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Auto Teller Machine/Multiple Linear Regression/Clustering Algorithm

:This research constructed an optimal model to forecast the customers’ de-
mand of the ATM in India. The data consisted of 910 sets of 7 variables each,
namely the amount of withdrawal, weekday, working day, date, month, mean with-
drawal of the previous week and average daily withdrawal in the previous week,
collected from the ATM of the Mount Road bank branch during 2011 to 2013.
This data is open source and provided by www.kaggle.com /nitsbat/data-of-atm-
transaction-of-xyz-bank. The software used in the construction of the model was
RStudio, RapidMiner and Python programs was used as 80% of the data set was
cased as to a training data and the remaining 20% of the data was used as a test
set. Classical multiple linear regression was first used for analysis of the significant
factors. It was found that working day, holiday, and same weekday withdrawal of
the previous week affected to the amount of withdrawal with 5 statistical signifi-
cance. The same factors were used to construct 3 forecasting models, which were
a multiple linear regression model, a clustering algorithm with multiple linear re-
gression model and a clustering algorithm with polynomial regression model. The
root mean square error of the models were 1.0360, 1.0137, and 0.8318, respectively

and the mean absolute error of the models were 0.7485, 0.7498 and
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0.6305, respectively. In this research, the clustering algorithm with polynomial

regression model performed the best forecast.
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CHAPTER I

INTRODUCTION

An usual automated teller machine (ATM) is an electronic machine for ser-
vicing customers banking transactions with individual pin, which are withdrawing,
depositing, bill paying and money transfer. In 1967, 6 ATMs were installed by
Barclays Bank in England with 4-digit pin code for withdrawing. The two years
later, magnetic ships were added to ATM cards, and another two year later these
machines could be account cash deposits instead of cheques. Recently, in January
2020 in Thailand, The Thai National Bank increased higher security to prevent
fraud, counterfeit card fraud and skimming, for any transactions on the ATMs.
The risk in ATM transactions was reduced by using ship cards instead of the
magnetic ships. Nowadays, ATMs have become less popular because of mobile
banking, as transactions can be made conveniently at any place all the time.

The aim of this research is to propose an optimization method to effective
management of ATMs. An operation of the replenishment concerns about the
treasury’s administration such as cash management, which leads to replenish with
an appropriate quantity and time for the customers’ demand. The cash replenish-
ment lets some amount of cash held in ATM which makes an opportunity cost for
losing some benefit of higher return investment. When replenishment cash exceeds
customers’ demand, the bank loses interest in any investment opportunity. On the
other hand, if customers’ demand exceeds the replenishment cash, then it causes
more dissatisfaction of customers.

In this thesis, we use regression and clustering classification, to forecast



cash demand. The cash demand data set used in this research would be adopted
from the ATM in India, obtained from Mount Road branch of ATM in In-
dia collected from 2011 to 2017. The data was an open source provided by
https://www.kaggle.com /nitsbat /data-of-atm-transaction-of-xyz-bank.

Moreover, in 2018 there is research about cash replenishment with neural
network algorithm to predict the amount of cash deposited and they use K-means
clustering to classify the group of data (Jadwal P. K., Jain S., Gupta U. and

Khanna P., 2018).

1.1 Research Objectives

To study the factors, which affect to the cash withdrawal of customers
of ATM in India and construct the models to predict the cash withdrawal of

customers of ATM in India.

1.2 Scope and Limitations

The data is obtained by www.kaggle.com /nitsbat /data-of-atm-transantion-
of xyz-bank, and we manage the data with technique consisting of K-mean algo-

rithm, multiple linear regression and polynomial regression.

1.3 Research Procedure
The research procedure follow these steps:
1. Studying the significant factors by multiple linear regression.

2. Constructing three models of multiple linear regression, polynomial regres-

sion and K-mean algorithm from the significant factors.



3. Measuring the accuracy of our models by using root mean square error and

mean absolute error

1.4 Expected Result

We can apply our model with best performance to forecast the cash demand

of customer of ATM in the future.



CHAPTER II

LITERATURE REVIEW

2.1 Mean

There are several kinds of mean in mathematics, we will show some kinds
of mean in statistics:

The arithmetic mean(AM) is the sum of all of the members in the finite
set and the set is divided by the number of members in that set. The arithmetic
mean of a number set {xy, xs, ..., x,} is denoted by z.

! u T+ 2To+ ...+ x,
Tr=— x| =
(Son) - e

1=l

Remark: if the data sets are collected as observations, the mean value is called
population mean and is denoted by .

