, then ¢ must be zero, so that W{z} = 0 for all z. This
proves the theorem. O

Remark The theorem really says the following: Either

Wim,ym)z) =0

for all x in I (which is the case when 4 and y, are linearly dependent}, or
Wy, y2)(z) # 0

for @ll  in J (which is the case when y; and y, are linearly independent).

Finally, we can give a description of the general solution to the homogeneous equation:

Theorem 10 Let y; and y2 be two linearly independent solutions of the homogeneous
equation

y' +p@)y +alzly = 0 (2.14)
defined on some interval I. Then the general solution is of the form

Yy = ¢+ cayn

for constants ¢y and cs.
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Proof: Let ¢ be any solution of equation (2.14). Pick a point z, in I and set
Yo = §{%To) and Yo = 7'(20).
So ¢ is the unique solution to the initial value problem

Y+ @)y +qlz)y = 0 (2.15)
Y(To) =Yor V(7o) =1, (2.16)

To prove the theorem, we must find a solution of this initial value problem which is of the
form

Ye = Cr¥Y1 + Coyo.

It will then follow from the existence and uniqueness theorem that § = y., and we will be
done.

By the superposition principle, every linear combination ¢y + coys is a solution to
equation (2.15). We only need to find appropriate values for ¢; and ¢ so that the initial
conditions (2.16) are also satisfied.

Taking derivatives, we have

Yyl = c1y] + covh

To satisfy the initial conditions we need

Yo = y1{Ze) + C2y2(mo)
Yo c191 (%o) + c2y3(%o)

Il

We can write this system of equations in matrix form,

vi{(zo) w(zo) (el _ [
(y’l(mo) y’z(wo)) (02) E (yé)

Recall that this matrix equation can be solved for (&) if the matrix is invertible, that is, if

But this is precisely the Wronskian Wy, y2)(z)! Now because 3, and y» are linearly
independent solutions of the homogeneous equation, the Wronskian is never zero. (This is
theorem 9.) Thus, the above system of equations can be solved for ¢; and ¢p, that is, we
can find a linear combination ¥, = c1y1 + cay2 which satisfies the initial conditions (2.16).
This completes the proof. 0

Remark  This theorem tells us how to find the general solution of the second order homogeneous
equation:

1. Find two linearly independent solutions y1 and ys.

2. Then the general solution is of the form y = c1y1 + coye.
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Example 1 {continued) We have already seen that y, = cosz and yp = sinx are two solutions of
the equation
y' +y=0
Since these two functions are linearly independent, the general solution of this equation
is

¥ = ¢1COSZT 4+ cysina.
|
Example 2 Consider the equation
y" 4+ 2 -3y = 0.
We can easily check that
y; = e and Yo = e %
are solutions. Since !
2L & " i constant
Y2
these two solutions are linearly independent. The general solution is therefore
y = c1€° 4+ cpe 0,
O

Exercises

1. In each of the following cases, find the general solution to the given equation by “trial and

error”.
(a} ¥ =0 (d) @—1)y" —ay'+y=0
(b) " -2 =0 (e) p"+2y' =0
{c} " —y=0

2. By eliminating the constants ¢; and ¢y, find the differential equation of each of the following
families of curves:

(a) y = c1z + cp? (&) y =1z + cosinz
(b) y = c1eb® + cpe ke (f) ¥ = c1€® + coze®
{¢) y=eysinkx + cycoskz (g) y=ci1e” +cpe™ ™"
(d) y = ¢; + cpe® (h) y =1z + coz™t

3. (&) Use the method of reduction of order to find the general solution of
Y4+ @) =0 (z2>0).

{b)} Verify that yy =1 and ys = Inz are linearly independent solutions to this equation. Is
¥y = c1y1 + coyz the general solution 7 If not, does this contradict the results of this
section 7

Supplementary exercises:
4. Show that y = z®sinz and y = 0 are both solutions to
iy —day' + (2 +6)y = 0

and that both satisfy the conditions y(0) =0 and y'(0) = 0. Does this contradict the
existence and uniqueness theorem 7 If not, why not?
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5. If a solution to the equation
y" +p(z)y +qlzly =0

is tangent to the z-axis at any point of an interval I, then it must be zero on that interval.
Can you explain why 7

6. Let y; and yo be two solutions of the linear second order homogeneous equation (2.4) on an
open interval (a,b). Show that ¥ and yp are linearly dependent if either

(a) yi{z,) = 0 = ya(zo) at some point z, in (a, b}, or

(b) ¥ and y, have their maximum or minimum at the same point of (a,b).

2.3 Using One Solution to Find Another

In the last section we have seen that in order to solve the second order linear homogeneous
equatbion

¥ +p(@)y +qla)y = O (2.17)

we need to find two linearly independent solutions y; and y» first.

Usually, it is very difficult to find even these two solutions. Sometimes, we may be able
to find at least one solution by "trial and error”. The method explained in the following
can then be used to reduce the equation to one of first order, which is easier to solve.

Assume that y; is one solution to equation {2.17). We are looking for another solution
y2 which is not a constant multiple of ;. That is, v = ’;,% should not be constant. Solve for

Ya,
Y2 = v

Now take derivatives and use the product rule,
v = vyt vy
vy = o'y + 2y + vyl
Substitute these derivatives into equation (2.17),
(0"y1+20"y] + oy )+ p(@)(v'ys + vy ) + a(z)vyy =0
Now rearrange,

o'y + (291 + o) )0+ (4 + eyl + ez Jo = 0.
=0 ( by (2.17))

We therefore have the equation
vy + (2] +plz)p o' =0 (2.18)

which really is a first order equation because the variable v is missing. We separate the

variables,
Vo ute@n oy
!
n

" ” - p(z)
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integrate,
lnv' = —~2Iny wfp{m} dzx (2.19)
and exponentiate.
v o= _"1"2" e—f;p(x)d:c‘
0

To find v we integrate once more,

y = f&ie"fp(m)dmdm.
i

Since yo = vy, we have obtained the second solution

1
v = f - o= [p(@)dz g (2.20)
1

Remark You may notice that we did not write the integration constant in the last steps. We don't
need to because we are interested in only one extra solution. Similarly, we could drop the absolute value
of In |2’} in equation {2.19).

Example I Consider the eguation

2 1

e’y +zy —y = 0 (2.21)
Solution.  Let us find one solution by "trial and error”: If we substitute y = 1,z,z%,... into the
equation, we find that
B = 2%

is one solution. To find a second solution, we set
Yo = VI,
By the product rule,
yo = vz +u and yy ="z + 20,
Substitute into the equation (2.21)
2 01 ! ] —_
(Ve + 20) 2z +v)—vz = 0

and rearrange,
R 2,0
v+ 3z = O

This is a separable equation in v'. Separate the variables,

v -3z -3
o 3 x

and integrate both sides,
Inv' = -3lnz.

Exponentiate,



CHAPTER 2. SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

68
and integrate again.
1
v=—rxt (2.22)
2
We may drop the factor —% and simply choose ¥ = 272, Then we obtain
Ya = VY = gl =zt
The general solution is
Ca
= oz + .
Y 1T+ p
l

Remark  We could omit the constant ~—% in equation (2.22) because in a linear equation, by the
superposition principle, every multiple of a solution is again a solution.

(2.23)

Example 2 Consider the eguation
{z >0)

Let us first find one solution by “trial and error”: We successively substitute
into the equation, and find that

y=1,z,z7 2%, 272, ... ,e%,e¥,...
1

22%y" + 32y —y =0

Solution.

Y2 = WY1 = V%
Then,
yp = vzl —wvz?
vy = vzl — 2v'e7? 4 2020,
Substitute into the equation and rearrange,
=90

223wz ™! — 20’27 4 207 + 32(v'z 7t —wz?) — vz
2zv” — v = 0.

Separate the variables and integrate,

ot 1
P
1
Inv" = =lnz
2
Exponentiate,
o = e‘glnz = /2
and integrate.
2
o= 2g82
Simply choose v = 2%/? and obtain
yp = vy = 3321 = g1/

The general solution is
e
y = ;1 + eV
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Example 3 Consider the equation
(1—a*)y" —2zy +2y = 0 (~1<z<l)
(This equation is called the Legendre equasion.)

Solution.  You can quickly see that

o=
is one solution. Therefore, we set
Yo = Ux
Then,
¥y = vz + v and vy = v"z + 20’

Substitute into the equation,
(1~ 2B (w2 + 2 — 2e(v'z+v) + vz = 0§

and rearrange,
(1-a®)av” + (2 -4z = 0
Now separate the variables,
" 4t -2
v z{l—a?)’

s

Partial fraction decomposition gives

AR 2 2
v 1-z2 g
Integrate,
1
i 2 _
lnv = —in(l-—-ﬂ?)—Qh’llﬂIi = EHW

(We need not write In|1 — z%| because we assume that |z| < 1.) Now exponentiate,

min? .\, 4
(1 — z2)’

Another partial fraction decomposition gives

U,_l_l_l(l " 1)
oz 2\14z 1-z/

Integrate again,

v*:_—l-i-llnl_{‘m.
2 1-z
Therefore,
Yo = vy = —l+zln 1+I.
11—z

The general solution is

14z )

= -1 1
Y c;:c+cz( +axln -2
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Exercises

1. In the following equations, find one solution by "trial and error”. Then find the general
solution.

(@) =y +3y' =0 (b) ’y" + a2y — 4y =0

2. Use the given solution y; to find the general solution using the method of this section.
(a) y' + 4y =0, gy =sin2a (b) g -y =0, yo=e
(€) ay" — 2+ 1)y + (& + 1Ly =0, 1 =¢"

3. Show that y; = z is a solution of each of the following equations. Then find the general
solution.

(8) o~y —xy' +y =0 (b) 2%y" + 23y —2y =10
(c) 2*y" —z(z + 2y + (x+ 2y =0

4. Show that g =z~ */?sinz is one solution of the Bessel equation of order 1/2,
1
ey oy 4 (2 - Z}y =0 (z>0).

Then find the general solution.

Supplementary ezercises:
5. Find the general solution of ¥ — zf(z)y’ + f(z)y =0.
6. (a) If nis a positive integer, find one solution of
zy' = (z+n)y +ny=0

(b) Find the general solution of the equation in (a} for the cases n = 1,2, 3.

2.4 The Linear Equation with Constant Coefficients

In this section, we will look at and solve the homogeneous second order linear equation
with constant coefficients,

v+ by +ey =0 (2.24)

(So b and ¢ are constants.} By the discussion in section 2.2 we must first find two linearly
independent solutions y: and y»; the general solution will then be

Yy =ciyy Y.

Let us begin by trying selutions of the form

y=¢e

Then,
y' = deM and ¥’ =AM

When we substitute these into equation (2.24) we get

N 4 bre + e =0
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Divide by e*?,

[ A2 +bA+e=0. (2.25)

We conclude: The function y = e is a solution to equation (2.24) exactly when X is a

solution to the equation (2.25). The latter equation is called the characteristic equation
or auziliary equation of the differential equation (2.24). By the quadratic formula, its
solutions are

—b %+ Vb — 4c

AL, Ag = 3

(2.26)

These solutions are also called the roots of the characteristic equation. There are three
possibilities to distinguish: Two real roots (b% — 4¢ > 0), one real root (b* — 4¢ = 0), or two
complex roots (b2 — 4c < 0).

Case I: The characteristic equation has two distinct real roots. — (b — 4¢ > 0)
We then have found the two solutions

)\11‘

Yy =e and y = €M*

Il
@

of the differential equation (2.24). Because
e}q:r:

A e()\l —A2)x
Ao
[

# constant,

these two functions are linearly independent. The general solution is therefore

Az Aoz

Yy = cle -+ ¢ae

Example 1 Consider the equation
y' -3y +2y =0

Solution.  The characteristic equation is
M-33+2 =0

It factors as
(A=2y(x-1H=0

and has real roots
A=1 and Aw 2

The general solution of the differential equation is therefore

y = c1€° + et
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Example 2 Consider the initial value problem

y'+y' —12y = 0 y(2)=2, ¢ (2)=0
Solution.  Its characteristic equation is
M XA-12=0,
factors as
(A+4{A-3)=0,
and has real roots
)\1 = '"“4, )\2 =3.
Therefore, the general solution to the differential equation is
y = e + e (2.27)
Let us find the particular solution which satisfies the two initial conditions. We
differentiate,
y' = —deie™* 4 3cye. (2.28)
and substitute the initial conditions ¥(2) = 2 and y'(2) = 0 into (2.27) and {2.28),
2= cle_8 + cze6
0 = —4616_8 + 36266
This is a system of two equations in two unknowns ¢; and cy. If we solve it we obtain
8 6
co = ?e“ﬁ and = ?es
Therefore, the particular solution is
6 B 4z 8 -6 3z
Yy = 78 € + 78 e
which can be written as 6 8
—  La8—dr Y o3x—6
Y ze + =€
i
Case IL: The characteristic equation has only one real root. ~— (b? — 4¢ = 0)

Note that this root equals A= —b/2 . We have found only one solution of the differential

equation,

v = e

To find a second solution, we use the method of section 2.3, ”Using one solution to find
another”. With p(z) = b and b = —2), formula (2.20) gives

1
B = yl[—ge_fp(‘”)dmd:c
4
- eAwfe—QAm o fbds g,

— e/\z/ebxe—bx dx

= e)‘mfld:c
:Ee)\z
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The general solution is therefore

Az

y = c1e™® + coze

Example 3 Solve the equation
2y + 12y + 18y = 0.

Solution.  The characteristic equation is

A2 L1204+ 18 =0

23+ 3)2 =0
and has only one root
A —3.
The general solution is
y = creT 4 oame™ = 7o + xey)-

Example 4 Solve the initjal value problem
y' -4y’ +4y=0 y0)=1, y(0)=0.
Solution.  The characteristic equation is
M4 +4=0.

It factors as
(A— 2)2 =0

and has therefore a single reail root
A=2.

The general solution is
A
y = 187" + come™®.

To find the particular solution, let us use the initial conditions. The condition y(0) =1
gives
1=1c1e® + cp - 0€°

so that ¢; = 1. Since
y" = 2(21623 =+ C2(2$ -+ 1)€2m,

the condition y'(0) = 0 gives
0= 2¢1e° + cpe” = 2+ ¢o.
Thus, ¢z = —2. The particular solution is

y = e*® — 2ze® = (1 — 2z)e*.
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Case III: The characteristic equation has two complex roots. — (b — 4c < 0)

By (2.26) these two roots are

—b+/—1vdc — b?

AL, A2 = 5

So if we set

b Ve — b?

r=-3 and 5= 5
then we can write the roots as
Al =r+is and My =71 —18
We thus have found two solutions to the differential equation, namely the functions
M o (rtis)e and ot _ glr-is)s.

These are functions with complex values! However, we are only interested in solutions
which are real valued. Now remember: In a linear and homogeneous differential equation,
any linear combination of two solutions is again a solution. Let us try to choose special
numbers ¢; and cp making the linear combination

cle(r—i-is)x + 626(?*—1'5)&“

real valued. (If you have already done exercise 10 in section 2.1 then you know what values
to choose.) Note that

crelTFi8)e o olr—isle — g pre (cos sz +isinsz) + coe’*(cos sz — isin sx)
= (e +e3) e cossz + ilc; —eo)e™ sinsz
We first choose ¢ = ¢y = 3, and get the function
y; = €7 Cos s
Then we choose ¢; = 3; and ¢; = —3- and get the function
yo = €' * 8in sz
Both, y; and yo are now real valued. Thus, the general soluation is
y = c1€'° cossT + cp€’” sin sz

or

y = € *{c1 00852 + cysinsx)

Example 5 Consider the equation

¥+ 4y =0
Solution.  Its characteristic equation is
N+4=0
and has roots
A= —4

AL A = £2v -1 = 24
These roots are purely imaginary, so that the general solution is

y = ¢ 8in (2z) + ¢ cos {2z).
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Example 6 Solve the initial value problem

16y" — 8y + 145y = 0 y(0) = -2, ¥'(0)=1

Solution.  The characteristic equation is
16X% — 8\ + 145 = 0.

Hs solutions are

A = 84 64—4-16-145  1%/T—145 1;‘:3%,
- 2-16 - 4 T4 '

Therefore, the general sclution is

y = €/ {c1cos3z +eysm3a ).

Now find the particular solution which satisfies the initial conditions. First notice that
by the product rule,

!

1
y' = et (ch + 3¢z) cos 3z + (11102 - 3c1) sin 3z )

Then use the initial conditions y(0) = -2 and y'(0) =1. We get the system of

equations
-2 = € (c1cos0+cpsin0)
1
I = & (ch + 3e2) cos O (%ca — 3¢1)sin0)

Solving this system we obtain

¢ = —2 and g =

B 2

The particular solution is
i
y = e/ 5 sin3e ~ 2cos 3z ).
]

Remark In some books you will see a differential equation written in operator notalion. If we denote
2
the derivative g«';’« by Dy and g}.,} by D%y, then equation {2.24) becomes
D’y +bDy+cy = 0

which can be abbreviated by
(D*+8D +c)y = 0.

The expression in brackets looks just like the characteristic equation !

Exercises

1. Find the general solution of each equation:

(a) y'+y —6y=20 () ¥ -6y +25y=0
(b) ¥"+2¢ +y=0 (k) 4y" +20y" + 25y =0
(¢c) y"+8y=10 (D) ¥ +2y +3y =40
{(d) 2y" ~4y' +8y=10 {m) y" =4y

() y' —dy +4dy=10 n) 44" -8y + 7y =0
(f) ¥" -8y +20y =0 (o) 2y +y' —y=20

(8 2y" +2' +3y =0 (p) 16y" —8y' +y =20
(h) 4y" — 12y + 9y =10 (@) ¥"+4y +5y=0

(i) y,’+y’=0 (I') yrr+4yl_5y=0
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2. Solve each of the following initial value problems:

(a) ¥" -5y +6y=0, y(1)=¢> y(1) =3
(b) y" -6y +5y =0, y(0)=3, y0)=1
(¢) " —6y' +9 =0, »0)=0, y(0)=

(d) " +4y +5y=0, y0)=1, y'(0)=

(&) " +4y'+2y=0, y(0)=~1, y’(O) 2+3v2
(f) ¥"+8/ -9y =0, y(1}=2, y'(1)=

Supplementary ezercises:
3. Show that the general solution of (2.24) approaches O as z = coif and only if b > O and ¢ > G.

4. Show that the derivative of every solution of {(2.24) is again a solution.

2.5 The Nonhomeogeneous Equation

We now want to study the solution of the nonhomogeneous linear equation

y" + plz)y + q(z)y = r{z) (2.29)

where r{z) # 0. We will also need the equation

y" +ple)y +qlz)y =0 (2.30)

which is called the related homogeneous egquation.
Assume that we have found one solution y, to {2.29). That is,

Yp -+ o(@)y, + glz)yp = r(z) (2.31)
Now suppose, y2 is another solution. Then also,
v + p(2)ys + g(@)y2 = r(z)
Subtracting the two equations, we get
(y2 — yp)" +p(x) (2 — 9p)' + () (42 — yp) = 0

That is, the difference y;, = y3 —yp is a solution to the related homogeneous equation.
We can solve for yq,

Y2 = Yp + Yp-

Conversely, assume that y), is a solution to the related homogeneous eguation. That is,
yh + p(z)yp + q(z)yn =0 (2.32)
Adding this equation and (2.31) we obtain

(o +90)" +0(@) (wn + 1) + a(&)n +95) = 0+7(x) = r(z)

That is, ¥, + yp is also a solution of the nonhomogeneous equation. We have shown:
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Theorem 11 Assume, y, is one particular solution of the nonhomogeneous eguation
(2.28). Then the general solution is of the form

Y=Y+ Yp

where yy, s the general solution to the related homogeneous equation (2.30).

Remark The theorem shows us a way to find the general solution of the nonhomogeneous equation:

1. First find the general solution ys of the related homogeneous equation.
2. Next find one particular solution y, of the nonhomogeneous equation.

3. The general solution is of the form y = yu + Up.

Example 1 Consider the equation
v+ 3y =€

The characteristic equation is
X43a+2 =0

(A+2)(A+1) =0
Therefore, the general solution to the homogeneous equation is
-2z

Uh = e F + e

You can quickly check that one particular solution of the nonhomogeneous equation is

Therefore, the general solution is
—x —2% 1 T
¥ = Yk +yp = (& 4 Cae + —-e

]

Qur goal is now to find one particular solution y, of the homogeneous equation. There
are two methods which we can use:

2.5.1 The Method of Undetermined Coefficients

This method can only be used in the case of an equation with constant coefficients,
y'+by + ey = riz). (2.33)

To get an idea of this method, let us do an example first.
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Example 1 Consider the equation

Solution.

Y +dy = 26 (2.34)
The characteristic equation
X+4 =0
has roots
A= 26

The solution to the related homogeneous equation is thus
yp = € Cco82x + cysinlz.

Now we must find a particular solution y,. The idea is as follows: We note that the
function on the right-hand side of equation (2.34) is r(z) = €3*. We try to find a
particutar solution of the same form,

Up = ABS:I:

where just the constant 4 is different. Why can we expect that such a particular
solution exists 7 Notice that y, and all its derivatives are just multiples of r(z),

y, = 34e* and yy = 94e*.

So if we substitute these functions into (2.34), then the left side becomes just a
multiple of r(z),
9Ae3 + 446’ = 237,

1343 = 265,

You can see that the two sides can be made equal if we choose

A = 2/13.
Therefore,
_ 183:1:
Yo = 13

and the general solution is
2
Y = yn+yp = €1cos2z +cpsinz + —ﬁesm.

O

Remark Because the main task was to find the value of the coefficient 4 belonging to yp, this method

is called the method of undetermined coefficients. Note that this rule works only if the derivatives of the

function r(z) are similar to r{z) itself.

Rule 1: If r(z) is one of the functions in the left column of the following table, then we
choose a particular solution y, as indicated on the right side of the table.

r(z) choice for g,
aemm Aemz
Po(z) Gnlz)
@ Coswz -+ bsinwz Acoswz + Bsinwr
e™ P,(z) e™ Qn(z}
e™*(q cos wx + bsinwz) e™*(Acoswz + Bsinwz)
P, () cos wz + Rp(z) sinwe Qn(z) coswz + Sy (z) sinwz
e™® (P, (z) coswz + Ry(z)sinwz) | ™ (Qn(z) coswr + Sp(2) sinwz)

Undetermined coefficients - Choices for yp.
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In this table, Py, Ry, @n and S, denote polynomials of degree n, for example,
Py(z) =apz™ + 1™ oz + a
and
On(z) = Apz™ + Ap1a™ L+ + Az + A,

Just as in the last example, we can find the values of the undetermined coeflicients
A, B... by substituting our choice for y, into equation (2.33).
Warning: This method can only be applied, if the function r(z) is as in the table.

That is, r(z} must be

1} a polynomial, or

2) a simple exponential function, or

3) a linear combination of the sine and cosine functions, or

4) a sum or a product of functions in 1} - 3)

Example 2 Consider the problem
3
y' -y -2 = 40’ y(0) =0, y()==>-3 (2.33)
Selution.  The characteristic equation is
Med=-2=0
(A=-2)2+1) =1
Therefore, the general solution to the related homogeneous equation is
yp = ce ° -5-0282:5

We think of 7(x) = 42% as a polynomial of degree two (in fact, r{z) = 4z* + Oz + 0}
and therefore choose a particular solution whick is also a polynomial of degree two,

yp = Az’ + Bz +C.

Then,
yp, = 242 + B and y, = 24.

Substitute into equation (2.35),
24 — (24z +B) — 2(4z®* + Bz +C) = 42?
Collect all like powers of x,
—242% 4+ (—24—-2B)z + (24— B-2C) = 42% 4+ 0z +0.

Now we compare coefficients,

—-24 = 4
-24 - 2B = 0
24 -~ B - 20 = 1

This is a system of three equations and three unknowns. If we solve it, we get
A=-2 B=2 and C=-3

Therefore,
yp = —22° +22-3
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s0 that the general solution to equation (2.35) is
y=ce ¥+ ese® — 222 4+ 2z - 3.

Now we must find the particular solution satisfying the two conditions »{1) = 0 and
y(1) = 2 — 3. So we substitute these conditions into the general solution,

0 = ¢y +¢cg — 3
g -3 = el 6282 -3
Solving, we get
=3 and e =0

The particular solution is
y = 3e¢™* —2z% + 2z - 3.
O

Remark This is not an initial value problem. The two conditions in (2.35) specify the values of y for
different values of z. Such conditions are called boundary conditions and the problem is called a boundary

value problem.

Example 3 Solve the equation

Solution.

y' 4+ 6y +9y = 6sin2z +4cosx
The characteristic equation is
ME6A+9 = (A+3)? = 0.
Therefore, the solution of the homogeneous equation is

yp = c1e7%% 4 epze”

RE .
We try a particular solution
Yp = Acos2y + Bsin2z.

Taking derivatives,

¥, = —2Asin2z+ 2B cos2z
Y, = —4Acos2z —4Bsin2z.

Now substitute all these into the differential equation,
(—4Acos2z —4Bsin2z) + 6(—2Asin2z + 2B cos2z) + 9(Acos2z + Bsin2z)
= 6sin2z + 4 cos2z.
Collect like terms,
(5A+12B)cos2z + (5B —12A4)sin2z = 6sin2z + 4cos 2z.

Compare the coeflicients,

54+ 128 = 4
-1244+58B = 6
Solving this system in two unknowns, we get that
4 6
A == = —
3 and B 3

Therefore, the general solution is

4 6
82 _ — tos2z + — sin 2.

Y= Uty = ce ¥ +epze” 13 i3
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Example 4 Solve the equation

Seolution.

Yy +dy = 2%, (2.36)

The characteristic equation is
Midr+4 = (A+2)° = 0

It has one repeated root A = —2. Therefore, the solution to the homogeneous equation
is

yp = e 2% 4 cpze” . (2.37)
Now as r(z) = 2e™2® we would think to try the homogeneous solution
Yp = Ae—zm_

However, this function is already a solution of the homogeneous equation! (Just look
at (2.37) with ¢ =0.) This means that when we substitute it into the left side of
equation (2.36) we get zero; we can never get 2¢ 2%, What to do now ? We multiply it
by x to obtain a new choice for yy,

Yy = Aze™E.

This is still a solution to the homogeneous equation. (Now look at {2.37) with ¢; = 0.)
We multiply by z again, and try

yp = Azle™.

Then

?

y, = (20— 20%)Ae™%
Yp = (2-8zx+ 4z®) Ae™%.
Substitute into the equation {2.36),
(2 — 8z +4x?)Ae™ +4(2z — 222)Ae™ + 44z%e7 = 27
Most terms on the left cancel,
24 = 2¢7%®
A= 1
The general solution is

y = cle—2z+c2me—2z+$2e—2w - (Cl +62£B+$2) ewzw.

Let us summarize this as a rule.

Rule 2: If our choice for y, contains a term which is already a solution of the related
homogeneous equation, then multiply this choice by z to get a new choice for y,.
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Example 5 Solve the initial value problem

Selution.

¥+ 2 = 2+ y(0) =0, ¥'(0)=0

The characteristic equation is
M42) = AA+2) =0

Therefore, the solution of the related homogeneous equation is

2z 2x

yp = 16" + e = o) +ege”
Since r{z) = 2z <+ 5, we would try the particular solution
yp = Az + B

But note that the constant function y = B is already a solution of the homogeneous
equation. We must therefore multiply by = and obtain a new try,

yp = Az’ + Bz

Then,
Y, = 24z + B and y, =24

Substituting into the equation,

2442124z + B) = 2245

4Az + (24+2B) = 2z+5
Comparing coeflicients,
44 = 2
244 2B =
Therefore,
A=1/2 and B=2

The general solution is

x
Y= Yty = c1+cze“2"”+?+2:c

Now we must look for the particular solution which satisfies the initial conditions. We
have

¥ = —2ee” Lz 42

We substitute the initial conditions y(0) = 0 and ¥'(0) = 0 into the last two equations
and obtain

0 ¢+ Cz
0 = —-2e+2

Solving, we get ca = 1 and ¢; = —1. The particular solution is

2

y = —1—1—8_2$+%—i—2m.
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Remark The last two examples show that we must compute y» before we can choose the correct y,.
Always check whether your choice of y, is already part of y», because in this case you must adjust y, !

If r(x) can be written as a sum of functions listed in the table, then we can use the
following rule to find a particular solution:

Theorem 12 (Superposition Principle). Consider the equation
y' +p()y +qlz)y = riz) +raz). (2.38)

If yp, 18 @ particular solution to the equation

¥’ +pla)y +q(z)y = ri(z)
and yp, a particular solution to

y' + o)y +alzly = raz)
then the sum

Yp = Up: +Yp,

is a particular solution to (2.38).

Proof: All we need to is substitute the function y, = yp, + yp, into the left side of equation
(2.38). We then obtain

Yp + (@) + a(2)yp = (Ypy +Up )+ 2(@)(¥p, + Ypa ) + ¢(@H Yoy + Ypo)
'

= {Yp, +2(@)p, +a(@)yp, ) + (Yp, + P(2)p, + 9(@)yp, )
= ri(z) +rz)

This proves the theorem. |

Example 8 Soive the equation

y' + 2y +5y = 16¢° + 17sin2z (2.39)

Solution.  The characteristic equation
M 422+5 = 0

has solutions

—24++/4-20
A= — = 14 2.
Therefore,
yn = e *(e1cos2x + casinlr )

As ri(z) = 16e* and ra(z) = 17sin2z we choose the particular solution
Yp = Ae® + (Bcos2z + Csin2z).

Then,
¥, = Ae® —2Bsin2z + 2C cos2x

y;)’ = Ae” — 4B cos2z — 4C sin 2%
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Substitute into equation (2.39) and collect terms,
(A+2A+5A)e" + (—4B+4C+5B)cos2z + (—4C -4B+5C)sin 2z = 16e”+17sin2z

Compare coefficients,

8A = 16
B+4+4C = 0
—4B+C = 17

Solving we get A = 2, B = —4 and ¢ = 1. The general solution is

Yy = yn+yp = e * {e1cos2x +cpsin2z ) + 2e” — 4cos 2z + sin 2z

0
Example 7 Solve the initial value problem
y" +9y = 18z + 5e® + 12¢c0s3z y{0)=1/2, ¥'(0)=1 (2.40)
Solution. The characteristic equation
NM+9 = 0
has two purely imaginary solutions
A = £34.

Therefore, the solution to the homogeneous equation is
Yn = c100832 + ¢o5in 3z,
We would try the particular solution
yp = (dz+ B) + Ce® + (Dcos3z + Esin3z).

But note that cos 3z and sin 3z are already solutions to the homogeneous equation. So
we multiply cos 3z and sin 3z by z, and try the new choice

¥p = (Az+ B) + Ce® + (Dzcosdz + Exsindz).
Then,

¥, = A+ Ce® + (D+3Egz)cosdz + (£~ 3Dz)sin 3.
yp = Ce&¥ + (6E~-9Dz)cosdz + (—6D — 9Ez)sin3w.

Substitute into the equation (2.40) and collect like terms,
(9Az + 9B) + 10Ce® + 6Ecos 3z — 6Dsin 3z = 18z + 5¢° + 12cos 3z.
Compare coefficients,
A=2 B=0, c:%, D=0, and E=2

The general solution is

1
y = ¢1¢083z - cp8indz + 2z + Ee‘"’ + 2z sin 3.
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To find the particular solution satisfying the initial conditions, take the derivative,
1
y e —3e;sindz + 3excos3z + 2 4 -2~e” + 28in 3z + 6z cos 3z.

and substitute the values y(0) = § and y'(0) = 1 into the last two equations,

1 . 1
2 T 973
1
1 = 3e2+2+ 2
2
Solving these equations we obtain
1
= d =_z
c; =0 an Ca 5

The particular solution is therefore

y = 2z + %e“’ -+ (23: - —) sin 3z.

Example 8 Find the correct pattern for the particular solution y,, if

a) Y44y 43y = z4e®+cosz
b) " +4y = z%e® +sin2x — cos 2z + 3zsin2z
c) y"+y = cosx+sinlz+eTsing

Do not evaluate the coefficients 4, B, ...

Solution. Remember that we must always find y, before we can choose the correct y,.

a) In the first equation,
3z

Y = c1&” " +coe”
We choose yp of the form
yp = (Az + B)+Ce” +{Dcosz + Esinx)
b) In the second equation,
Un = €1C052x -+ cosin 2z

The function on the right must be thought of as

r(z) = (1-2°+0 -2+ 0)®+][(3z + 1)sin2z + (0- = — 1) cos 2z]
so that we choose

Yp = {A2? + Bx + C)e* + [(Dz + E)sin2z + (Fz + G) cos 2z]

However, the terms Esin2z and Gcos2r are already part of yu, so we must
multiply the second part by =z,

yp = (Az® + Bz + C)e” + [(Dz* + Ex)sin 2z + (Fz* + Gx) cos 2]
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¢) In the last equation,
Yp = €1C08% + cosing

We first choose
yp = (Acosz + Bsinz) + (Ccos2z + Dsin2z) + e*(Ecosz + Fsinz)

But Acosz and Bsinx are already part of ¥, so we must multiply the first part
of yp by x, and choose

vp = (Azcosz + Basingx) + (Ccos2z + Dsin2z) + e®(E cosz + Fsinx)

Exercises

1. Find the general solution of the following equations:

(a) y" — 2 — By = 3™ () 2" + 3y +y =2” +3sinz

(b) ¥" -2y — 3y = —3ze~® (b} y" +y = 3sin2z + wcos 2

{c} ¥" + 2y + 5y = 3sin2z (i) v" +wly=coswz (w2 # w?)
(d) ¥ +2y' =3 +4sin2z () ¥ +wiy = coswon

{e) ¥ +9y =2’ +6 (k) ¥ —¢' +4y = 2sinhz

() v+ 2y +y =27 ) ¥" —y'~ 2y = cosh 2z

(m) ¥ 44y = 4cos2z + 6cosz + 82 — 4z
(n) ¥" + 9y = 2sin 3z + 4sinz — 266727 + 273

2. Solve each initial value problem:

(8) ¥ +y' ~2y=2z, y0)=0, ¥(0)=1

(b) ¥ + 4y = z + 3e%, »(0) =0, y'(0)=2

(c) y" —2y' +y =z + 4, y0)=1, ¢ =1

(d) y" -2y -3y =3ze’, y(@ =1, y'(0)=0

(e) y" + 4y = 3sin 2z, $(0)=2, ¢'{0)=-1

(f) ¥ 4 2y + 5y = 4e™" cos 2z, y(0) =1, ¢{0)=0

3. In the following problems, find the correct choice for the particular solution y,. Do not
evaluate the constants 4, B, ...

(a) ¥ + 3y =2z" + %% +5in3z

(b) ¥ +y=2z(1 +sinz)

(¢) ¥" — 5y + 6y = e cos 2z + e**(3z + 4) sinx

(d) ¥+ 2y + 2y =3 +2e "cosx + de "xsing
(e) y" — 4y’ + 4y = 22? + 4ze?® + zsindz

() ¥ +4y =2"sin2z + (62 + 7) cos 2z

(8) ¥+ 3y + 2y = e®(2* + 1) sin2z + 3¢% cos & + 4e®
(h) ¥" + 2y + By = 3ze% cos 2z — 2we™ " cos

4. In many physical systems, the nonhomogeneous term is specified by different formulas in
different time periods. Solve the following equations and sketch their solutions.

i, 0<t <,
we’ t >,

1, 0<t<a/2,
(®) y"+2y'+5y:{ 0, t;wﬁ,ﬁ/ y(0)=0, ¥'(0)=0.

(a) v +y = { y(®) =0, ¥'(0)=1
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2.5.2 Variation of Parameters

We now study a second method for finding a particular solution y,. Consider a general
nonhomogeneous equation,

¥ +plz)y + qlz)y = r(z) (2.41)

and assume that we have already found the general solution yj, of the related homogeneous
equation

y' +p(@)y +ala)y = 0 (2.42)
which always is a linear combination of the form
Yn = C1Y1 + C2l3.

The idea is as follows: Since every particular solution y, of (2.41) is different from y,, there
must exist nonconstant functions v = u{z) and v = v(z)} such that

Yp = Uy + vye. (2.43)

(That is, we vary the parameters ¢; and ¢p.) To determine these functions u and v, we
substitute this choice of ¥, into equation (2.41). But first we must take derivatives,

y;, = uy; + u'yy + vy + vy

If we differentiate once more, the second order derivatives u' and v' will also appear. In
order to avoid this to happen, we impose one more condition and require that

u'yl -%-’U’yg =0 (2.44)

Then simply,
Yp = uyi + vyh
and
Yp = uy +u'y) + v'yh + gy

Now we can substitute y, into (2.41),

(uy] +u'vh +v'yh + 1) + p(z) (uy] + vyh) + gla)(uys +vye) = ().