The geometric mean(GM) ,which is useful for sets of positive numbers is the
operation of multiplication of the elements in a set and the multiplication keeps

rooted by a number of the element in that set:

n 3
1
T = <Hajl) = (1'1‘%'2"'33”)5
i=1

The harmonic mean(HM) is a kind of average value which is useful for sets

of number which are defined in relation of some physical such as speed(i.e. distance

-1
_ "1

per a unit of time)



2.2 Standardization

The standardization method has the purpose to rescale the data, so that the
rescaled data has the mean and standard deviation equal to 0 and 1 respectively.
Let A consisting of numbers z1, xs,...,z, be a finite set. The equation for the

standardization method is as follows,

i = 3

where z; is the rescaled value of x;, © = 1,2, ...,n, T is a mean of these elements in

A, and s is the standard deviation.

2.3 K-Means Clustering

The two popular clustering algorithms are partitional and hierarchical clus-
tering. These algorithms have been used in many applications because of their
simplicity and flexibility in adoption to other clustering algorithms. Partitional
clustering algorithms have the main focus to discover the grouping of data by op-
timizing a distinct objective function and improving the quality of the partitions.
These algorithms normally require parameters with its stability to choose the root
of points that indicate each cluster.

K-means clustering is mostly used as a part of the partition clustering
algorithm. Its process starts by choosing K representatives for the number of
groups and points as the initial centroids (center points in each cluster). Each
data point is compelled to stay in the same cluster with the closet centroid
depending on choosing a particular measure. When the clusters are formed,
the centroids for each cluster are updated. The algorithm then repeats these
steps until the centroids do not change the position or any alternative replaced

convergence criterion is met. K-means clustering is an algorithm which is ensured



to converge to a local minimum but the minimization of its score function is
known to be NP-hard optimization problem. Typically, the convergence condition
is flexible and a weakness of condition used. In practical, it follows the rule that
iterative process must be continued until all data stay still or 1% of the points
change their cluster. A proof of the mathematical convergence of K-means can

be found (S.Z. Selim and M.A. Ismail, 1984).

Algorithm K-Means Clustering

1: Randomly select K points as initial centroids.

2: Repeat

3: From K clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster

5: Until the convergence criterion is reach (1% of point change)

Given data set A = {xy,x9,...,z,} consists of n points and indicate the
cluster after applying K-Means algorithm by C' = {C},Cy, ...,Cx}. The sum of
square errors (SSE) for the clustering is defined in the Equation (2.3.1), where ¢4
is centroid of cluster C). The aim of SSE is to find a centroid, which makes SSE
to have minimum value. The reiteration and renewal of the centroid value of the

K-means algorithm aim to minimize the SSE value for the updated centroids.

SSEWC) =33 Jlai — al? (2.3.1)

k=1 z;,€C}

Zmieck Ty

oA (2.3.2)

C —



Minimization of Sum of Square Error

K-Means clustering is crucially an optimization problem with the goal of
minimizing the SSE objective function. We will principally prove the reason why
we choose the centroid as a mean of data in its cluster as the root representative
for a cluster in K-Means algorithm. Denoting C} as the k" cluster, any x; is
an element in Cy and ¢, is the centroid of the k** cluster. We solve for the
representative of C; which minimizes the SSE by differentiating the SSE with

respect to ¢; and setting it equal to zero.

SSE(C)=> Y (ex — 1) (2.3.3)

J k=1 z;€Cy,
il 0
\Y, — (cx =)
k=1 z;,€C}, 86]
= 2x(c;—x;) =0
.’E»LECJ'
> e T
z;€C; ;€05 J

Then, the best value of a centroid for minimizing the SSE of a cluster is the mean
of the points in that cluster. In K-means, the SSE monotonically decreases with
each step of repetition. This behaviour of one-way decrease will finally converge

to a local minimum.

Factors affecting K-Means algorithm

The main factors that can impact the performance of the K-means

algorithm are following:



1. Initial centroids(first picked points) affects the repetitions of the algorithm to
find centroids.
2. The number of clusters K. The suitability of a number of clusters is

characteristic for distinct data.

2.3.1 The popular Initialization Methods

In the history of the initialization methods for the Macqueen(1967) pub-
lished the classical paper which is a simple method by choosing any initial point
randomly. This process is worldwide used. Moreover, there are popular K-means
initialization methods which improve the performance of its former method. They
are shown below.

Hartigan and Wong [1979]: The concept of this method will be good per-
formance for well separated points and the large size of data within surrounding
high-dimension sphere for initial points. This method use the Euclidean distance
for calculating the distance between points in (2.3.4) and the next centroids are
picked by order of decreasing density and maintaining the separation of d; from

all former centroids.

dy = N( 2:: Z |2z — ]| (2.3.4)

Milligan [1981]: Milligan uses the result of agglomerative heirarch from
Ward’s method. Ward’s method uses the sum of square errors to calculate the
distance between two clusters for the initial centroid and this method keeps and

approach the agglomerative growth for smallest value as possible as it can.

Bradley and Fayyad[1998]: This method constructs a subsample from



data and applies K-means to calculate the centroids by choosing randomly initial
points in Macqueen classical method from the subsample constructed. The final

centroids from the subsample will be the initial points for the whole point in data.

D.Arthus and S. Vassilvitskii [2007]: This method choose the first centroid
as a random point of data and the next data is chosen by the farthest distance
from previous centroids. This method depends on a weight probability score and

continues the selection until one obtains the amount of the clusters required.

2.3.2 Estimating the Number of Cluster

Another big problem of the K-means algorithm is the number of clusters
(K). One tries to find the new methods for optimizing this challenging problem.

These distinct methods are shown below

Calinski-Harabasz Index: The Calinski-Harabasz Index is defined by Equa-

tion (2.3.5):

CH(K) = i (2.3.5)

N-K
where N is the number of elements in data or size of data. The number of clusters
is considered by evaluating the maximum value of the given function as Equation

(2.3.5). Here B(K) and W (K) are the between and within cluster sum of squares,

respectively (with K clusters).

Akaike Information Criterion (AIC): This process is improved by the
loglikelihood and adding additional constraints of Minimum Description Length

(MDL) to calculate the K.M. where K.M. is the dimensionality of the data. K-



10
means uses an improved AIC as below.
KMeansarc : K = argming[SSE(K) + 2M K] (2.3.6)

Bayesian Information Criterion(BIC): The Bayesian method gives approx-
imation to a transformation of the Bayesian probability. This method is similar to
AIC, and its process also depends on the loglikelihood. N is the number of data,

the value K minimizes the function of BIC as below.

_ —2xIn(L)  KxIn(K) 1 NE

Silhouette Coefficient: The Silhouette Coefficient method provides an ap-
propriate number of clusters. The Silhouette Coefficient has range from -1 to 1,
where a high value indicates that clusters are well separated. On the other hand,
a low or negative value indicates that it is not a well separated cluster. The Sil-
houette Coefficients are calculated as Euclidean distance. For a given point 7, the
average inner distance of its cluster is a; and the average outer distance of nearest

cluster is b;. Then the Silhouette value of 7 is s(i) as follow:

L b)) —a()
iR

Moreover, the Silhouette Coefficient is the average Silhouette value of all data

points ¢ in dataset.

2.3.3 The variation of K-means

The proper scope of the K-means makes it very flexible to adapt and
construct better algorithms on top of this kind of these algorithms. Some of the
diversity of the algorithm tried to the K-mean algorithm are depended on 1)
To choose the distinct representative roots for the clusters 2) To choose better

initial centroid evaluations, 3) applying some technique of feature transformation.
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The most notable variants of K-mean clustering have been implemented as

components of partitional clustering.

K-Medoids Clustering: K-medoids and K-means are also partitional
clustering methods which try to minimize the value of distance between labeled
points in the same clusters and the center point of that cluster, but K-medoids’

centroid is actual a data point.

K-Medians Clustering: The K-median computes the median for each clus-
ter as compared to calculate the mean of the cluster (K-means). The K-medians
clustering algorithm choose a number of cluster as K that aim to minimize the sum
of distance measure between each point and the closest cluster center. The dis-
tance measure used in the K-medians algorithm is the Li-norm, while the square
of the Lo-norm used in the K-mean algorithm. The error value for the K-medians

algorithm is defined as follow:

K
Serror =i Z Z |xij \ medk?j’

k=1 mieCk

where z;; represents the 4t attribute of the element x; and med;; represents the

median for the j* attribute in the k™ cluster C.

K-Modes Clustering: One big problem of K-means is its inablity to do
with nonnumerical attributes of the variable. Using transformation methods,
categorical data can be transformed into new feature spaces, and then the
K-means algorithm can be applied to this newly transformed space to obtain the
final clusters. However, this method has proven to be very ineffective and does

not produce good clusters. It is observed that the SSE function and the usage of
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the mean are not appropriate when dealing with categorical data. Hence, the K-
modes clustering algorithm has been proposed to tackle this challenge. K-modes
is a nonparametric clustering algorithm suitable for handling categorical data and
optimizes a matching metric without using any explicit distance metric. The loss
function here is a special case of the standard L, norm where p tends to zero.
As opposed to the L, norm which calculates the distance between the data point
and centroid vectors, the loss function in K-modes clustering works as a metric

and uses the number of mismatches to estimate the similarity between data points.