Collect all terms of u and v,

u (g1 +p(@)yl + alz)yy) +v (43 +p(a)es + o(z)w) + wih + v'ys = r(z)
2=() e=(}

Because y; and y are solutions to the homogeneous equation (2.42), this reduces to
Wy + vy = (o). (2.45)
Now together with condition (2.44) we have the system of two equations,

wyr + vy =0

2.46
vy + v'yh = r(z) (246)
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In matrix form, this system can be written as

Y1 ye u | |0
)= ean

Note that the determinant of this matrix is the Wronskian W = W{y1,y2) | We know that
W # 0 because y; and y, are linearly independent. Therefore, we can use Cramer’s rule to
solve this system and get

0 w2 iy 0
ro oyl Loy

u = vz = ¥ and v = - = N7
1Yo w Y1y w
Y Y T

Integrate v’ and v’ and substitute into (2.43) to obtain the particular solution

e gy | 22 nr
Yp = yl[deerz/de (2.48)

Remark This method is called variation of parameters. It can be used for EVERY linear equation and
for EVERY function r(z). However, we may end up with integrals which are difficult to evaluate.

Example 1 Find the solution to

y'+y = cscx (2.49)

Solution.  The characteristic equation is
M+l =0

and has roots A = £i. Therefore, the solution to the homogeneous equation is
Yn =cicosz + casine
To find a particular solution of the nonhomogeneous equation, set
Yp = ucosz +using
where u = u(z) and v = v(z) are functions of z. Then,
Yy = —using +u' cosz +v'sinz + veosz

Now impose the condition

uwcosz 4+ sing = 0 (2.50)
so that simply
y, = —usinz +vcosz
Take derivatives again,
Yp = —ucosz —u'sing +v cosz —vsinz

Now substitute y, into the equation (2.49),

(—ucosz —u'sinz +v'cosz —~ vsinz) + ucosz +vsinz = cscx
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and simplify,
—u'sing 4+ v' cosz = cscx.

Together with (2.50) we have the system of equations

u'cosz+uv'sing = 0
—u'sinz +v'cosz = cscx
Solving this system for «’ and v’ we get
u'(cos’z 4+ sin®z) = —sinzcsca
v'(sin’ z + cos’ ) = cosxcscz
so that ’ , cos
u' s 1 and vo= —.
S1r T
Integrate,
ulr} = -z and v(z) = Inisinz|-
Therefore, the particular solution is
Yp = ucosrtusinr = —gcosz+sinzin|sing|
Finally, the general solution to this differential equation is
Y = yatYp = c1cos8&+casine — weosc + sinxln|sin z|

|

Remark Usually, we don’t need to go through all these steps. After having found the homogeneous
solution y» we continue by solving the system of equations (2.46) or the matrix equation (2.47). This
requires that the differential equation be in standerd form, because (2.46) and (2.47) were derived from
an equation of form (2.41).

Example 2 Solve the equation

2y +xy ~y = zhz (z>0) (2.51)

Solution.  We have seen in example {2.21) that the related homogeneous equation has solution

Ca
Y = Q1%+ —.
A

(In the next section you will see another method for finding this solution.) We
therefore try the particular solution

Yp = UT + vzt

Let us start right away with the system of equations (2.46). But first we must bring
equation (2.51) into standard form,

Since
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system (2.46) is of the form

vr+v'z7h = 0
_ Inz
¥ -z = =2
z

This system can be easily solved. For example, if we divide the first equation by z, we

obtain
w vz =
'LLI _ ,U:m—z — h’l_.’L‘
x
Now adding both equations gives
= lnz 50 that u o= 1z
% 2 z
Subtracting both equations gives
Wiz~ = L3 sothat o = ——glnz

x 2

Integrate,
1 {Inz A B! ot 1 3
u-zfmdm—gfudu—4u-—4(1nx)
and
1 1/z” z% 1
v o= —5 f:cln:cd:n = —5(?li}$—f?;d$)
1/2° z? z?

= —5(? Inz — E) = §(1—21n$)
Therefore, the particular solution is

& 1 9 T

Yp = uztovr T = Zm(lna:) -§-~é—(1—-2lna:)

and the general solution to equation (2.51) is

1 i
Y= Ut = 5‘1$+%2+Zm(1n$)2—zzlnz

where we have set & =¢; +1/8. O

Remark 1In both examples we have omitted the integration comstants because we require only one
function » and one function v.

Exercises

1. Solve each of the following eguations wusing both, the methoed of undetermined coefficients
and variation of parameters.
(a) yn _ 5yr + 6y = 2e® (C) yrr _ yr — 2y =2e"®
(b) ¥" +2y' +y=3e"" (d) 49" — 4y +y = 166/
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2. Find the general solution of the following equations:

{a) v’ +y=tanz g v"+2¢ +y = e“f Inz

(b) ' + 4y +4dy =z %7 (0) ' -2 +y =i

{c) ¥" + 9y = 9sec? 3z (i) v" — 2y’ — 3y = 64ze™"

(d) ¥" +4y = 3csc2z {4) y" + 2y + 5y = e " sec2z
(e) y" +4y =tan2z k) 29" + 3y +y=e%

() 49" +y = 2sec(x/2) By -3 +2y=(1+e !

3. In a previous exercise we have seen that the general solution of Bessel’'s equation
2y F oy + (22 - 028)y =
is yp = c;z ™2 sinz + ez~ /2 cosz. Find the general solution of

'y + zy' + (22 — 0.25)y = 3% P sinx
4, Show that the equation y" + y = f(z) has a particular solution
w(@) = [ fosine-vd

Then find the solution to

(a) y" +y=secz (e) ¥ +y=tanx
(b) ¥ +y=cot’z (f) 4" +y=secztanz
{e) ¥"+y =cotlz (g) ¥ +y=seczescr

(d) y"+y==xcosz

2.6 Cauchy-Euler Equations

An equation of the form

oy + bzy' +cy = r{z) (2.52)

is called a second order Ceauchy-Euler equation.
It can be transformed into an equation with constant coefficients by substituting

which is equivalent to £ = Inz, Then by the chain rule,

dy _ dydt _ 1ldy

& dd T (253)
and by the product rule,
d*y d /1 dy 1 d%y dt 1 dy 1 /d%y  dy
_— = — - — e e — — —— — Z= ae { oree — — . 4
dz? dz (:c dt) z di? dz  z?dt x? (dt2 dt) (2:54)

Now substitute into (2.52) and obtain

d’y dy dy :
(W_M) bgg+cy—r(e)
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or

d2y dy 3
W o-1L sey = 100

where we have set f(¢) = r(et). This is now a linear equation with constant coefficients.

Remark You may notice that this new equation looks similar to {2.52), except that b has been replaced
by b— 1, z has disappeared on the left, and = has been replaced by e’ on the right.

Remark Note that the substitution z = e’ is only correct for x > 0. If = < 0, then we must substitute
z = —g, For the sake of simplicity, we will assume that = > 0 unless stated otherwise.

Example 1 Solve the equation

d? d
mzd—mg —22:% +2y = z°. (2.55)

Solution.  As this is an Fuler equation, we substitute z = ¢!, Then as shown above,

dy  ldy dy 1 ¢dy dy
dr T dt ok dz?  z? (dt2 - dt)
so that the equation becomes
d? d
d_tg’ y 33% 2y = e (2.56)

The characteristic equation is
M-8A+2 = A-1{ =-2) =0

and has roots A = 1,2. Therefore, the solution to the homogeneous equation is

yp = cie’ + e,

To find a particular sclution, it is easiest to use the method of undetermined
coefficients. Set y, = 4e* and substitute into (2.56),

94e% — 946 4 24e% =

so that
A=1/2.

Therefore, the solution of (2.56) is

1
bt

Y o= yptyp = c;et+r:2e2‘+2

We must not forget to resubstitute z = ef, to obtain the general solution of (2.55),
a

T
y = ez + cpx” + 5
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Example 2 Solve the equation

Solution.

2%y" ~ day' + 6y = z'sinz (2.57)

This is an Euler equation. We set z = e, so that the equation is transformed into an
equation with constant coefficients,

4’y dy 4t o b

Frola +6y = e*sine (2.58)
The characteristic equation

MNosA+6 = A=2)(A=3) =0
has solutions A = 2, 3. The general solution to the homogeneous equation (2.58) is
Yp = cle% +Cge3t.

Because of the term sine’ we can not use the method of undetermined coefficients to
find a particular solution y, in (2.58). It is easier to resubstitute first,

Y = ez + oz’
and use the method of variation of parameters with (2.57). So we set
yp = uz® + vz’

Then,
vy = 2uz+u's’ +v's® + 3z’ = 2uz + vz’

because we have imposed the condition
wa? 4o'z® = 0 (2.59)

Also
¥y = 2u+2u'z + 30’z + bz

Substituting y, into (2.57) we get
22 (2u + 2u'z + 3v'2” + Bux) — 4o (2ux + 3ve?) + 6(ua® +vz®) = alsinz
which simplifies to
u'z® + 3’z = z'sing. (2.60)

Equations (2.59) and (2.60) give us a system of equations

o o+ vz = 0

2u' + W'r = zsine.
Solving this system, we get

v = —gsinz and v = sinz.
Integrate,
uw = zcosz —sinz and v = ~ COST.
Thereiore,
yp = uwr®+vr® = 2*(zcosz —sinz)+ 2¥(~cosz) = —z’sinz

The general solution is

y = e12° + ez’ — 2% sin %
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Exercises

1. Find the general solution of each of the following equations. (Assume, z > 0.)

(a) z?y" — 3zy +3y=0 () =%y" —3zy +4y =0

(b) 4z®y” — dxy' + 3y =0 (3) =%y - 3zy’' + 13y =0

(€) 2%y +ay +4y =0 (k) %" +ay' + 4y =2zlnz
(d) 3z%y" —day' +2y =10 (0 22y" +zy' +y = 4sin(lnz)
(e) z2y" +xy' + 9y =0 (m) z%y" — 3zy’ + 5y = Bz?

(F) 922" +3zy' +y =0 (n) z?y" —2y=3z*-1

(g) zy" —Bzy' + 10y =0 (o) a®y" —3zy +dy =z*Inzx

(h) z°y" +zy' — 4y =
2. Solve each initial value problem:

(a) 2%y — 22y’ — 10y =0, y(1)=5, ¥'(1)=4

b) 2%y" — 4zy’ + 6y =0, ¥(2)=0, (2 =4

¢) z?y" + 5zy’ + 3y =0, y(l)=1, y'(1)=-5

(d) #?y" -2 =4z -8, y(l)=4, y()=-1

e) z%y" — day' + 4y = 42” — 622, ¥(2) =4, ¢(2)=~1
(f) z%y" + 2zy’ — 6y = 1022, y(1)=1, ' (1)=-6

(g) z*y" — 5y’ + 8y =22%  y(2)=0, y'(2)=-8

(h) z*y" -6y =Inz, y(1) =3, ¥'(1)=-%

—

—

3. Find the general solution of
(a) (x+2)%y" ~(z+2)y =3y =0 (b) 2z -3)%y" —6(2z -3}y +12y = 0

Supplementary exvercises:
4. Let X and A denote the solutions to the eguation
M+(-DAi+c=0.
Show the that the homogeneous Cauchy-Euler equation
oy’ + by oy =0
has general solution

(a) ¥y =cr8™ + cpw® if Ay and Ay are real.
b)) y={a1 t e ln:c):n’\ fA=X=A

(c) zM{e1cos(slnzx) + cosin(slnz) ) if Ay and A; are complex and Ay, A2 = r £ is.
5. Show that a substitution ¥ = uv allows us to transform the equation
y" +pl@)y +qlz)y =0

into a linear second order equation in v where the term v’ is missing. Find the function u
which makes this work, and find and the new equation in terms of the functions p(z) and
g{z). Then use this method to find the general solution of

y" + 2y + (1+ 2%y =0.
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6. Consider the Riceati equation

!

y' = plz)y? +qlz)y +r(z)

{see the exercise in section 1.4.) Show that the substitution

transforms it into a second order linear equation

plan" — (p'(z) + p(z)g(z) W' + P (e)r(chy = O

Use this substitution to solve
(a) 2%y + 2%y +aoy—4=0 (b) ¢ +2zy =1+ 2% + 2.

{You may need to use the result of the preceding exercise 1)

2.7 Applications

In this section we will discuss oscillations of mechanical and electrical systems as a direct
application of second order differential equations.

2.7.1 The Oscillating Spring

Let us consider a spring of length L whose upper end is kept fixed while a body of mass m
is attached to its lower end. There are two opposing forces acting on the body:

A mass-spring system.

e The weight F,, of the body. By Newton’s second law,
Fy, = mg

( Note that we have chosen the positive direction to be downward. )
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o The retracting force F); of the spring. By Hooke’s law,
F, = —ks

where k& denotes the spring constant and s the amount by which the spring has been
stretched (or compressed). The minus sign indicates that the force is directed upward
if the spring has been stretched, and downward if the spring has been compressed.

The total force on the body is therefore
Fy+ Fy = mg—ks.

The position of the body where this resulting force is zero is called the egquilibrium
position. Let s, denote the amount by which the spring is stretched when it is in this
position. Then,

mg — ks, = 0

If the body is not in equilibrium position, then the nonzero force F,, + F, will result
in a motion of the body/spring system. Let y = y(¢) denote the displacement of the
body from the equilibrium position at time {. So when the body is at position y,
then the retracting force will be Fy, = —k(y + s,).

e Ii is reasonable to assume that the motion is accompanied by friction, which results
in a force F, in direction opposite to the direction of movement. We assume that this
force is proportional to the velocity of the body,

dy
. =Wt
r R

e Lastly, we may have an external force F,;;(f) imposed in the body.

We have a total force acting on the body

F = Fw+FS+FT+FEIt

By Newton'’s second law, this force results in an acceleration ¢ == f; with F' = ma, so that
i d
m’EEg = mg — k(y + 5o} _Cd_?i'%‘Fewt
Since mg — ks, = 0 we get
my" +ey' +ky = Foy. (2.61)

This is a second order linear differential equation with constant coefficients. The nature of
its solution depends on the values of m, &, ¢ and F..;.

Case I: Undamped Free Motion

Let us first assume that there is no damping and no external force (¢ = 0, Fgyy = 0). Then
we have an equation

my' +ky = 0 (2.62)
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The characteristic equation

A2+1—i— =0

has roots A = iw, where w, = \/%. Therefore the solution of equation (2.62) is
Y = €] COSWyl + € sinwyt (2.63)

We want to write this solution in the form

y = Dcos(wet —¢) | (2.64)

By the difference of angles formula,
D cos{wet — ¢) = D cosdeoswyt + D singsinw,t.
Comparing with (2.63) we see that we must choose ¢ and D such that
Deosgp=0¢; and Dsing = co.

That is, we must set

D =/ +c3 and tang = 2—2
1

This is a periodic solution with period

27
T ==
o
y period )1
]
: amplitude
S
1
i
i /
[]
. t
phase sthift

Simple harmonic motion: y = D cos (wet — ¢)
{amplitude D, natural frequency w,, phase angle ¢)

We call this simple harmonic motion. The number w, is called the natural frequency of
oscillation (measured in hertz), D is called the amplitude and ¢ the phase angle. You may
notice that the frequency depends only on the mass and the spring constant, The initial
conditions determine the phase angle and the amplitude.
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Example 1 A mass of 8 kg is placed at the lower end of a coil spring which is hanging from the

Solution.

ceiling. The weight comes to rest in its equilibrium position, stretching the spring 20
cm. The weight is then pulled down 4 cm below its equilibrium position and released
at t =0 with an initial velocity of 21 cm/sec upward. Neglecting resistance, find the
amplitude, the period and the frequency of the resulting motion.

This is an example of free {no external force), undamped motion. We must first
compute the value of k. In equilibrium position,

mg = ks,
so that k = mg/s, = §-9.81/0.2 = 392.4 N/m. We now have the differential equation
8y" +3924y = (

The characteristic equation has roots

A= :ti\/3982'4zi7i

so that we have general solution

¥y = ¢pcosTt+cpsinTi,

and the natural frequency is 7 Hertz. Also,

!

¥ = —Teisin7t -+ TegcosTE.

So using the initial conditions y(0) = 0.04 and y'(0) = —0.21 we get
0.04 = ¢ and - 021 =7e

Therefore,

y = 0.04cosTt ~ 0.03sin7t.
Choosing D and ¢ so that

Dcos¢p =0.04 and Dsing = —0.03,

we have amplitude

D = +/0.042 + 0.03? = 0.05 (in meters)

and phase angle

(.03
ta,nqﬁ = —m = —(.75.

Since sin¢ < 0 and cos¢ > 0, the angle ¢ must be in the fourth quadrant. Therefore,
the phase angle is

¢ = tan™! (—0.75) ~ —0.634

The equation of the motion is

y = 0.05cos (7t + 0.634).
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Case II: Damped Free Motion

Now assume we have damping, but still no external force. We get the equation
my” +cy +ky = 0
The characteristic eguation has roots

St
Nk = g YR

There are three possibilities:

1. ¢ —4km > 0. (Overcritical Damping )

If we set @ = 50 and (= —"Cg;;“m then we have the general solution

y = e 0P | (et} (2.65)

There is no periodic motion. Furthermore, as @ — § > 0, we see that y{t) = 0 as
t — oo. This is of course expected; the motion dies down after a while.

Overcritical Damping: y = e1e @ P} 4 gpe (@A)t

at various initial velocities

2. ¢ - 4km = 0. (Critical Damping )

Ifweset o= ﬁn— then we have the solution

y = cre”™ +cpte™ ™ (2.66)

We still have that y(f) — 0 as t = oo. If damping is reduced further by only a little,
then we have

3. ¢ —4km < 0. (Undercritical Damping or Damped Oscillations)

Setting
¢ Vakm — c2
Q= —— and p=—
2m 2m



i00 CHAPTER 2. SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

we have the general solution

y = e *(c; cos ut + cosin i)

or writing as in (2.64),

y = De ®cos (ut — §) (2.67)

D = /el +c3 and tang = 2—2
1

We have oscillations which decrease in amplitude and eventually vanish, because

where

lime ™ =0
t—co

Note that the frequency u is smaller than the natural frequency w, of the undamped
system. It is called the quasi-frequency of the system, and the period

2

T =2
I7

is called the quasi-period of the system.
¥
quasi-period
---------- 7’—‘:-“""'" ‘“*_:_::;w
VAV, Wy t

Damped Oscillations: y = De™ % cos {ut — @)

Example 2 How does the solution to example 1 change if there is damping with

1. ¢ =50 kg/sec.
2. ¢=112.057 kg/sec.
3. ¢ =192 kg/sec.

Solution. 1. We have an initial value problem

8y" + 50y + 392.4y = 0 y(0) = 0.04, 7'(0) = —0.21
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Its characteristic equation has roots

50+ /2500 - 4-8-3024

A 2-8

A 3,125 = 6.268

The general solution is
y = e >1%%(¢) c0s6.268¢ + c3 5in 6.268L)
If we take derivatives, we get
y' = e 312 (~3.125¢; + 6.268¢3) c056.268t + (—3.125¢; — 6.268¢:1) sin 6.268¢ )
Using the initial conditions, we get
0.04d =

and
—~0.21 = —3.125¢; + 6.268¢, ie. e =-00136

Therefore,
y = e 340,04 cos 6,268t — 0.0136 sin 6.268t)

or writing in form (2.67),
y = 0.0422¢7 3125 cos5 (6.268¢ + 0.327)

This is undercritical damping.

2. We have an equation
By" +112.057y + 392.4y =0 y(0) = 0.04, y'(0)=-0.21

Its characteristic equation has repeated roots

_ —112.057+/T12.0577 — 483924 —112.057%0 _

A 2.8 16 -7
The general solution is
Yy = cle_” + czte'”
Using the initial conditions, we have
y' = —Tere ™+ oyl — TH)e™ ™

so that

0.04 = ¢y and —021=-Tc;+e ie ¢ =007
Therefore,

y = 0.04e" + 0.07te™"".
This is critical damping,.
3. We have an equation
8y" + 192y + 3924y =0 ¥(0) =004, ¢'(0)=-0.21

Its characteristic equation has roots

N ~192 4 /1922 — 4.8-392.4 ~ ~192 4+ 15591 — _0.956,-21.74

28 16
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The general solution is
y = e 20 Lo -2 T4
Take the derivative
y' = ~2.256cie” 6 — 21 T4gpe™ 2T
and use the initial conditions,
0.0d=0¢ + and - 0.21 = ~2.256¢; — 21.74co.
Solving, we obtain

y = 0.0339¢%258 L (0.00615¢ 274,

This is overcritical damping.

]
Case III: Forced Motion
Let us assume now that a periodic external force
Fopt = Fyeoswi
is applied to our system. We then have the nonhomogeneous equation
my” +cy + ky = F,coswt. (2.68)

We have already seen that there are four possibilities for y;, given by equations (2.64),
(2.65), (2.66) and (2.67) above. For example, if there is no damping, then yy, is of the form
(2.64),

yr = Dcos{wet — ¢@).

We use the method of undetermined coefficients to find a particular solution. Choose
Yyp = Acoswt+ Bsinwt (2.69)
and substitute into (2.68). Determining the values of the constants A and B we get

i, ~ o) and B=F e
m2(w? — w?)? + wic? 0 mA (Wt - w?)? + w%g(

A=F,
2.70)

where again w, = 1/k/m. {Details are omitted.} Let us rewrite this particular solution as a
single cosine function,

yp = H cos(wt —6) (2.71)

where the amplitude is

H=vVA21 B = b (2.72)

VmE(@E ~ W22 + w2

and the phase angle is given by

B we
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1. Undamped Forced Oscillations If there is no damping (¢ = 0) then B =0, H = 4

and ¢ = 0. We have found the general solution

Y = ynt+iyp = Dcos(wet —¢) + cos wit

m{w? — w?)
This is a sum of two periodic functions, one with the natural frequency of the system,
and the other one with the frequency of the external force. For the sake of simplicity,
let us assume that we have initial conditions y(0) = ¢'(0) = 0. Determining the
values for D and ¢ (details are omitted) we obtain

I (cos wt — cos wyt)
= e — w
YT el —w?) °
Using the formula
. b~a . b4+a
cosa —coshb =2 sin sin
2 2
we can rewrite the solution as
25, (wo —wlt . (wo+w)t
= sin sin 2.74
4 mi{w? — w?) 2 ' 2 2.74)
~ S, e
slowly varying amplitude fast oscillation

If |wp — w! is small, then this is a rapidly oscillating motion {of frequency w, + w)
whose amplitude varies with slow frequency |w, —w|. This slow variation of amplitude
is called beat, and this is what a musician listens to when tuning his instrument.

y e y

Beat (equation {2.74}} Resonance (equation (2.75)).

Now as w approaches the natural frequency w,, the amplitude of the slow motion
increases, but its frequency decreases. But when w = w,, the particular solution
(2.71) is no longer valid because the function y, is already a solution to the
homogeneous equation. Instead, we will have a particular solution

yp = Atcosw,yt + Bisinw,t

When we substitute this y, into (2.68) we see that

Fo
- 2muw,

and B=0
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so that we have a general solution of the form

£y

2mi,

Y = yn+yp = Dcos(wet—¢)+ tsinw,t. (2.75)

Because of the factor ¢, the amplitude becomes unbounded as ¢ — oc. This is called
resonance.

2. Damped Forced Vibrations In practice, every system is under the influence of a
damping force. Let us assume that we have undercritical damping (0 < ¢ < 2v'km),
so the homogeneous equation has solution (2.67),

g = De®cos (ut — ¢)
where a = ¢/2m and p = v4mk — ¢®/2m. The particular solution is still as in (2.71),
yp = Hcos(wt — 8}

so that we have the general solution

y = De * cos(ut — ¢) + H cos (wt —8) | (2.76)

You can see that y, vanishes as ¢ — oco. This is called the {ransient solution. On the
other hand, y, constitutes a periodic solution called the steady stete solution. It is
independent of the choice of the initial conditions.

Let us determine for which values of w the amplitude of the steady state solution is
largest. Taking derivatives in (2.72) we obtain

Fy 2m? (W — ) (—2w) + 2wc?

A Y o o,

Then H'(w) = 0 when

—4m%w(w? — w?) + 2we? =0

or

Only for ¢® < 2m?w? = 2mk is this solution real. Note that wmes — w, as ¢~ 0.
Computing the maximal amplitude from (2.72) one obtains

2mF,

H(wmea) = e/ AmZew? — 2
o
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Remark If the damping factor ¢ is small and the frequency w of the external force is close to the
natural frequency w, of the systemn, then the steady state solution has a very large amplitude H.
This is the reason why a solid building may collapse in an earthquake, or a bridge may collapse
under traffic.

H/Fo theta

Pi

Pif2 -

frequency ralio
1.5 2

b
1

0 05 1 4.5 frequency ratio 0.-- 05
Amplification H/F, Phase angle ¢
(external periodic force Feze = H cos (wt ~ 8), m = 1, z-axis: frequency ratio w/jw,. )

2.7.2 Electric Circuits

Let us look at simple electric circuits. We will use the following components:

e a generator, or a battery, providing an electromotive force E(t) (measured in volt).

We will denote the current flowing through a —=0C O
component by I{t) (measured in empere) E(t)

o a resistor. The voltage drop across a resistor is proportional to the current flowing
through it,

Er=RI o—ANNV—0
R
R is the resistance measured in ohm.

e an inductor. The voltage drop across an inductor is proportional to the rate of change
of the current through it,

I o— T
EL = LE
L
L is the inductance measured in henry.

o a capacitor. The voltage drop across a capacitor is proportional to the charge Q
which it is holding,

L —f—

C is the capacitance measured in farad,
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and the charge @} is measured in coulomb. Note that the current flowing through the
capacitor is the rate of change of charge on it,

_ a9
T dt

Integrating I, we may also write the equation of a capacitor as

I

Ee = é {Q(to) + ft:I('r)d'r]

where Q(¢,) is the charge on the capacitor at time %,.

We will make use of Kirchhoff’s Voltage Law: The sum of all voltage drops around a closed
loop is zero.

Let us now look at an RLC-circuit where resistor, capacitor and inductor are switched
in series.

R

AW

1
2000, T

L

Eft)

RLC-circuit.

By Kirchhofl's law,
E(t) = Ep + Egr+ E¢

or
dl 7|
L— I+=@Q = E(t
z TRt ¢ ()
This eguation containg both current I and charge ¢J as dependent variables. Since [ = %4?‘
we can express it in terms of the charge only,

LQ" + RQ + écz = BE() (2.77)

Alternatively, we may differentiate the equation to obtain an eguation in terms of the
current only,

LI"+RI'+ éf = E'(t) (2.78}

Example 1 A series RLC-circuit has a capacitor of 0.02 farad, a resistor of 12 ohms, and an
inductor of 2 henry. The circuit is connected to a generator providing a voltage of
120s5in 5t volts. If the initial charge on the capacitor is 1 coulomb and the initial
current is zero, find the current through the circuit at time ¢.
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Solution.  Since one of the initial conditions specifies the initial charge, we choose equation (2.77),
20" +12Q' 4+ 50Q = 120sin 5t
together with the initial conditions
Q=1 Q=0
The characteristic equation is
227 4 120+ 50 =0

and thus has roots

_—l2x /I 4250

2.2
Thus, the general solution of the related homogeneous equation is

A =-3x 4

Qn = e [c1 cosdt + g sin 44
Now since the function on the right is 120sin 5t we choose the particular solution
@y = AcosSt+ Bsinbt
Substituting into the differential equation, we get

2 [~254 cos 5t — 25B sin 5¢] + 12 [~5A sin 5¢ + 5.5 cos 5t]
+ 50{Acos 5t + Bsin 5] = 120sin5t

Comparing coefficients we see that
~B0A4 =120 and 608 =
Thus, 4 = -2 and B = 0 s0 that
Qp = ~2cosbt
The general solution of the nonhomogeneous equation is
Q@ = Qn+Qp, = e [e; cosdt + cp sin4t] — 2 cos 5¢
Now differentiate using the product rule,
Q" = e % [(—3c; + dep) cosdt + (—dey — 3¢y) sin 4¢] + 10sin 52

and use the initial conditions. @(0) =1 gives

o—2=1
so that ¢; = 3. Then Q'(0) = 0 gives

—3:-34+44-¢c; = 0
so that ¢z = 2.25. The current at time ¢ is thus
I(t) = Q'(t) = —18.75¢" % sin 4t + 10sin 5¢

Note that the transient current is —18.75¢™3‘sin4f amperes, and the steady state
current is 10sin 5 amperes. g
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You may notice that mathematically speaking, equations (2.77) or (2.78) of the
RLC-circuit are the same as the equation of the oscillating spring (2.61), now with
constants L, B and 215 instead of m, ¢ and k, and with current I instead of displacement y.
We therefore have solutions of the same nature, and all the observations which we have
made in the mechanical case apply here as well. For example, if R # 0, then there are three
possibilities for the solutions @, or Ij of the homogeneous equation: overcritical damping
(if R —4L/C > 0), critical damping (if R? — 4L/C = 0), and undercritical damping (if
R? —4L/C < Q).

Often, the voltage is a sinus function, E(t) = E,sinwt, and we are only interested in
the steady state current. Since the initial conditions do not affect the steady state current,
we may start with equation (2.78),

1
LI"+RI' + EI = FE,wcoswt

and search for the particular solution I, of this equation. Just as in (2.68) (at least in case
R # 0; this excludes the possibility of resonance) we get

I, = Acoswt+ Bsinwt

L(w? — w?) whR
and B =Ew Pl =) & B2

and now w, = /7
We may simplify these expressions by defining the reactance S and the impedance Z ,

S=wL—i and 7 = VR?+ 52

w(C
Then
17 1
L{w? —w?) = L( m) = E—ng o —wS
so that
A= By S 7d and B = Byo—r2E ot

RS+ PR 22 W22+ uwPR2 T 22

Now as the electromotive force is a sinus function, we would also like to express the current
I, = Acoswt + Bsinwt as a sinus function, of the form

Iy = I sin {wi — ¢) (2.79)
For this we use the trigonometric identity
Isin(wt — @) = I,(—singcoswt + cos gpsinwt}

and choose I, and ¢ so that

~I,sing=A and I,cos¢p=18
That is,
E A 85
I.=+A24+B2=22 ==
o Az + 7 and tan ¢ 5=
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Exercises

1. In each of the following exercises, find w,, D, and ¢ so that you can write the given
expression in the form y = D cos (w,t — @).

{(a) y = 3cos2t+4sin2¢ {c}) y=4cosdt — 2sind¢
(b) y = —cost + 1/3sint (d} y = —2coswt — Jsinwt

2. In each of the following exercises, write the given expression as a product of two periodic
functions of different frequencies.

(a) y == cos9L —cosTt (¢) y = coswi + cos 2t
{b) y=sin7t —sin6t {d) y =sin 3¢+ sin 4t

Some of the following questions will use different systems of units as indicated in the table.

system || length | mass | force g

cgs em g | dyne || 981 cm/sec?
SI (mkg) m kg N 9.81 m/sec?
British ft slug | 1b 32ft /sec?

In each of these exercises you should not use the formulas derived in the text, but begin by
setting up a differential equation and solving it on your own.

3. How does the natural frequency w, change if we

(a) double the mass,
(b) take a stiffer spring (i.e. increase k),

(c) change the initial conditions ?

4. A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium
position with a downward velocity of 10 cm/sec, and if there is no air resistance, determine
the position of the mass at time t. When does the mass first return to its equilibrium
position 7

5. A mass weighing 3 1b stretches a spring 3 in. If the mass is pushed 1 in upward from the
equilibrium position, and set in motion with a downward velocity of 2 ft/sec, and if there is
no air resistance, find the position of the mass at time {. Determine frequency, period,
amplitude, and phase of the motion. (1 ft = 12 in.)

6. A mass of 20 g stretches a spring 5 cm. The mass is also attached to a viscous damper
with a damping constant of 400 dyne-sec/cm. The mass is pulled down 2 cm below its
equilibrium position and then released (no initial velocity).

e Find the position of the mass at time #. Determine the ratio of the natural frequency
to the quasi frequency of the system.

e Express the position of the mass in the form y = Re™* cos (wt — ¢). Determine the
time 7 when |y| < R/50 for all ¢t > 7.

7. A spring is stretched 10 cm by a force of 3 N. A mass of 2 kg is attached to the spring, and
also a viscous damper that results in a force of 3 N when the velocity of the mass is 5 m/sec.
The mass is pulled down 5 cm below the equilibrium position and given an initial downward
velocity of 10 cm/sec. Find its position at time ¢. Determine the ratio of the natural
frequency to the quasi frequency of the system.

&, Show that the period of motion of an undamped oscillation of a mass hanging from a spring
is 2m+/30/9, where the weight of the mass stretches the spring by distance s,.
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Show that ¢; cosw,t + ¢ sinw,t can be also written in the form
7 sin (wet — 8).
H Rcos{w,t — ¢) = rsin (w,t — §), find the relationship between R, r, ¢, and 6.

Assume that the system described by the equation my"” + ¢y’ + ky = 0 is either critically
damped or overdamped. Show that the mass can pass through the equilibrium position at
most once, regardless of the initial conditions.

A mass of 5 kg stretches a spring 10 cm. The mass is acted upon by an external force of
10sin(¢/2) N and moves in a liquid that gives a viscous force of 2 N when the speed of the
mass is 4 cm/sec. The mass is set in motion from the equilibrium position with a downward
velocity of 8 cm/sec.

(a) Formulate the initial value problem describing the motion of the mass.
(Use g = 9.8m/sec)
(b} Find the steady state solution.

{c} The external force is replaced by a force of 2coswi N of variable frequency. Find the
value of w for which the steady state amplitude is largest.

A spring-mass system has spring constant £ =3 N/m. A mass of 2 kg is attached to the
spring, and the motion takes place in a fluid which gives a resistance equal {numerically) to
the speed. The system is driven by an external force of 3cos3t — 2sin3¢. Find the steady
state solution, and express it in the form D cos {wt — ¢).

A mass that weighs 8 1b stretches a spring 6 in, There is damping; the damping constant is
0.25 lb-sec/ft. The system is acted upon by an external force of 4 cos2t 1b. H the mass is
pulled down 3 in and then released, determine the position of the mass at time £, Determine
the steady state respomse. How do we have to change the given mass so that the steady
state solution has largest amplitude 7

¥ind the general solution of
my" +cy' + ky = F, sinwt

where ¢ < 4km.

(a)} Find the solution which satisfies the initial conditions y(0) = ., ¥'(0) = (.
(b) Find the solution which satisfies the initial conditions y(0) =0, '(0) = y..
(¢) Find the solution which satisfies the initial conditions y(0) = y,, ¥'(0) =¢..

Find the solution of the initial value problem
y'+y=Ft),  y(0)=0 ¥{(0)=0
where
Fot 0<t<,
F(t) = F,(2r —t), 7<it<2m,
0, 2 < 1.

A series LC-circuit has a capacitor of 0.25 x 107¢ farad and an inductor of 1 henry. If the
initial charge on the capacitor of 107° coulomb and and there is no initial current, find the
charge on the capacitor at any time .

A series RLC-circuit has a capacitor of 10™° farad, a resistor of 300 ohms, and an inductor
of 0.2 henry. I the initial charge on the capacitor of 107° conlomb and and there is no
initial current, find the charge on the capacitor at time .
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A series RLC-circuit has a capacitor of 107° farad, and an inductor of 0.2 henry. Find the
resistance R so that the circuit is critically damped.

A series RLC-circuit has a capacitor of 0.25 x 10~ farad, a resistor of 5000 ohms, and an
inductor of 1 henry. The initial charge on the capacitor is zero. A 12 volt battery is
connected to the circuit and the circuit is closed at time ¢ = 0. Find the charge Q{t} on the
capacitor at any time ¢. Find the limiting charge limy_,o Q(%).

When tuning the radio to a station we turn a knob which changes the capacitance C in an
RLC-circuit so that the amplitude of the steady-state current becomes maximal. For what
value of C (depending on the desired frequency w, with R and L fixed) will this be the case ?

Find steady state and transient currents in an RLC circuit, assuming zero initial current
and charge, when

(a) R =80 ohms, L =20 henry, C = 0.01 farad, E = 100 volts.

(b} R =160 ohms, L = 20 henry, C = 0.002 farad, E = 481 sin 10t volts.

(¢) R =6 ohms, L =1 henry, C' =0.04 farad, E = 24 cos 5t volts.

Find the current in an L{ circuit, assuming zero initial current and charge, when

(a) L =0.4 henry, C = 0.1 farad, E = 110sinwt volis, (w? # 25).
(b) L = 0.2 henry, C = 0.05 farad, E = 100 volts.

(e) L =2.5 henry, C = 0.001 farad, E = 10¢* volts.

(d) L =10 henry, C' = 0.004 farad, & = 250 volts.

(¢) L =10 henry, C = g5 farad, E = 10cos2t volts.

Find the current in an LC circuit, assuming L = 1 henry, C =1 farad, and zero initial
current, and initial charge, when

{a) E=1when 0 <t<1and E=0when{>1.

(b} E=twhen 0<t<land £E=1 when{> L

(c E=1—-etwhenO0<t<mand £=0whent>m.

2.8 Higher Order Equations

In this section we will discuss the solution of the n-th order linear equation

an(@)y™ + an1(@)y" Y + - +a(a)y +aoy = (@)

Dividing by the leading coefficient a,(z) # O we obtain the equation in standard form

¥ ™ 4 p, 1 (@)™ 4 () +po(z)y = r(z) (2.80)

The concepts and methods of solution for the second order equation extend to these
higher order equations with only little modifications. We will therefore only summarize
them without going into details.

An initial value problem will now consist of an equation of the form (2.80) together
with n initial conditions,

Y(@o) = Yoy ¥ (@) =40 y'(@o) =y .o Ly D(zo) = gV

Such an initial value problem always has a solution:
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Theorem 13 (Existence and Uniqueness Theorem) If po(z), pi(z), ..., pn-1(z) and r(z)
are continuous on an nterval I which contains the point x,, then there exists exzactly one
solution to this initial value problem. This solution is valid over the whole interval I.

2.8.1 The Homogeneous Equation - Theory
We must first study the theory of the related homogeneous equation,
v™ +poa (@)™ 4+ 4+ pr(2)y + polz)y = 0. (2.81)
Definition Let 4, ¥2, ..., yn be functions. A function
¥ = cyrtcle -t .. b Coln

where ¢;, ¢, .. . , ¢p are arbitrary numbers, is called a linear combination of y1, 4o, ..., Yn.

Theorem 14 (Superposition principle) If yi, ya2, ... , Yn are solutions of the homogeneous
linear eguation (2.81) then every linear combination c1y) + coya + ... + cpyn 18 also a
solution.

Definition The functions fi1, fo, ..., fr defined on an interval I are called linearly
dependent if there exist constants ¢, €2, ..., ¢p , not all zero, such that

cafitefot+ .. +enfn = 0.
If no such constants exist, then the functions are called linearly independent.
The Wronskian is now really an important tool to check for linear independence:

Definition Given functions fy, fo, ..., fn we define the Wronskian to be the
determinant
fi(z) folz) - falz)
fi(z) falz) - fulo)
W(fi for- o fulo) = | i) fle) e fo(@)
P 7 - )
Theorem 15 The functions fi, fa, ..., fn defined on an interval I are linearly

dependent if and only if W(f1, fo,..., fn) = 0.
When the functions involved are solutions to the homogeneous equation, we can say

even more:

Theorem 16 Let yi, y2, ..., Yo be n solutions of the homogeneous eguation (2.81) on
some interval I. Then either W(yi,ya,... ,yn)(z) # 0 for all z in I ( in which case these
functions are linearly independent ) or W(y1,y2,... ,yn)(z) = 0 for all = in I { in which
case these functions are linearly dependent ).

Theorem 17 Let y1, y2, ..., Yn ben linearly independent solutions of the homogeneous
equation (2.81) on some interval I. Then the general solution is of the form

Yo = ClY1+Cala T+ ...+ Culn

for constants ci, ¢ca, ..., Cp .

Such a set w1, ¥2, ..., ¥n of n linearly independent solutions of the homogeneous
equation (2.81) is called fundamental set of solutions.
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2.8.2 The Homogeneous Equation with Constant Coeflicients
The standard form of the homogeneous equation with constant coefficients is

y™ +an ™ U b ey Fagy = 0. (2.82)
Sometimes operator notation is used,

D™ + an-1 D"y +--- + a1 Dy + agy = 0
dk
where D* denotes T differentiating &k tirmes. One can write this equation as
VA
(D® 4 @n D™ 4+ L a1 D +agly = 0. (2.83)
We form the characteristic equation,
AV tan A+t ad+ag = 0

(Note the similarity between the characteristic equation and (2.83) !) and factor it
completely,

A=A)A-A2) - (A=Ay) = 0
The solutions Ay, ... , A, are called the roots of the characteristic equation.
e.g. The equation
v — 6y + 14" — 149" + 5y = 0. (2.84)
Its characteristic equation is
MG +140° - 140 +5 = 0

and factors as
(-12A=@+)) (- @2-1) = 0

There are three distinct roots: The repeated real root A; = Ay = 1, and the

nonrepeated complex root Az = (2 +4) together with its complex conjugate
A=Az =(2-19).

Each root A = A, contributes one or several terms to the fundamental sclution as
follows:
Case I: X is a real, nonrepeated root. In this case,

e/\:r

is part of the fundamental set of solutions.

Example 1 The equation

¥y - -y +2y = 0
has characteristic equation
B2 A +2 = A-DA+DN-2) =0
The roots Ay =1, Az = -1 and A3 = 2 are nonrepeated, so that the general solution is

Yp = c1€® + coe™ + c3e”".
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Case I1: A is a real root, repeated m times. In this case, the functions

BA:C, me/\x’ 3:2 e/\$’ o $m~1 e)\x

are part of the fundamental set of solutions.

Example 2 Consider the equation
y(a) - 3y{4} + 3ym . yrr - 0

Its characteristic equation is
Mot = 20 -1P¥ =0

and has roots A = 0 (repeated twice) and A = 1 (repeated three times). Therefore, the
general solution isg

yn = 1% 4 cpwe® 4 c3e® + cqzel® 4+ cpziel®

or
yn = c1+ coT + e®(cz + sz + c522).

O

Case III: A =r 4 is is a complez, nonrepeated root. One can show that the conjugate

A =r —i4s must also appear as a root because the characteristic equation has real
coefficients. The pair A, A contributes the pair of functions

| €%cossz and e *sinsz |

to the fundamental set of solutions.

Example 3 Consider the equation (2.84). The repeated real root A\; = As = 1 contributes the
terms e and ze®, while the complex roots Az = 2 +1 and Ay = 2 — i contribute the
terms e?® cosz and e?® sin z. The general solution is

y = c1e® +coze® + (cze®® cosz -+ cge?®sinz) = (e + o) + €2 (e cos z + ¢4 sin z).

C
Example 4 Consider the equation
yllf A 2y.'1 +2yl = 0
Its characteristic equation is
M _2X2 420 = M2 -2042) =0
and has nonrepeated roots
2Ev4—~4-2
AL =0, A 3= — = 1+4.
The general solutions is thus
yn = 16" +cpe®cosz +cze®sinz = e + €° {cocosz + ez sinz)
o}

gase IV: A =145 is a complez root, repeated m times. One can show that its conjugate
A =7 =15 must also appear as a root m times. The pair A, A contributes the 2m functions

e cos sz, € sinsz, wzecossz, zeCsinsz, ... z™ leTcossz, 2™l sinse

to the fundamental set of solutions.
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¥Example 5 Consider the equation
v+ 8y + 16y = 0.

Its characteristic equation is
AT 8 41647 = (A2 4 4)° = A -2)%0+20)% = 0

The roots are A = 0 (repeated three times), A = 2i (repeated twice) and A = —2¢ (also
repeated twice). The general solution is thus

Yp = €1 +Cax+ c3z® + ¢4 COS 2 + ¢ 8in 25 + cqz 008 2T + crz sin

2.8.83 The Nonhomogeneous Equation

To find the solution of the nonhomogeneous equation it is again enough to look for one
particular solution:

Theorem 18 Assume, y, is one solution of the nonhomogeneous equation (2.80). Then
the general solution is of the form

Y=Ur+UYp

where yy is the general solution to the related homogeneous equation (2.81).

We have again two methods to find one particular solution to the nonhomogeneous
equation.

The Method of Undetermined Coefficients. This method works exactly as described
in the case of equations of order two, and can only be applied to equations with constant
coefficients,

¥ +an iy +a +agy = r(a) (2.85)
and only with the choices for r(z) as indicated in the table in section 2.5.1.

Example 6 Solve the equation

y" —dy' = z+5cosz e

Solution.  The characteristic equation is
Modx = MA-2(0+2) =0
Thus, the solution to the homogeneous equation is
Yp = €1 + ce*® + gz
We would try the particular solution

yp = (Az+B) + (Ccosz + Dsinz) + Ee™**

But notice that the constant function and the function e~2? are already solutions to
the homogeneous equation. We must modify our choice for y,,

yp = (Az’ + Bz) + (Ccosz + Dsing) + Eze ™
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Take derivatives

y, = 2Az+ B~ Csinz+ Dcosz + E(1 — 2z)e ™

Yy, = 24— Ccosz— Dsinz + E(dz — 4)e 2
y, = Csinzg — Dcosz + E(12 - 8z)e™%®

Then substitute into the equation and collect like terms,

~8Ax —4B + 5Csinz — 5D cosz + 8Fe > = z+5cosz +e”

Comparing coefficients, we get

A=-1/8 B=0, C=0, D=-1, E=1/8

The general solution is

_ 1 . 1
T _ ng? —sinz 4+ Zge™

y = ¢ +cae™ +cze 3

Example 7 Find the solution to

Solution.

oty — 3z%y" + 6zy’ — 6y = zllnz

This is a Couchy-Fuler equation of degree three. We again substitute

r =€

1

2z

(2.86)

so that { = Ilnz and g—; = z. Then, as for second order equations {see (2.53} and

(2.54)),

dy _ ldy
™ Eld e da

dy 1 (dzy dy
di? dit

To replace the third order derivative, note that

E d? d?
LB -5 E-Y)]
' 2 sd’y  dy 1 ddy dt  dPy dt
- E@-D s GE- R
1 /d d
g “(Eig"3dt§+zdg)

Then equation (2.86) becomes

(5% - 552+ 222 (5 - ) oo -

which simplifies to

dy % dy tett
=5 6dt2+11 — 6y

)

4t

(2.87)

This is now a linear equation with constant coefficients. Its characteristic equation is

Mo 4110-6 = A=A -2)(1-3) =0



2.8. HIGHER ORDER EQUATIONS 117

so that the homogeneous equation has solution

Yp = clet -|-02t32'l "|'“0363t

Try the particular solution
¥p = (At + B)e*

The derivatives are

yh = (4At+ A+4B)e*
v, = (16At+8A+16B)e"
yy' = (64t +48A+64B)e™

If we substitute into equation (2.87} we obtain

6Ate! 4 (114 +6B)e™ = te*

Therefore,
A=1/6 B = —11/36
The general solution is
t 11
| ¢ 2t 3t (LA 4
y = cie" + e’ +c3e +(6 36)6
Resubstitute z = &f,
4
¥y = e+ cpz’ + e + m—{lnz — 11)
6 6
O
Variation of Parameters. This method can be applied to any linear equation.
Y™ 4 pi @)y Y + i)y +polz)y = riz). (2.88)

Once we have found the general solution

a(z) = an(@) +cope(z) + - + caynle)

of the related homogeneous equation, we vary the parameters and try the particular
solution

Yp = uryr +ugya + ... +Unln (2.89)
where u) (z), uz{x), .. . un(z) are functions of x. Take derivatives,
Yp = (wayy +uskh +.. Hunyy) + (Ui Fupye t -+ nn)
In order not to get second order derivatives of the u,, we impose the condition
wiys +upyp + .- Hpin = 0 (2.90)

so that
Yo = wyf +uyh+ ...+ und
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Note that this looks like (2.89) ! We continue differentiating this way, to get at each step

y™ = wyt™ o™ 4+t ungy™ 1<m<n-1) (2.91)
because we set
t, (m-—1} 1, (m=1) t,fm-1) _ _
U1Y] + Upys + o ULy = 0 (1<m<n—-1)
(2.92)
Having taken derivatives n times, we are left with
i = (™ uagl ) + Y el L+l )
(2.93)

Substitute all the derivatives (2.91) and (2.93) into {2.88). For each m, collect all terms
containing w,, and obtain

U (Ya) + P14 P1¥ + Povm) + upynY
=0
which equals u;',nyﬁr'f 1 pecause every function yn, is a solution of the homogeneous
equation. These terms add up to
whyP Y by TV b+l = () (2.94)
Now the equations (2.92) and (2.94) give us a system of equations
vy ot ¥+ .+ uy, = 0
Wy,  +  ubyy <+ ...+ ulyh, = 0
wiy  + byl o+ .+ Wyl = 0
w4 w4 Y = (o)

In matrix form, this can be expressed as

W Yo o ... Yn u 0

Y1 Yo oo Yn uly 0

i y: - Yn uy | = | O (2.95)

R G PG O A r(z)
This matrix is exactly the matrix occurring in the Wronskian W = W (yy,... ,y.) ! Since
Y1,..- ,Yn are linearly independent, this Wronskian is nonzero and we can use Cramer’s
rule to find that (2) Wi ()
r{z z
u:'n(a:) - “W’(g;—__: m=11"':n

where Wy, denotes the determinant obtained from W by replacing the m-th column by the
vector [0,0,0,....,7(z)]". Now integrate each u/, and obtain from (2.89),

_ Wi(z) Wa(z) Wa(z)
Yp = ?Jl_/f‘(m) W}(m) dw-i-yzf?‘(:c) Wiz) d93+"'+yn/?‘($)m‘d$

Remark When using the method of variation of parameters it is best to start with the matrix equation

(2.95) because it can easily be remembered.
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Example 8 Find a particular solution to

Solution.

y" -y -y +y = o) (2.96)

(a) if r(z) = 4e",
(b} in general.
The characteristic equation is
Mo od4l = A=1%A+1) =0
Therefore, the homogeneous equation has solution
yr = c1€° + coxe® + e
Using the method of variation of parameters, we set
z

Uy = ure” + uawe® +uze” .

Then (2.95) gives us the system of equations,

Y1 Y2 s ) 0
i vr vi upy | = 0
A B B AR r(z)

e® ze® e’ uy 0
e® (x41)* -—e° uh | omm 0
e (z+2)e* e ® 15 r(z)

To solve this system, we first compute the Wronskian using the rules of determinants,

which becomes

e® ze® e ¥
W(z) = W(e ze"e®) = |e® (z+1)e® —e°
e (z+ 2" e 7
1 x 1 1 =z 1
= e%ee {1 (z+1) ~1|=¢€10 1 -2
1 (z+2) 1 02 0
x| =2y
= e 2 0 ;m de
Therefore by Cramer’s rule,
0 ze® e™¥
0 (z+1e* —e~ r(z) ze® e "
') = r(z) (z+2)e* e* | (z+1)e* —e®
ke = et ze® e~ B Wi(z)
e (x4 1)e® —e°
e® (r+2)e e*
(—2z — Lyr(x)
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e 0 e "
er 0 —eF —r(z) et e7®
() ¥op(z) e7® e? —e " 2r{x)
Ug(x) = =
2 e* ze® e~ W(z) der
e (z+1)e® —e °
e® (z+2)e® e®
er ze® 0
e (z+1)* 0 r(z) e® ze
() e® (z+2)e* r(z) e {z+1)e* e**r(x)
us(z) = =
8 e’ ze® e " Wi(z) 4e®
e’ {(z+1)e* —e™
e (r+2)e* e®
(a) Now if r(z) = 4e® we get
up = —2x — 1, up = 2, uly = e**
We integrate all three functions to obtain
2 1 2z
Uy = —T° — &, uy = 2z, Uy = — €&

Thus, a particular solution is

T

Yp = i€ + ugmwe® + uze”

1
= (—z% —1)e® + 227" + 3 e*

1
= (z® —z + E)e"’
(b) In the general case, after integrating uj, w4, and uj we obtain the particular
solution
Yp = U€” + uswe” + uze ©
(=22 — Dr(z) 2r(z) e [ €%r(x)
el 4—exd$+$em Te—z—da:-t-e ® de

This expression can be simplified if we express the antiderivatives as definite
integrals. If »{z) is defined on an interval I and @ is a number in [/, then by the
fundamental theorem of calculus,

&% /m (‘“21‘; - I)T(t)

Yp = det
/ Frit)
o det

T 2r(t) ? e%tr(t)
dt-z—me:”f —dt+e“w/ e et 1
@ 4et a

(—e®(2t + 1) + 2xe® + e~ %e™) dt.
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Exercises

1. Find the general solution of each equation:

(a) ¥ -3y +2y =0 @y +y=0

(b) ¥ = 3y" +4y' =2y =0 () ¥ +3y" + 3y +y=0

(¢) " —y=0 0 y®+y=0

(d) ¥ + 49" +6y" +dy' +y =0 (m) y™ + 2" — 29" — 6y + 5y =0
(&) ™ +5y" +4y=0 (n} v —6y" + 11y — 6y =0

(f) y(4) . 20,2y” + a'ly =0 (0) y(4} o+ ym - 3y” _ Sy’ _ 2y =0
(8) yW +2a%y" +aly =0 () y® —y" =0

(h) y™ + 29" +2y" + 2 +y =0 (@) vy -8y =0

(1) y® + 8 4+ 16y =0 (r) ¥'® — 35 £ 3" —y =0

(s) y® — 634 — 8y +48y" 4 16y ~ 96y =0

2. Solve the following equations:

(a) ym - yu - yf by = 2e—% 1 3 (f) ,y{d) — 4yrr = z? +e¥

() y¥ —y =3z + cosz {g) ¥+ 29" +y=3+2cosz
(C) ym + yu + yr +y= e T +dg (h) y{4) o+ ym =

() y® +y" =sin2e @y -y =z

(e) ym + ,yw =tang (J) ym _ 2:9'” _ y’ + 2’9‘ - 645:
(k) ¥+ 2" +y=3zs+4, y0)=y(0)=0, ¥(O)=y"0)=1

Oy +4y =2, 0 =¢0)=0 yO0)=1
(m) v —3y" + 2y =z + €%, y(0)=1, y'(0) = -3, ¥"(0) = -2

3. Find a suitable choice for the particular solution y,. Do not evaluate the constants.

{a) ¥ —2y" +y' = 2% +2¢° (¢) ¥ — 2" +y =e* +sinz
(b) ¥ —y' = ze™" 4+ 2cosx (d) ¥ +4y" = sin 22 + ze® + 4
() y —y" ~y" 4y =2 + 4+ zsing
(F) ¥ + 2" + 2" = 3e* + 2re™® + e “sing

4. Solve the following equations
(a) 2%y +32%y" =0 (b) z*y" + 22%y" +zy' —y =0

(c) =%y +a?y" ~ 2zy’ + 2y = 22*
5. Show that the general solution of y) — y = 0 can be written as
U= ¢1C08% + ca8inz + ¢z cosha + ¢y sinh

Determine the solution satisfying the initial condition y{0} = y'(0) = 0,%"(0) = y"™(0) = 1.

Supplementary exercises:

6. Show that the definition of linear dependence given in (2.10) coincides with the definition of
linear dependence given in this section.



Chapter 3

The Laplace Transform

3.1 Improper Integrals

You are already familiar with the integral ff f(z) dz over a finite interval [a,b]. We now
need to define the integral [ f(z) dz over an infinite interval [a,o0). Such an integral is
called an improper integral. It is defined by

[amf(m)dm = lim /:f(a:)d:n

b—oo

provided that the limit on the right exists, in which case we say that the improper integral
converges. If the limit on the right does not exist (or is infinity) then we say that the
improper integral diverges.

Example 1 Evaluate

EA | =1 1
— dz, —d d = dz.
fl — do /1 s an /1 ds
Solution. o Evaluate the first integral,
> 1 ! 116 1
—_ = I — = i —_— = 1 —— = .
fl z? G P p B2 > bl-l»,n.}o z ]1 bi-}»rgo( b + 1) !

This improper integral converges to 1.

o Now evaluate the second integral,
o0 1 b )
—dz = lim V% dz = lim 2.'51/2] = lim (2\/5— 2) = oo
1 \/E b—oo fy b—+00 1 b—o0

This improper integral diverges.
¢ Finally, we evaluate the third integral,
[+ b B
f Ea?.a\: = Hm ld:r: = Hm ln:c] = lim (Inb—O) = 0.
1 & b—oeoo fy T b—ro0 1 b—eco

This improper integral diverges.

123
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Remark One can show that in general,

1

Rl — if 1

f —ds = { p-1 tpz 3.1)
1 T diverges if 0<p< .

2

!
fx)= g

0.5 finite area

The graphs of the functions Zr (left) and 1 (right), see example 1.

Remark DBecause xl—,, >0 for all z > 1, we can view

B|E
/ e (T
1 o?

as the area of the infinite region which lies between the graph of mip, the z-axis and the line z = 1.
For p > 1 this area is finite, for 0 < p < 1 this area is infinite.

Example 2 Evaluate

(o70] oo
[ e % dy and f &> dz.
0 0

Solution. o Evaluate the first integral,
oo . [ b
f e ®dr = lm e "dr = Hm -—e° ] = lim (—e7"+1) = 1.
0 b—r00 a b—o0
This improper integral converges to 1.
e Now evaluate the second integral,
{e =) b 1 b e
f e dr = lim e dz = lLm =e* ] = lim (— - ——) = 0.
a b—oo fg booo 2 0 b—oo 2

This improper integral diverges.

finite area (c<0)

9.5

k 0 i 3 3 i 5

The graphs of functions € for ¢ < 0 {left) and for ¢ > 0 (right), see examples 2 and 3.
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The last example can be generalized as follows:

Example 3 Determine for what values of the constant ¢ the integral

(o o]
/ e dr
aQ

converges, and find its value.

Solution.  Note that for ¢ # 0,
b
f eTdr = Eecm ]b — Eecb _leca
[

Now let b — oo, We must distinguish three cases:

s If ¢ < 0, then

o If ¢ >0, then

and the integral diverges.

e If ¢ =0, then e = 1 | and we have an integral

b b

lim ldz = lim m] = lim(b—a) = oo,
b—oo J, b—too o b—rco
which again diverges.
We can summarize this:
“ L if ¢<0
f e“dr = c 3.2)
@ diverges if ¢>0

Remark If F(z) is an antiderivative of f(z), then we write

[ i <R
where F{z) ]w neans
F” = o]« - e

For convenience we change b to =, and have

= lim F(z)— Fl(a)

ol v o]

F(x) ]

o]
a



126 CHAPTER 3. THE LAPLACE TRANSFORM

Sometimes we can not compute an improper integral directly. By comparing the
integrand with another function, we may still able to decide whether the integral converges:

Theorem 19 (Comparison Test). Assume that f(z) and g{(x) can be integrated over each
finite subinterval of [a,00).

>0 oo}
1LIf {f=)l <g(z) forallz > a, and if / g{z)dx converges, then / f(z) dz
converges also. ¢ ¢

2. If 0<g(z) < flz) forallz > a, and if / g(z)dz diverges, then f f(z)dz
@ a

diverges also.

Remark This theorem may tell us whether an improper integral converges or diverges, but does
not tell us how to find the value of the integral !

o0
Example 4 Determine whether the improper integral / sinz® e”% dz converges.
0

/sin z? e~ % dx.

[sinz?e™| < e7°.

o0
/ e fdr < oo.
0

Lo ul
f sinzle " dr < oo.
0

Solution. We can not compute

However, we note that

From example 2 we know that

By the comparison test,

That is, this improper integral converges. (However we don’t know its value !)

0.2 - -x

0.4 4

]
v

7 T
4] 1 2 3

Comparison test of example 4.



3.1. IMPROPER INTEGRALS 127

(>}
Example 5 Determine convergence of f zlnz dz.
e

Solution.  Note that
0Lz <zng

(=) <
f zdr < / rlnzdz.
€ e

We can evaluate the integral on the left:
o0 z2 qoo _ 22 2
fe cdo = 5|7 = JEEO(E"E‘) = o

lo o]
/ zlnzdr = o0
e

also, that is, this improper integral diverges. O

for all = > e. Therefore,

Thus we see that

Exercises

1. Find the following limits if they exist. (Throughout, ¢ > 0 is constant).

' —B - ch : cb
® jim e @ ¢ © jim o

: b g cb — : —cb
(b) bh_jgo e (e) bh_fgo e® (e=0) (h} bli’n.}o e /b
. ol . e oy N . ch
{c) bh_froioe ') blggo be (i) bh_gloe /b

2. Using the definition of the improper integral, determine whether the following improper
integrals converge and find their values if they converge.

@) f:o \/—Ix_; dz, © fom repadt) © /Om mf_}_ - dz,
(b) '/;oo % dr, (d) /;oo Inzdz, (f) flm ze ® dx.

3. Determine whether the following improper integrals converge or diverge. {You need not find
the values of the integrals.)

(a) f e~ du, {c) f sinz dz, {e) [ z™%e® dz.
0 0 1
{b) f sinze™ " dx, {d) f e® dz,
0 1
4. Show that

oo o0
f e~ (=e gy = / e " du
c ¢

5. Prove equation (3.1).

Supplementary ezercises:

6. Let f(z) be a positive, decreasing function such that fooo flx) dr converges. Show that
limg o0 fz) = 0.
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3.2 Definition of the Laplace Transform

Definition Let f(z) be a function defined on the interval [0, cc0). The function

Fs) = /0 7 Ha)e = da (3.3)

is called the Laplace transform of f.

Remark Note that during integration the variable z disappears, and the number s becomes a
variable. The Laplace transform is a function in the new variable s.

Let us find the Laplace transforms of some basic functions using the definition (3.2):

e The function | f(z) =1 :. Its Laplace transform is

o0 ST 50 1 .
F(s) = f 1 e~y = -2 ] = { s Hs>0 (3.4)
4} o0

Therefore, the Laplace transform is
1
F = -
(6) = =
and is defined for s > 0.

e The function | f(z) =z |. Its Laplace transform is

F(s) =f ze " du.
0

Use integration by parts,

i

F(s)

(=) [ )

[ e e ]oo

s s o
re™F g% 1
= lim — = + 0 Yem
T—+00 8 8 5
Now by 'Hépital’s rule,
¢ 3 i r H .
lim ze™* = lim — = lim =
o0 z—roo gFF 300 3e’T

for § > 0. Therefore, the Laplace transform is
1
F(s) :0—0+0+§~:~,~ = = (3.5)
and is defined for s > 0.

¢ In a similar way, one can show that if | f(z)=2" | (n=1,2,...), then

F(8) = /:0 he ¥ dr = (3.8)
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e The function | f(z) = e |. Iis Laplace transform is

o0 o0
EF(s) = / e e dr = [ elo=9)2 g,
0 0

But by (3.2), this integral converges to

F(s) = ;i—c (3.7)

whenever s > c.

e The function { f(z) =sinax { . Its Laplace transform is

o0
F(s) = / sinaz e™** dz.
0

Using integration by parts twice, one obtains the antiderivative

—~ 8T

[sin ar e P dr = (ssinar + acosax) + C.

8% + a?
(check yourself !) Therefore,

— 8

F(s) = 8_2615 (ssinaz -+ acosaar;)]:Q
P a
= xli;nc}o e (ssinaz + acosaz) + PO
To find this limit, we do a comparison: For all values of z,
—g—s® g%
0 < g (ssinaz + acosax)] < P (is[ +lal)

because {sinax| <1 and |cosaxr| < 1. Now when s> 0, we have

—8x

zlﬂ"go PG {Isf +1al) = Poanpe (ls| #lal) = 0
so that by the Sandwich Theorem,
. Tz .
a}ﬂlgo PR (ssinaz +acosaz) = 0
also. The Laplace transform is thus
a
Fls) = ———. .
(6) = s (38)
and is defined for s > 0.
e In a similar way, one can show that r f(z) = cosax | has the Laplace transform
Fls) = ———u (s > 0). (3.9)

s*+a?
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Not every function has a Laplace transform. For example, if f{z) = ¢’ then the
improper integral
[e o]
F(s) = / e® e= T dx
0

. 2 I .
diverges because e” ¢™°% is increasing on [§, o0).

4

T T T

; T
0 1 2 3 4 3

The improper integral fu £= 75 gy diverges.

What functions f have a Laplace transform, that is when does the improper integral

o0
f flz)e " dz
0
converge ? As the above graph shows, the function f must not grow too fast. We make the

following definition:
Definition A function f(z) defined on an infinite interval la, c0) is of ezponential order if
there exists a number z, > ¢ and constants ¢ and M such that
|f(z)| < Me™
for z > z,. We write f(z} = Oe).

Remark One can show that if hm If(x)l < oo then f(z} = Oe®). Loosely speaking, * f(z) is of

£—+
exponential order” means that [f(z)| grows not faster than the exponential function as x -+ oo,

e.g. e If f(z) = z®, then by L'Hépitals rule,

4 if H
lim — = lim o
z—ro0 7% oo ST m&go clecw

2$£, 2_0

for every ¢ > 0. This shows that for every M > 0 and ¢ > 0 we can make
3:2 S Mecz:

provided that z is sufficiently large. Thus, z° = O(e®®) for every ¢ > 0.
22 are of exponential order.
o The function e® is not of exponential order, as for every e.

e The functions sinz and sinze

e

. . 2_

Im — = lim ¥ ™ = co.
z—roo efT T—00
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In practice we have to work with functions which are not continuous, so let us first
make the following definition:

Definition A function f is piecewise continuous on an interval [a, co) if

1. On every finite interval [e,b], f is continuous except possibly at a finite number of
points zi1,z3,... ,Tn.

2. At each of these discontinuities x;, the one-sided limits

lim f(x) and lim f(z)

z—}z;‘“ =z,

exist.

fx) |

f

{

¢ \ﬁ
| 1

| ]

I

|

|

:

a

=+ - @
HV

e - = -

Sl

i
i
H
i
i
x; 2

A piecewise continuous function.

Remark A piecewise continuous function can still be integrated over the finite interval [a,b].
One simply integrates over each subinterval [z;,z;41} on which the function is continuous,

f: flz)dz = f:* flz) dz _i_./: SR /:. fie)de.

We will now see that most functions have a Laplace transform:
Theorem 20 If the function f(z) is

1. piecewise continuous on [0, 00), and

2. of exponential order, f = O{e®¥),
then the Laplace transform F(s) ezists for s > c¢.

Proof.  Let us split the integral which defines the Laplace transform,

/:0 fHz)e ™ dz = .[Owa flz)e™*“ dz + f: flzle ™ dx

where z,, ¢ and M are chosen so that |f{z)] < Me®® for ¢ > z,. Then
U-(m)e—s:ul < Mee 5 = Me(c—s)m

for © > z,, and since by (3.2), f;: ele=¥z dp converges for s > ¢ , the comparison test
shows that

/:o fl@e ® dz
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also converges. Hence,
o
f flz)e ™" da
0

COnverges. 0

Remark In the following, we will always assume that our functions are piecewise continuous and
of exponential order, so that the Laplace transforms exist.

HExercises

1. Bketch the graph of each function f and determine whether f is continuocus, piecewise
continuous, or neither on the interval [0, cc).

(2%, 0<z<l, (2%, 0<z<1,

) 24z, 1<z, b, l<z <2,

(@) fle)=9 6 4 2<z<a © f@) =4 3 4 2<z<3
L 0, z>3 L O, z >3

((1/z%, 0<z<1, ( =z, 0<z <1,

24z, 1<z<2, ) 33—z, 1<z <?

(b} .f(z)*””‘< O, 2(2753 (d) f{ﬂf)-~< 11 2<$$3
1, z >3 -1, z>3

2. Find the Laplace transform F{s) using definition (3.3) of
(a) f(z) = =ze®®, (b} f(z)=2? (€) flz)=(z-1)* (d) f(z) =zcoshaz

Supplementary ezercises:
3. Show that f(z) = z™ is of exponential order.
4. Show that if the functions f and g are of exponential order, then f 4 g is of exponential order.

5. Suppose, f(z) is continuous on [0, c0) such that f = O(e™°*) for some ¢ > 0. Show that the
improper integral [~ f(z) dz converges.

6. Suppose, f and f' are continuous for x > 0, and of exponential order. Show that

lim F(s) =0

ERdeed

( Hint: use integration by parts )

3.3 Solutions of Initial Value Problems

One also uses the symbol £{f} to denote the Laplace transform of a function f(z). Thus,

F@&) = o) = [ f)e s

So far we have computed the following Laplace transforms:
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i) F(s) = £4f)
1
1 -, s>10
5
1
T ?, s>40
n nl
" (n=1,2,...) sl s>0
et® 1 , 8>¢
§mc
sin 2 >0
o 52 +a?’
8
COS T T a2 s>0

Table 1: Basic Laplace Transforms

In this section we will learn to use the Laplace transform for solving initial value
problems. The theory is based on the following two properties of the Laplace transform:

1. Linearity: If the Laplace transforms of f and g exist for s > ¢ then the Laplace
transform of the linear combination ¢ f + ¢og exists for s > ¢, and equals

Leif +egl = al{f} +ctig}. (3.10)

Proof.  This is due to the corresponding property of the integral:

Llaf+ g} ./o {erf(z) + caglz) Y e % dx

=g /;00 f(x) e T dy 4+ ep ./c;oo g(:c) e~ % dr
a£{f} +e2l{g}.

Example 1 Find the Laplace transform of f(z) = coshaz.

Solution. Note that . .
coshar = —é-e“‘” + 56”‘”.

Now we know that )

S{Cam} - §—a
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for 5 > a and

1
—aT —
2{ ¢ } T s+a
for 8 > —a. By linearity,
1 1 1 1 s
= z = 11
£{coshaz) 2s-a 23+a §? — a? (3:11)
for s > |al. 0O
Example 2 Find the Laplace transform of
flx) = sin2z+e** + 3z - 2.
Solution.  Using the table and linearity, we get
e{f} = £{sin2z} + £{e™**} +38{z} —2£{1}
2 1 3 2
F o e =
s2+4 s+4 s g
O

2. Transform of a Derivative: Suppose, f is continuous and f' is piecewise continuous on
[0, 00), and that f = O(e*®). Then the Laplace transform of f' exists for s > ¢, and

£{f'} = se{f} - 0) (3.12)

Loosely speaking, the Laplace transform changes "differentiation” to "multiplication
by 5.

Proof. To make the notation easier, we assume that f' is also continuous. First integrate
over a finite interval using integration by parts,

fo @ ds = fl)e N [o ' fe) (=) da

b
FB)e — F(0) +s f fl@)e="* da
1]

Now let b — oc. Since {f(b)| < Me for ke b, e have
)] < [Mee™ ] = Me=P S o

whenever s > ¢. Therefore,

o0 b
A} = fo f(z)e**dz = lim [f(b)e“”—f(ows fo f(x)e‘”}

wa(O)-i-s/:o f@ye de = —f(0) +s2{s}.
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Example 3 Find the Laplace transform of f(z) = z°.
Solution. We have f'(z) = 2z and f(0) = 0. By the rule (3.12) for derivatives,

e{f'@)} = s&{f(=)} - f(0)
£{2z} = sg{’} -0
28{z} = s£{z?}.

Now divide by s,

e} = 2 ofe) =

IR ]

1 2
5 = % (3.13)

O

We can apply the rule for derivatives again to get a formula for the second order
derivative. Replacing f by f' in (3.12) we get

S{f”} — Sﬂ{f’} —~f’(0).
Now use (3.12) again for £{f'},

e = s{se{f} - £(0)) - £(0)

= §&{f} ~sf(0) — £(0). (3.14)
Continuing this way, we obtain the Laplace transform of the n-th order derivative,
S{f} = "L{f} =T (O) = -~ sfT(0) - 1 (0).
{3.15)
provided that f, f',..., ™Y are continuous, f™ is piecewise continuous and all

functions are of exponential order.

The following two examples show how the Laplace transform can be used to solve
initial value problems.

Example 4 Solve the initial value problem
y' -y -2 =0 y©) =1, (0 =0 (3.16)
using the Laplace transform.
Solution.  Method 1 (Usual method): The characteristic equation
Mod=2 = A-2D(A+1) = 0

has two solutions A = —1,2. The homogeneous equation (3.16) therefore has general
solution

Yy = e % + cee’",

The initial conditions will give the particular solution

2
¥y = ge“m - %eh.
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Remark
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Method 2 (Laplace transform): Take the Laplace transform on both sides of equation

(3.16). We obtain
e{y" -y -2} = £{0}.
By linearity,
c{y"} - e{y'} —2e{y} =0
Now use the rules (3.12) and (3.14) for derivatives,

(s2£{y} — sy(0) — y’(O)) - (sE{y} - y(O)) —28{y} = 0.

To simplify notation, set Y(s) = £{y} and use the initial conditions y(0) = 1 and
y'(0) = 0. We obtain

( Y (s) — s ) - (sY(s) -1 ) —2¥(s) = Q.
This is now a simple equation in one unknown variable ¥ (s). Solve for ¥ (s),
Y(s)(s®-5-2)—5+1 =0
s—1
e

We have now found the Laplace transform of the solution y. To find y itself, we use
partial fraction decomposition for ¥ (s).