2.4 Multiple Linear Regression Analysis

Regression analysis is a statistical technique for predicting and investigating
the relationship between variables. Multiple Linear Regression(MLR) is a kind of
a linear regression model with one response(dependent) variable and more than
one explanatory(independent) variables. The general form of the Multiple Linear

Regression with k independent is as the follows:
Y:50+51X1+ﬁ2X2+"'+Bka+€, (241)
where Y is the response variable, X; are independent variable, ; are the regression

coefficients for ¢ = 1,2, 3, ..., k and ¢ is the random error component.

2.4.1 The Assumption of the Multiple Linear Regression

We construct some basic assumption on the model as follow:
Yi= o+ 51X+ BeXio+ -+ B X + &, 1=1,2,3,..,n, (2.4.2)

with these conditions
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1. g; and ¢; are uncorrelated for ¢ # j, that is Covle;, ;] = 0;

2. g; is a normally distributed random variable with zero mean and variance

o2, that is g; ~ N (0, 0?);
3. There is no a perfect linear relationship between the independent variables,

there is no multicolinearity.

2.4.2 Estimation of the Model Parameters

The Multiple Linear Regression in equation (2.4.2), can be written in matrix

form as below:

U1 1 @i e - . \T1x Bo €1
Y2 1 o1 e -+ 9 51 €9
== +
Yn | Nttt Ef STl | [ 3D En

It can be rewritten as:

Y =XB+e¢, (2.4.3)

where Y is the n column vector of the observation,
B is a k + 1 column vector of the regression coefficient,
X is an n X (k + 1) matrix of the level of the regression variables,

€ is an n column vector of random errors.

Definition 2.1 (Residual). The difference between the observed(cumulative) value

Y; and the corresponding fitted value Y;



14

Least Square Estimation of the Regression Coefficient

The Least Square method of the Regression coefficient is to estimate the
regression coefficient in equation (2.4.2). Now, we assume by, by, bs, ..., b, to be
the estimators of [y, 51, fa, ... 3. respectively. Then we get the equation of the

corresponding value Y; as follow:
Y = Xb.

Then, the least square error(S) of the regression is

n

I e
=1

i=1
n k
¥ | 2
=Y (Yi—bo— > b;Xy)™
i=1 j=1
The least square error function S must have minimum value because we need the

least error value, then we take partial derivative and take the partial derivative

equal to 0 as below:

85 n k
8_190 — —Qi_zl [YZ — by — ;ijij] =0 (2.4.5)
85’ n k
- 23 VYo = ) b Xy X =005 = 1,2, .k (2.4.6)
i=1 j=1

From equation (2.4.5) and (2.4.6), we obtain the expressed equation of the least

square equations

nbo +b1 zn:le +bgzn:X2‘2 +b32n:X2‘3 + - +bkzn:Xlk = zn:Y;
i=1 i=1 i=1 i=1 =1

bo Z Xi1+ b Z Xfl + by Z XX + -+ by Z X Xip = Z XaY; (24.7)
i=1 i=1 i=1

i=1 =1
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bo Y X +bi > XuXa+02Y XX+ +b» Xj=> XuV
=1 =1

i=1 i=1 =1

We have obtained k£ + 1 equations and the k& + 1 unknown regression coeffi-
cients. Now, we can find the solution (coefficients by, by, ...b) with the least square

estimators.

From the least square equation (2.4.7) as below:

1 1 ... 1|y " ;X“ ;Xk bo
2
Xll X21 Ca an YQ Z Xil Z Xil s Z XiIXik b1
i=1 i=1 i=1
X12 X22 s Xn2 }/E’) = Z Xi2 Z XilXiQ e Z XiQXik b2
i=1 i=1 i=1
X Xop ... Xl |Ya ZXik ZXilXik ZXzzk by
) 3 \ - Li=1 i=1 i=1 I
It can be written in the another way as below
XTy = (X7 X)b, (2.4.8)

where b = [by, by, ..., bx]*. Our purpose is to find the solution of the least square

estimators for the least error, Then we solve the above equation by multiplying

(XTX)~! on the both sides of the equation s
(XTX)IXTY = (XTX)"HXTX)b

(XTX) ' XTY = Ib,

where I is the identity matrix. Now, we can conclude that b = (X7 X)XV has

the least error for the regression coefficients.



16

2.4.3 Test for Significance of Regression

The test for significance of regression is kind of consideration test between
response variable and regressor variables in term of linear relationship.

Assume that the estimator parameter (g, 1, ..., O, are bg, by, ..., by respec-
tively.

The statement for the hypotheses is:
Hy:81=0a=03=...= B =0;
Hy : B; # 0 for at least one i.