Y{s) =

s—1 _ s—1 4 + B
2~s5-2  (s—-2)(s+1)  s+1 s-2
Multiply by the common denominator (s — 2)(s + 1),
3—1 = A(s—2)+B(s+1)
Now if 5 = ~1, this becomes —2 = —34, so that A =2/3. If s =2, then
this becomes 1 = 3B, so that B = 1/3.

Thus,
2 1 1 1

3s+1 3s5—2
Now look at the table of Laplace transforms. We see that

Y(s) =

1
is the Laplace transform of e ?
s+1
1
——5 s the Laplace transform of e
Therefore, )
— L,z U nl2z
y(z) 5 € + g
which is of course the same solution as we got using the first method. a

If F(s) is the Laplace transform of a function f(z), then we call f{(z) the inverse

Laplace transform of F(s) and write f(z) = £71{ F(s) }. This definition makes sense as one can
show the following: If f(x) and g{z) have the same Laplace transform F(s), then f(z) = g(z) for
all > 0 except for the points of discontinuity.

Remark

Because finding the Laplace transform is linear, the process of finding the inverse

Laplace transform is also linear,

2‘1{ c1 F(8) + e2G(s) } = clﬂ“l{ F(s) } +C2E“1{ G(s) }
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Example 5 Solve the initial value problem
y' +4y = 4z y(0) =1, ¥'(0)=5.
by using the Laplace transform.
Solution.  Take the Laplace transform on both sides,
S{y"} +48{y} = £{4z}.

Now if Y(s) = £{y} is the Laplace transform of y, then by (3.14), this equation
becomes 4

(Y@ -y -y ) +4¥() = 5
Now substitute the initial conditions,
4
Y (s) —s—5+4Y(s) = =
and solve for V',
4
Y(s)(s*+4)=s+5+ 5
8 n 5 + 4
s2+4  $2+4 s2s2+4)
As the last step, we must find the inverse Laplace transform of Y (s). We use partial

fraction decomposition in order to write Y(s) as a sum of simple fractions which can
be found in table 1:

Y(s) =

Because s® is a repeated factor, we must set
4 _ A, B _Cs+D
s2(s? + 4) s 8 244
Multiply by the common denominator s?(s? + 4),
4 = As(s® +4)+ B(s* +4) + (Cs + D).
Collect terms with like powers of s,
4 = s$*(A+C)+ 6B + D)+ s(44) + 4B
Now compare coefficients,
A4+ C
B+ D

44
4B =

I
o o o

Solving, we obtain A=C=0,B=1and D = —1.

So we have
5 5 1 1
Y = e &
(s) 32+4+32+4+52 s 44
_ 8 + 2 2 . 1
T2 +4 s24+4 ' g2

To find the inverse Laplace transform, we look at the table and obtain

y(z) = cos2z+ 2sin2z + .
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Remark In general, the method of the Laplace transform can be used with every linear equation
with constant coefficients,

(n—1)

y™ +ary ot ann1y tay = 7(z)

provided that the solution y(x) satisfies the conditions in {3.15). The most difficult part is to find
the inverse Laplace transform of the function Y '(s), and we will in the following investigate more
properties of the Laplace transform which can help find the inverse transform.

Exercises
1. Using the transforms in (3.5}, (3.7) and (3.8) and the rules (3.10) ~ (3.15) , show that
5 6
(a) L{cosaz} = ot 5> 0, (c) £{=°} = A >0
a

b) L£{sinhaz} = o

— s>, Q) £{z"} = -2

n+1‘ s> 0.

2. Without integrating, but using formulas (3.5) - (3.8) and rule (3.10), find £{sin’az} and
S{ Cos ax} How are the two transforms related to another 7

3. Find the Laplace transform of
(a) f(z) =10, {¢) f(z) = 2€% ~ sin 5z,
(b)Y f(z) = z° + cos2z, (d) f(z) =4sinzcosz + 2%,

4. Find the inverse Laplace transform of F(s) =
30 1 1 1

@ O Wigey ®igoy
. 28+1 1
() —5; Cy fei Q) 7§§—m Ol pepmpe
© 5+ oy : 1
331 s24 47 (&) s(s +5)’ & s2+1) (m) s(s+1)(s+2)
() 8245’

5. Using the rules discussed in this section, show that

(8) £{ze"} = G_l_ s> a, (b) &{zcosaz} = (—;—z—fmaaéji

2
s> a,

2as

(c} £{zsinhaz} = a2y

5> |al.

6. Use the Laplace transform to solve the initial value problem:

@ y"—y-6y=0 y0)=1, ¢y({0)=-1

®) ¥+ +2y=0 0)=1, y(O)=0

€ ¥ +y —2y=2"" y(0)=1, ¢0)=0

@) v +4y=2> y0)=0, y(©0)=2

(&) ¥ -2y ~8y=sinz y0)=%, yO)=1%

6 yW-y=0 y0)=1, y(0)=0, y'(0)=1, ,y"(0)=0
@ v -4dy=0 (0)=1, (0 =0, y"(0)=~2 y"(0)=0
h) ¥ +wPy=cos2z y(0)=1, ¢(0)=0, w?®#4
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3.4 Properties of the Laplace Transform

3.4.1 General Properties

It is usually quite complicated to compute the Laplace transform by using its definition.
In this section we will study properties of the Laplace transform which can be used to
derive the transform of a function from that of another function. Let F(s) = £{f} and
G(s) = £{g} be the Laplace transform of functions f and g. We have already studied two
properties:

e Linearity:

E{clf =+ ng} = ¢1F(s) + c2G(s). (3.17)

e Transform of o Derivative:

L{f'y = sF(s)-f(0) (3.18)
£{f"y = $"F(s)—sf(0) - '(0) (3.19)
L{fM} = §"P(s) = s"TH0) = 8*TAH0) — - = s P (0) - 1D ()

There are further properties:

e Transform of an Integral:

¢ [:f(u) du) = f—gﬂ (3.20)

We say that "integration” corresponds to 'division by s”.

Proof.  Set g(z) = / f(u) du. Then by the fundamental theorem of calculus,
0

g(0)=0 and g'(x) = f(=).

First we must verify whether g(z) is of exponential order to make sure that its
Laplace transform exists. Note that

Jo flu)du z
lim |g(a:)| = Hm .‘_9._________‘ < lim fo lf(u)’ du.
z—=on eff T—=00 et Porpet Ec""_

— Now if lim, 0 f; [f(u)| du = M exists and is finite, then

M
im 90wy Mg
z—+o0 gt% c-ro0 T
whenever ¢ > 0.

— On the other hand, if imgweo fom |F(u)| du = oo, then by "'Hdpital’s rule,

im 2O oy RN g )

o0 g T~ro0 %ecz z—oc  CelT

< o

because f(z} is of exponential order.



140 CHAPTER 3. THE LAPLACE TRANSFORM

Both cases show that g(z) is of exponential order and therefore has a Laplace
transform. Then using (3.18}, we get

e{g'} = se{g} —9(0) = s£{g}

Divide by s,
efg) = Mot _ S F)
g 8 E: 5
O
Example T Find the inverse Laplace transform of ! .
s{s+1)
Selution.  Method 1: We can use partial fraction decomposition.
Method 2: We use the above rule. Note that if we set
1
F =
(s) s+1
then by the table, its inverse Laplace transform is
1
= £t =e %,
f(z) {=5)=c
So if
1 o)
G e =
(s) s(s+1) 3
then by rule (3.20) the inverse Laplace transform is,
_1f F(s) = —u |"
y 1 — —1 — _pu — s
g(m)—ﬁ{s}fuedu e]ole.
O
e Translation on the s-azis:
S{ e flz).}y = F(s—¢) (3.21)
Progf.  Simply compute the Laplace transform.
o o
cleflz) } = f e fr)e ™ dz = f f@e 7 de = F(s—¢).
0 9
O
Example 2 Find the Laplace transform of f(z} = z"e®®,
Solution.  Since |
n n!
£{z } = il
we get
n_.cx n!
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Example 3 Find the Laplace transform of f(z) = °* cos2z.
Solution.  Since . s
£{cos2z} = o
we get that
s—3 s—3

3z 2 e = B
&{ &% cos2z } (5-37+4  s2—6s+13

Example 4 Find £7'{ G(s) } where

1

G = e as

Solution.  Because the equation s — 4s + 5 == 0 has no real solution, the denominator can
not be factored. Instead, we complete the square and write

1
Gls) = (s —~2)2+1
Remember that E“l{ ! 1 } = sinz. The translation rule (3.21) now shows
that
— 2z
{ 2+ T } = e*“sinz.
0
e Derivative of the Transform:
aflz}} = —F'(s),
and repeating,
cla™f(z)} = (~1)"F)(s) (3.23)

We say that "multiplication by z” corresponds to "differentiating the negative
Laplace transform”.
Q0
= f fla)e ™™ da
G

is the Laplace transform of f(z) for s > ¢. Take the derivative with respect to s,

Fl(s) = g;fooo fl@)e Fds = /Dmg;(f( o)e —”) da
= /Doo ~zf(z)e ** dz = —aF(s).

Proof.  Suppose that

(In a course on advanced calculus you will see why we are allowed to move the
derivative d/ds under the integral sign.) Finally, multiply by —1. O
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Example 5 Find the Laplace transform of f(z) = zsinaz (¢ > 0).
Solution.  Recall from (3.8) that

- a
2{3111 am} = m.
Therefore by rule (3.23),
. d a _ 0—2s80 Zas
o sinast = - ds ( 52 + a? ) T (sT4a?)? T (s?+a?)?
O
Remark If we divide divide by 2a, we get the formula
z s
=g = e 2
2{ 5y S0 4% } T r ) (3.24)
which is useful for finding inverse Laplace transforms.
e Integral of the transform:
z
f ( f Flu (3.25)

provided that lim,_,q+ f—(g)— exists. We say that "division by z” corresponds to
”integrating the Laplace transform”.

Proof.  Suppose, the Laplace transform F'(s) of f(z) exists for s > ¢. Then,

f:o Flu)du = f:o [/:0 flz)e™* dm] du

Now interchange the order of integration. (In an advanced calculus course you will
see why this is permitted for this improper integral ), and get for s > ¢,

L Flu) du y Oc’f(af:)e““‘“"du dz
0 0 E
[000 f(=) {/;00 e_u”duJ dx.

1l

Now by (3.2), this simpiifies to

/ﬂ F(u) d

g
sinz
Example 6 Find the Laplace transform of f(z) =
T

Solution.  Since £{sinz} = i_ for s > 0, rule (3.25) shows that
sin z *® o1 1 1™

Q{w——z } = /8 -—u2+1du = tan u]s

= lim (tan™'b~tan"'s) = T —tan~ls,
b—oo 2

and is defined for ¢ > 0. [
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Remark We can use this result to find f0°° %ﬁ dz. In fact,

o0 ¢ o0 M
ging . sinz .
dr = m — e dz = lim
a x 0 s§—0 T 30 a
. sinx
= Hm .‘3{ — }(S) =
80 i

Exercises

o
sin
e @5l
T

s (=l _ 7
l‘ﬁ%(z tan S) TR

1. Using the transforms for z”, cosaz and sinax, and the rules for Laplace transforms, find the

Laplace transform of

(a) ze¥® {c) zle® (¢) e“sinaz
(b) ztem® (d) z’sinaz (f) e“®cosax
2. Find the inverse Laplace transform of F(s) =

3 254+ 2
() s2 +4 (€) 2425 +2

4 28 -3
(b) Go1p 0 54

2 2s+1
(c) 82 +35—4 (&) 2 —2s+2
3s

(d) 2 —s5—6

3. Find the inverse Laplace transform of F(s) =

y'(0) =1L,

{g) ze*sinax
(h) ze"cosax

85 — 4512
s(s? -+ 4)
1—2s

5 +ds+ 5
25—3

52 < 25 4 10

© FO) =

st -2
T st 4532 +4

. _ 1
0 Fl) = 577716

(h) F(s)

yH(O) — O’ yl'H(O) = 1

s—1 1
(E‘L) m (d) F(S) i 53 ¥ 532
25— 3 1
e el F -_—_— .
() 952 — 125 + 20 () Fls) (s2+35—6)2
3s+5 1
(c) P T () F(S)—s4—16
4. Use the Laplace transform to solve the following initial value problems:
(@) ¥" -2y +2y=0 y(0)=0, Yy =1
b)) v -4 +4y =90 y®) =1, ({0 =1
(c) " -2 -2y=0 g(0)=2, (0)=0
(d) " +2 +5y=0 g(0)=2, ¥'(0)=-1
(@) ¥ —dy™ +6y" —4y' +y=0  y(0) =0,
) v — 2y + 2y = cosz y(0) =1, 2'(0)=0
B v' -2 +2y=e" y(0)=0, y{0)=1
h) v +2% +y=4e" y(0)=2, y(O0)=-1
1) v" -6y +8y=2 g(0)=0, y(0)=0
G v ~4y=3z y(0)=0, y(O0)=0
(k) " +4y' +13y==ze™®  y(0)=0, y'(0)=2
M) vy 42" +y=e®  y(0)=y'(0) = y"(0) = y""(0) = 0

5. Show that if F(s) = £{f(z}}, then

{fe)} = 27 ().

{¢>0)
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6. Find the inverse Laplace transform of F{s) =

§—2 s 41 H
S . S inf1+ =
(2) In 2 ©) B 565 () in( S+ 52)
s?+1 1 3 n —2
(b) In m {d) tan i m ( ) (32 + 1)3
7. Transform each differential equation to find one nonzero solution such that y(0} = 0.
(a) zy" + (z~2)y' +y=0 (d) zy" +2{x— 1)y’ - 2y=0
(b) zy" + (3z — L)y’ + 3y = 0 (e) zy" — 2y +zy =0
(¢} zy" ~ (da+ Ly + 202+ Ly =0 () zy" + {4z ~ 2y’ + (13z —4)y =90

8. Solve exercises 21 and 22 in section 2.7 on page 111 using the Laplace transform.

3.4.2 The Step Function and Translation

The function
0 if z<¢

is called the unit step function at ¢. It is not continuous, but piecewise continuous. This
function often appears in applications, for example, it may represent an electric switch
which is turned on at time c.

ufx-c)

S .

~
=

The unit step function w.{z).

Now let us find the Laplace transform of the unit step function. By definition,

£{us(z)} = /Om ucl{z)e " de.

Whenever we have an integral containing the step function u,, it is best to split the integral
at the point ¢ where the function ”jumps”. We write

L{uc(z)} = /Ucuc(m) e *dr + foo uc(z) e dx

£ DC‘C
s [O-e‘”d:c—!—/ 1.7 dx
1] c
1

o0
= 0+[ eTCdr = = e,
c 8

provided that s > 0, where in the last line we have used {3.2). That is,

e—cs

L{uc(z)} = (3.26)

S
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Example 1 Find the values of the function g(z) = 1 —u.{z). (It is called the step-down function
at ¢.} Then find its Laplace transform.

Solution.  We simply subtract the unit step from the function f(z) = 1 and obtain
(@) = 1 if z<e
=10 ifz>e

By linearity,

1 e—CS 1 _ emcs
o)} = {l-u@) = {1} ~Lu(@) = S - = ~—.
O
Jx 75
T A
1 : ;
| : |
¢ [ * ¢ -
The step-down function I — u.(z). The impulse from ¢ to d, u(z) ~ ua{z).

Example 2 Find the values of the function h(z) = wu.(z)— ua(zr). (It is called the impulse
from ¢ to d}. Then find its Laplace transform.

Solution.  The definitions of 1, and uy change at 7 = ¢ and z = d. We therefore must look at the
intervals [0,¢), [¢,d) and [d, o) separately.

6-0 =20 if z<c
h(z) = w.(x) —uglz) = { 1-0 = 1 if e<z<d .
IT—1 = 0 if d<z
The Laplace trangform is
Pl e—ds e=es . emds
{h@)} = Slu@) - Llu@) = - = T

We now define the translate of a function f(z) as follows: First we shift its graph c
units to the right, which corresponds to the function f{z —¢c). Then we cut the graph
to the left of the point x = ¢. This cutting is achieved by multiplication with the step
function u.(z), and we obtain the function u.(z)f(z — ¢).

& R

Ax)

u(x-c}ftx-c}
/\/ ,I/—\/
R

e

1
4 X

X

The translate of f(x) is w.{z}f(z - ).
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The Laplace transforms of f(z) and its translate u.(z)f{z — c) are related as follows:

S{ulo)f(z— )} = eL{f(z)} (3.27)

Proof. By the definition of the Laplace transform,
oD o0
Luc(z)flz—c)} = f ue(z)flz —c)e ™ dx = f flz —c)e™™* dz
0 [

because u.{z} = 0 when = < ¢ and u.(z) = 1 when z > ¢. Now substitute u = z —c. Then,
z =u+ ¢ and du = dz, and we obtain

Ll{ufa)f(z —c}} = /-Ooo flu)e swteldy = ¢ /:O fluye™du = e “g{f(x)}.

O

z if 0<e <1

Example 3 Find the Laplace transform of f(z) = { 0 $orS 1

Solution.  Let us first sketch the graph.

|
fix)

Example 3

P T

flz) =z —w(x)z.

This locks like the graph of y = = cut off to the right of £ = 1. This cutting is done
multiplying by the “step-down” function 1 — uz(x)}, so we can write

fz) = z2(l—-w(z) = z—w(z) =

To be able to use formula (3.27) we must express the factor next to u,{z)} as a function
in ¥ - 1. This is simple here, as z = (z — 1) + 1. Then,

flz) = z-w(z){z-14+1) = z—ui(z) (z — 1) —us(x),

and the Laplace transform is

a

Remark  There is a second way to find this Laplace transform, using formula (3.23) for the
product zf{z). Then,

d 1 de™®

tlo-mle)o} = olep-(-Felm@)) = G455
1 gt e
R R

which is the same as above.
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1 —2s8
Example 4 Find the inverse Laplace transform of F(s) = sz
Solution.  First we rewrite : .
F(S) = ;“5 “‘6_25;2"
f 1 . .
As £ { = } = z, the translation rule gives
8
- s b
£ 1{ e 253—2} = uy(e)(z ~ 2).
Therefore,
_ _jz-0=2z if 0<z<2
f@) = s-wee-n = {2200, H05E
4
A

f(x}

5

17 Example 4

T 7 T e
1 2 z 4 X
fle) =z — us(z)(z — 2).
. / ] _ cos 2z if 0<a<2n

Example 5 Find the Laplace transform of f{z) = { 0 if > on

Solution.  We first must find a simple expression for this function.

fix)

IDNVANYS _
IV x

Observe that its graph can be obtained from the graph of cos 2z by cutting to the right
of the point 27, which is the same as multiplying by 1 — usz.. Therefore, we can write

f(@) = (1~ uze(z))cos2z = cosz — uas(x) cos 2z.
Because cos 2z = cos 2(x — 2m), this can be rewritten

f{z) = cos2m — ug,{z) cos 2(z — 2n).
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Now we can use the translation rule (3.27), and get

e{f} = L{cos2z} — L{us.(z)cos2(x — 2n)}
s 5 __ a—2ns 8 — 5(1 - eWZWs)
T oe+d 0 @54 T T o4

Example 6 A mass of 1 kg is attached to a long spring with spring constant & = 4 N/m. At
time ¢ = 0, an external force of f{t} = cos2t is applied to the mass, and turned off at
t = 27. Initially, the mass is at rest in the equilibrium position. There is no damping.
Find the position y(2) of the mass at time .

Solution.  We use equation (2.61) with m =1, ¢ = 0 and k = 4, We have an initial value problem

" _ cos 2t if 0<t«<2n L
viriy = {6 posiem y(0) =40 =0.

Note that the independent variable is called ¢. Take the Laplace transform, and use
the result of the previous example,

2Y n s _ om2ms 5
&Y (s) +4Y (s) i Tid
s g
Y - _ 3w .
(s) (2442 [srae

Now by {3.24), the inverse Laplace transform of the first fraction is

-1 5 } _ _i_t in 9
£ { e Fisin t.
Using the translation rule (3.27), the inverse Laplace transform of the second fraction is

o/ 77 (32%1")"5 V= %ug,,(t)(t — 2 sin2(t — 27).

Therefore,

1
fin= 1 tsin 2t — % Uar (£)(t — 27) sin 2(¢ — 27).

Because sin 2¢ is periodic, this simplifies to

y(t) = %ts‘m 2t — %ugﬂ(t)(t — 27) sin 2¢,

Using the definition of the step function we can write two separate formulas,
itsin2t—0 = Ftsin2t if 0<t<2n
y(t) =
2tsin2f— (i —2m)sin2t = Isin2t if t>2m
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y A
w2 — P e S R
A\ A\
T <5 \/271: 3 4z r
~T2 ~ s B il -

The solution to example .

Exercises

L. Sketch the graph of

wy(z)(e — 1) — 2uafx)(x — 2) + ua(z

— Guy(z).

{x = Jus(z) — (z — 2us{z).

where f(z) = 27,
where f(t) = sint.
where f(z) = 2z,

Wz -

0559w
if 1<x<4
else (hy f()
if 0<a<2n
if z>27
if 0<e<2
if >2
if 0<t<an
if t>3nm
if 0<ae<w
if 7<z<2m
e ) f(z) =

(a) h(z) = wui(z)+ 2us(x)
{b) hiz} =
(¢) hiz) = uxlz)flz—m)
{(d) A(t) = us(t)f(t-3)
(e) hlz) = w(z)flz-1)
(f) hlz) =
2. Find the Laplace transform of
@ 1@ =1 ¢
o) f0={ 3
© fa = { 5
_ | coswz
,_{ ¢
(@) ) = {mt
6y flz)= sm2x
0

3).

cos L*

0
0
z
@
1
x
R
0
z?
0

(e
|
a-(t
=
il
|

3. Find the inverse Laplace transform and sketch the graphs of

@ F) = g (¢) Fls) =
o) Floy = 55— () F(s)=
(@ Flo =22 @) Fl) =
(@) F(s) = 26”25 (h) F(s) =

" —4

sin 7z

(s —2)em*
2 4543

if 2<zx<«<3
else
if 3<t«b
else

if 0<z<l

if z2>1

if 0<e<1

if z>1
if 6<z <l
if 1<2<?2
if z>2

if 1<z<?

else

e %+ e—zs — 6—33 _ e-—4s

—3s

—3&

e
§42

g
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=78 —3s
O PO = 5 ® #loh = S

_ p=2ws -5 __ o278
0 Fl) = 1—1"“ e

4. If we have an RLC-circuit with initialiy zero current and zero charge on the capacitor, we

EE C i q b]

where ¢(t} is the charge on the capacitor, i(t) the current and e(#) the electromotive force.
Now as i{t) = %‘f and ¢(0) = 0, we can write g(¢ fo i(7)dr. We obtain the equation

Lﬁ-kR'w%—l—/t'( Jar =e(t)  i(0) =0
dt kA C O'LT T =€ T = u.

Find the solution of this equation if

(a) L=0, R=100, C=10"%, et { ;§S§f<l
) L=1, R=0, =107 e={ O IS <¥
() L=1, R=0, C=10"* (ﬂ_{émmmm §S§;<w
(d) L=1, R=150, C=2-107", dﬂw{ .- §£g§;<1
() L=1, R=100, C=4.1074% an={3m §?§f<l

The units are in henry, ohm, farad and volt.

. A mass m is attached to a spring with spring constant k. Initially, the mass is at rest in

equilibrium. An external force f(¢) is applied. There is damping; the damping factor is c.
So we get the initial value problem

my" +ey' +hy=f(t)  y(0)=y'(0)=0.
Solve this equation if

1 if0<te<n
0 if t>m
1 ifo<tc?
0 if t>2

{fa) m=1, k=4, ¢=0, f{t)=

(b) m=1, k=4, ¢=5 f(t)=

sint if 0<t<2n

{
{
(c) m=1, k=9, c=0, ﬂﬂ={0 it t>or
{
{

t if 0<t<t
0 if t>1

t if 0<t<?
0 if t>2

Units are in kg, Nsec/m, N/m and N.
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6. Solve the following initial value problems:
0o < /2
T >w/2

1, m<x< 2w
0 else

@ v +y=f@), W0 =0 yO=1, S&)={ ¢

(b) ¢ +20 + 2 = he),  y0)=0, y(0)=1, h(:c)={

{c) ¥' +4y =sinx — usx(x)sinz, y(0) =0, #({0)=0
(d) ¥ + 4y = sinz + uz(z) sin (z — 7), yi0)=0, ¢(0)=0

o 1, 0<z<l
@ v ey=i, w0 =1 yO=0. so={y 953
() " +/3y’ +2y=wa(z), y(0)=0, ¥(0)=1
() ¥" +y=ua(z), 9(0)=1, ¢(0)=0
B) ¥ +y' + Jy=c - urpl)o—7/2),  y(0)=0, y(0)=0
: " f 0<z<1
O v ey=s w0=0 yO-1 &={7 252
o om ; i 0<z <y
O vy riy=o,  W0=0, yO=0 s@={7 5"
(k) ¥ + 4y = vz {x) — ugx(z), #0) =1, y{0)=0
M y® -y =wle) —uslz),  y(0) =y'(0) =y"(0) = y"'(0) =0
(m) ¢ +5y" + 4y =1-ua(2),  y(0) =y (0) =y"(0) =y"(0) =0
7. Solve exercise 23 in section 2.7 on page 111 using the Laplace transform.
3.4.3 The Delta Function
The function
N k fe<o<et+r
9(z) = { 0 else (3.28)

(c > 0) is called an impulse at ¢ of length 7 and height k. The strength I of this impulse is
measured by the area under its graph,

I = k7

which equals the integral

=2 fomg(m) dz.

c Cc+3 *

An impulse of length 7 and height .
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Now consider impulses of unit strength,

i <
or(2) = { 1/r if e<z<ec+r

0 else,

so that
o0
f Ser(z)dz = 1.
0

it

c 41

A unit impulse of length 7.

if the length 7 of the unit impulse is very small, then the amplitude 1/+ must be very large
in order that the impulse strength equal one. Now if ¢ is any point different from ¢, then
when the length 7 is sufficiently small, = will lie outside of the interval [c, ¢ -+ 7], and thus

Ser(z) = 0

while still
der(c) = 1/7.
Now let 7 — 0. As the limit, we obtain a new function d.(z) given by

o if z=c¢
be(z) = { 0 oo (3.29)
and whose integral we define by
(o,
f i b A\ (3.30)
0

This function is called the delta funciion. We think of it as an impulse of zero length
and of strength one. Note that J.(2) is not a function in the usual sense; it is called a
generalized function, and it can not be graphed.

In order to define its Laplace transform, we must first say what we mean by the
integral [i° 6.(z)f(z) dz. Note that for every impulse d..(z) of nonzero length and every
continuous function f(z),

[re@as = [T e = L
0 c T

T

Now let 7 — 0. Using I'Hopital’s rule and the Fundamental Theorem of Calculus we obtain

e 4. retT d
lim Sor(@)f(z)dz = lim i e df(ﬂ:) z fle+7)
=0 o ' =0 E:FT am 1

= f(c).
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It therefore makes sense to define the integral
o0
|t @de = 1)

Now we can define the Laplace transform of the delta function in the usual way,

of 6(z) } = /U T bz e Tdr = (3.31)

When ¢ = 0, we simply write §(z) = dy(z), so that

e{dz)} = & = L.

Remark Although the delta function is not a function in the usual sense, we can work with its
Laplace transform in the usual way.

Example 1 A mass of | kg is attached to a long spring with spring constant 4 N/m. The mass is
released from rest at position y(0) =3 m. At time ¢ = 27, the mass is hit with a
hammer, transferring a momentum of 8 Nsec. Find the position of the mass at time .
{ There is 1o damping. )

Solution.  We have an initial value problem
v+ dy = f{1), y(0)=3, ¥'(0)=0 (3.32)

where f(f) is the external force acting on the mass. How can we find f(¢) 7

Suppose, a force f(¢) acts on a mass m from time ¢ =a to time t = 5. It
transfers a momentum Ap onto the mass, which results in a change of
velocity Av with

Ap = m o Av.

By Newton’s second law,

Ap = m f:u'{t) dt = /ﬂbmu'(t)dt = f:f(t) dt.

Since f(t) = 0fort < e and ¢ > b, we can write this as an improper integral,

o)
Ap = f £(8) dt.
0
In our example, we have a = b = 27, so we must use the force

f(t) = chon(t).
Then - -
8 = Ap = f Fft)dt = f el (B) dt = ¢
0

0
s0 that ¢ = 8 and f(t} = 8d2:{t).
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Thus, equation (3.32) becomes
y" + dy = 82, (t), y{0) =3, ¥'(0)=0 (3.33)
Apply the Laplace transform to both sides,
(321’(3) e 33) +4Y{s) = 8e %,

Solve for Y(s),

3s Be~27s
Yis) = 244 s% 44
Using the table, we have
3s 8
-1 = £ —— 1 = 4sin2t.
£ {32+4} 3cost and {52+4} 8in
Using the translation rule,
3s
a1 —2ns — N _
£ { ! +e 214 } 3cos 2t + dua,(t) sin 2(t — 27)

= 3cos2t + duo, {1} sin 2t

In the last line have used the periodicity of sint .Thus,

3cos 2t if 0<t<2n
y() = { 3 cos 2t + 4 sin 2(2) it > 21
O
¥
PR 7 SN N \ W
Y f

VY

The solution $o example 1.

Remark We often think of the delta function §.{z) as the derivative of the step function u.(z).
This makes sense because

’ _J¢ if z<e | _
/0 de(u) du = { 1 i a:>c} = uc(z).

Exercises
1. Solve each initial value problem:

o),  y(0)=y'(0)=0
6z} +8x(z),  y(0)=y'(0)=0

(2) " +4dy
(b) ¥" +4y

I

il
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(¢) " +4y' +4y = 1+6(z), y0)=¢0)=0

(d) y"+2%'+y = z+8(z), y(0)=0, ¥ (0)=1

(e) ¥" + 2y +2y = 26:{(2), y(0)=y'(0)=0

(f) ¥ +9y == da.(z)+ cosiz, y(0) =y () =0

(8) " +4y" + 5y = 8x(@) +d2x(2), y(O0}=0, y(0) =2
) " +2y 4y = 8z)-dlz), y0)=y(0)=2

Supplementary exercises:

2. A mass /n on a spring with spring constant & (no damping) is at rest in equilibrium position
and receives an impulse po = rnwy at time ¢ = 0. So we have an initial value problem

my' +ky=0  y(0)=0, ¥'(0)=up.
Show that the initial value problem
my” + ky = ped(t), y(0) =¢'(0) =0

kas the same solution. So the effect of pé(¢) is to give the mass an initial momentum pg.

3.4.4 Periodic Functions

In many applications we encounter functions which are periodic. A nonconstant function
f{z) defined on [0, 0o) is said to be periodic if there exists a number p > 0 such that

He+p) = fl=)

for all x > 0. The smallest such p is called the period of f.

g.9- e The functions sinz and cosx are periodic with period 27.
e The square wave function f,(x) is defined by

fula) = 1 if ne<z<(@n+1l)a
¢ N if Cn+la<z<(2n+2)a (3.34)
where n is integer. It is periodic with period 2a.

fix) A

| O S G

The square wave function f.(z).
e The trianguler wave function is defined by

fulz) = z —2na if 2na<z<(2n+41}a
t Tl {(2n+2)a-z if 2n+la<z<(@n+2)

where n is integer. It is periodic with period 2e. As you can see from the
graph, f{(z) = fs(z) except for the points of discontinuity 0,a,2a,--- .
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] ¥ f T
2a 3a 4a Sa

The triangular wave function.

The Laplace transform of a periodic function can be computed by integrating over a

fintte interval:

Theorem 21 Suppose, f(z) is periodic with period p and piecewise confinuous on the
interval [0,00). Then, the Laplace transform of f erists for s > 0, and

— 1 P — 5T
£} = mfo Hz)e™ da. (3.35)
Proof. By the definition of the Laplace transform,
£{f} = / flx)e % dx (3.36)
0

2p

p 3
[ f(@)e™*  dz + [ flzye™** dz +
0 P

3p
flzye %% dx
2p

{n+1)p
—I----—i-/ flzye **dz +---
np

Now use the substitution v = x — np on the integral over [np, (n + 1)p], so that z = u+np
and dz == du, and obtain

(n+1)p p
/ flzle ™ dr = f Flu+ np)es7P) gy
n; [}

P

Because f(u -+ np) = f(u) this equals

(nt+1)p P
/ flzie ™ dz = e's”pf Fluw)e " dx
n ¢]

P
so that (3.36) becomes

£{f} = [:f(:v)e‘Snc dx( 14e PP pe P . LemPy .., )

Now recall the geometric series: For |v] < 1,

R . S
1-v
Applying this to v = &7 we see that
P —S5z 1
£{f} = /0 flz)e dmime_ps.
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Example 1 The Laplace transform of the square wave function is

1 2a

&{f:(z)} fs(z)e ™% dz

1-— 8-2sa

0
1 a 20
= W( / E—SI dr — / eﬁsm d:l',‘)
—€ 0 a

- e L))

— m (__e-—sa + 60+E—2as - e—sa)
B (1 — e—sa}Q
T 5(1—e—2sa)

(1 — e—sa)? _ (1 _ e—as)

s{l—e-%)(1+e-sa) s(1 -+ e—os)”

Now multiply the numerator and denominator by e®*/2,

(eas/2 . e—-as/2) B 1 as
elfi(@)} = Ty = iy
0
Example 2 The Laplace transform of the triangular wave function fi(z). Since
fslz) = fi(z)
and f:(0) = 0, the rule for derivatives gives
£{fs(2)} = s£{fi(x)} ~ £i(0).
£ x 1 as
S{ft(m)} = —{"Ji%g-)—} = =3 tanh W2***
C

Exercises

1. Sketch the graph and find the Laplace transform of a different square wave function. This
function is defined on the interval {0, 2a)} by

f(x) = 1 if 0€<z<a
— 10 if a<z<2a,
and in general, by
flz 4+ 2na) = fz), n=0,1,2,..., 0<2<2a).
fix) 4

| R A Grrme— sty Grmmm—]
I I : l l I I
I 1 I | I | 1
1 I | I 1 I ] .
T I T ! T T T =
a Za 3a 4a Sa 6a 7a x

The square wave function of exercise 1.



158 CHAPTER 3. THE LAPLACE TRANSFORM

2. Sketch the graph and find the Laplace transform of the sawtooth function. This function is
defined on the interval [0, ) by

z
g(w) - E:
and in general, by
gz + na) = g(x), n=0,1,2,..., 0<z<a)
Six)
1
I | I | |
1 1 I | | &
/ / / / L7
) i ¥ ¥ \{ L
a 2a 3a 4a Sa X

The sawtooth function.

3. Sketch the graph and find the Laplace transform of the staircase function

T

) = ~ gz
@) = = - g@)
where g(z} is the sawtooth function.
fx -
4+ et
3 —
2 1 o
1 e
a Za Ja da Sa %

The staircase function.

4. Sketch the graph and find the Laplace transform of the half-wave rectification of sin kz. This
function is defined on the interval [0,27/k) by

| sinkz if 0<z<a/k
(=) = {0 if w/k<o<2nfk

and in general, by
flz+ 2nn/k) = f(x), {(n=0,1,2,..., 0<z<2x/k).
fix) fix)

14 3

w 2m'lk SIzi.fk X ‘rc;k 2a Iy X

The half~wave and full-wave rectifications of sin kz.



3.4. PROPERTIES OF THE LAPLACE TRANSFORM 159

5. Sketch the graph and find the Laplace transform of the full-wave rectification of sinkz,
9(@) = f(&)+uppfz—n/k) = |sinak
where f(z) is the half-wave rectification of sin kz.
6. Consider an RC-circuit (no charge on the capacitor) with a battery supplying ey volts.

(a) If the switch to the battery is closed at time t = a and opened at ¢t = b > a, show that
the current {(t) satisfies the initial value problem

RM%@ = eo(8at) — (), §(0)=0.

(b} Solve this problem if R = 100 ohm, C = 107 farad, ey = 100 volt, ¢ = 1 sec and b =2
sec. Show that i) >0l <t<2andi(f) <0t > 2

7. Consider an initially passive LC-circuit { no charge on the capacitor ) with a battery
supplying eg volts.

(a) If the switch to the battery is closed at time ¢ = 0 and opened at ¢ = a, show that the
current £(t) satisfies the initial value problem

Li"—i—%i = eo(d(t) - 6a()),  9(0) = (0) = 0.

(b) Solve this problem if L = 1 henry, C = 1072 farad, e; = 10 volt, and a = 7 sec. Show

| sinl0¢ ift<w .
that #(t) = { a it Graph the solution.
{c) Now assume, the switch is alternately closed and opened at ¢ = 0,0.17,0.2%, ... . Show

that i(f) satisfies the initial value problem

1006 = 10[8(t) ~ Sr10(t) + S2m/10(t) — Sanj10(t) + Bumsroft) -]
= 10 (—1)"6nn/10, i(0) = #'(0) = 0.
n=0

Solve this problem to show that
i(t) = (n-+1)sinl0¢, nwf10 <t < (n+ L7 /10.

We have some kind of resonance. Graph the solution.

(d) Now assume, the switch is alternately closed and opened at t = 0,0.27w,0.47,... . Show
that #(¢) satisfies the initial value problem

V1000 = T0[0(t) — Gnps(t) + Sanys(t) = danys(8) + Sanps(t) -]

= 10 f:(—nnam /51 i{0) = ¢(0) = 0.

n==0

Solve this problem to show that

i) = sin 10¢ if nis even
10 if n is odd

Sketch the graph.
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3.4.5 Convolution

There is no simple formula for the Laplace transform of a product. In general, the Laplace
transform does not preserve products,

£{fgt # £{f}£{o}!

However, we can give a formula for the inverse Laplace transform of a product.

Definition Let f and g be piecewise continuous functions defined on [0,00). The
convolution [ * g is defined by

(Fr9)a) = [ fwglo~u) du (3.37)

Example 1 The convolution of the two functions f(z) = cosz and g(z) = sinz is
€
COsT *sing = f cosu sin {z — u) du.
a
Convert the product inte a difference using the identity

1
cosAsin B = E[sin(Am%B) —sin (4 - B)].

We obtain the convolition

1 &
cosT xsinT = 5[) (sina:~»~sin(2u-—:c)) du

w2 l["uasin:nc+ cos (2u — z) r

- g 2 0

= 1(zsin +E s:r—lcos( m)) - Les

S 3§ T+ 3 co 5 = jTsinz

]

Remark Substituting s = ¢ — w in (3.37) we get u =z — s and ds = ~du so that also

Q 3
= - —ds} = — s)ds.
(F2a)@ = [ se-age - = [ o)1~ s)ds
This shows that convolution is commutative,

(f xg){z) = (g=f)z).
In general, convolution behaves like a product of functions. One can show that
1. (fvg)#h = fx{g*h) (associative law),
2. (f+g)xh = fxh+gxh (distributive law), and
3. 0=f = 0.

Now we show that the Laplace transform converts convolution to an ordinary product:
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Theorem 22 (Convolution Theorem) Suppose, f(z) and g(z) have Laploce iransforms
F(s) and G(s) for s > ¢. Then the Laplace transform of f + g exists for s > ¢, and

L{f+g} = F(s5)G(s). (3.38)

Proof. By the definition, the Laplace transforms of f{z) and g(z) are

F(s) = /O e du and Gls) = fﬂ T e dv.

F(s)G(s) = ( fo " fu)e—sn du) ( /0 " g(v)es dfu).

Now write as an iterated integral,

Therefore,

F(s)G(s) = [)m /Ooo Fflwg)e @+ dy du.

Substitute £ =u +v. Then,v =z —~vand de =dv. fv =0, then x =u+ 0 =u so that
ranges from u to co. We get

F{siG(s) = /Om /oo Ffluw)gle — w)e™* do du.

Now interchange the order of integration. As the region of integration is bounded below by
the z-axis and above by the line u = z (see sketch), the limits of integration change to

F(s)Gls) fow f: flwg(z —w)e™ du dz

/ﬂm(/j Flwlglz —u) du) e dr = £{f=xg}.

I

=0

Change of order of integration.

Remark In this proof we have assumed that the order of integration can be exchanged even for
improper integrals. Books on advanced caleulus explain under what conditions this is allowed.
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Solution.
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Example 2 Find the inverse Laplace transform of H(s) = (szwi—a?'}?*'
We can write
His) = F{s)F(s)
where I
F(s) = ———.
(s) 52 + a2
Now by the table,
1 1
- p-1 — g
flay = { P } , sinaz.

Example 3 Find the inverse Laplace transform of H(s) =

Solution.

By the convoluticn theorem,

hiz) = (f=Hlz) = /Om% sinausina{z —u) du.

[e3

Using the trigonometric formuia

sindsinB = %[cos(A—B) - cos (4 + B)]

we gbtain
I &
hlz) = 52 |/, ( cosa{2u — ) — cosax ) du
_ __I_[Sina(2u—m)_ ]1
= 5| T g ) weesex |
1 ysinaz  sin(-az} 1
- 2a2( % by Fcosax —D) = 53 {sinax — arcosax).

We have found that

1

Trar (3.39)

1 :
S{ 70 (sin ez — ax cos ax) } =

O

2
(s —13(s?2 +4)°

Method 1: Use partial fraction decomposition and obtain

2 1 2~ &3 T2

H(s) = = E ) 1 _
(8) = 5571 591 5544

Using the table we get

2 2
hiz) = £ H(s)} = ge‘”—g cosZm—% sin 2.

Method 2: Notice that H(s) = F(s) G(s} where

2 1
e and G(s) = Py

F(s) = —3

By the table, the inverse Laplace transform are

fz) = £7{F(s) }

= sin2z and glz) =
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By the convolution theorem,
hiz) = (fxg)z) = / sin {2u)e® “du = €° / sin (2u) e ™" du.
0 0
Integration by parts applied twice gives

h{z) e’

il

&
(- sin2u — 2cos2u ) ]0

|
= :c(e . —sin2m—2cos2:f:)+0+§)

2
sin 2x — 5 cos 2.

Example 4 Solve the general second order initial value problem

Solution.

y' + by tey = (1), y(0) =y'(0) = 0.
Take the Lapiace transform on both sides,
Y (s) + bsY (s) + ¢V (s) = R(s).

Now solve for Y'(s),
(s* +bs+ )Y (s) = R(s)

Y(s) = H(s)R(s) (3.40)

where we have set ]

s2+bs+e

In applications, the function often r(¢) represents the input of a system ( e.g. external
force, voltage, etc. ), and the solution y(¢) the output of a system. The function H{s)
is called the transfer function. You can see that the transfer function H(s) depends on
the system under consideration (here the values of the constants b and ¢), while the
function R(s) represents the input. Applying the conveolution thecrem to (3.40), we
have

H(s) =

e aluias fo h(ur(t — u) du (3.41)

where h(t) = s—l{ H(s) }

If we choose R(s) = 1, then y(t) = 2‘1{ H(s) } = h(t), and this is the solution to the
initial value problem

¥ by ey = 6(2), y(0) = ¢'(0) = 0.

For this reason, h(t) is called the impulse response of the system. Often, the system
will be described by this impulse response, and the output can be obtained by forming
the convolution of the input with the impulse response as in (3.41). O
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FExercises

1. Find the convolution (f = g)(z) if

(a) flz)==, g(z)=1 (d) flz)=1z% g(z)=rcosz
(b) flz) ==, g(z)=e" (e) flz) =e*, glz)=e™
(¢) flz)=sinz, g(z)=sinz (f) fl)ez, glz)=cl" b#a
2. Using the convolution theorem, find the inverse Laplace transform of F(s) =
1 s 1 G(s)
(&) sHs* + 1) () (s2 + 4} (s + 1) (c) (s +1)2(s2 +4) (d) s? 41

3. Using the table, find the inverse Laplace transform of
52+ 3 283 — 57
(@) a5 e ®) G omaee
{2 + 25+ 2) (452 — 45 -+ 5)

4. In each of the following initial value problems, express the solution as a convolution integral:

(a) " +wiy = g(@), y(0)=0, ¥'(0)=1

(b) ¥ + 2y +2y = sinaz, w0 =0, ¥ =0

(¢) &' +4y' + 17Ty = glx), y(0) =0, ¥y (0)=0

(@) y"+v' + 2y = 1—u.(x), y(0) =1, y'{0)=-1

(&) ¥" +4y +4y = g(2), y(0)=2, ¥(0)=-3

{fy y"+ 3y +2y = cosax, y0)=1, y(0y=0

&) vy -y = g(=), y(0) = y'(0) = y"(0) = y"'(0) = 0

(&) o™ + 5y + 4y = g(¢), y(0) =1, 3'(0)=y"(0)=y"(0)=0

5. An equation .
v@) = @)+ [ v ) du
0

with y an unknown function, is called an integral equation. It can be solved taking the
Laplace transform on both sides. Find the solution o

—
jt]
e

=

P
&

e
I

m—I—/O. ylu) sin (2 — u) du
(b) y(z) = s'm?z—fo y(u)(z — u) du

6. A mass m =1 kg is attached to a spring with k¥ = 4 N/m. Initially, the mass is at rest in
equilibrium pesition. There is no damping. An external force of f(¢) is applied, where f(t)
is the square wave function (3.34) with amplitude 2 and period 2x. Find the position y{f) of
the mass at time ¢, and identify the steady state and transient solutions.

Supplementary exercises:
7. Show that the convolution has the following properties:
(@ (f+g)=h = fxh+g=*h,
(b) O0=f = 0@,
(¢) (fxg)+h = f=*(g=h),

8. Find functions f and g such that
{a) Ixf# ], (b) f=f20.
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8. If the function f{z) is continuous on (0,00) but lim,_o+ f{z) = +oo we can define the
improper integral [J* f(z) dz by

o] 1 [
](; flaydz = vljé%l*‘/; f(a:)d:c-i—bli)rrolofl flx) dx

provided the two limits exist.

(a) Find the Laplace transform of f(z) = 2~/2.

b A.pply ti (4] { - } e -/‘\/_ .
1€ COnv 111[ 100 »h.e():[ ent 1o S]k(]w £ ]ia‘t .2 [ d

3.5 Review of Partial Fractions Decomposition

When looking for the inverse Laplace transform we often have to express a fraction

= G

as a sum of simpler fractions. This procedure is called pariial fraction decomposition, and
you have already used it with integration. Let us give a quick review.

Step 1: Factor the denominator Q{s) completely. You will obtain factors of the form

s—¢ or s +es+ f.

Step 2: Find the terms included in the partial fraction decomposition.

e If the linear factor s —c¢ appears n times (that is, you have an expression
(s — ¢)™), then you must include the terms

Ay Ay As Ap
s—c¢c’ (s —¢)?’ (s —c)?’ (5 —c)?
in the partial fraction decomposition.

o If the quadratic factor s°+es+ f appears n times (that is, you have an
expression (s + es + f)7), then you must include the terms

Bis+ ) Bos+ Oy Bys 4+ Cj Bnos+ Oy
s?+es+ f’ {s?+es+ f)2° (2 +es+ )%’ (s +es+ f)»

in the partial fraction decomposition.

Step 3: Find the inverse Laplace transform of each term. In the case of a quadratic
denominator, you must first complete the square, and write
Bs+C _ Bs+C
(s2+es+f)" ((s—c)2+a2)"

where ~2¢ == e and ¢ + a® = f. Then you separate into two fractions,

Bs+C _ Bi{s—¢) Be+C

((s—c2+a®)"  ((s—e?+a2)"  ((s—c)?+a2)"

and use the table to find the inverse Laplace transform of each of the two fractions.
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Example 1 Find the inverse Laplace transform of F(s) =

Solution.

Example 2 Find the inverse Laplace transform of F(s) =

Selution.

CHAPTER 3. THE LAPLACE TRANSFORM

s241
83— 952 — Bs’

The denominator factors as
Q(s) = s(s+2)(s—4).

We have three linear, nonrepeated factors. We therefore must use the partial fraction

decomposition
s +1 A B c

s{s + 2}(s — 4) = ;+8+2+:c-~4'
To find the values of 4, B, and €, multiply by the common denominator s(s+ 2)(s — 4),

& +1 = Als+2){(s—4) + Bs{s — 4) + Cs(s + 2).

Substitute s =0, s = =2, and s = 4 to obtain

84 = 1 A = -1/8
19B = 5 B = 5/12
240 = 17 c = 17/24
Therefore,
11 5 1 17 1
Fo) =55 " o543 T
and 5 17 1
o =2 St o -2z 4
fz) = +hE @ N3 24( 3410”2 + 17e )

_ 2
5%(5 + 2)°

The dencminator coniains the linear factor s, repeated n = 3 times, and the linear
factor s + 2, repeated n = 2 times. We therefore must use the partial fraction
decomposition

2 A

/ VB yry A\ \ B
3(s+2)2 s 52 & s+2 (s +2)%

Multiply by the common denominator s%(s + 2)%.

2 = As?(s+2)?+ Bs(s+2)2+ C(s +2)? + Ds*(s + 2) + Es®
= A(s* +45° +451) + B(s® + 45T + 45} + C(s% + 45 + 4) + D(s* + 25%) + ES°

We can not use the method of the last example to find all of the coefficients because
we have repeated factors. Instead, we expand and collect like powers of s,

2 = s*(A+D)+5*4A+ B +2D + E) + s*(4A + 4B + C) + s(4B + 4C) + 4C,

and then compare coefficients:

st A + D = 0
s°: 44 + B + 2D + E =0
5% 44 + 4B + C = 0
5: 4B + 4C = 0
1: 4C = 2
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If we solve this system of equations, we get

c=1/2, B=-1/2, A=3/8, D=-3/8 E=-1/4

Therefore,
31 11 11 3 1 1 1
F8) = o= — = = 4 oo e e — =
A T - B Bl e Rl i oy
and 3 ? 3 1
_ __E ""U____ —2x _ = 2z
f(ﬂi)—8 2-¥- 1 3¢ 7 %e
[
552 —5—2

Example 3 TFind the inverse Laplace transform of F(s) = W

Selution.  There is one linear factor and one quadratic factor. We use the partial fraction
decomposition
5s? —5—2 A Bs+C

G+2)(s2+1)  s+2 2+1°
Multiply by the common denominator,

557 —s—2 = A+ 1)+ (Bs+C)(s+2) = s*(A+B)+s(2B+C) + (4 +2C).

Now compare coefficients,

Solving, we obtain

Therefore,

4 =4 4 s 1

F o = -3 .
() = tmat - g9 Fr1 Y@l

The inverse Laplace transform is

f®) = 4e7% 4+ cosz — 3sinz.

60

Example 4 Find the inverse Laplace transform of F(s) = (2165130
8

Solution.  'When completing the square we obtain
s* 4+ 65434 = (s+3)% +25.

This shows that we can not factor further. We have two quadratic factors, and must
use the partial fraction decomposition
60 As+ B Cs+D

(s +4)(s2+6z+34)  sZ44 +32+63+34'




168 CHAPTER 3. THE LAPLACE TRANSFORM

Multiply by the common denominator,
60 = (As+ B}(s* +6s+34) + (Cs + D){(s* +4),
and expand and collect like powers of s.
60 = s*(A+C)+5* 64+ B+ D)+ s(344 +6B + 4C) + (34B + 4D).

Now compare coefficients,

8% A + =
57 64 + B + D =0
5 4A + 68 + 4C = 0
1: 348 + 4D = 60
Solving this system of equations, we get
10 50 10
A__E’ B“”i'g" G_D—%.
Therefore,
10 f—s+5 s§+1
Fls) = §§(s2+4 (s+3)2+25)
10 5 3 s+3 2
S 1o P e
29\ s2+4 244 (s+3)2+25 (s+3)24+25

Using the table, the inverse transform is

2
fls) = % (—cos2z + % sin 2z + 7% cos 5z —~ 38"3

? sin 5x).

st + 1162~ 25+ 15
(s — 1){s® + 4)2

Solution. We have one linear factor and one repeated quadratic factor. Therefore, we use the
partial fraction decomposition

Example 5 Find the inverse Laplace transform of F(s) =

gt 41182 - 25+ 15 A Bs+C Ds+ E

G-DE+42 ~ s-1 T FYE T @ra

Maultiply by the common denominator
s+ 118 — 25415 = A(s® +4)2 + (Bs4 C)s— 1)(s* +4) + (Ds + E)(s — 1)
and collect like powers of s,

' +11s° - 25 +15 = (A4 B)s*+ (—B+0)s*+ (84+4B - C + D)s*
+ (=4B+4C - D + E)s + (164 — 4C — E).

Compare coefficients,

st A 4+ B = 1
8 - B 4+ C = {
8% : 84 4+ 4B - € + D = 11
s — 4B + 4C - D + E = =2
1: 164 - 40 - E = 15
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Solving, we obtain

Therefore,

Pl = L4 s+l o1 3 1
T o1 T Er D T s-1 T Er4aE " EraE

Using the table, we obtain an inverse Laplace transform

12z + 1
16

1
flz) = e”+32$—2sin2m+-——(sin2z—2:cc052m) = %4

778 sin 2z — %(:0323:.

0



170

CHAPTER 3. THE LAPLACE TRANSFORM

3.6 Tables of Laplace Transforms

flz) F(s) occurs
1
1 R >0 (3.4)
1
z =) 8= 0 (3.5)
s
n ni!
x (n=1,2,...) ;”ﬁ““_"}_““i*, s>0 n=1: (3.13)
n > 2. exercise
1
e® , §>c¢ (3.7)
s§—c¢
sinaz 2 s>0 (3.8}
8%+ a?’ '
COs ax M, s>0 exercise
s 4+a
. a .
sinh az pompt > lal exercise
s
cosh ax popmpct > |a| (3.11)
e ginax ;, § > ¢ | exercise
(s —c)? +a?
e cos ax %, 8 > ¢ | exercise
(s—c)*+a
n !
z"e™ (n=12,...} W’ s>c¢ (3.22)
. 1
'“Z"ag (smam - QT COS aa:) (82—+“g§“)-§, s§>0 (339)
T s
3, Sinaw (CEYEE >0 (3.24)
e"‘“‘CS
te(z) S >0 (3.26)
de(z) e, ¢=290 (3.31)

Elementary Laplace Transforms
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flz) F(s) OCeurs
C;fl (”E) + Cgfg (:L") chi(s) + CQFQ(S) {310}
J'iz) sF(s)— £(0) (3.12)
f{z) s?F(s) — sf(0) — f'(0) (3.14)
£ (2) S F(s) ~ s 1(0) ~ -

o= s fTB(0) - fTD(0) | (3.15)
f: Flu) du @ (3.20)
e“® f{x) (s —¢) (3.21)
flex) %F(—E), c>0 exercise
(F29)e) = [ Jgle—wde| F)GE) (339

a

z" f(z) (~1)"F™ (s) (3.23)
f-gf"l f " Plu) du (3.25)
u(z) flz —¢) e F{s), ¢>0 (3.27)

Properties of the Laplace Transform



Chapter 4

Power Series Solutions

In this chapter we will study solutions of differential equations by power series. We must
first discuss power series in detail.

4.1 Power Series

4.1.1 Introduction

An infinite series in powers of the variable z,

oG
Z anz" = ag+a1m—i—a2$2+a3$3—é—--wi-an:c"»%“--
e

is called a power series centered at zero. In general, a series of the form

fes]
an (2 =~ )" = ag+ ar{z — zo) + as(z — )% +az(z — o) + -+ apz — ) + -+
n=0 (4.1)

is called a power series centered al z,. The numbers a, are called the coefficients of the
power series, and the number x, is called the center of the power series.

Remark Every power series of the form (4.1} can be made into a power series centered at zero by
substituting z = = — x,. Thus, it is enough to study power series centered at zero.

Note that a power series is a sum of infinitely many terms. The next example explain
what we mean by the sum of all these terms.

Example 1 Discuss the power series
d gt = l4o+a’ i+

(This is called the the geometric series.)

Solution.  Let us first look at the sum of the first N 4 1 terms,

N
Sy = Zm" = 1l+z+z2+2°+ - +2zV.

n=0

173
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To simplify this expression, we multiply both sides by 1 - a,

Sy(1—z) = (I+z+2®+2%+--+2M)(1-2)
= (I+e+a?+2%+ +2Y) ~(e+2?+2% +2 . 42V
= 1-zV* (4.2)

We can divide by 1 -2 ifz#1,

1— $N+l

Sy = 11—z

Now we add more and more of the terms, that is, we let N — co. We must distinguish
three cases.

o If {z] <1 then

lim zV* = 0
N<oo
and thus we obtain
1— g+t 1
iim Sy = lim = .
Neroo o Naw l1-—= 11—z
e If |z > 1 orz=-1, then
lim V!
N-—yoo
does not exists, so
1 - $N+1
m Sy = Hm
N-boo Neow 11—z

does not exist either.
e If #+ =1 then we can not divide by 1 — z in equation (4.2). However, we can
compute Sy directly,
Sy=1+1+1+1% . +1¥ =N +1

N-+1 ferms

80 that
lim Sy = lim N+1 = oo,
N—=oo N—roo
We have shown: If |z| < 1, then

1
1-2’

N
lim Sy = lim » 2" =
n=0

N-co N—=eo

otherwise this limit does not exist. We say that the geometric series converges for
lz| < 1, and define its sum for such 2 by

Z z" = Ii:c (4.3)

O

Let us define the concept of convergence properly:



4.1. POWER SERIES 175

Definition Given a power series

Z an(2 — )",

=
the finite sum
N
Sy = Z an(T — 2,)"
n=0
is called the IV-th partial sum. We say that the series converges at a point z to the number
f(z), if the limit of partial sums

N
J(z) = lim Sy = lim Z an(x ~ z,)".

N-—ro0 N0
n=0

exists. Otherwise, we say that the series diverges at z.
The situation of example 1 is typical for a power series, as the following theorem shows:

oo
Theorem 23 Consider a power series Z an(z — 2,)"  and suppose,
n=0
, a
R = lim L
n—reo a‘ﬂ.+1

exists. (R = oo is permitted.) Then
e the power series converges for |z — z,| < R, and

o the power series diverges for |t — z,| > R.

Diverges Converges Diverges

_________ o ol

SRR 7

Radius and Interval of Convergence

Remark The number R is called the radius of convergence, and the interval (zo — R, zo + R) is called
the interval of convergence of the series,

Remark The theorem does not tell us what is happening at the endpoints z, — R and z, + B of the
interval of convergence. At these endpoints, some series converge while others diverge; you can fry to
check the following examples for convergence at the endpoints by yourself,

o0
Example 2 From example 1 we see that the geometric series Z z" has radius of
n=0

convergence K = 1 and interval of convergence (—1,1). On this interval, the geometric

series equals the function f{z) = 13- ]

R=1 Rt
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oo

> ()@ - 2™

n=0

Example 3 Find the interval of convergence of the series

Solution.

This is a power series with center %, = 2 and coefficients a, = (~1)"*1n. Its radius of
convergence is

R = lim

n—rol

= lim
n—co T+ 1

= 1.
Gni1

Therefore, this power series converges for |¢ — 2| < 1, that is whenever 1 <z < 3, and
its interval of convergence is (1, 3).

O

__ Rsl__Ral

4

o0

1 n
Example 4 Find the interval of convergence of the series z (Gt

n
— n 2

Solution.  This is a power series with center z, = ~1 and coefficients a, = g Its radius of
n
convergence is

-—1_
- lim_@%i__ Iim?_(ﬁj'_l):

i—
5] [eEsyvioy n—Fco )

R = lim

n—oo

2.
Gnpl

Thus, the interval of convergence is (—3,1).

R=2 R=2

o0
Example 5 Find the interval of convergence of the series Z ntz™.

n=l
Seolution. This is a power series with center z, =0 and coefficients a, =n! . Its radius of
convergence is

Gn

n!

R = lim nirréomz

n—-+00

= 0
Gnil

lim ——
n—oo N - 1

Thus, the series converges only at its center ¢ = 0. {Note that every power series
converges at its center because every term of the series is zero at z = x,.)

]

Diverges

Diverges
_______________ g

0
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T
Example 6 Find the interval of convergence of the series Z w—

nz={

Solution. This is a power series with center z, = 0 and coeflicients an = # Its radius of
convergence is

. n+ 1)! .

lim ( ; ) = lim (n+1)

00 i =00

R = lim |—2»

=3

I
8

Qi1

Hence, the interval of convergence is (~oo,0). {You may recognize it as the power
series for €%, see (4.6) below.) O

Converges Converges

Example 7 Find the interval of convergence of the series

o« (___l)n 3 ] g 12

Z 3“-1_$_+§m_m__§.§,__...
LAl ® 2 TE TR T Ts

Solution.  We can not use the thecrem directly because

" Oy
Hm
=¥ 00 ﬂ,n+1
does not exists. (The coefficients a1, a0, ay,95,- - , Ggk+1, A3k, + - are zero.) Instead,
we can think of this as a power series in z = 2%, and write it in the form
oo oo
(~1) (-1
> Gl o 3 En (44
n=>0 n=0
The formula for the radius of convergence gives us
E—zl)" gn+1
o || 7 e =
So the series (4.4) converges for
2| < 2,
or
z < V2.

The radius of convergence is /2, and the interval of convergence is (- /2, ¥/2). il

Given a function f(x), we often need to find a power series > 52 an(z — 3,)" so that

oo

f@) =3 an(z—z0)"™.

n=0

In this case, we say that the power series represents (or is a series expansion of) the
function f(z). One commonly used way to find such a series is to construct the Taylor
series af a point T,
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If f(z) is infinitely differentiable at z,, then its Taylor series at z, is defined by

f”(xg)
2

3> L2 e a = o0+ ot —a) + T

We say that f(z) is analytic at z,, if it can be represented by its Taylor series, that is if
0 ),
flz) = Z L___{___?l (z — m)". (4.5}

in an interval containing z,.

The functions which we are commonly using are analytic at every z, in their domains.
These include all functions composed of rational functions, trigonometric functions and
exponential functions.

e.9. You may already know the Taylor series expansion of the following functions,
valid for all z:

22 23 gt 2 ogn
et wm 14z *2‘1* -+ E’,T RE— -?—1—- (46)
332 3;4 EB ( 1}11 2n
cosxr = 1"““2'"?"&“"&'“!““%“!“4“"' = RZ;J (271.)! (4.7
) .'CS .’L“r’ $7 ( 1)n L2nt1
sing = m_—f’;T—i_ﬁ_ﬁ_}”“: E (2n+1}f (4.8)

In many practical applications, we can only compute finite partial sums

N

Sy = Zan(ﬂ:“ma)n

n==0

of a power series. (In the case of a Taylor series, this is called a Taylor polynomial). The
following two sketches show the graphs of the Taylor polynomials of cosz and sinz for
various values of V.

. -~ 3 et . . ey .
2t Nt | Netz [ Nm16 ] | N=20 . 2t N=5! N=9 ] iN=13 | Nt

21 Ne2} | N " N=14 | tm22

o] 2 4 ] 8 10 12 0 2 4 & =} 10 12

o . . (n)
Approximations of cosz and sinz by Taylor polynomials Sy = ZN L2200

= i

As we move away from the center z, = 0, we need to add more and more terms of the
series to get a good approximation for cosz and sinz.
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Exercises

1. Find the Taylor series centered at z, = 0 (also called the Maclaurin series) by using the
known Taylor series in {4.6) - (4.8).

(@) fl@)=c® (O f@=e (o) flm)=cos2e  (g) fle) =sina?
b) f@)=e®  (d) f(a)=e" () flz) =sin(2/2) (B) fz) =cosy/&E

2. Find the Taylor series centered at the point z,:

(a) flz)=m{l+z), z,=0 {e) f(:c):m: To =1
(b) flz) =Inz, z =1 () f(z) =sine, =z,=7n/4
((;; ﬁxg _ C'OS: T oxa = (8) fle)=atan™'z, z,=
z) = sinhz, z,=
3. Find the radius of convergence R and the interva% of convergence of
= o @e—1r = (3—a)
@2 ()?31 g m) 3
Wy O m Y TEI 0 Y (-1 e 0y
n=0 = n=1
© 3 (~1)n%a" UM @Y _;*—,i(w ~5)"
nz=} n:l
o~ (~1)ra 1-3-5---(2n + 1)a" (=) }
@ > 5 0 Z e 3 Ee-y
Oy Wy T @y
n=1 =1 n=0_
o0 _ " oG N I — 2 Fe Q ﬂ','2 + 1 n
® 3 (-9 WX 0 X (57)

4.1.2 Properties of Power Series

In the following, we will list some useful properties of power series without proof. Let

oo o0
= Z ant" and g(z) = Z bpz™
n=0

n=0

be two power series which converge for |z| < R.

e Sum of Power Series. We can add and subtract the two series term by term,

(i an "™ + i bn:c”) = i (Gn + bp)z™

n=>0 n=>0 =0

whenever |z| < R.

o Multiplication by a constant. For every constant ¢,

CE an T —E Cln T

n=0

whenever |z| < R.
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e.g. To find a power series for cosha, we use the series (4.6) for %,

. 72 3 24 oo 2
e :1+$+§‘3—§+E+"‘xz o (4.9)
n=0
and replace x by - to obtain a series for e™%,
P . o0 "
e = 1ozt -t — o=y (1)
! 1 1 !
2. 3' 4 =0 T (4.10)
Now add the two series,
R L 2t !
z T P R T — DR T TN
e +e m(1+$+25+31+4!%~ )-i-(l .’£+2! 3I+4!+ )
22 7 1z % n
=242 +2° 425 4. = 2
Teg ettt 2. @
n=0
Finally divide by 2, and obtain
2 g4 6 < 2n
he = 14+ — + — = T
coshz L R an;) E]

This series converges for all © because the series (4.9) and (4.10) have radius
of convergence R = co.

o Product of Power Series. To multiply two series, we multiply each term of the first
series with each term of the second series (the same way we multiply two expressions
in brackets),

flz)g(z) = (i anmn) (i bnm") w EO: Cpa”
n=0 n=0 n={

where
n

€n = Z arbnk,

k=0
and this series converges for jz| < R.
e.g.
: k1AM R
S _ _—— Qe e— — —_—— —_— _— e
sinzcosz (:r 6:0 +120:n )(1 g T +24:c
1

16
— _ 2.3 i :
= I 63: + 1209:
1 @) (20)° 1
= 2 ((2I) 3 + ""“***5-1— — = § sin 2z

where in the last line we have used (4.8).
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e Identity of power series. If

o0
Z anx” Z bz
n=0

n=={}

for all {z|{ < R, then

i
S

Gp

for all n.

e.g. Suppose, N
ot Z an.’nn =0
n=0

The right hand side can be written as a power series,

flz) == Zanmn = ZO'(L‘”.

n={) =0

Comparing all coefficients we see that a, = 0 for all n.

e Shift of Summation Index.

oo oo
D @™ = D anw
n=a

n=a-Tr

o0
Proof.  We start from Z a, """ and simply do the substitution

n=a
E=n—r

Then, n = k+r. When n = a then we have £ = @ — r, so the sum starts with this
index. Also, when n — oo then &k — co. We obtain

o0 o0

neg b=a--r
Finally, we rename the summation index, by setting n = k on the right. g
oo

e.g. - Given the series Z n(n — Dagz™* |, we set k=n~1. Then,
2=
n=k%+1 Whenn mnz then we have k= 2 — 1 = 1. Thus,

o0

o0
Zn(n—l an T Z (k+ Dk apes z*.
k=1

n=2
We can rename our index of summation, and set n = &k to obtain
o0 oo

S aln ez = 3 (n+ Dnanssa™

n=2 n=1
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oo

— Given the series Z (n+1(n+2a, " |, weset k=n+2 Then

n=(}
n =k — 2, and the sum starts with k =0+ 2 = 2. We obtain

[ oo
Z (n+1)(n+2)a,z"? = Z(k ~ Dk ag_p z*.
n=0 k=2
Finally, rename n = k on the right,
o o0
Z (n+1)(n+2)a,z"** = Z (n—Dnap_pz™.
n=4 =2
But note that
m—1)n =0

when n =0 or n =1, Therefore, we can start with summation index
n = 0 on the right, and write

(9] oo
Z (n— Dnop.yz™ = Z (n — Lnay—sz™.
n=2 n=0

We can differentiate and integrate a power series: Let
oo
flz)=ag+az+aps® +azs® + -+ apzt +-0 = Z anx" (4.11)

n=0

be a power series with radius of convergence R > 0.

e Derivative of power series. The function f(z) has derivatives of all orders for |z| < R.
To find the derivative, we simply differentiate each term of the series (4.11),

oG
F(&g) = a1+ 200z +3032° +-+ = Y na, z",
n=1

Furthermore, this power series also has radius of convergence R.

e Integral of powers series. The function f{z} can be integrated on the interval of
convergence. To find the indefinite integral, we simply integrate each term of the
series (4.11),

/f(m)d C + +am2+a$3+ $4+ C’+§: Un_ .+l
T = agT —_— —_— g — + - = z )
’ P2 TR T —ntl
Often we want the antiderivative whose initial value is zero,
x 22 23 7 =
tYdt = apr + ay— + ao— b T — n+l
fof() 0 15 taeg tas o+ nZ:%n'l-lm

These power series also have radius of convergence R.
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e.g. e Begin with the geometric series

1 oo
— =1 ittty = =" 4.12
— +z+z > (4.12)

n=0

and take its derivative,

1 d 1 —
— = ——— = 142432+ 4. = E ng™
Y _
(1-x) drl—= gt

for |z| < 1. After reindexing (k = n — 1), we obtain the power series
representation

1 o0
1-2z)? D (n+1at

n==0

e Replace z by -z in the geometric series (4.12) and obtain

1
14z

=]
=l-a+2 - 42~ (D% = Z(—l}“m".
n=~0

Now integrate from 0 to =z,

1]
mf{l = e (L
n{l+x) '/; T
3;2 :L‘3 :LA mn-&-l
= —_— =5 — - ...1"'
i u S e B
o $n+1
= —1)*
Z( )n—i—i
n=>0

for jz| < 1. After reindexing, we have a power series representation

oo

n
1 p— . (n——l)ir"__'
JECRS Wk

s Replace z by —z? in the geometric series (4.12), and obtain

1 o
1L RS -+t —2f+2% -+ (1) 4 = Z(—l)“.’c%
T n=0
Integrate from 0 to =,
o
1
tan~tz = ——dt
e /0 1+142
_ $“$_3+£ x7+x9 o )n$2n+1+”
B 375 79 2n+1
oo n$2n+1
- Z(_) n+1

for |z| < L.
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Remark The differentiation rule says that the powers series

has first order derivative
o0
fllz) = Z nanz™ !
n=1

and second order derivative
o0

Flz) = Z n{n 1) apz™*
n=2

Note that the term na, z"™!

n = 1. Therefore, we can let both series start at n = {0 and write

Fflz) = Z nan &
n=0
and L
flz) = > nn=1)ans
n=0

Here is a table of some power series:

is zero when n = 0, and the term n{n — L} a,z""°

POWER SERIES SOLUTIONS

is zero when n =0 or

s _ 4 z? ozt ozt @
e = +$+§+E+E+"'+;ﬂ“+'”
CosEL = 1—$—2+$—4— +( 1}”w2”_¥_
B 2! Al (2n)!
sing — o :12_3 + i&'i (__1)n$2n+1
3 5t (2n+1)!
1 o e n
TS l+zt+z+z" +z +- 2"+
2 3 4 n
T z
In(1 ZNey= == _ = 0 R Yl
nil+z) =« 713 131 —+
3 5 7 2n+1
z ¥ =z z
t 1 - o o 1yn .
an " % T 3+5 7+ +()2n—§-1+
- +$3+$5+ 4 pentl N
s = A T .
N TR @n + 1)1
N 72 % 2
coshz = 1+ -+ —+-- &
ety Tttt

(lel <1)

(12| <1)

(lz] <1)
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BExercises

1. Use known series to find a power series representation of the following functions.

determine the radius and interval of convergence.

1
I g 4] o
(2) f@) = a% © 1) = 77
b
{b) flz)= 10+?: 0 f(m)zln{l—i-:c)
(C) f(z) = sina? Z - g,rctan:v
(d) f(z) =cos®z = L(1 + cos2a) (g) f(ﬁﬁ):T
2. Find a power series representation for
T T e ]
(a) F(z) = f sin £ dt (d) f(z) = f tan” ¢ 4
0 0
sin ¢ T ot
(b) f(m)mf ——di (e} f(:r:)m/ -7 &
¢} 0 t2
o) fley= [ e dt Y A
© 1= [ © o= [
3. Use the series for tan~! & to show that
6 (=)t 1\
T A ,;} o+ 1 (3)
4. I gy Z nz™, compute ¥ and y".
n=0
5. Reindex to write in the form Y anir(2 — 2,)":
(a) Z an(z — 1)t (b) Z n(n — Dap,z™? (c) Z anz™t?
==} =2 n=0

6. Determine the coefficients a, so that

oo o0
z nanz™ ! +ZZ apnz™ = 0

nwwl n==0

What function is represented by the series Z anz"™ ?
n=0
Supplementary ezercises:

o0

185

Also,

7. Suppose, f(z) = E an{zx — z,)" converges for |z —z,} < R, and let z en(z = 2,)" be the

n=0

Taylor series of f. Show that e, = ¢, for all n. {Hint: Take the der:vatlves of all orders.)