The statistic, which can be used for testing H, against H; is the t test

statistic in the following form:

b;
= ——~ta, & )
se(b;) &1V

*

Vi=1,2,3,...k,

where se(b;) = +/02C};, Cy; are the elements on the main diagonal of (X7 X)~! and

we reject Ho if ta 1) < [t]

2.5 Polynomial Regression

The polynomial regression is a kind of statistical technique similar to linear
regression. The polynomial regression can be used, when the relationship between
response variable and explanatory(independent) variables is curvilinear. The poly-
nomial regression model should keep the order of independent variables as low as

possible for avoiding the situation of over-fitting of the data.
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2.5.1 Polynomial models

Suppose 2 is the highest degree as order of the polynomial regression in two

variable given by

Y = B + Boxy + Baxe + Baxi170 + 5535? + 661'3 +e

where Y is the response variable, x; and z, are an independent variables, [3; are
the regression coefficient for i = 1,2,...,6 and ¢ is the random error component.
Moreover, the solution for polynomial’s coefficients can be considered as Multiple

Linear Regression and also solved by least square estimation.

2.5.2 Mean Absolute Error

Mean Absolute Error (MAE) is a commonly used to measure the difference
between the observed value Y;, and the corresponding fitted value Y;. Its form is

as follow:

>

1 N
MAE= <> ¥;-Y¥i,
N;\ |

where N is a number of observations.

2.5.3 Root Mean Square Error

Root Mean Square Error is another commonly used measure of the differ-
ence between the observed value Y;, and the corresponding fitted value YZ Its

form is as follow:
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where N is a number of observations.

2.5.4 Related Research

Tzortzis, G. and Likas, A. (2008) developed kernel K-means by extension
from normal K-means. Their aim is to approach to kernel-based clustering by the
global K-mean algorithm. Moreover, they can solved the initialization problem

with the kernel K-mean and reduce the computation cost.

Liu, Y. and Jiang, K. (2014) first applied an ANN-based bagging algorithm
to forecast the daily cash demand for the next few days, then constructed the
optimal integer programming model by significant factors. This method is also

suitable for any cash circulation domain such as bank cash inventory management.

Venkatesh, K., Ravi, V., Prinzie, A. and Van Den Poel, D. (2014)
first clustered ATM centers into ATM clusters having similar day-of-the week
withdrawal patterns. They built a time series model for each ATM. For each
cluster of ATMs, four neural networks viz., general regression neural network
(GRNN), multi layer feed forward neural network (MLFF), group method of data
handling (GMDH) and wavelet neural network (WNN) are built to predict an
ATM center’s cash demand. They observed that GRNN yielded the best result
of 18.44% symmetric mean absolute percentage error (SMAPE), which is better

than the result of Andrawis, Atiya, and El-Shishiny (2011).

Ekinci, Y., Lu, J.-C. and Duman, E. (2015) The bank want to take
less resource for the fluctuated demand of customer. They group ATMs into

nearby-location clusters and also optimize the aggregates of daily cash withdraws
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in the forecasting process.

Jadal, P.K., Jain, S. and Khanna, P. (2018) forecasted the cash demand
forecasting of NN5 data for ATMs with Neural network. The NN5 reduced dataset
is a subsample of 11 series time of 111 complete dataset of 111 daily times series.
In their second model, they apply the clustering algorithm to their ATMs, then
applying Neural Network. The root mean square error is calculated for 2 models.

They can conclude that the second model gives the least root mean square error.



CHAPTER III

RESEARCH METHODOLOGY

This part will show the process, which consists of 6 parts, used in this

research.

3.1 The Collected Data and Determined Variables as
Statistics
This research used secondary data collected from 2011 January until 2013
May, 910 data set in total. Table (3.1) below shows the determined roles of each

variables in our data provide by https://www.kaggle.com /nitsbat/data-of-atm-

transaction-of-xyz-bank.

Table 3.1 A table with roles of collected data.

Variables Types
The amount of Withdrawal Response
Weekday Independent
Working Day Independent
Date Independent
Month Independent

Mean Withdrawal of Previous Week Independent

Withdrawal of Previous Same Day Independent

The data in Table 3.1 is saved in form of a CSV file because CSV is available
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for program R. Moreover, our data is analyzed by an R-program and Rapidminer

program.

3.2 Program

We use the free software environment for analysis and computation. Our
program consist of R Studio program with version 1.3.1093, Rapidminer with
version 9.8.001 and Python 3 version 3.8.6, working on MS Windows 10 operation

system.

3.3 Study and Analyze the Relation between Independent

and response Variables

We construct the Multiple Linear Regression Model of all variables to anal-
ize the significance of independent variables which affect to the amount of with-

drawal by following equation:

Total = [y + [y Weekday + s WorkingDay + f3Date + SsMonth

+ BsMeanofPrev + fgSamedayPrev,

where
1. WorkingDay means that day is holiday or working day;
2. MeanofPrev is Mean Withdrawal of Previous Week;

3. SamedayPrev is Withdrawal on the Day in the Previous week.

Test for Significance of Regression
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We used this test for investigating the independent variables which most

affect the amount of withdrawal in model of Multiple Linear regression.