4.2 The Series Method - First Order Equations

We have seen in the preceding two chapters how to solve linear equations with constant
coefficients. However, we have no method of solution in the case of equations with
non-constant coefficients. In many cases, it is possible to find a power series solution. To

get an idea of this method, we look at a few simple first order equations first.
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Example 1 Solve the equation
y —y = 0. (4.13)

Solution. We assume that there exists a solution y which is can be expressed as a power series

o0
y — E ana:Tl A

n=0

D
y o= E na,z™ !
n=1

and substitute into the differential equation,

Differentiate,

o0 [w.0]
na,a™ ! — g anz™ = Q.
1

n= n=0

In order to add the two series, we must reindex the first series to obtain powers o7,

o3 o0
Z (n+ lags 2™ — Z az” = 0.
n—0 ne=0

Now we can add the two series and obtain
oo

Z [(n+1)an+1 —an]mn = 0.

n=0
By the identity property all coefficients must be zero,

(n+Dantr —an = 0
for all n. That is,
Qn

n+1
This is calied a recurrence relation. Once we know ag, we can compute all the
coefficients o, in terms of ag. For example, if n = 0, then the recurrence relation gives

Any1 =

V4.
a1 = T = agp.
If n == 1, the recurrence relation gives
4 ap
IIEN\\ 9
If n = 2, the recurrence relation gives
Qg = EE = g0 ¢
3 3-2:1

You can see the pattern. To compute the coefficient a, from a,., we divide by n.

After n steps we have

1
ap = —‘(L@.
..

The solution is therefore,

0o oo
S gnr” )y 1 on
¥y = dpX = ap — &
n!
n=0

nz=(

We recognize this as the power series of the function y = ¢®, so that
y = oge”.

This is the solution which we have expected. In fact, equation (4.13) is a first order
linear equation, and using the methods of chapter we can find the same solution. [J
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Example 2 Find the solution to (z — 3}y + 2y = 0.

Solution.

Substitute
o5 00
Y= Z Gz and y = Z naps™ L.
=0 n=1

We obtain
o 0] 20
(z —3) Z na,r™t + 2 Z apz™ = 0.

n=1 ]

Multiply (z — 3) into the first series, to obtain

o0 o0 0
[Z Nopxr" — 3 Z nanm”"l] + 2 Z apz” = 0.
=1 n=0

n=}

Before we can add these series, we must shift the index in the middle series (setting
k=mn-1). Also, we can let the first series should start at zero, because then
nanzr™ =0, '

o0 o o0
Z ne,z" — 3 Z {n+1)apyze™ + 2 z o,z = 0.
n=0 n=0 n=0

Add all the series,

[o2o]

Z [(n+2)aﬂ - 3(n+ l)an+1] " =0

n=0

By the identity property,
(n+2)an — 3(n+1enp =0

for all n. Solving for a,.1 we obtain the recurrence relation

p L.
T 31y
Now let n =0,1,2,3,.... We obtain
2
n=20 a; = '?‘;a{)
n=1: az = Ea = §a
=1: 2 = g8 = g0
n=2: oz = éa = ia
- T gAY 77T
o= 3 Qg = E—a = Ea
I o Lo A The
You can see the pattern. The n-th coefficient is
- _ n+1
Qn = 3n ag.
We therefore have the formal power series solution
o u) z n
¥ = ag Z (n-+1) (5) . (4.14)
1=
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Remark The power series which we have found can only be a solution if it converges. So we should
determine its interval of convergence as well. Now

. lan (a4 13t
lim = R e e
n-—oo |0.n+1| -t o0 (Tb+ 2)3"

= 3.

So the power series converges for {z| < 3 and is a valid solution on the interval (-3, 3).

Remark What function does this series represent 7 Let us substitute z = /3 in (4.14) to obtain
oo
¥y = ag (n+1)z".

=0

But note that (n+ 1)z" is the derivative of ™" | Thus,

y = ae% (iz""‘i) = aog; (iz")

n=0 n=l

where we have re-indexed on the right. This is the geometric series, without its first term. Therefore,

d [~ . _d 1
v = ao@ (ZZ _1) N aoa;(lwz“l)

n=0

and taking the derivative on the right,

1
(R (I

Resubstitute,
9 w 1 | [
PERE-EE T G-

where we have set ¢ = 9aop.

G lm 5 is a solution for all x 3 3. On the other hand,

our power series solution only converges on the interval (—3,3). So the power series method does not give
us the best possible solution. If we want a series solution valid outside this interval, for example valid at
x = 5, then we should ¢ry a series

Remark We can easily check that the function

o0

Z anfT — 5"

n=0

centered at 5 to make sure that it converges there.

Exercises

1. Find a power series solution of each eguation. Determine the radius of convergence of your
solution, and identify it as an elementary function.

(a) ¥ =y () (z-2)y' +y=0
(b} v' =4y (g) 2z-1)y'+2y=0
{c} 2y"+3y=0 (h) 2(z+ 1)y =y

(@) v +2zy=0 @ -1y +2=0
{e} ¥ =2y #) 2(z - 1)y" =3y

2. Show that the power series method does not work to give you a power series solution
centered at zg = 0 if
(a) 2y’ +y =0 (c) °y' +y=0
(b) 2zy' =y (dy =%y =2y

3. Find a power series solution for example 2 which is valid at « = 5. What is its radius of
convergence ?
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4.3 The Series Method - Ordinary Points
Let us discuss the solution of second order linear differential equations of the form

a(z)y” + blz)y' + elz)y = 0

by the power series method. Dividing by a(z) we obtain the equation in standard form,

y" + plz)y + qlz)y = 0 (4.15)

where we have set p(z) = QJ@% and g{x -%—% If both functions, p(x) and g(z) are analytic
at z, so that we have a power series expansion valid at z,, then we call z, an ordinary
point. Qtherwise, z, is called a singular poini.

e.g. e Consider the equation (1—z?)y’ — 2zy’ +y =0 . Dividing by 1 — 22,

! 2z, + 1 -0
VogTgEy Tty TRy T
. , . 2
The points z, == 1 and z, = —1 are singular points because p(z) = T s
-z

not analytic at these points. (In general, a rational function is analytic
wherever it is defined, and p(z) is undefined at z = £1.)

e Consider the equation zy” + (sinz)y’ + 2y = 0 . Dividing by z
y" - M%Eyr +ay = 0.

Note that

z =z \ 3 5 (2n + 1)!
3;2 .’.274 ( 1)11 2n
= A4 SN A T
AT E T Y ey

so that z, = { is an ordinary point !

. . 2 .
e Consider the equation y" + G = 1)x(x ) ¥+ C?;m y = (. The points
z=0, =1/2 and 2 = -2 are singular points.

We can always find a power series solution centered at an ordinary point:
Theorem 24 Consider o second order linear equation
y" +ple)y +g(zly = 0 (4.16)

Suppose p and ¢ are anclytic ot © = x, and have a power series representation on an
interval |x — z,] < R. Then every solution of equation ({.16) is analytic at z, and can be
represented by o power series

¥y = Y an(z — )™ (4.17)

valid on the same interval.
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Example 1 Find a power series solution of the equation

Solution.

¥ +y =0 {4.18)
Here, p(z) = 0 and g(z) = 1, so we expect a series solution which converges and is a
valid for —oo < 2z < oo,
We substitute the series o
y = Z ans”.
nu=Q
Its derivatives are

xR o0
y o= Z an m ozt and y" = Z an n(n —1) 22,
n=2

n=1

If we substitute these series into {4.18) we get

o0 o0
Z an nin—1) g% + Z anz" = 0.
=2 n=0
We shift the summation index in the first series,
o0 oo
Z nyz (R +2)(n+1) 2" + Z 2z = 0
r==0 n=0
and add the two series,
o0
Z [an+2 (n+2}(n+1)+an] ™ = 0.
n=0
By the identity property,
anpz (P +2}(n+ 1) +a, = 0
for all n. Solving for e, we get the recurrence relation
42 = Ca
T 1)
So if we choose n =0,2,4..., we obtain
_0- = e .. B
Y, =T o
Y004 A A MNEY
RN EE AR 1 i
aq ag g
=4: = B o F o~ uEG———— . S —-
% a0 5-6 173-3:4-56 6!

We can write the even indices as n = 2k, and then we have in general,

axp = (—1')k(2a£)!'
Now if we choose n = 1, 3,5, -+, we obtain
a1 a)
n=1=%: az = —2—_3 = 3
n=3: ay = —ﬂ —_ w_,,,,ﬁ',}__ — a;l
4.5 2-3-4-5 5!
n=9: ay = ——E§— = ———-—a}i—mw—— = g

6-7  2-34-5.6-7 o
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We can write the odd indices as n = 2k + 1, and then we have in general

. 451
agp41 = (‘UAW-
The general solution is

— % o2 @1 o3 % 4 1 5
¥y = apt+aor 2!3:—?3-531: -1—4153 +51:n

_ z? a2t z@

= 1—§!—+E_”. + a1 m“"é_!-l-ﬁ—"‘

oo L 2k o2 . p2k+1
= -1 1)%
o g( e t “1I§( Ty

O

Remark We recognize the first series as the Taylor series for cosz and the second series as the Taylor
series of sinz. This is not surprising; if we use the methods of chapter 2, we obtain the general solution

¥ = apCosT -+ o) Sint.

Example 2 Find a power series solution of the equation
y' —zfy —2zy = 0. (4.19)
Solution.  We substitute the series

oo
= E anz™
n=0;

and its derivatives

0] o0
wm Z an 1zt and y' = Z an n(n —1) z*?
n=1 =2
into (4.19),
[+ 0] o0 o0
Z an n{n—1)z** — g2 Z annz"! — 2z Z a,r* = 0
n=2 n=1 =0

We would like to add all three series. But before, we must make some adjustments.
First we move all z inside the series,

iann(n—-l)x Eann:c —-QZanw = 0.

n=2

Then we reindex all three series in order to have terms z™,

Zan+2(n+2)(n+1 Zcznﬁl n-—1) —22an 1T7 == )

n=0 Rl nw=l

Finally, we want all three series to start with the same initial value of the index =.
The second series can start with n = 1, because when n = 1, then a,_;(n — 1)z"® = 0,

o0 [s.0) o0
Z tpgz (m4+2)(n 1) 2™ — Z ap_yp (n—1} 2™ — 2 Z Op3z™ = Q.
n=1 n=1]1

n=0
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As the first series starts with n = 0, we write its first term separately,

o o0 oa
2ay b Z ante (0 +2)(n + 1) RS Z Un-1 (1 — 1) ' - 2 Z Qpqz™ = 0.
n=1 n=1 n=l

Now we can add the three series,

o0
20z 4+ Z [an+2(n +2(n+1)—apa1(n—-1) - 2aﬂ_1] ™ = 0.

=1

By the identity property,

2&2 = 0
tnta(n +2)(n +1} —ap_i(n~1) - 2a,-1 = 0 (n=1,2,3.)
These two equations give use
Qg = G
and the recurrence relation
an-1(n+ 1) Up—1
= i} . = 2 iae
I+ = e+ n+2 (r=1,2,3.)
The recurrence relation jumps three steps. If we choose n = 1,4,7..., we obtain
a,
n=1: a3 = Wéﬁ
ag ag
prang 4 T e DL e
y =% T 36
n=7T: Qg e a—ﬁ = %o
YT 9 T 369
If we choose n = 2,5,8,..., we obtain
a
n=2: ag = —4—?—
4 g
=5 = = = —
n ar 7 =
n=8:  ap = =% = 2
' YT 1T a.7-10
Finally, if n = 3,6,9,--- we obtain
n=23: a5 = a.__g =0
5
ag
:6; = — =
n ag 3 0
n =3k azgp+2 = 0.

The solution is therefore

1:3 .'EG IBQ 3:4 :r? :Clﬂ
= gy {142 4+ — o )
y “”(+3+3-6 37697 ) +”1($+4+4_7+4.7-10+ )
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Remark Since the functions p(z) = —2? and g{z) = —2x are polynomials, the series solution converges
and is valid for all T by theorem 24. But what functions do the two series represent 7 The first series can
be written

3.'.'3 xﬁ .7.:9
Y1 +3+3-6+3-6-9+
3 3y 2 3y 2 3y 4
z° 1 z 1 z 1 z 1
= 145 = L - il .
*3 1+(3> 12+(3) 1-2-3+<3) 17754
e
= g

The second series has no such simple representation. We therefore write the solution as

m3/3 3:4 $7 10
¥ = age + @1 $+?+ﬁ+m+“' -

Remark Since we have found one solution y; = e=*/3 in closed form, we might be tempted to use the
method *Using one Solution to find another” to obtain the second solution in closed form. If we try this

and substitute

y = vt 3,
then equation (4.19} changes to the separable equation
ozt = 0
whose solution is
' —13/3_

vo= ce
Then
v o= c/e_xsﬁdm—i-d,

and we can not evaluate this integrall Nevertheless, the second solution is
2 3
y2 = v = " /* [c/e"m mda:%—d} .
By the Fundamental Theorem of Calculus, we can rewrite the indefinite integral as

X
g = &5 13 [c/ et dt+d].
0

To determine the values of ¢ and d, we take derivatives (and use the product rule},
a e
yh = €° /3332[0[ et /sdt+d} + ¢
0

Now the second power series satisfies y(0) = (0 and y'(0) = 1. If we substitute these conditions into the
last two equations, we get d =0 and ¢ = 1. 'We have found a power series for the integral:

z 4 T 10
= /3 S LI T o <
Y2 e /(;e dit a:-i—4~+~4_7 4_7_10+ ]

Example 3 Find the power series solution to the initial vaiue problem

(& =22y + (e~ 1)y 4y = 0 v =1, y'()=2 (420
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Note that the points z, = 0 and z, = 2 are singular points of the equation. Therefore,
we can not expect a power series solution centered at 0. Because the initial conditions
are specified at z, = 1, we instead look for a solution

o0

> apfz-1)"

n==0

centered at x = 1. By theorem 24, such a power series solution will be valid in the
interval (0,2). To simplify computations, we substitute

z=z—1
and look for a solution -
¥ = Z 2"

n=0

Then equation (4.20) becomes
(z+1)*=2(z+D)y" +2/ -4y = 0
$0 that we have an initial value problem
(22~ Dy + 2y —4z = 0 y(0) = 1; ¥'(0) = 2. (4.21)

To solve it, we substitute

fea)
y = Z 0,2" = ap+ a1z 4 092° + 032 +agzt + - (4.22)
n=0
o0
y' = Z anz™t = a; + 2092 + 3azz® + dag2® + - (4.23)
=1
o0
y' o= Z apn(n —1)z""% = 2y + bagz + 12a42% - - -
7= 2
and obiain
[we] o0 oo
(2% = 1) Z ann{n — 1)z"% + zZ apnz™ ' —4 Z az® = 0.
n==2 n=1 n=()

Multiply into the series,

oo oD o] o0
(Z apni{n — 1)z" — Z apn(n — l)z“'"z) + Z apnz’ — z danz" = 0
n=1 n=0

=2 n==32

Now reindex the second series, and let the first and third series start at n =0,

o0 ] oo oo
Z apn(n — 1)z" — Z Gnra(n +2)(n+ 12" + Z a,nz" — Z 40,20 = 0
n=0 =0 n=0 ety
and add,
[s=]
Z {ann(n ~ 1) —anga(n + 2}(n + 1) + apn — 4da, }z” =0
n=0

oo

Y [an(n® =9 = aniz(n + 2+ 1) 2" = 0

n=0
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By the identity property,

for all n. We obtain the recurrence relation
an{n® —4)
(n+2)(n+1)

or

an(n® ~4) = appa(n +2)(n + 1)

Qpty =

Gny2 =

an{n — 2)‘

n+1

=0

195

Becanse we are given initial conditions, we can right away determine the values of aq
and a;. Substitute y(0) =1 into (4.22) to get

ap = y(0} =1
and substitute y'(0) = 2 into (4.23) to get

Now choose n = 0,2,4,---,

a
n=20
n=2
n=4

n=1: g =
=3 as =
n=>=5: ay =
o 7 ag =

In general, for nn > 5§ odd we get

= ¢'(0) = 2
ay = ~2ayp = -2

0
aq 5(1.2 =10

2
ag = ga4 = 0
Now choose i = 1,3,5,-++ ,
| 1
7a1 iz —2~(§) = =1
1 1
zﬂ,;; o —2(2—)

3-1

5P = "2'(6-4-2)
S _g.( 8381
A\ 8:6-4.2

(=4 (n-6)-...5-3-1

ap =

m-1)-(n—3).... 4

We can write the odd integers as n = 2k -+ 1 and obtain

3

(2k—3)-(2k—5)...-5-3-1

Appp1 = —2

%-(2k—2). 4.2

for k > 2. The power series solution is therefore

¥

1+2z——2z2——z3—2(

1 . 31 . 5.3.1
74% T543% Y5e.42° T )
""(2k—:-3}(21c~~~5)-...-5-3.-1z%+l

% (2h—0). ... 42 '
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Finally, we resubstitute z = 2 ~ 1 and obtain

~3)(2k~5)-...-5-3-1
TS CT I P R

y=1+2(a:—1)—2($—1)2—(z—1)3~2§:(2k _1)2k+1_
k=2

]

Exercises

1. Use the series method to find two linearly independent solutions of each equation. Determine
radius of convergence, and identify the solutions as elementary functions.

(a) " =y () ¥"+9y=0
b) v =4y d y'+y==z
2. Solve the following initial value problems using the power series method. Identify the
solutions as elementary functions.

(@) y"+4y=0;  y(O) =0, y(0)=3

() ¥" —dy=0; gy =2 ¢0)=0

(€ ¥"~2% +y=0; y(0)=0, y'(0)=1

(d) 9" +y' ~2y=0; y(0O)=1, y'(0)=-2

3. Use the power series method to solve each of the following equations, and find the radius of
convergence of each series which is guaranteed by theorem 24.

(a) (&% « Dy" +4ay’ + 2y =0 (1) (z* = Ly" + 8zy + 12y =
(b) (&% + 2" + 4wy’ + 2y =0 () 3" +ay' —dy =0

(€) y"+zy +y=20 k) 5y —2zy’ + 10y =0

(@) (2% + Dy + 6y’ + 4y =0 ) ¢y —2% - 32y =0

(e) (2® —3)y" +2zy =0 (m) ¢+ 2%y +22y=0

) (- Ly —6zy +12y=0 (n) y"+ay =0

(g) (z* +3)y" ~ Toy' + 16y =0 (o) ¥"+x*y =0

(h) (2—a®)y" —zy' + 16y =0

4. Use the power series method to solve each initial value problem.
(a) A+2"p" +2y ~2y=0;  y(0) =0, ¢(0)=1
(b) ¥ +zy ~2y=0  y0)=1, y'(0)=0
5. Find a power series solution centered at the point specified by the initial conditions.
@y +@-1y+y=0 yI)=2 y(1)=1
(b) 2z-2%)y" = 6z-1y ~dy=0 y1)=0, y'()=1
(¢) (z" -6z +10)y" ~4(z -3y +6y=1; B3 =2 ¥y(3) =0
(d) (422 +16z+17)y" =8y; w(-2)=1, ¥ (~2)=0
(e) (2® +6a)y" +(Be+9)y' -3y =0; y(-3)=0, y'(-3)=2

6. Find the recurrence relation for the power series solution, and determine the first three
nonzero terms of two linearly independent solutions.

(a) " +(1+2)y=0 (©) ¥ +2%y + a2’y =0
(b) (2* - Vy” + 22y’ + 2zy =0 (d) (L+2%%" +aty=20

7. Using the power series method, solve
¥y +ay = €%,

8. Solve example 3 of chapter 2, section 2.3 using the power series method.
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4.4 The Series Method - Singular Points

Now let us look at a second order linear differential equation

¥+ pla)y + qlz)y = 0 (4.24)

where T = z, is a singular point. That is, at least one of p(z) or ¢{xz) is not analytic at z,.
The point x, is called a regular singular point, if the functions

(2 — zo)p(7) and (& — 2,)%q()
are analytic at z,. Otherwise it is called an irregular singular point.
e.g. ® Consider the eguation
2y +zy' + (22 -0y = 0.
(This is called Bessel’s equation of order n.) If we divide by z? we obtain

1 n?
y”+5y’+(1—§)y =0

Here,
1 n?
P d =] - -
plz) = ~ an q(z) =
so that # = 0 is a singular point. However, the functions
zp(z) = 1 and ig(z) = 2* —n®

are analytic at = = 0; therefore the point z = 0 is a regular singular point,
¢ Consider the equation

(1-z%)y" =22y +nln+ 1y = 0.

(This is called the Legendre equation of order n.) Divide by 1 — 22,

2z n{n +1)
"o ' —
FO I WV ¢ 0
to see that the points z = —1 and z = 1 are singular points. Let us look at
x =1 first. We have
2T n(n + 13(1 — z)

-1 = d -1)? o |
@=1pl@) = T an @~ 1’4(2) "
Both functions are analytic at = = 1; therefore the point z = 1 is a regular
singular point. In a similar way, the point z = —1 is also a regular singular
point.

s Consider the equation
2z — 2Y%zy” + 3z’ + (z ~ 2y = 0,
which we first rewrite as

1"

!
L Tr TP

y = 0.
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There are two singular points: £ = 0 and z = 2. Now
3z 1
Tp(.’l’,‘) = m and $Q(-73) = m
Since both these functions are analytic at z = 0, this is a regular singular
point. Now if x = 2, then

(@ - 20) = 5

is not analytic at x = 2. Therefore, x = 2 is an irregular singular point.
e Finally. consider the equation

¥y — 3(sinz)y + (1+2%)y = 0
Dividing by z? we obtain
3sina 1+ z?
" i/ —
¥y o v + 2 ¥ = 0.

Thus, x = 0 is a singular point. Note that

SUp(IL‘) _ 351na:

- and z?g(z) = 1+22.

Is 882 ap analytic function ? Take the power series for sinz, and note that

1. 1 . 2’ 2zt
—ging = ~ -+ -] = 1-F5+—~- .
z z 3 5l !
This is an analytic function, and therefore £ = 0 is a regular singular point.

If z, is a singular point, then there may not exist a power series solution

o0

¥

= Z an(z — z,)"

=)
centered at z,. However, if z, is a regular singular point, then there always exists at least
one series solution of the form

[.u}

y = z" Z anlz — )"

n=40
where r can be any number ! A series of this form might look as follows:

y = agz” % +aya? 4 aga®? 4 aae®? 4 -

and is called a Frobenius series. Let us explain this method of finding a series solution,
called the Frobenius Method, by an example.

Example 1 Find a series solution of the equation

222" —zy' + (L +2)y = 0 (4.25)
centered at zero.
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Solution.

First check whether z = 0 is a singular point. Divide by 2x° to obtain the equation in
standard form,

1 T+z
" !
—— y =0
227 + 22 7
We now see that x = 0 is a regular singular point, and we try a series solution
oQ o0
y o=z Z anx" = Z anz"™tT.
n=0 nz==0
The derivatives are
o0 o0
y o= Z an(n + 7)™ ! and Y= Z an(n +r)(n +r — L)g™r3
n=0 nazz(

Now substitute all these series into (4.25),

oo o0 o0
QwZZ an(n+r)n+r—1z""2 - :t:z an(n+r)z™*7t + (142) Z anz" " = 0,

n={ n=40 n=0

and multiply the three terms 2z%, = and (1 + z) into the series,

o0 o0 o oo
Z 2an(n+r)(n+r—1)z"" — Z an(ntr)z™T & Z a4 Z gzt = 0,
n==() n=0 n=a =0

Before we can add we must re-index the last series,

oo o0 o0 o0
Z 2an(n+r)(n+r-1)z™" — Z an(n+r)z™T + Z anz™t" 4 Z an_12™t" = 0.
n=>0 =0 n=0 =l

Because the last series starts with the index n =1, we add the terms belonging to
n = (0 separately,

{Za@r(r—l}m—aor“%ag]s:r + Z [Qan(n+7')(n+rm1)~—an{n—i—r)+an+an_1]:c”+’" = (.

n=1

Because the right side is zero, every term on the left must be zero. The term belonging
to n =0 gives
2apr(r —1) —agr +ap = 0

and the terms belonging to n > 1 give
an[Q(n+T)(n+r—1)-(n—i—r}+1] g =0 (n21)

Let us divide the first equation by ag # 0, to obtain

2 -3r+1 =0
which factors as

@r-Dr-1) =0 (4.26)
This equation is called the indicial equation, and its two solutions
=1 and rg = 1/2.

are called the exponents of the differential equation. The second equation can be
written

an( [n+r-1] {2(n+7‘)—1]) = —ap1
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g0 that
Gri-1 (4.27)
a, = - , .
m+r—112r+7) -1}
Let us first consider the larger of the two exponents » = 1. We get the recurrence
relation

- n-1
n = T n(2n+ 1)
Thus,
_ do Qg
@ = cy =gy
_ ay ag
© = T35 T 5821
_ az 29
@ = T37 T TE33 062D
and in general, .
_ n 0
@ = (-1 [@n+1)2n—-1)---3-1] - nl’

Choosing ag = 1 we have found one series solution

—— = I 3 (M1)nmn
n=r) ) aat = ”’(Z [(2n+1)(2n~1)--'3]n1)'

n=( 7=

What is the radius of convergence of this series ?

(2n+3)(2n+1) 53 (n + 1)
(2n+1)-5---3nl '

R = lim |-2&

T3 CO

lim

n—Foo

An+1
Thus the series converges for all .

Now let us take the other exponent r = 1/2. The recurrence relation (4.27) becomes

_ An—1 _ Gp-1
N R
so that
ay = —T
h (15] y [453]
L mm—p—— iy
PYPYRTY \ CI
3-5 (3-5)(2-3)
a4 = "'*'-—ai = do
4.7 (3-5-7)(2-3-4)
and in general,
a, = (_I)n g

[3-5-7--(2n—1)] nl’
Setting ag = 1 we have found a second series solution

2 = (=1)" ="
vy = o'/ (14—23‘5.7.”)(2:_1)“!). (z > 0)

This series also converges for all 2. Because of the factor /2 | however, the solution
yy is valid for z > 0 only. Since y; and y» are linearly independent, we have found the
general solution to equation (4.25),

¥ = ay -+ oy
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Now let us discuss the general theory. To simplify the notation, we suppose that z = (
is a regular singular point of a differential equation

y" + playy +q(x)y = 0.

If we multiply this equation by =%, we obtain

oy +z [zplz) ]y + [2Pq(z) ]y = 0 (4.28)
where now zp(z) and x°g(z) are analytic at zero, and thus can be expressed by power series
o0 o0
wp(z) = > ppz” and 2q(z) = 3 gz”
n=() n=0

in some interval (—R, R}. When substituting these two series and the expected solution

oo
y = Z Z ana”
=
(ag # 0,z > 0) into equation (4.28), one always obtains an expression of the form

o
ag [r(r = 1) +por + gl " + 3 [+ Ja™ = 0,

=1

just as in the last example. The equation
r{r—1)+pr-+gq, = 0

is called the indicial equation and my have two real solutions. Let us call these solutions r;
and ra, labeled so that r{ > .

1. Case I: If ry and o don’t differ by an integer, vy 7 ro + IV for some integer IV, then
equation (4.28) has two linearly independent series solutions

oo
y{z) = 2™ > apz”
n=()

oo
yg(ﬂﬁ) = g Z .
n=f{

2. Case II: If ry = ro + N for some positive integer N, then equation (4.28) has two
linearly independent solutions

cQ
yi{s) = 2™ Y ana”
n=0

oo
ya(z) = 27 3 bz + cyiz)lng

=0

for some constant ¢ ( which can be zero.)

3. Case III: If r; = ry, then equation (4.28) has two linearly independent solutions

o0
yi{z) = 2™ ) aua”
n=(0}
oo
w(z) = =" > b +ypi{z)inz.
n=0

All these solutions are valid in the interval (0, R).
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xample 2 Find the general solution of the equation
2y + 6z + )y 4 zy = O (4.29)

Solution. If we divide by z2, we obtain the equation

6+ 1

" '

4+ —y' + - = 0
Yy Y Y

and see that x = 0 is a regular singular point. We therefore try the series solution

[e.0] o>
y = z" E a2t = Z ozt
=0 =0

We substitute this series into (4.29) and obtain

[ve] oo Q0
z? Z an(n4r)(n+r—1a"t""2 + (6x+m2)z an{n+r)z™ T 4 J:Z anz™t" = 0.
n==0 =0 ne=(

Now multiply the factors 2%, 6z + z% and z into the series,

oo (o)

Z an(n +r)(n+r— Da™" + Z 6an{n +r)z"*"

== n=0
oo
Z J(n+ )T 4 Z anz™ Tl = @
=0 ==z

and change the index of summation in the last two series,

o0 fe.o)
Z an(n+r){n +r— Dz + Z fa,(n +r)z"™*"
n=l) n=0
+Zan_1(n+r-—l “+‘"+Zan ™ o= Q.
n=1 n=1

Now add all these sums,

ao [r(r — 1) +6r]a” + i {an[(n+r)(n~i~rw1)+6(n+r)]
n==l
4 anml[(n-kr——l)-i—l}}m”""" = 0.

As all the terms on the left side must be zero, we have the indicial equation

rir—1+6r = 0
rir+5) = 0 (4.30)

and the recurrence relation
an[(R+ )47~ D) +6n+1)] 4 ana(n+r) = 0
which can be rewritten as
ap(n+rin+r+5 = —ap1(n+r). (4.31)

The indicial equation (4.30) has the two solutions r; = 0 and ry = 5. So this is case IL.
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Let us first choose the larger exponent r = 0. The recurrence relation (4.31) becomes

Gp—1

ap = = —— (4.32)
and we get
ap = 20
T 6
b oo 0 _ 00
T T -6
gy = -2 = -2
T8 8.7-6
a = -, %
! 9 ~ 9-8-7-6
In general,
ag ag - 5!
= —1 n = -1 n .
t = (1) masintd 76 - Y maay
Choosing ag = % we have found one series solution
= Az 1z z* af
m= X Ve = s at A w T
Now take 7 = ~5. The recurrence relation (4.31) becomes
ap(n—5n = —ap_1(n—>5) (4.33)
which for n # b equals
_ _ On
an = = (4.34)
So if we choose ag = 1, then we get
ay = —ag = -1
L 4. N,
i 2\
A MTARNY"
SRR T 3R
PRYPE !
T T4 T 482

Note that for n = 5, the recurrence relation {4.34) is not valid, because it was obtained
from (4.33) by dividing by n — 5 which is zero now. We must look at (4.33) instead.
This equation is satisfied for any choice of as; the easiest choice is a5 = 0. Then,

a, = 0
for all » > 5. We have found a second series solution
vz = 276 " 24) " 2™ o 2% 6z 24z

The general solution is
Y = ay+ Coye.
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Remark Note that the recurrence relation (4.34} is identical to the relation {4.32) for n > b, just
shifted by 5 indices. So if we choose as # 0 for y2, then we obtain

as
g = — —
6
as as
ar = _—_— = =
7 6
ay as
as = B ==l
8 8-7-6
as as
CLQ = e I

s0 that

Remark It is quite easy to represent the solution in ciosed form. We can write y as

B s IO B 3 s o Lzt

no= (e oFrg o) = L ey
n=h
_ -5 (4 22 2 2! = 1nm”
R CRERE e R e e
n=_0
w oy —z %7,
It follows that
y3 — xwﬁewm

is also a solution to the eguation. The general solution can now be written as the linear combination

2 3 4
- Y., -5 - g T _F L F
¥ = ciyshcelyz = % (cu: -{-cz(l $+2 6+24))’

Example 3 Find the general solution of
2y + (2% - 32)y’ + 3y = 0. (4.35)
Solution.  Since we can write this equation as
3 3
" 1-2 ! et —
V+(O-—iy =y =0

we see that x = 0 is a regular singular point. We substitute

0 o
y = z" E anz” = E apz™tT
n=0

n=0
into {4.35), where ag # 0. We obtain

o
? Z an(n+7r)(n+r— a2
n=0
0o [s0]
+ (g% ~ 3z) Z an(n +r)z™t "t 4 3 z apx™’ = 0.

n==0 n=0
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2

Multiplying the factors %, x° — 32 and 3 into the series and re-index the last series,

o0

Z an(n 4 r)(n +r — z"*"

n=0

o0 o0 o0
-3 Z an{n +r)z™" + Z an_1{n+r— 12" " +3 Z ™" = Q.
={} n=:1

n=i)

Now we add,

ag[r(r-—l)m3r+3]mr
+i{an[(n+r)(n+1"—1)—3{n-1-'r)+3}+an_1[n+r-1} }.’L‘n‘f"" = 0.

We have the indicial equation
rfr—-1)—-3r+3 =0
(r=3){r-1) =0 (4.36)
and the recurrence relation

an[(n+r)(n+r—1)—3(n—1—r)+3] +a,,,m1[n-i~r-1] = 0.
(4.37)

The indicial equation has the two solutions r; = 3 and v5 = 1. So this is again case IL.

Let us look at the exponent r = 3 first. The recurrence relations (£.37} gives

an[(n+3)(n—1)+3] +anml[n+2} =0

or
an(n® +2n) = —au-1{n +2)
so that ,
An = —
n
We now have
a = — @
ay ag
a = - = = —
? % 2
o N aa - ag
T T3 T T 32
P ag aq
41T 4 7 4.3-2
or in general,
_ ¢_¢ynd0
ap = {—1) g

Choosing ag = 1 we have found one series solution
oo $n T
— g3 1P = g gt e T
Y= = n§:0 () = @ ot o+ (4.38)

We recognize the series as the power series for e™*. Therefore,

yp = re .
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Now let us pick the exponent 7 = 1. The recurrence relation (4.37) becomes

an[(n+1}nw3(n+l)+3] +ap1n = 0

or
an[n2 -+ 2n] = —Qp_1N
so that
an(n —2) = —ap—1 (4.39)
If we choose ag # O, then
] == - E% = Qo

But note thai for n = 2, equation (4.39) becomes
0= —a3

which is never true. What has happened 7 There simply does not exist a second series
solution of the form

oo
ya(z) = 2™ Z bpz™.
n=0

Remember that this is case II, and the second solution should be of the form

ya(z) = 2™ Z bpz™ + cyi(z) Inx (4.40)

n=0

In this case, the consiant ¢ must be different from 0. So how can we find this second
solution y» 7 Since we have the first solution g = %™ in closed form, we can use
the method " Using one Solution to find another”. We therefore set

for some function v to be determined. We differentiate twice and we get

y = 2P 0 4 (32° — 23)e v

and
y' = e+ (62® ~ 22%)e %' + (6z — 622 + 23)e v

Substituting into (4.35) and simplifying, we get
2" (3—ap = 0.

This is a separable equation in ¥, and
p q ’

Integrating, we obtain

and exponentiate

Hence,
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We can not evaluate this integral directly. Instead, we use the powers series again,

2 3 4

- P =31 LT E
z e z ( +r+ 5 + 6 + 3
1 1 1

-3 -2 el
= -1 —_— —— _i.. .
Tt ATt + 21 + 8 -+ 3 42

and integrate this series,

v—/m"3e‘”d’c— 1 l%llnm+1m+1m2+
- 1 N S 6 48 ’
We have found a second soiution
‘ 1 1 i 1 1
y2 = g'e v = zle? (w@ - E+§lnm+g$+ﬁmz+---) .

The general solution is now of the form
Yy = it Caye.

g

Remark Let us bring this solution into the form (4.40). First separate the term containing Inz, and
then express ™7 as a power series,

- 1 2, 1 4 1 ¢ ) 1 5 g

Yy = e (23: x+63:—i-48x+ -5—2:1:& Inz
- Lo 150 18 )(1 2, 1l 4 1 4 )
= (1 w+2z 63: 4k 2$ T +6x +4Sa: +

= (1, 1.2 33 1.4 ) 13,-2
ES (2x 2:c +4:c 6:c+ +2:re Ine.

Exarmple 4 Solve the differential equation

2y + xy' + 2y = O (4.41)

(This is called the Bessel equation of order zero)
Solution.  Dividing by z* we obtain
1
v+ =y +y =0
T

and see that © = 0 is a regular singular point. Therefore, we can expect one series

solution
o0
y = Z L

n=ag

We substitute this series into {4.41) and obtain

o0 oo oo

z? Z an{n+rYn+r-1) "% 4 g 2 an (n+7) 2™ 4 22 Z a,z™" = 0.
nez() n=0 n=>0

We multiply the factors z? and z into the series, and obtain

o0

o u) o0
Z an (n+r)(n+r—1)z™" + Z an (n47) 2T+ Z a, 2T = 0,

n=0 7= n=0
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Then we add the first two series, and shift the index of swmmation in the last series,

o0 oo
Z ay (n+7)% ™" + Zan_g "o Q.
n=0 n=2

To add again, we must separate the casesn =0 and n =1,

o0
aogriz” +a(1+7) %2 + Zan (n+7)? 4 ap_gz"™ = 0.

n=2

When n = 0 we obtain the indicial equation
agr® = 0

which has a repeated, single solution

r =171 = 10 = @,
Now when n = 1 we obtain ( using the fact that r =0 ),

a1 (1+0)* = 0

which is only possible if @; = 0. When n > 2 we obtain { again using r =0 )

Qn n® + Up_o = 0
which gives the recurrence relation

an—2
n? '

ap = -

Because a; == 0 we see that a,, = 0 for all odd indices n. For even indices n we obtain

f— - —_— aO
n=2: an = 3
=4 - A G2 _ o
=N “=Tp T Ep

. 47} ag
=0 BT TR T TgEe

In general, we can write even integers as n = 2k, and then

— Nk 2o
o = GV TR o T E R

which we can rewrite as

(_nk o — (_IJka'O
22k2 . 92(k — 1)2 ... 2222 . 2212 22k (E1)2

Gap =

Setting ag = 1 we have found one power series solution

oo A

1t

h = Z 25 e F
= 2 (Y

zz gt g8

T
= Tt e s T

8
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{Check!) The

This is a fast converging series with radius of convergence R = co
function defined by this series is called the Bessel funclion of order zero of the first

kind, and often denoted by J.(x)
5 ' N=16 |

15

-1 L
‘A\a
5t i }
N=2 % N6y N=10 . N=t4
0 2 4 8 8 10
N = a0+ a25” +aqz’ + .. Fane?.

Partial sums of J,(x)
{0, the second solution must

Now as the indicial equation has repeated roots ry = ry

be of the form =
Y2 = i‘lz anz" + y1lnz
n=(}
If we multiply the factor x into the series, and change the names of the coefficients, we
obtain
oo
Yo = Z bpr™ + milnz.
nw=1

To determine the values of the coefficients &,, we substitute this function into equation

(4.41),
]
[2° + =y} + o y1]lnm+23:yi—y1+2 bonin—1=x
=
v o0 0o
+ Y1 Z bonz™ o+ mzz by ™ = 0.
n=1

=1
The sum in the brackets is zero, because 3 is already a solution of the differential

equation. So the above can be written as

=2 ILET I
Z@ k)(k! L b o (2by + 2b)
00
+ [bn{n{nwl)+n}+bnw Jom =0
n=3
or .
= ('—1).4‘13 2k 2 = 2z
ém’ﬂ +b133 +4bz$ +1;3|:nbn+bnmg:| = {)

Now we compare coefficients
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[ El . bl =0.
o % —1+4b; =0 so that b = 1/4.
o z”, n > 1 odd: The first series contains ne odd powers of z, so that

by + by =0

and solving for by,
bn—2

bn:"“

n? -’
But since by = 0, we see that b, = 0 for all odd n.
o 1", n > 2 even: Setting n = 2k and using the recurrence relation, we get
(—1)* 4k

W + (2k)262k+bzk_2 = {.

Instead of solving this equation for by it is better to substitute

(—1)*F ey
b:gk = W, (4.42}
Then we obtain
k4l EERY 2SI 1V o,
( .1) 4k + (2]0)2( 1)‘ Cok ,,.( 1) a2 0.
22k (kN2 22 (k)2 2%=2 ((k —1)1)2

Now multiply by (—1)%22%%!,
4k -~ (2k)%cop, + 4k cap2 = 0

and solve for eop,

Caf = Cgg-z *t 7.

k
By (4.42) the first coeflicient is
Ca = 41)2 = Al
and then the remaining coefficients are
4 = eyt ) 1+ z
T %\ 3
g = cg-+ g 1+ ! AR ’
L1 Lot i S N
N &) 1
Cap 1+'2'+'§+"'E-~ H;
We have found a second solution
o0 .
-1 k—i—lH_ ‘
valz) = w(z) lnﬂf+kz (222(—5)2& a**
=]
z? 3zt 1128 2528

1 2T -
ne)ne+ 7 - et 3 e 176043 T

Instead of o, one often uses the linear combination

V@) = 2[(v—1n2 +s]
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as the second solution, where

v = lim (H, —Inn} =~ 0.57722.

=00

This second function is called the Bessel function of order zero of the second kind.

15 "

A H Yol

1 1 L i 1

C 2 4 53 8 10 12
The Bessel functions of order zero.

Exercises

I. Find all regular singular points and the root of ihe indicial equation if

(a) zy" + 2zy" +6e*y =0 {d) 2z(z+2)y" +y' —2y =0
(b) z(z — Ly" +62%y' + 3y =0 (e) 2?(1 -z} ~(1+2)y +2ay=0
(e) 2%y" + 3(sinaz)y’ — 2y =0 ) (4—2)y" +2zy' +3y =0
2. Use the series method to solve the following Cauchy-Euler equations
(a) =" +4ay' + 2y =0 (c) z®y" — =y’ +y =0
(b) z®y" — 32y’ +4y =0 (d) (z—1)%y" +8(x - 1)y’ + 12y =0

Compare your solution with the solution obtained using the substitution z = e,

3. Find two linearly independent series solutions:

(a) day" + 2y +y =0 (h) 32%y” + 22y’ + 2%y =0
(b) 2zy” + 3y —y=0 (i) 2zy" + QA+ )y +y =10
(c) 22y —y' —y=0 (i) 2zy" + (1 —2¢%)y — 4oy =0
(d) 3zy” + 2y +2y=0 (k) zy" + 2y + 9zy =0
(e) 2z%y" + 2y’ — (1+2z%)y =0 (1) zy" + 2y —4zy =0
(f) 2z°y" +zy' —(3—22)y =0 (m) 4ay” + 8 +xy=0
(g) 622y" + 7oy — (2 + 2y =0 (n) oy’ ~y +42’y =0
4. Find two series solution of
(a) 2" + B —z)y' =y =0 (d) zy" - (d+2)y +3y =0
(b) zy" + (5 —z)y' —y=0 {e) #?y" + 2z +32%)y' — 2y =0

(¢) ay" + (5 +3z)y'+3y =0 (f) 20 -2y’ -3y +2y =0
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. In each of the following equations, find one series solution y;. Then use the method "using

one solution to find another” to find a second linearly independent solutior: y2. (Compute
only the first three terms in the series part of y2.)

(2) 2y +ay +(x-y=0 (d) z®y" ~zy' +(&® + 1)y =0
(b) z®y" —zy' +8(z" =1y =0 (¢) z%y" + (2 —3z)y’ + 4y =0
{c) ay" +y' +2y =0 (f) z*y" +2%y -2y =0

Use the series method to show that y; = = is one solution of
oy —xy +y = 0.

Then use the method "using one solution to find another” to find the general solution of this
equation.

Use the power series method to solve the differenéial equations in chapter II, section 2.3,
exercises 3 and 4.

Supplementary evercises:

Show that
2,14t

z*y" + (sinz)y’ — (cosz)y = 0
has a regular singular point at @ = 0, and that the indiclal equation has solutions +1.
Find two linearly independent solutions. (Determine only the first three terms in the series
involved).
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Mathematics Dictionary

absolute
acceleration
add

addition
altitude
ampiitude
angle

angular
antiderivative
applied
approximate
approximation
arbitrary
arbitrary constant
arc

area

argument

assumption
asymptote

at infinity

axis

- real axis

Bernoulli

bound

boundary
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RULTH
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ATHLTY
990
nMIuIn
izﬁumwg@
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N
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by
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LEWANU
[
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. L3
FRATTVIHING)
ANVBLLIA
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UTREA
<

BEY

boundary value problem ‘qu'fg‘ir‘i'n‘\ﬁ‘llauvl"ﬁ

boundary condition

bounded
capacity
centre, center
check
constraint
continuity
chain rule

characteristic

characteristic equation

circle
circumference
circumscribe
clockwise

closed

coefficient
commutative law

compatibility

ANTAULYA

-

Waulawauiua
deauia
A1INY

[

AUBNA
A15ATIRRDL
ﬁl s Q-
Wanluiedy
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nqgnlar
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LEAUSTDUIY
W RO
AMENUIRT, T80
e
a _, Q“
gNszans
A FEALTN
A bR,
AU e

complementary angle }jm‘i_l‘e‘::ﬂ DUHHAN

complex
complex plane
component

composition
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LTNTB
sEunLLBeTou
a;'mah:nau

1. msdsenay
2. Haztsznay
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concave
concept
conclusion
condition

cone

conjugate
conjugates
consequence
constant (1)
constant function
continuous

contradiction

convention
convergent
converse
convolution
coordinate
coordinate axes
corollary
correspond
correspondence
counter-clockwise
counter example
criterion

critical

critical point
Cross

cross product

cube (n)

cube root
cubic root
curvature

curve
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(NN
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Tan
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Ha LTI INLADY
((fj vector product)

v
gnueEn
FInAEN
TInfa
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LELAg

cylinder

cylindrical coordinates WAAVNTINTILAN

damped oscillation
damping factor
decay

decimal place

decreasing function

define

definite

definite integral
definition
degenerate

degree

denominator
dependent
dependent variable
derivative

derived

descriptive
determinant

diagonal

diagram

diameter

1 .
differentiable function Wﬂﬂﬁi%ﬁ‘ﬂ’! a%w%ﬁvl,@

differential {a)
differential {n)
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digit
dimension
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division
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domain
domain

(of a function)

dot product

double
duration
dynamic

echelon matrix

a 5 I
echelon-reduced matrix mﬂ‘meﬁa@gﬂaﬁwu

elementary row-operation

eliminate
ellipse
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even number
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exact differential
example
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exponential
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expression

extension

extreme
extreme point
factor

factorial

family of curves

figure

finite

fixed

fraction

- proper fraction
general solution
generalize

generate (v)

geometric; geometrical

geometry

grade

gradient

gradient of curve
graph

graphical

growth
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hemisphere

homogeneous equation
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homogeneous function of degree n
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hyperboloid
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LA [ 4
laweslusaae

.
one-sheet hyperboloid laway

identity

identity matrix

(Hounsnawmdauny unit matrix)

image

imaginary
imaginary axis
implicit

improper fraction
improper integral
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integrating factor

integration by parts

interchange
interior
intersect
intersection
interval
intuition
inversion
invertible
isosceles
iterated; iterative
jump (n)
known

Laplace

leading coefficient

lemma

lemniscate

level line

limacon

limit

limit point

line

line segment

linear

linear combination
(of vectors)

linear equation
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logarithmic

long division

lower boundary

magnitude
major (a)
major {(n)
major axis
map (n)

match

mathematical model

mathemastics
matrix

maximal

maximum (a)
maximum (n}
mean

method

metric

metrical coordinates

mid point
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minimax point
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minimum (a)
minor (a)
minor (n)
minor axis
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mirror image
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operation AMFALTHWNNT
operator TR TITTE e
order DUAL

order (of magnitude) SUALUG
order of differential equation WAL

AHNTIAN a%ﬁ’uﬁ(
ordered pair @;E“l’uﬁ‘i_l
ordinary differential equation ®NNT LT
agﬁ’uﬁfmﬁqg
origin JAnLHR
oscillate wAenia
osculating plane  TEWIUFNAAL T2
pairwise ﬁazgll
parabola w1 luan
paraboloid wrlusase
parallel (a) UL
parallel (n) ngﬂmu,
paralielepiped T Gg mfﬂ; awﬁwmu
parallelogram gﬂﬁ' m%‘f EJN@;J’}WIJ 4194
parameter wisiilns,fusiasu

¢ o L
one parameter family of curves aeanlag
e
WW‘??NL@IB?%{EG@D

parametric equation  ANA1TREF LU TIETH

. =
parenthesis TILRLE
parity, same AILE BT
partial fDE, UNEIU

e 5!
partial derivative  8UWUDHDE
partial differential equation AU TN

a%ﬁugs;aa
partial sum Nﬁ‘l.l’:ﬂi;aal
particular solution WRLRRELBWIZINGY,
ANNDULANIE
partition (v) LL‘L;G%H
partition (n} NI;QLL'L;\‘}%%
path 30
pattern LLUUE)Ej’}G

percent saeaz, Lo
percentage ﬁ‘f@m;asjaz

percentage error MAAWAIRTDLAS

periect ﬁwqjl‘iﬂ:

perimeter agmaugﬁ, ANHYITAUFY
period AL

periodic iuany

perpendicular (a) ﬂg\?-ﬂﬁﬂ

perpendicular {n) z,gu&mﬂ

piecewise continuous éan‘iamﬁwﬁw 9 (f%
ATHAENE L DU sectionally continous)

place, value é’iﬂi:ﬁ’]‘ﬁﬁﬂ
plane (a) U
plane (n) FoUL
point L
isolated point AALANINE
ordinary point ‘ﬂ@]ﬁ’]ﬁfy
singular point ARLBNTIU
polar (a) L%\‘J%’A
polar (n) LE;)‘I«LL%G%’J
polar coordinates ﬁﬁ@L%ﬁ%’J
pole 1. %’3
2. Twa (lofusnas
ﬁ";l,mﬂ%@%au)
population sepng
position s
position vector L?ﬂt@]@%ﬂaﬂ@h LLVWL\‘.’P
positive un
positive definite U?ﬂﬁhﬁ%ﬂ%
power series DYNTHAEY
principal {a) agqsée’”eﬁ’zy
principal (n) L@%@Tu
principal axis unusEIAgY
problem ywn
product ria@}m

a (4
proof BAWFIU



proper
proportion
proportional
proposition
quadrant
quadric {a)

quadric (n)

Wi
dnsnu,Uine
Wudnan
L2
Urewau
ELEEL
AaYEaY
X =, o L7 =)
WHINReEay (Jans

AHELNH DU quadric surface)

quantity
quarter
quotient (a)
quotient (n)
radius
radix

range

rank

ratio
rational
real axis

real line

SIETYRTalt

dq J4 &
NI IR, LR 8
UEIU
NAWT
e |
Serit
an (9 base)
WD
AFAUTU
BATIRIY
ATTNLT
WAKATY
IEUA MR (RN

PHNHINA BUAY real number line)

real number
reciprocal
reduce

reflected image

reftection
region

relative

FIUIURTY

gAundu

AN

AWEENEY (Haumang
L DUAL mirror image)
MSEETBY

U3

s

removable discontinuity a3 luaaiiiag

right angle

right circular cone

right triangle
root

saddle point

fodala

HRAN
NIILNANATS
gﬂﬂunﬁﬁﬁuguaﬁn
TN

aﬂaquH

satisfy
scalar

scalar product
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AOARRDIN
L2
qLNaNT
L3
wafmiesinats (4

ANMHANEHHE DUN  dot product)

scaie

score

5ec

secant

second

section

sectionally continucus

semi
semicircle
semisphere

separable

separable variables

separable equation

sequence
series
set
sheet
shift
similar
similar triangles
simple
slope
solid (a)
solid (n)
solution
solve (v)

sound (v)

HIATIEIU, HAT, NS
1. sl
N
2. gwy
bR (9 secant)
L4
LRI LE
of
. YI&B

vk

o =l
2. U
3. WaLaN
. NG

ek

2. B
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aailaviug g
(9 piecewise continuous)
2
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jgimsnxmau
aFsenay
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space ﬂ%{}ﬁ
- 3-space ﬁ%ﬁﬁﬁ’]ﬂ&ﬁ@
sphere NISN[A
spheroid m\%ﬁgwm\mau
spiral (a) 12 EIHfT%‘H el
spiral (n) @S Bunumas
square (a) 1. ’5’@;%@

2. Ta9ABY
square (n} 1. gﬁgmgﬂﬁﬁ’ﬂ%}ﬁ

2. NRIADY

3. AT
square matrix %N?’I%ﬂ‘"ﬁf’gfﬂ%/ﬁ
square root -s'm?ia a4
stable e
statement gammaﬂ, {;amm

straight line LEUATY (HAH

AHNELAH DU line)
r'4

strategy EVDFNENT ) .

strictly increasing function WINTULAN
Tasun

strictly positive U?ﬂIﬂﬂLL“;]J

subscript ATTUI fﬂ"l\‘]

subtract &1

summand a"amfa\wamn

summation sign; y (capital sigma)

LAT D9VHATINEDA
symmetric; symmetrical  #RHINT
symmetry ALHGT

system of equations  FSUUENANT (AN
VNN DUNL simultaneous equations)

table A4

AN

1. EnENa

tangent (v)
tangent (n)

2. LLTI‘H»L'Q%WT
tangent line Lguﬁuﬁﬁ

(@ tangent (n))
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term ‘Wﬁ‘i’:

theorem "nf]i&l'ﬁ

theory ‘Ylf]iz?ﬁ

torsion n15ie, A i

total differential  WBAN méﬁ’mcﬂu

totally Taeduids

trajectory RICLh

sransform (v) Lileg

transform (n) HANTTHURS

transformation nswiay

trigonometry Rt

triple integration AT BUTA TR

undetermined coefficients 3340 ALIB B
furlsedng

uniform \angtl, asiane

unique duleeeadien

unit (a) ‘sﬁf’iwﬁ'w

unit (n) ‘H‘L;']EJ

unity %ﬁﬂ

unknown ﬁ‘)vl,ﬁijg@;'l

unsigned \lﬂi‘iﬁlql Lﬂ%iaﬁ‘mﬂﬁ

value ﬂl'l

variable (a) usfale

variable (n) s

variable, random (;f’JLL‘IJiEéN

vector LITHHET

€
vector product HagoUTnIN@DT (X

ATNMHNNBLIA 8UAL cross product)

verification IUFEBRL

vertical LL‘H"JE‘H; , LLH’J%\‘}, LL‘l»%’la'\‘l
volume U5ay

well-defined LL%E‘N"EFJ@}

Zero meET

3 v

Zero vector LINAR TEue (fzmm

WU WAL null vector)



Appendix B

Translation of Word Problems

The following is a translation into the Thai language of some of the applied word problems in
chapter 1.

Section 1.7.2

1. ngrasiuisaiumaduainannt  egiowaziduadludandadudadiuiunaciy
I anmpizesingriuuasgmugiivoudie

i
[ =3 o
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:J dl o o ol d’ a o ar di = =,
2. avmhaieniegniheanandiuumsngmnni 6°C Lngﬂm"lmw‘l,maamwqmwgu

o v, A Y ¥
2200 MAIAINU 10 U qqummmgwwﬁﬁ 14°C
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* o~
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= ~ 3 = o 1 = = 2 = |ct‘
3, I9ifaud  half-life 11350080 1600 o %mmmmmmmmﬂﬂmzﬂemmamaaagﬂ

wafiruduastSunansudunasainairiiuly 2400 1 wazvdsannatsanly sooo O

os o o ot 3 ) . w2 L
4. @ INHTUANIWSIFO1TUEW C-14 8 halflife t1187 5568 1 WOAN 9 ITFLHN
o L %) s dg 1 &::'::ldata 1 -=i‘ (7] o Qs =f 13 2;',
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o e t
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6. Unzmnsvesdsunaniefldarmaaiyduladudacda & uasnni 83 wavaniaiu
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Section 1.7.3

L7 ar 1 4\:1I =) = & 4:!’ 1 o ar
1. aeufifyriludiadnd 1 lnssuy@ivinawssans B ddfnmnsfivindy 15 nf
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Section 1.7.5
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Appendix C

Solutions tothe Exercises

Solutions for Chapter 1
Section 1.3

1. The solutions are

(a) y=£e¥ ~ Ju¥ 4 ¢

(b) y=Inlz|+¢

{¢) y=ccosz

(d) ¥y =csecx

(e) y=e

) y=4(tan™ 2)* +¢
2. The solutions are

(a) y=e"(z—~1)+3
(b) y=3ln[3e* + §]

3
(© y=fmlgz!
Section 1.3.1

1. The solutions are
(a) 2° ~ 22y —y?=c
(b) y = a(c+Infz|)?
(©) ¥* = a*(In|a| +¢)
(d} y =z(nizi+¢)
(&) y=ca® -z

(8) y=ce
(h) y = ce~cose

0 y=cl+a)
(k) y = sin(c + )

(m) (y—1)e¥ =cz

(n) y=(c—=z)/(1+cz)
(0) v =2*/(eat — 1)

(p) 3cosy =c~z*

(@) 1-9*=ce ™ (z+2)*
(r) r=c/sin® 6

(i) y=1/(z" - ¢)

(1) y = (223 + )*/*

pytt
(d) y+1

(e) tany = 2sin2x ~ 42 + %

xe”

(F) y* = 2?4 ex?

(g) y=2%/(c—2*)

(h) y =zcos™! (e —In|z])
(i) y=zln(2n|z| +¢)

() ue¥™/= = cz® where u =y + /7% + 52

Section 1.4

1. The solutions are

() y=14ce™

(b) y =ze™® +ce™*

(€) ¥y =% + e

(d) y = o/a + (sinz)/z

(e) y=ga' +cz?

(f) y =e ®[tan™ (&%) + (]
() v = relin|sinz| +

(h) y=a’e*+2* - 2x +2+ce™®
i) y=(z*+c)oscx
(1) y=ea® -2

(k) y=1/z ~cotz + (cescx)/z
1) ¥ = (32 + c)e’

(m} y = (2* +c)/In|z|

() y = 2?[1 + ce'/®]
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2. The solutions are

(a) y=1 (d) y =2°/4-56/a°
(b) y=2z+zlnz (e) y == eo+e /2 1
() y=1—e 0% (f) y=35+ @ +4)7%°
3. These are ail Bernoulli equations.
(a) ¥® =3+ ce 3 (e) y* = 3sinz + 92 ' cosz — 18z *sinz —
(b) y =1/(x + cz®)? 18z 3 cosx + ¢ex™?
(¢) ¥ = ze™® + ce~® ) y=1/(ce —zn|z])
(d) v* = 1/(cz® — %) (g) ¥* =e*/(c+nlx])

4. We substitute
(a) w=-1e¥, y=Inz*(e™ +c)
(b) uw=sin’y, sin®y = ca® - 422
) u=(z+e¥), (z+e¥=22%4¢

5. Section 1.3, exercise 1, equations (c¢), (d), (g), (h), (j) and section 1.3.1, exercise 1, equation
{e} are linear.

Section 1.5
1. The solutions are
(a) y=(c~z*)/(3z —4) (f) 28 +3ylnz+9° =c¢
(b) 2® — 2%z + 2% = ¢ (g} e"siny+ztany =c¢
(€) 2z~ 22° + Bz + 4y —y* = ¢ (h) ze¥+sinzcosy =c
{(d) net exact. (i) y==a*—(c— £22)2/3
(e) tanycosz =z —c. (3) 6% =ccser —1

2. An integrating factor and the solution are

@ y?  a=cy—y (8 v w2’ +o+3yt —cy=0
(b) ==t ¥+ 2Infzl -2y =c (k) siny, e"siny+y’=c

(c) e¥/y, ze® = ¢+ Injy) ) vy y? - =y

(d) 22, /a2y =c (i) exact, zy +sin{zy) =c
€y, Yz-elly’-2y+2)=c (k) exact, — z'—day-—yl=c

) v3, ot +3zy+yt=c (1) exact, (1 +Iny)~y*=c

Section 1.6

1. The solutions are

(a) y=2%~c¢fz+d ) y=z+chniz|+d

(b) y=zsinz + ¢sinz +cosz +d (g) ¥*=cx+d

(¢) y=ctan{cx -+ d) (h) y=d++vc*—2?

(d) ey +Injey~1|=c'z+d (i} 2y + +/4y? £ ¢* = de®t*® (Compare to
(e) y=1/(4e) + c(z + d)? the method of chapter 2 1)

B y=—3z"+cx—cFhjz+c+d
2. The solutions are

@y=Ly=1-2%3 (b)) y=1/(1-2) () y=-In(l—-=)

3. The solutions are
(a) y =In|sec(z+c)+d o) y=n{l+ce*)-z+d
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Section 1.7.1

1. The solutions are

(a) ¥ —2* =¢ {¢) z—y=clz+y)®

(b) 2+ (y ~c)* = c* (d) 22 —2ey=¢*  (c>0)
2. The solutions are

(a) ¥ +2z =c B) (z+2—7y)=ce? (c) 3z+y% =c/¥
3. The solutions are

(a) y—3z=c (b) In/z? +y? +tan™! (y/z) = ¢

Section 1.7.2

—

. Temperature T' = 10 + 100/2¢, fime t = 2.32 hours.
(a) 18°C, {b) 40 min.
35.36%.
49,921 years.
207, 360 people.
(a) 63,837,672 (551,563, 344), (b) 55,127,110 (123,325, 302)
2 ln4~ 9.242 days.
(a) 34.39%, (b) 43.49 min.
A(t) =50(v2)' ", A(0) =50v2,  A(5) =125,  t~ 10.29 hours

10, z(t) = o(0) e~ 5451070 T £ 959109 vears.
Section 1.7.3

1. z{t) = 20(1 — e~ 0-0192t) 156.02 min.
2.z =20-1800/(2¢+90), 855 min.

Ll e S A S e o

3. Let =(f) denote the amount of substance dissolved at time ¢.
(a) o(t) = 20 1=¢=5 where k = 82002 5 001352, 2(60) ~ 7.14g
(b) z(t) = 60 A5 where & = 11009 & (010536,  2(60) ~ 8.26¢
Section 1.7.4
1. z(t) = 10,000 — 100t ~ 0.0006,/(100 — )7,  z(50) = 4470
2. 5lnb = 8.047 min.
3. 2(t) =120 — 3t — 33540 — )%, £~ 16.9 min
4. 22 m3 /min.
Section 1.7.5
1. v(t) = 245(1 — e~0-04%)
2. (a) £ =0.1334 sec, (b) v(f) = 490.5 — 640.5¢ 72! (¢ > 0.1334 sec), {c) 0.563 sec.

3. (a) 7.765 m/sec (b) 133.331 m/sec,  w(t) = 133.3(1 ~ e~ 0993m /gec
{c} v{t) = 79.12e=%0%8!m /sec (choose t = 0 at breakdown)

Section 1.7.6
1. Steady state: grferry [Reinwt — wL coswt] Transient: gresfye(R/LN
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2. The solutions are
(2) I =e /RO [[ 4B Lt/RC i 4 (]
(b) I = E,/Re t/EC

(c) transient: FE, [}% - m] et/ RC

steady state: {72545 gy [coswt + RCw sinwt].
Section 1.9

1. The solutions are
(a) 2ye™ ¥ =e % f¢
{b}) y =ccscx
(¢) y=(c— £)esca + jcosz
)
)1

(8} v =

{d) 2./zy +sma: —cosy =¢
(6) y=miz? —z+ce @ +d
(f) y= 16/(051? — %)

2. The solutions are

(a) y=—/1+3/z*

(b) y = vbBx? — 22

3. The subssitutions and solutions are

s
1—c)x

(h) 8% + 2% +y? =¢
@) y=talc~e)
e tz+y=c
(k) ¥* +cy=3z+d

APPENDIX C. SOLUTIONS TO THE EXERCISES

{c) y =1 (best solved as Bernoulli equation)
(d} siny ={1 —=z)e™"

(@) u=y~?, sin(y™?)=2"+c (b u=2-y, tan(z-y)=c-uz
4. (¢ 5. (d) 6. (b) 7. (e) 8. (¢) 9. (b) 10, (¢) 11, (b)
Solutions for Chapter 2
Section 2.1
1. The solutions are
(a) 6—2i (d) &- 1331‘ (&) % — -
(b} 23 +2i () —& + 3. (h) —47.2 — 23.
{c} 32—4i (f) —38. (i) —10 — 244,
3. Where no numbers are given we assume that z = z +iy.
(a) 1/2 (d) %;f; (g) * (i) —0.007 +0.244
(b} 31/50 (e) z* —y? (h) i(3z%y -y
{c) 16 (f) —46/13 (i ¢°

5. Where no numbers are given we assume that z = z + iy.

(a) 0.2 (e) (x* +4°)? (e) 1 h) /1 + i
(b) 2.5 (d) (2% +9°)° (f) 1 (i) 8/17 "
(g) 1

6. The solutions are

(a) 2(cos T +isin %) = 2¢/2

(b} 2(cos F +isin=t) = 2e-in/2

{c} f(cosrr/4+zsmar/4) = /21
(d) 3(cosw + isinm) = 3™

{e) 2(cos27/3+1isin27/3) = 227/3

() v2(cos5m/4 + isin5m/4) = /2ei57/1

(g) 10(cos0.927 + isin0.927) = 100927
(h) 2(cos 5= +isin 5F) = 2e~/0

(i) {cosm/2 +isinm/2) == ei""/z

(G) %lcosw/4+isinm/4) = Let™/4

(k) 3(cosw +isinm) = 38”’

() .563(cos.308 + {sin.308) = .5631¢ 398



7. The solutions are
(a) 2+ 2v/3i.
(b} -2+ 24.
8. The solutions are
(a) 24,
(by —1—14,4
9. The solutions are
(a) 822"71'/3’ e‘liﬂ'/S’ i
{b)y =1, i, % (£1 7).

(
(d) +¥/2,£/2 (f)
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(c) 9.21 + 3.89i,
(d) —0.227 — 0.9744.

(c) +1,%: e) 3+2i,2—

+(1+ 1), 2(2+14).

(C) \/:rie--irr/:s7
(d) \/ieirr/ﬁ’

\/Q_ETirr/S‘
eTin/6,

10. These are the functions e"* cos sz and " sin sx.

Section 2.2

1. The solutions are
(a) y =1z + ca.
(b} y = ¢1 + c2e?=.
2. the solutions are
(a) z%y" — 2zy' + 2y = 0.
(b} ¥ — K%y =0.
(¢} ¥+ K%y =0.
(d) y" -2y =0
3. The solutions are
(a}) y=Injz + ¢l +d.

Section 2.3

1. The solutions are
(a) = ¢ + caz™2

2. The soluticns are

(2) ¥ = ¢ 8in2x + ¢9 cos 2z

z

(b) ¥ =ci€” + coe™
3. The solutions are
(a) ¥ = a1z + eze®.

(b) y=c17+ coz™

(¢) y = cre® + coe™ 7. (&) y=1c1 + ™™

{d} ¥ =e1z -+ e2e®.

(&) Q-zcotz)y” —zy' +y =0
£ v' -2y +y=0.

(&) y" +2y" -3y =0.

(h) 2*y" +zy —y=0.

(b} No. Not a linear equation.

(b) y=e12% + cpz™2.

(c) ¥ = c1e® + exx?e®.

\ (¢) y =1z + cpme®.

4. y=cz"sing + can~? cosz.

Section 2.4
1. The solutions are
(a) ¥ = c;e®® + coe”
(b) ¥ = c1e7® + coze™".

Sz.

(¢) ¥ = c1 cos 22z + ¢z sin 2+/2z.
(d) y = e*(c1 cos V3 + c2 5in v/3z).

+ eqme??®,

T4 Ca 64m

(e) y= 0182"”

y = c;xes'““/2 + cpxed® /2,
-

(g y= e‘x/2 (cl 08 »”zﬁm + ¢psin 32@53)

(i) v = e**(¢; cos4a + g sin 4x),
(k) y = 167552 4 cyexe52/2,

() e %(c; cos 2z + e 5in /2z).
(m) y = c1e*® + coe™27,

(n) y=e"(c; cos @ +¢o8in 3/%)
(0) y = c16%/% 4 ce7".

(p) ¥ = c1e®/* + come®/?,

(@) v =e **{c;cosz + casina).

S5z

~—~

r) v=¢ae® -+ e
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APPENDIX C. SOLUTIONS TO THE EXERCISES

2. The solutions are

(a) y =€ 1 (d) ¥y =e **{cosx + 2sinz).
() y = e® + 2%, (€) y = el~2FVDe . ge(-2-vE)a
(¢) y = Bze®. (£) y = 251 4 Lem9(1),

Section 2.5.1

1. The solutions are

(a) y = c1€%% + coe™F — 2%,

(b) y =16’ + o2 + Fwe ™ + Fae®.

(c) y = cre™® cos 2z + cpe”™® sin 23 -+ - sin 2z — 42 cos 2a.

(d) y=c1 +coe™ + 2z ~ Lsin2z — £ cos 2z,

{e} y = ¢1cos3z + ¢ 5in 3% + 735(92% — 6z + L)e** + 2.

(f) y=cre™® + came™ + z%e 7.

(8) y=cre™® + o2 4 5% — 6z 4+ 14 ~ Lsing — % cosz.

(h) y =cicosz + casinz — $zcos 2z — S sin 2z,

(i) ¥ =c1cosw, + casinwyz + (W2 — w?) ™ coswa.

{(5) ¥ = ¢1 €OSwWeE + 1 Sinwei + ﬁm sin w, .

(k) y = cre®? cos (v/152/2) + c2e™/? sin (V152 /2) + 1e" — e7".
() y=c1e7" + cae® + fze®® + e,
(m) y = cy8in2z +cycos2x + xsin 2z + 2cosz — 1 — z + 222,
{n) y=c1sin3z + ¢y cos 3z — $zcos3z + §sing — 272 + 32° — 2z

(a) y=e® — Je ™ —p — 1.
(b) ¥ = {5sin2¢ — Fcos 2w + o — L+ L.
(c) y = 4dze” — 3e” + fale® +4.
(d) y=e% + 270 — 220 — ge?=.
(e) y =2cos2¢ — gsin2z — 3z cos2a.
(f) y=e"®cos2x+ Le % sin 2z + ve " sin 2.
(a) yp = z(Az* + Bz® + Cx® + Dz + E) + z(Fz* + Gz + H)e™% + Ksin3z + L cos 3z.
) yp = Az + B + z(Cz + D)sinz + z(Ex + F)cosz.
) yp=e®(Acos2z + Bsin2z) + (Cz + D)e®* cosx + (Ex+ Fle* sinz.
) yp=Ae™® 4+ 2(Bz? + Cz + D)e " cosa + £(Ez? + Fz + Ge Fsinz.
() yp=Ax? + Bz +C + 2*(Dz + E)e*® + (Fz + @)cos2z + (Hz + ) sin 2z.
) ¥p = o(Az”® + Bx + C)sin2z + z(Dz? + Ex + F) cos 2z.
)
)

Yp = (Az” -+ B +C)e® sin 2z+ (Da? + B+ F)e cos 2z + e *(Gcosz+ H sinz) + Ke?.

(h) ¥ :2:1:(Aa: + Ble™®cos2z + z(Cx + D)e ®sin2z + (Ez + Fle"*cosz + (Gz +
- H)e *sinz.
@ y={ 0<t<nw
¥y= —(1+ %)sint — Scost+ Fe*t, i
(b) y = § — 15e ‘sin2t — Lemt cos 2t 0<t< /2
—t(1+e™?)etcos2t — (1 + e P)etsind ¢ > w/2
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1. The following are the solutions y, which one gets using the method of undetermined
coefficients. Using the method of variation of coefficients, one may obtain different y,. Why

is this not wrong ?

(a) yp = e®.
{b) yp = % 2gu,

2@

(&) vp = ~Zze~

(d) yp = 2z%e%/2.

2. (a) y=ci1cosz + casine — (cosz) In (tanz + secz).
(

b) y = c1e”% + cpze”

— e ¥ n g,

(¢) y = e1cosdx + cosin 3z + (sin 3z) In (tan 3z + sec3z) — 1.

(d) y = c1cos2x + co8in 22 + 3 (sin 22) Insin 2z — 2z cos2a.

(f
() yp = émze"mlnw _ ra"ze“’”

(e) yp = —%cos2zln (sec2z + tan2z).
)y =cicos(z/2) + cosin(x/2) + asin{z/2) + 2[Incos (z/2)] cos (x/2).

(h) ¥ = c1e” + caze® — €™ In (1 + 22) + ze® arctan z.

(i) yp = —e (82 + 4z +1).
() yp= sze "sin2x + fe”

(k) yp = 11—08"3:3.

¥ cos 2z log (cos 2z).

B yp=e"In(l+e ") —e+en(l+e7%).

3. yp=—322' % cos .

4. (a) yp = zsinz + coszln(cosT).

(b) yp = coszin{cscz + cotz) — 2.

(c) yp = scoszln(secx + tanz) — $sinzln (cscz + cot ).

{(d) yp = ;(z?sinz + zcosz — sinaz).

{(e) yp, = —coszln{secx + tanz).

(f) yp =xcosz —sinz — sinzin (cosx).

(g) yp = —sinzln (cscx + cotz) - cosz ln (secz + tanz).