Assume that the estimator parameter Sy, 51, ..., B¢ are by, by, ..., bg respec-
tively.

The statement for the hypotheses is:

Hy:p1=pr=P03=..=[=0;

H, : p; # 0 for at least one i.

The statistic, which can be used for testing H, against H; is the t test

statistic in the following form:

where se(b;) = V/a2Cy, Cjy; is an element on the main diagonal of (X7 X)~?

and we reject Hy if ta ,, (41) < |t*]

In term of technical method, we used 5% of a significant level (o = 0.05),
and a number of training data equal to 729 (n = 729). Then the term of t-

distribution # 025 727 is estimated in t-Distribution table approximately to 1.965.

3.4 Creating a Forecasting Model

After we had obtained the significant factors affecting the amount of with-

drawal, we constructed the appropriate model for forecasting the value of the
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amount of withdrawal by
1. Multiple Linear Regression;
2. K-mean Clustering together with Multiple Linear Regression;
3. K-mean Clustering together with Polynomial Regression.

The K-mean Clustering is a kind of classification in (unsupervised) Machine
Learning to separate things into the same cluster (group) with an appropriate
number of cluster.

Method for selecting an appropriate number of cluster

o Silhouette Coefficient.

3.5 Predicted Data

The predicted data is used for the above model from 2013 January until

2013 May, using the remaining 181 data.

3.6 Measurement of Forecasting Model

When we try to forecast the future value, we must have an indicator of the
error to show the accuracy of the forecasting model

The indicator of error value for forecasting model
1. Root Mean Square Error

2. Mean Absolute Error



CHAPTER IV

RESULTS

This part will show the result of the process from previous Chapter. Our
goals is to show the consequence computed in 3 models. Moreover we could gain
the knowledge thoroughly about the process of finding the significant factors affect
to the amount of withdrawal, choosing a number of cluster by silhouette coefficient,

concluding the best model among them for this data.

4.1 Descriptive Statistics of Training Data

Descriptive statistics is a summary statistics that quantitatively describes
or summarizes features from the collection of the training data that is essential in

part of Machine Learning

Table 4.1 A details of the training data.

Variables  Minimum Maximum Average

Total 59700 1296600  546177.709
Weekday 1 7 3.996
Working Day 1 2 1.357
Date 1 31 15.778
Month 1 12 6.535

MeanofPrev 352272 937129 545595.498

SamedayPrev 59700 1296600 547260.115

Remark: Since, the Weekday is from Sunday to Saturday and we substi-
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tute from number 1 till number 7 i.e. Sunday = 1, Monday = 2, ... , Saturday
= 7. Working is also substituted as Working Day = 1 and Holiday = 2 and The

factor Month is also substituted from 1 to 12 with initial Month as January.

4.2 The Significant Factors

This step is an analysis of these independent factors affecting the amount
of withdrawal by using Multiple Linear Regression with 5% of significant level.

Before analysing the factors, we have to rescale the data into the same
standard by the standardization method. the rescaled data has the mean and
standard deviation equal to 0 and 1 respectively. The equation for the standard-

ization method is

Next, factors resulting in the lowest root mean square error singled out
to be used in the model. Then, we get 3 significant factors affecting the amount
of withdrawal namely Working Day, Date, Withdrawal of Previous the Day
in previous week. Their coefficients are shown in Table 4.2 commputed by R

program with the following command:

> fit = Im(Total ~ Weekday + Workingday + Date + Month + Meanof-

Prev + SameDayPrev, data = Data)
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Table 4.2 The coefficients and statistical information of the training data with

5% of a significant level.

Variables  Coefficient std.error t value p-value

Intercept -2.216e-10 3.312e-02 0.000  1.00000
Weekday -5.455e-03 4.417e-02 -0.123 0.9017
Working Day  -1.004e-01 -4.403e-02 -2.279  0.0229

Date -0.418 3.356e-02 -12.704 < 2e-16
Month 5.969e-02 3.324e-02 1.796 0.0729
MeanofPrev ~ -6.822e-02 4.035e-02 -1.691 0.0913

SamedayPrev  1.295e-01 ~ 4.010e-02e-02  3.228 0.0013

4.3 Constructing the forecasting model with the significant

factors

Having obtained the three significant factors, we took these factors to
create the model by using the Rapidminer program and Python. We constructed

3 models for forecasting the amount of withdrawal.

Model I: Multiple Linear Regression Model

We create the Multiple Linear Regression model by using Rapidminer
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Figure 4.1 Constructing Multiple Linear Regression model in Rapidminer.
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Table 4.3 The coefficients and statistical information of the significant training

data.
Variables  Coefficient std.error t value p-value
Intercept -2.232e-10  3.319e-02 0.000 1.00000
Working Day ~ -1.044e-01 ~ 3.321e-02  -3.144  0.00173
Date -0.4181 3.331e-02  -12.564 < 2e-16
SamedayPrev  9.597e-02 3.330e-02 2.881 0.00408

Then the equation for forecasting in model I as follow:

Total = —0.1044 X Working Day—0.4181x Date-+0.09597 X SamedayPrev—2.232e—10

In the next step, we push the test data against the above model. We can get

the consequence by Rapidminer in Figure 4.2, and computing the accuracy of the

model by Root Mean Square Error(RMSE) and Mean Absolute Error(MAE). The

RMSE and MAE of this model is equal to 1.0360 and 0.7485 respectively.
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Figure 4.2 Test data against Multiple Linear Regression model in Rapidminer.

In the remaining two models, a clustering part is inserted before construct-
ing both models. So, we express the clustering algorithm how it works for our
data. Of concern are the initial point and estimating the number of clusters. In
our process, we ignored the problem of picking the initial point because we are
not interested in the number of iterations of K-mean clustering. We are only
concern with the problem of a number of cluster and we solve this problem by

Silhouette Coeflicient method mentioned below.

Silhouette Coefficient Method

The Silhouette Coefficient method provides appropriate number of cluster.
Silhouette Coefficient has range from -1 to 1, with a high value indicating that
clusters are well separated. On the other hand, a low or negative value indicates
that it is not a well separated cluster. The Silhouette are calculated as Euclidean
distance.

First, assume the data are clustered by K-means technique into k clusters
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For any point = € C; (data point in its cluster) let a(z) denote its inner average

distance (average distance between point i and other point in same cluster)

1
CL(ZE): |Cz‘_1 Z H-T_yHQ

yeC;,xy

where || - ||z is Euclidean distance and |C| is a number of elements in
cluster k. b(x) is an average distance of point x to all points of nearest cluster.
Suppose cluster k is nearest cluster to point x, then we get average distance b(x)

as equation:

b<x>=oik,2 lz — gl

yeCy

Now, we define a silhouette value s() of point i by

L b(@) = a(i) ‘
s(i) = s T ONABIE |Cs| > 1 (4.3.1)

In case |C;| = 1, then s(i) = 0. In description of s(i), equation (4.3.1) shows the

range of s(7) less than 1 and more than -1 (=1 < s(i) < 1). It can be written as:

;

1 —a(i)/b(i), a(i) < b(s)

s(i) =90, a(i) = b(3)

\b(i)/a(z’) —1, a(i) > b(3)
The average of Silhouette value of the entire dataset for specific k is denoted by

s(k). Then, the Silhouette Coefficient(SC) for maximum s(k) is
SC = mgx{s(k;)}

We calculated the Silhouette Coefficient via Python 3.8.6. First, we show the data

in form of Standardization in Figure 4.3
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Figure 4.3 Training Data Standardization for the 3 significant variables.
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Next, we find the appropriate number of clusters with Silhouette Coeffi-

cient method by supposing a number of clusters starting from 2 clusters up to 10

clusters. Then, we obtained the result as shown in Figure 4.4
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Silhouette Plot of KMeans Clustering for 729 Samples in 10 Centers
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Figure 4.4 (Continued) The Silhouette Coefficients from 2 clusters to 10 clusters.

Table 4.4 Silhouette Coefficients of 9 cluster forms.

Number of Clusters Silhouette Coefficients

% 0.379906
3 0.358355
4 0.379309
5 0.407054
6 0.434109
7 0.405206
8 0.406324
9 0.409357

10 0.404410
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We can detect that the best Silhouette Coefficient value is 0.434109 from
data with 6 clusters. Thus, we conclude that the best number of clusters for this

data is 6 clusters.

K-mean Clustering

Next, we use K-mean clustering to separate the data into 6 clusters. The

number of data and their centroids in each cluster after clustering are shown in

Figure 4.5 and Table 4.5.
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Figure 4.5 A number of data in each clusters.
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Table 4.5 Table shows the centroids of each clusters.

Cluster Working Day Date SamedayPrev

0 -0.7446 -0.2604 0.999
1 1.3431 -1.1058 -0.7296
2 1.3431 0.9314 -0.571
3 -0.7446 0.9627 -0.3906
4 -0.7446 -1.1851 -0.5461
) 1.3431 -0.1964 1.1803

Moreover, we show a violin plot in Figure 4.6 from these factors to understand the

value of variables in each cluster.