Section 2.6

1. The solutions are
(a) ¥y =iz + caz®.
(b} ¥ =122 + ¢uz?/2,
(¢} y = e sin(Inx?) + ¢y cos (Inz?).
(d) ¥ = c12% + cozt/3,
(e) ¥ =cicos(Inz?) + czsin (In z%)
() v = (e1 +exlnz)a?/®.
(g) ¥ =2%(c1cos(Inz) + ez sin (Inx))
(h} ¥ =12 + e

2. The solutions are
(a) y= & + 225,
(b) y =z* — 22°
(¢ y=-3+35
(d) y=2>-2z+4+1/z

(i) y =ci2® + exz®lnz
() ¥ = z*(c1cos (In &%) + eg sin (Inz?))
(k) y = er cos (In x?) + co sin (In %)
+z(ilnz — %)
(1) y=ersin(inz) +cpcos(Inz)
—2Inzcos{lnz).
(m) y =2 (c1 cos (In sa) + ¢z sin (Inz) + 5)
) vp= clx +2+ir22ng
(0) y=c1z? + czx2 ln:c + Lz*(Inz)?.

(e)y:«e?m% + 3z - 2—3:.
(f)y=fg-~m +22%Inz
(g) y = 42® — 22

h) y=f2*+ gz — e+ 5
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3. (a) y=c(z+2)°+ 57
Section 2.7
1. (a) y=>5cos(2t —¢), ¢ = arctan} ~ 0.9273.
(b) y=2cos(t— ).
(c) y=2v5cos (3t~ 4), ¢=-arctan} ~ —0.4636.
(d) v =+13cos(nt — @), ¢ ==+ arctan 3~ 41244,
2. The solutions are
{a) y = ~2sin8¢sint. (c) y=2cos ¥ tcos 5t.
(b) v =2sin § cos ¥, (d) y = 2sin 7tcos t,
3. Lower by +/2, higher, unchanged.
4. y=3sinl4t em, t= % sec
5. oy = 4{ sin ( 8\/_1&) 2 cos (8v/2t) ft, w = 8v/2 rad/sec, T = Z% sec, D= 288 ft,
¢ == T — arctan -2= \/_ == 2.0113.
6.y = 3‘10‘(2 cos 46t + % sin44/6t)  cm, g o= 46 rad/sec, Ty = 7%= sec,
To/T = ;%= =~ 14289,
Y= \/Ee 10t ¢ (44/6t — @) cm, ¢ = 2?/6 == 0.795 . 7> 0.3912 sec.
7. y == 0.057198e %1% cos (3.87008¢ — 0.50709) m,
@ = 3.87008 rad/sec, ut/w, = 3.87008/+/15 = 0.99925.
8. r=+A*+B%, rcosf =B, rsinf=-4, R=r p=0+Edn+1)§, (n=0,1,2,...).
11 (a) "+ 10y + 98y = 2sin (£/2), y(0) =0, y'(0) = 0.08,
(b) y = oy [— cos (¢/2) + % sin (£/2)], (¢) w = 4v/3 rad/sec.
12. y = % cos (3t — 37/4) m
13. Steady state: 5%(30 cos2t +sin2t) f&.  Replace by m = 4 slugs.
F,
14, y = ™2™ (¢) cos pt + g sin pt) + Kg{m{wg — w?)sinwt — cw coswt],
p = (4km — A2 [2m, w2 =kim, A%=m(w? -w)? + AP,
_ cwk, _ CYe Fow 1 c? 2 2
(2) & =0 + TATC N Zmp - pA2 {% miw, —w )]’
cwk, w  Fowr ¢ 3 %
R ]
_ cwFy A Yo | Fow [ c? 2 ]
(C) Cl _y0+ Ag 2 02 - ‘LL Qm# ‘qu 2m m{w - W )
Fofm{t —sint), 0<t<nw
15. Fofm[(2r —t) — 3sint], w<i<<2r
~4F, /msint, Am <t < oo
16, @ == 107% cos 2000¢ coulombs.
17. Q = 1078(2e7500t _ ¢—1009¢) coulombs.
18. R = 200v2 ohms.
19. Qt) = 1078(e=4000t . 42000t & 3} coulombs, Qt) =+ 3-107% as t — oo,
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20. I E(t) = E,sinwt, then by equation (2.79), I, = Iysin{wt—¢) with I, = E,/Z,
Z =+vR?+ 5% and S = wL — 2. So I, is largest when § = 0, that is, C' = —47.

21. (a) I =5e *sint.
(b) I =e"*(1.5c0os3t — (10/3) sin3¢) — 1.5cos 10¢ + 1.6 sin 10¢
(¢) T = e % (3sindt ~ 4cosdt) + 4cos5t

22. Solve for @ first,

(a) T= Emsm—z)ﬁ(ceswtmcosf)t} (d) I = 5sin5t

) - e 3 2 iy
(b) I = 50sin 10t (e) I= gSlI’lgtﬁ* 3‘5111211
(¢) I =0.001sin20¢+ 0.02t.

23, (a) I= sint O<tel
' Csint—sin(t—1)  ¢>1
(b) I= 1—cost 0<t<l
~ }(cos1—1)-cosi+sinl - sint t>1

(et ~ cost +sint) O<t<n
s(L+e™)cost+ 33— e )sint  t>7

| o=

(C)Iz{

Section 2.8
1. The solutions are
(a) ¥ =1+ cae® + cge®™. (¢) y =cre®+e */*{cycos \/g'm +c3 sin %)
(b) y = ¢1e® + e"{cz cosz + casin z). (d) v = (c1 + 2% + czz? + cqz®)e2.

(€) ¥ = c1008T + casing + 63 cos 2 + ¢4 8in 2z

{f) y=(c1 + c27)e™ + (c3 + caz)e™ %,

(8) ¥ = (c1 + c2z) cosaz + (cs + cyx) sin ax.

(h}y y=(c1 +e2z)e ™ b cgcosz + ¢y sin z.

(1) y=e"{(c1 + o) cosz + (3 + cuz) sinz] + e72[(cs + ceT) cos & + (¢7 + ez sin z.
(3) ¥ =ec1e7® + e*/%{cs cos % + ¢z 5in m‘”(g«’ﬁ)

(k) v = (c1 + coz -+ caz®)e ™.

(1) y=e>/V%(c cos % teasin ) + e~=/V2(cz cos 75 +oasin £}
(m) y=(cx + com)e® + 2™ %% (3 cos & + ¢4 sin x).

() ¥ = 16" + 0™ 4 ege’T,

(0) ¥ = c1e®® + (ca + cax + cyz?)e ",

(P) y=c1+ oz +c3e®+cqe™ +es 0082 + cgsin .

(@) ¥ =c1 + c2e®™ + e % (cz cos /32 + ¢y sin V3z).

(r) ¥ = c16” + cowe® + c3a”e® + 07" + cyze™ + cozle 2.

{s) ¥ = (o1 + c22)e® + (5 + caz)e ™ + c5eb7.

2. In some exercises, only a particular solution is given.

(a} ¥y = 16 +cone® + 3™ + ize™® +3.

(b) y=c1e" + ™% +e3co8z + cysinz — 33 — fzsinz.
(€) y=c1e™% +cocosz +cgsing + %«xe”m +d{z—1).
(d) y=c1 4+ cox+czeose +eq8ing + IIESin2$-

(e) yp = —Incosz — (sinz)In (secz + tan x).
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— . — 3T 2 lpw 0l o4 1.2
(f) ¥y =01 + cax + cze™ " + gqe sef — 1t - gt

(g) y = c1008T + cysinz + cgrcosT + eqwsing + 3 — zu’cos .

(k) ¥y =1 + c2x + c32” + cae™ + -g—; - %1

Y

y = 35(1—cos2x) + ga*.
(m) y =1+ (2 + 33) — ze”.

3. The particular solutions are

a) yp = z{Az® + Ba® + Cz + D)} + Ea’e®.
o

(b) yp =z(Az 4+ Ble™ + Ccosz + Dsinz.

(c) yp = Az?e® + Bcosz + Csinz.

(d) yp = Az® + {Bz + C)e® + z(D cos 2z + E'sin 21).

() yp = z{Az® + Bz + C} + (Dx + E)cosz + (Fz + G) sinz.

(f) yp = A" + (Be+Cle™ +2e ™ [Dcosz + Esinzx).

4. These are Euler equations.

(a) y=c; + ez + eyt

(¢) yp=2"/15.

5. y = §(coshz —~ cos ) + L(sinhz — sinx).

(b) ¥ = ciz+ cocos(Inz) + cysin (Inz}.

Solutions for Chapter 3
Section 3.1

1. The Iimits a), c}, f), h) converge are zero, The limit in e) equals 1. All other limits don’t
exist {(and equal co.)

2. The solutions are as follows:
{a) 2, (c) 1/2, (e) =/2,
{b) diverges, {d) diverges, (f) 2/e.

3. The integrals (a) and (b) converge; (¢), (d) and (e) diverge.
Section 3.2

1. (c) is continuous, (a) and (d) are piecewise continuous, (b) is not piecewise continuous.

2. The Laplace transforms are

O SN OF- e
Section 3.3
1. Use the fact that cosz = L(sinz), sinhz= L(coshz), L:(z")=nlz™? ete
2. Use the trigonometric formulas cos® azx = %{1 + cos 20z) and sin® az = -é—(l —cos2ax). You
will get
Lisin*az} = %(% - ﬁsw) and L{cos’az} = %(% + W:SW)

Since sin® oz + cos® az = 1, you also get £{sin® az} + £{cos? az} = £{1} = 1/s.
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3. The solutions are

10 2 H)
Sy e R
120 8 4 2
b} — + ——, = 42
®) s 8244 (@) P R
4. In some of these exercises, you have to use partial fractions decomposition.
(a) 5a°, (f) 5(e* 1) (i) = —sing
(b) 2e7%, (g) §(1—e™™) (k) g(cosh3z —1)
(¢) 227 + 33111 2z, (h) ?11’(1 — cos 2x) = %sinz z () a]'};(Sinh az — ax)
(d) 1~e™ 7, (i) L(6sin3z —cos3x +1) (m) $(e™* —2e77 +1)
(e) = —singz,

5. Use the rule for the derivative of the Laplace transform.

6. The solutions are

(a) y= 1(e% + 4e™?®). (e) ¥ = {5{2¢° +2e7" — 2sinw + cosz]
{b) y =2 —e™*% f) y= C(}Sh(L

()y:e“z""we“'+e (g) v = cosv/2z.

{d) y= [COS 2z + 4sin 2z + 2z° — 1] (h} y = (W?—4) " [{w?—5) coswz+cos 2z].

Section 3.4.1

1. The transforms are

1 2 G 2a(s —c)
® oy © Gy NP R R (P
24 20(35% ~ a?) §—¢C (s —c)? —a®
b) e d) -2 0 —— h) ———
(®) (s —m)® (@ {(s? +a?)3 (s —¢)? +a? @) [(s —¢)? + a?]?
2. The solutions are
{a) &sin2z {e) 2e~%cosz (h) 3 — 2sin2z + Scos2x
(b) 2z%e” (f) 2cosh2z — £sinh2z (i) —2¢~*"cosz + Se"*sing
(c) Ee® — Zem4® (g} 2ecosz + 3esinz (i) 2e7®cos 3z — Ze " sin3x
(d) e 4 fe2
3. Use partial fraction decomposition.
(a) e %(z — %) {f) s(sinh 2z — sin 22)
(b) se®*/*(8cos fz — 5sin £x) (g) (1 + 12z + 24z + Lz?)
(c} €% (3cosdx + £sinda) (h) 5(2cos2x 4 2sin2zx — 2cosx — sinz).
(d) &(e®® ~1=52) () & (€22 ~ 1) + &2 (22 + 1))

{e}) 1%5 (e**(5z — 2) + e7**(2 + b))

4. The solutions are

(a) y = e"sinz. ) y= %(cosm—2sinx—i—4emccsm
(b) y = e** — xe?®. - 2% gin z).
(¢} y = 2" cosh 3z — (2/V3)e" sinhv3z. (8 ¥ = $(e™® — e"cosz + Te“sinz).
(d) y =2e " cos2z + $e~" sin 2z (h) y =277 + ge™® + 2z%e™".
(e) y = 1e® - p2eT + %mSBx. (1) y= %(1 _ 2e2z +e4:c)
(i) v = £(3sinh 2z — 6x)
(k) y= (e *(5z — 1) + e~?(cos 3z + 32sin 3z))
) y = 5(2e*® + (10z — 2) cosz — (5z + 14) sinx)

5. Evaluate the integral defining the Laplace transform, and substitute u = cz.
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6. Take the derivative of F(s) or integrate F(s) (in the last question).
(a) —22'sinh 22 (c) z (e ® + ¢ — 2cosx) (e) 207 '(1 — cosz)
(b} 2z (cos 2z — cosx) (d) z7le % sin 3z (f) 3(zsinz ~ 2% cosx)
7. If you apply the Laplace transform, you will get first order equations in Y(s). 'The
transforms of the equations and the solutions are
(a) (s + 1)Y'(s) +4Y(s) =0, y=Cale™™, C#0
(b) (s% +38)Y'(s) + 3s¥ (s) = 0, y=Cx%e™3, C#0
(¢) (s —2)Y'(s) +3Y(s) =0, y = Czte®®, C#0
(d) (s +28)Y'(s) + (45 +4)Y (3) = 0, y=Cl—-z—e 2 —ge™®), C#0
(e} {s®+ 1)}Y'{s) +4sY(s) =0, y=C(sinz —zcosz), € #0
(f) (8% +4ds+13)Y'(s) + (ds + 8)Y (s5) = 0, y = Ce *(sin3z — 3zcos3z), C#0

Recall: Once you have found one particular solution, you can find the general solution by
reducing the order of the equation.

Section 3.4.2

1. The graphs are

{a) (d)

o) @)
(© h (1

2. The solutions are

(a) F(s) =201 —e™%)/s () F(s5) = m(e™ +e7%)/(s* + 7%)
(b) F(s)=3(e*—e 1)/ (h) F(s) = 2w{e” 35+e‘53)(43 + %)
(¢} F(s) = (1—e ™)/ (s* -+ 1) (i) F(s)=e (s  +577)

(d) F(s) = s{l —e %) /(s* + a%) (i) F(s) =(1-e)/s

(e} F(s)=(1+e 3} /(s2+1) (k) F(s) = (L —2e7% +¢725)/s?

(f} F(s) =2(e™™ —e™279) /(5% + 4) ) F(s) = 1—e % —qage™%®

32(1 _ e—2as)
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3. The solutions are

(a) flz) =a"e™ (g) flz) = ualz)(z - 3)

(b) flz) = Jua(a)fes2 — e H==2] (h) f(z) =w(z)e™="Y

(e) flz) = 2’(.1’.2(56)8:5_2 cos (z — 2) 1) f(z} = ~u(z)sinz

(d) F(z) = ue(z)sinh2(z —2) () flz) = (1 — uax(z))sine

(&) flz) = ui(z)e®® Y cosh(z — 1) (k) flz) = (1 ~us(z))cosmz

(6) f(2) = ur(o) +a() ~ vs(@) —wsle) () F(2) = 2c05 2efun(x) — unn(2)]

4. The solutions are

) ( ) -~ e—mt _ ul(t)e——w(t-—l)
(b) i(t) = (1 — uan(¢))sin 100t
(c) i(t) = B(cos 10t — cos100t) if t<m (t)=0 if t>n
(d) i(t) = g5(1 — 7592 — douy (£)[1 + 98e~50U~1) — gge—200(t-1)]
(&) i(f) = (1 —e ™) — e if 0 <t < 1; i(f) = & (—e750t 4y o= 30(t=13) _ geB0t .
49(t — )e A A T

5. The solutions are

(2) y(t) = $(1 — uq(t)) sin’ ¢
(b) y{t) = H(B+e M —de ) ift <2y y(t) = FHle~M—de ™t —e M2 4 de= -2 if ¢t > 2
(c) y(t) = §(1 — ua,(£))(sint — § sin 3¢}
(d) yt) =t —sintif ¢t <1; y{f)=—sint+sin{t -V +cos(t—1)ift>1
(€ yt) =2t -1+ (t+ 1)e® +u(t)(1 — t + (3¢~ 5)e~20¢=2)]

6. The solutions are
(a) y =1 —cosz +sinz — uy 5 (2)(1 — sinx)
(®) ¥ =( e~ )51na:+ tun(z)(1 + e cos + e~ sing) — Lug, (x)(1 — e cosz ~

e~ =2 gin )

(c) y = {1 — upx(2)}(25in T — sin 2z)
(d) y = $(2sinz ~ sin2z) — fu,(2)(2sin z + sin 2z)
© y=1-w@)i - @D = @ =De-t=)
(f) T e=2E uz(x)[% e g (EF=2) %e—z(x—Q)]
(8) ¥ =cosz + uz(z)(1l + cosxz)
(h) v = ~(@) +uzp(z)hlz —7/2), h(z)= &(~4+5z+4e7*/?cosz — 3e~*/*sinz)
i) y=z—-wz){z~1-sin(z—1)]

() y = h(z) + ux{z)h{z ~7), h(z) =4 (-4cosz +sinz +de~*2cosx + e~*/?sinz)

(k) y = cos2z +u(x)h{z — ) — ugr(z )h z—27), h{z)=(1-—cos2z)/4

() y=w(e)h(z —1) —ualz)hlz — 2), h{z)=—1+ (cosz -+ coshz)/2

(m) y = h(z) —us(z)h(z —7), h(z)=(3-4cosz + cos2x)/12

Section 3.4.3

1. The solutions are
{a) y = 3sin2z
(b} y=2sin2z ifz <wand y=sin2z ifz >
(€) y=50 =€) — Lxe™™ + uy(z){zx — 2)e~2=-2
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{d) y=2—2+ 27" 4+ 3ze™"

() y=0 if 0<z<7 and y=-2"""Tsing if z>x
(f) y = —Fus«(a)sin3z + tasinz

(g) y=(2— € uz(z) + e usr(z))e ¥ sinz

(h) y = (5z + 2)e™* — ua(z)(z — 2)e~ (=2

Section 3.4.4

! i
. ERT s, 4
1. F{s) ST 6o F(s) = EEyS ey
1 @—as N I s
2. G(S) = F - W 5. G(S) =5 32 n kz coth o
g o8 6. i(t) = uy (£)e~10001) _ g, (g)e100(t-2)
Fls) = s(1 — e—2s)

Section 3.4.5

1. The solutions are

(a) flz)= é"a‘z (d) f(z)=2(z —sinx)
(b) flz) = (e** —az —1)/ad® (e) flz) = we®
{¢) f(z)=3(sinz — zcosa) (f) flz)=(e* —€")/{a~10)
2. The solutions are
{a) f(z) =% fy(x—u)sinudu (¢) flz) =13 [ (z —uje % sinu du
(b) Flz) = [y e " cos2udu (d) f(z) = f; sin{z - u)g(u) du

3. The solutions are

(a) f(z) = e *(5sinz — 3z cosz — 2zsinx)
(b) flz) = 55

4. The solutions are

e/ ((dz + 8) cosz + (4 — 32) sinz)

(a) Y= ésin wi + % Iot sin w{t - U)Q(u) du
(b) y= fox e—{w—ulgip (z — u) sin ou du
(€ y=3% [y e~ @ 2 5in 2(z — u)g(u) du
d) y=e""2cosz — Je ™ sina + [ e @/ 2gin (z ~ u)[l — u, ()] du
(&) ¥ = 2e™2 + te™2 4 [¥(t — u)e 2 Hg(u) du.
() v =207 — &2 4 e~ — o= cosau du.
(8) y =3 [ [sinh(z — u) — sin (= ~ u)jg(u) du
1

(h) y=3cost— Lcos2t+; fo [2sin{t — u) — sin 2(¢ — u)]g(u) du.

5. The solutions are

(a) 3}:$+“é"333 (b) ym§(4sin2xw25inx)
4 as
* Y = - = 3 * 4 - .
6. Y(s) R tanh 5 Then, y(¢) = 2sin 2t * f,(¢) where f, is the square wave function

If you compute this integral [ Separate the cases 0 <t < 7, # < < 27 ) and use periodicity,
you get y = |sint| - sint.
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Solutions for Chapter 4
Section 4.1.1

1. The solutions are

B 2 z? 24 o0 (_1)n$n
(d)e”:lm't:wkwé'"—g—i-z 'WZ o
n=0
4z? 8z 16zt =, gngn
20 _ _
b) e = 1+2z+ 2|+“‘“§;!“+ o ZD i
n=
. 92% 27z G4z? o (= 1)mgngn
-3 __ —
e i nh b D Dl
n=={}
6 a 12 o, an
= 3, % T E - T
(d) e = 142+ o b ookt E% N
n=
4z?  16z!  642%  2562° — LAt
(e) cos2¢ = 1— 5 + TR T T ;}(—1) Gt
. T .7’,‘3 5 5,37 ki p2ntl
£ E_T_ . e = iy
By =s-smtny @t nz_;( V't an s
6 10 14 18 o dret2
R I LN R~ o ) i
(g) sina® = 2% -+ 0 ==y + ;} (2n + 1)1
z  z? a® 4 bt z
h = ] - — 4+ SLZ g — _n\n_s
(B) cosvz = 1-gi+ =Gt g( oY
2. The solutions are
o2 3 4 =2 (_l)nmlﬁn
(a)m—?+”§“z+"'m2%n
n=1
1 1 = (- - 1)n
b) (z—1)~ =(z-1)"+ = e A =
®) (6= = e =2P # 3o =3P - e -t = 30
T 1 T2 1 7y 8 Tyt 1 S
1— — L (O Sl s -
@1-(e-5) -5 (= 3) tg(a-3) +ple-3) 5 (e-3)
3 wE .’1’:7 x2n+l
d e x_. z_
@ o+t Zo(znﬂ)l
@ Ir(@-D+E-12-(z-1P+(z-1)*-- = Z(wl)”(x—l)”
nz=(
V2 . (z—a/4)?* lz-x/4? (z-n/4)
® 5 [H(‘"“Z)_ T TR BT +J
4 8 242
s Tz W
2o w1
(g) R A v (lal<1)

3. We have not studied what happens at the endpoints of the interval of convergence, but we
don’t worry about this.

(a) R=1, (-1,1) (g) R=0.5, (0,1) (m} R==1, (2,4)

(b) R=1, (-L1,1) (h) R=05, (25,3.5) (n) R=00, {—00,00)
(¢ R=1, (-1,1) {{y R=0 (o} B=0

d) R=1, (=1,1) G) R=05 (-0505) (p) BR=10, (-8,12)
() R=35, (-5,5) (k) R=3, (~4,2) (@ R=1, (-1,1)

() R=02, (0.4,0.8) M) R=1, (1,3) ) R=2, {(-2,2)
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Section 4.1.2

1. The solutions are

921 27x° 81 = e
(a) f($)=ﬂ32“33+—27““w3! Z N R=o
1 € zy? x 33 T4 {=1)'z"
b me [1m e+ (=)~ (= =) -] = S M =
(b) Jlz) 10[ 10 (10) (10) +(10) ] f;; i A=10
mﬁ .’1710 11)14 1:13 n ‘4n+2
©) fla) =t =gt gp =g = 2,( Ve R
n—=
2z° 8z 322° = 23n—igin
@ f@ =1-Fregr =g+ = L ) g R
n—]1
— . 2 3 Kb 3 - ni—1 n
{ef flz)=1-3x+62z" —102° +15z° - = 5 Z(—l) n{n+1)z", R=1
=1
x o oxr ozt ot R
f = - e — = = =
@ Jiz) 2 T3 TT TS :L:gnﬂ’ R=1
1 CL‘?’ ﬂ,A 78 o . $2n
@ fle)=g-F+7 -5+ = LWy =
2. The solutions are
2t 210 it 22 o0 (Wl)n
(a _—— o — SO A U — Gr+4
)@ =~ 355t s " mm T HZ:O @n+ Dien+4)°
3:3 $5 :L.’?' wo $271+1
b =gz~ + - o= - =
®) fe)=c-sg+rm—7m nga( oD @y B
_ 2:4 :I:7 ml(} $13 1) 3nit
© f@)=2-F+om st T 1;0 Al(Bn+1) "
g Y \al = (-1)"
d — _ . W .- AR AR |
@@ =c-—gtgmt 2(27@“)2
.’.173 335 1.7 l)n 2n-41
mE - — 4+ — — — 4 = B T
() fley=2- 5+ 35~ o7 ; (n+1)2n+ 1)
$3 3:5 IT oo 1:21'1-~i~1
f ey <Y _— _— LR _— P
() f@y=z+t5+5+—+ ,;]an, R=1
3. Use the series for tan 'z with z = 1/V3. The first six terms show ihat
3.14130878 < 7 < 3.1416744.
4.y-—1+22$+32$2+42m3+ = 21__0(11—{-1) T,
y' =22 +3%. 25 + 4% . 327 ~+~52 44 = 30 71—%—2)2(1r7,-i~1):1:n

5. The solutions are
oo

) Z Qny (@ ~ 1) (b) Z (n+ 2)(n + 1)apt2z™ (¢) Z Qp_sa™
fr==i n=2

n=0

oo
6. ap = (~2)"ap/n! (n=1,2,...), Y Z anz™ = age”*®

nw=l
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Section 4.2

1. The sclutions are

(@) ¥y = ao(l+a+a2/21+2%/31+...) = age®, R=rc0
(b) y = ap(l+do+ 488 + 48 1) = g, R=oo
(C} ¥y = ao(a'_——+3212mz %‘:ﬁ;“}" 3;2: "") = G»QGW(S/E):E, R:OO
d) y = G0(1—$“+~——‘-3T+---) = (1(16_3:2, R=cwo
(e)y:a0(1+3+342|+’“§“"+ ) :Q-()emﬂ/S, R =00
p 2ag
f = — = =2
() an+1 5 y=5 R
(@) v = ao(l+2c+422 + 8% +---) = 1_?"2"2 R=1/2.
h} ¥y = apy1 = a,::((;j?)’ R=1, ¥ =ao(l+2)'/?

By = all+2z+32° +42® + ) = ao/(1-2)?, R=1
() anr = B8 R=1,  y = ao(l —2)¥?
2. The recurrence formulas give you

(a) {(n+ 1)a, = 0 for all n, so that a, = 0.
(b) 2na, = a, for all n, so that a, = 0.
{c) ag = a1 =0 and an4; = —na, for n > 1, so that a, = 0 for all n.
(d} an =0 for all n.

Section 4.2

1. The solutions are

(@) ¥y = ao(l+2*/2t +2* /4l a6l + - Yt ay(w + 2% /3 + 2551+ 27T+ .- )

= gpcoshz + a;sinhz, By 6o

(b)Y ani2 = m:—), R =, ¥ = ag cosh 2z + & sinh 2x

@y = aof o AU RS (Rt SRl S SR
= a00053$+—3~31n3m R =

(d) ¥ = @+ agcosz + (a3 —~ 1) sinz, R =0

2. The solutions are

(a) ap =0, a1 =3, a,= —Tf{c:‘:f), = %sin&c
(b) ¥ = 2cosh2z
() =0, ar=1, app=Btal  yger

2an —(rt1)ap. _
(d) @nops = %ﬁjh(?_mfﬁu, y = e3¢
3. Using the power series method, one obtains
> o g + 0T
(a) anyz = an, y = GOZ x2”+a1z gl = AT R=1

—_ 2
n==0 n=0 1 i

1 1
1) tngz = —nan, = ap S ENE

2
n=0 n=0

n 2n

{— 1)“ L ag + arz) .
Z - @2 +2 ! R = ‘\/5



242 APPENDIX C. SOLUTIONS TO THE EXERCISES
3 @n B e /., ( 1)121‘711—#1
(©) onv2 =05, ¥ = anc ”1?—;1 35 (2n+1)
) _ —a%a _l)nznnlm%t-}-l _
can also be written as ¥ age +m ,; —(2n 1) , R=c0
an(n+4
(d) Qp2 = w.r(brémmz’ R= 1:
3aq -+ ay(z® + 32)
— n n n Zn+l _ 0 1
- aogﬂ( 1)%(n + L)a*" + a]nzg( 1)"(2n + 3)z 30 o7
o 4l \/g \/g_{_
nay, x ay T
T = T T A S TN = ]' 1
{e) anso O Y a0+ai7;)(2n+1)3“ ay + 5o N
R=+3 (can also use the method of reduction of order)
an{n—3)(n—-4
(f) apsn = (7E,+1){)T(L+2))’ y = ao{l +62° +a*) +ai{z + 2%, R=1
_ —ap(n-— 4)? | | _ 8§, 8
(8) ans2 = 5r gy R=V3, g = aoll -3+ 50
1, 1 o o= (=1)"-12.32.52...(2n — 5)2 . g2n+1
TOET 5 T 0" +ﬂ§3 (2n + 1)i3n—?
(W) anso = an(n —4¥n +4) R=13,

2n+ 1) (n+2) "

]

ag(l — 42” + 22"} + o (SL =

(n+3)n+4)

@rDEen™ T

i) a

n+2 —

Y
=0

{n—4ja,

(E') On42 = “W,

2 1
y = ag(l+Sz2* + =z

5 3
=z +
4

1

1
Nta |z+ 22t +—

7

5 4 i (2n
ne==3

32

= 5){2n + 3)lzAnt!
nl{n — 3)128»—3

)

H

ag }: (n+1)(2n + a® + a1 Z {n + 1}(2n + 3)z?H!

nz=f

R =00,

(=1)"*(2n — 5)lg?+?

-E_Z -

)

3 27 6 360 83n~Un — 3)(2n + 1)t
2(n — 5)ay 4 4
k n > 3 3 i & AE 5
(k) anve =500 1}(n+2) R=oo ¥ = ale- 58+ )
1 fe's] 1.3.5. 2n_9).{2n_7}‘2n.m2n
1— -1
e 750“’ b Z (2n)15"
—_— )+ag|1-a? +-—1—a:+-———ﬂ, 24{}ZM
S TR V77 L 107 7 750 (2n)15m
o 3 o 3n+1
(}) GQZO, a‘n+3:n+27 R= o8,y ¥y=to 1+Z 2.-5-- ( +alz n|3n
~ an, N l)n 3n ( l)n 3n+1
{m) a2 =0, G‘»n+3~”n+3> B = o, —GO,Z_% T plgn + lz -(3n 4+ 1)
an
=0, . L R =0,
(n) a2 et S T T 3) &
(_m}) 3n (_1) pIntl
1
- ( +,;Zl Al g5 (D) +‘“Z Tl 14 @t D)
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an B
(0) ag =a3 =0, an+4“_W: B = oo,

)n dn-41

oo ( 1}n 4n (
v o= e 1*; & nl 87 (dn—1) ”12 4n . pl5-9--(dn + 1)

4. the solutions are

(a) y== (b) y=1+2
5. The power series method gives
[e.0)
n ety (=D"2mnl(z — 1)2nH

— - (x—1)*/2
(a} Arpep-2 n+ 21 Y 2e + r;) (2?’1 + 1);

1 o0
(b} y= 3 Z (2n + 3)(z — 1)*+1, converges if 0 < z < 2.

n==0

(€) y=2~F(z ~3)% converges for all z.
(d) y=1+4(z+2)*
an(n + 3) n— 1)

(e) ag =0, a; =2, Anpn = TEEDCESR

y=2z+3)
6. The solutions are

(a) 2az +a9=0, (n+1){n+2)po+tan+an_1 =0 (n21),

n=1-32* -+ yo =z — g2 — Lt 4
{h) a; =10, (n+1)nan+2an 1—(n+2)(n+l)an+2—0
y1 =140 + $o° + Fab 4 - yo =z + 32° + frt + b+ Eat 4
(C) g = a3 =10, (n+3)(n+4)an+4+(n+1)an+1-I-an_—O
y1=1—Fot+ Lz + y2 = 3 — 352t — gyt

(d) y=ao(l — F2b+ Hz® + Yt a(z~ o’ + gz + )

7. There are two methods which you can use. Either find a power series solution for

y' + oy = 0.
You will get the recurrence relation as =0, anye = ____{n+‘*1*3(-;+2) which gives the solution
o0
(-1)"-1-4-7---(3n —2)a®" C1)™. 25+ (30 - 1)jadnil
ag | 1+ +a{z+
( ,; (3n)! ' nzl (3n)!

Then use the method of variation of parameters. {Note that the method of undetermined
coefficients can not be used here !) The second method is to substitute the power series for
1

— dp—1
e® from the beginning. You get the recurrence relation a» = 0.5, apy2 = S ) e

SImRImE. TOnE 2 T+ D+ 2)

Section 4.4

1. (&) 2=0, 7(r—1)=0, rn=1,rp =0

(b) =0, v{r—1)=0, r =1, ry =0 z=1, r{r+35)=0, 71 =0,r=-5

)
(€) 2=0, 7P +2r—-2=0, r,ra=-1%+3
(d) 2=0, r(r—3)=0, =3 r=0
© e=-2, r-3)=0, n=%r=0
) z=1, r+)=0; rn=0rn=-1
(g =2 r(r~-2)=0; n=2mn=0 z=-2, r{r—2)=0, r=2,r2=0
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2. The solutions are
(a) y=cz! + ez (¢) y=caz+conlnjz|
(b) y = c12® + co2® In |z (d) y=er(z =13+ ez — 1)1

3. (a) y1 =cos/Z, Yy =sin/zT
H

e " -1/2 > T
) p=>_ = Gn+ni” B TF 2 (@n —1)!

2

n=0 n=0

(c) yr = z°/2 (1-%—32:1 Wi;ﬁ) y2=1— nZ:z 2n—3)'

d) m =$1/S§; n'4(w’71)n2;3f:+ TR zg nt- 2( ;)n2:3ﬂn“ 1)

) n=s (H; nl 7 urn 4n+3)) ygmwl/z; ”"1'5?'224“”)

(F) v =z (1“*“2 9. 13)1t 24;,+a)) (H_; = Z::l_ 1))

2n

— /2 (1 i
) 41 == (:; 2“-n!v19-31---(12n+7))’

Yo = g 2/3 14~i z
’ L= 2 onl-5.17--- (120 - 7)
2n

( In In Ry
h = 1
(h) 31 =2 ( "’Z Il T 13- (6n+ 1)) 2T 1+Z 27 . ql . 5 11 - (6n —1)

e non
_ 172 ( 1)tz /2% »»:c/g s 1)
(i} == Z Tl 1+; 2n—1
oo an n,.2n
N o o1/2 TPy _ 2"
W o=z n;n!zn INTN\N /- stv Nz
. .z
09 v =(eosdu)/a, 1o =(insa)fs (W) y=(eosD)z, u= (D)
) 1 = (cosh2z)/x, y» = (sinh2z)/z @) 31 = cosa?, ys = sinz?
o0 mn

4 =z 4 g! =l )t L

(@) pp=z24+z7, =1+ ;(n+2)!

1 Nod o
(b) y1~gz+m_3+2$2+63’ y2_1+24; (n+4)'
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amplitude, 97
analytic function, 178
auxiliary equation, 71

beat, 103

Bernoulli equation, 15
Bessel equation, 70, 197, 207
Bessel function, 208, 211
boundary condition, 5, 80
boundary value problem, 80

capacitance, 45, 105

capacitor, 45, 105

Cauchy-Euler equation, 91, 116
center of power series, 173
characteristic equation, 71, 113
comparisen test, 126

complex exponential function, 54
complex number, 51

constant coefficients, 58, 77
convergent improper integral, 123
convergent series, 175
convolution, 160

critical damping, 99

damping
critical, 99
overcritical, 99
undercritical, 99
delta function, 152
differential equation, 1
Bernoulli, 15
Bessel, 70, 197, 207
Cauchy-Euler, 91, 116
exact, 18
homogeneous, 58
Legendre, 69, 197
linear, 58
first order, 12
n-th order, 2, 111
second order, 58
logistic, 35
nonhomogeneous, 58
nonlinear, 2
ordinary, 1
partial, 1
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Riccati, 17, 95

separable, 2
differential form, 6
divergent improper integral, 123
divergent series, 175

electromotive force, 44, 105
equilibrium position, 96
exact differential, 18

exact equation, 18

existence and uniqueness theorem, 47, 112

exponential decay, 33
exponential growth, 33
exponential order, 130
exponential representation, 54

Frobenius Method, 198
full-wave rectification, 159
fundamental set of solutions, 112

fundamental theorem of algebra, 55

general solution, 3
generalized function, 152
geometric series, 173
growth coefficient, 33

half-wave rectification, 158

homogeneous equation, 8, 10, 58, 113

homogeneous function, 9, 10

imaginary part, 51

impedance, 108

implicit solution, 4

improper integral, 123
impulse, 145, 151

impulse response, 163

indicial equation, 199, 201
inductance, 45, 105

inductor, 45, 105

initial condition, 5, 60, 111
initlal value problem, 5, 61, 111
integral equation, 164
integrating factor, 13, 23, 24
interval of convergence, 175
inverse Laplace transform, 136
irregular singular point, 197
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Properties of the Laplace Transform
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Elementary Laplace Transforms