Figure 4.6 Value of variables in each cluster as violin plot.
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Model II: Clustering + Multiple Linear Regression Model

After separating the data by K-mean clustering, we construct the Multiple
Linear Regression model in each cluster from training data by Rapidminer. This
means these models are unique(distinct among them).

The equation of the model in Cluster 0:
Total = —0.588 x Date + 0.05 X SamedayPrev — 0.035.
The equation of the model in Cluster 1:
Total = —1.264 X Date + 0.33 X SamedayPrev — 1.012.
The equation of the model in Cluster 2:
Total = 0.1831 X Date + 0.2472 X SamedayPrev — 0.6188.
The equation of the model in Cluster 3:
Total = —0.1212 X Date + 0.1046 X SamedayPrev — 0.2939.
The equation of the model in Cluster 4:
Total = —0.552 X Date — 0.117 X SamedayPrev — 0.071.
The equation of the model in Cluster 5:
Total = —0.398 X Date + 0.136 X SamedayPrev — 0.065.

In the next step, we classify the test data into a cluster of a nearest centroid
i.e. suppose data point i is nearest to the centroid of cluster k, then we classify the
data point ¢ into Cluster K. And we found that 37, 18, 34, 43, 32, 17 data points
are in cluster 0, 1, 2, 3, 4, 5 respectively. Now, we push the test data against
the model of its cluster. We obtain the result by Rapidminer in Figure 4.7, and
compute the accuracy of all model by Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). The RMSE and MAE of this model are equal to 1.0137

and 0.7498, respectively.
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Figure 4.7 Test data against Multiple Linear Regression model after clustering

in Rapidminer.

Model III: Clustering + Polynomial Regression Model

In this part, we perform every step similar to model II but replacing Mul-
tiple Linear Regression by Polynomial Regression.

Having separated the data by K-mean clustering, we construct the Poly-
nomial Regression model in each cluster from the training data by Rapidminer.
This means these model are also unique.

The equation of the model in Cluster 0:

Total = —0.365 X Date® + 0.113 X SamedayPrev — 0.008.
The equation of the model in Cluster 1:

Total = 0.576 x Date® + 0.017 X SamedayPrev* — 0.622.
The equation of the model in Cluster 2:

Total = 0.203 X Date — 0.04 x SamedayPrev* — 0.76.



The equation of the model in Cluster 3:

Total = —0.137 x Date + 0.022 X SamedayPrev® — 0.234.

The equation of the model in Cluster 4:
Total = 0.045 x Date® — 0.142 X SamedayPrev + 0.423.

The equation of the model in Cluster 5:

Total = —0.297 x Date® + 0.154 x SamedayPrev — 0.051.
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In the next step, we classify the test data into a clusters of a nearest cen-

troid, and push the test data against the model of its cluster. The result obtained

by Rapidminer in Figure 4.8. The accuracy of all models is computed by Root

Mean Square Error(RMSE) and Mean Absolute Error(MAE), are equal to 0.8318

and 0.6305, respectively.
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Figure 4.8 Test data against Multiple Linear Regression model after clustering

in Rapidminer.
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Table 4.6 shows a comparison of the RMSE and MAE errors obtained by

the three models:

Table 4.6 Root Mean Square Error and Mean Absolute Error of three proposed

model.

Attribute MLR Clutering and MLR Clustering and Polynomial

RMSE 1.0360 1.0137 0.8318

MAE 0.7485 0.7498 0.6305

Finally, the graph of prediction in three model in term of rescaled data as

standardization method is shown in Figure 4.9.

The amount of cash withdrawal

Real data
— MR
rrrrrrrrrrrrr Clustering + MR

Nunber of data

Figure 4.9 The graph of the forecasted values by the three models and the real

value of the amount of withdrawal of the customers’ demand.



CHAPTER V

CONCLUSION

This research constructed an optimal model to forecast the amount of with-
drawal of customer’s demand by Polynomial regression and Clustering algorithm.
The factors’ analysis shows that there were 3 factors which affected to the work-
ing day, date, withdrawal of previous same day, with 5% statistical significance.
The same direction factors were working day and date, but the opposite direction
factor was withdrawal of previous same day. The verification by using data of
the amount of withdrawal of customer’s demand from 2013 January until 2013
May showed that our polynomial model provided the least error of both RMSE
and MAE, 0.8318 and 0.6305 respectively, only whereas the classical multiple lin-
ear regression model provided RMSE and MAE 1.0360 and 0.7485, respectively.
Therefore, we claim that the model using the polynomial regression and clustering
algorithm got better RMSE and MAE values than the classical multiple linear

regression.
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