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This thests studies the problems for a class of systems governed by
semilinear integrodifferential equations with delay on Banach spaces and
corresponding optimal control problems.

The first part concerns about the probiems for a class of systems governed by
integrodifferential equations with delay on Banach spaces. The existence,
uniqueness and continuous dependence of solutions are proved.

The second part deals with a corresponding Lagrange optimal control
problems. The existence of optimal controls for controlied systems is solved.

Finally, the results are illustrated by examples from semilinear partial
differential equations of parabolic type with delay.
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Chapter 1
Introduction

In many disciplines (e.g. physics, chemistry, biology, engineering and economics),
it is trequently necessary to study a system which is evolving with time. In
principle, if we know the initial state of such a system and the laws which describe
how the state of the system changes with time, then we should be able to determine
the state at any given time. The mathematical model for such a system is an
gvolution equation, which often takes the form of a partial differential equation

Infinite dimensional systems can be used to describe many phenomena in
the real world. As is well known, heat conduction, properties of elasticplastic
material, fluid dynamics, diffusion-reaction processes, etc., ail lie within this area.
The object that we are studying (temperature, displacement, concentration, ve-
locity, etc.) is usually referred to as the state. We are interested in the case where
‘the state satisfies proper differential equations that are derived from certain phys-
ical laws, such as Newton’s law, Fourier’s law etc. The space in which the state
‘exists is called the state space, and the equation that the state satisfies is called
‘the state equation. By an infinite dimensional systemn we mean one whose corre-
sponding state space is infinite dimensional. In particular, we are interested in
'_the case where the state equation is one of the following types : partial differential
'.equation, functional differential equation, integrodifferential equation or abstract
evolution equation. In general, under broad assumptions, these equations can be
reformulated as ordinary differential equations on abstract spaces, for example,
Banach spaces. This is where semigroup theory plays a central role and provides
a unified and powerful tool for the study of existence, unigueness and continuous
dependence of solutions on parameter (well posedness}.

Many classical methods have been developed for solving particular types of

PDE, but complications soon arise when the equations are nonlinear, as opposed



to linear. Many textbooks and research papers introduce solutions of problems
Jrvolving evolution equations via the theory of semigroups of operators both linear
‘and nonlinear. For an example fo the linear case, the questions of existence and
[iniqueness of the solution of the initial value problem for the abstract evolution

‘equation

{d%gum(t)mf(t), 0<ts<T (1.1)

z(0) = xg
has been investigated by many authors, e.g., Ahmed (1991), Belleni-Morante and
‘MecBride (1998), Goldstein (1985), and Pazy (1983). Moreover, in the case A =
“A(t), the equation (1.1) has been investigated by Amann (1978), Friedman (1969),
Pazy (1983) and Tanabe (1997). For the semilinear case, the questions of existence

‘and uniqueness of the solution of the semilinear initial value problem

{ £ + At)z() = ft,z(t), 0<t<T
2(0) = zg

‘has been investigated by many authors, e.g., Amann (1978) and Fattorini (1999).

In the previous paragraphs we considered system whose future behavior
depended only on the present state and did not depend on how that state was
achieved. There are many examples in economics, biology, control etc. where the
past influences the future significantly. One type of such systems is described by
differential delay equations.

More recently, delay parabolic problems have been studied by many authors
using semigroup methods. Some authors investigated more general delay problem,
some investigated concrete delay partial differential equation {e.g., Travis and
Webb (1974,1978) and Wu (1996)). Xiang (1988, 1991 and 1994), Xiang and
Ahmed (1992) and Xiang and Yang (1990) discussed semilinear parabolic delay
problems and obtained some results on the existence of solutions.

In this thesis, we establish an existence result of mild solutions for a class
of semilinear integrodifferential equations with delay in Banach spaces. Our ap-
proach will be based on techniques and results of the theory of semigroup of
operators, the theory of evolution operators in Banach spaces and the contraction
mapping theorem (Banach’s fixed point theorem).

The problem of existence of solutions for a system governed by an integro-
differential equations has been studied by several authors. However, most of the

works concentrated on time-invariant systems, that is, system with generating



operator being time independent. We refer to the works of Da Prato and Iannelli
{1985) and Webb (1978, 1979). Moreover, some results on time-invariant systems
with delay were obtained by Ahmed {1991) and Kunisch and Mastinsek (1990).
For time variant systems without delay, the existence problem was inves-
tigated by Heard and Rankin (1988) and Grimmer (1982). Grimmer studied the

‘existence of a resolvent operator for an integrodifferential equation :

Tt = AWe(t) + [y Bt s)a(s)ds + f (=),
z(0) =20 € X, >0

i a Banach space X.
Ahmed (1991) discussed about the existence of solutions for the system

given by

{ B0 4 Aw(t) = fla(t) + [*, bt — s)g(a(s))ds, 0<t<T s

z(t) = ¢(t), —a<t<0,

where —A is the infinitesimal generator of analytic semigroup {T'(¢),t > 0} in
a Banach space X, f and ¢ are nonlinear functions from X, into X satisfying
Lipschitz and growth conditions, h € L*([0,a-+T],R) and ¢ € C([—a, 0], X,). Xa
denotes the Banach space D(A*) endowed with the graph norm |-||,, defined by

lzll, = A%z||x + llzlx .7 € Xa

‘Ahmed only gives an existence result of a mild solution by using a generalized
contraction mapping theorem.

Here, we consider the existence of mild solution for a system governed by
an integrodifferential equation with delay which is different from theirs.

This thesis is motivated by Ahmed (1991), that is, we study the system
governed by (1.2), in the case where the generating operator is time dependent
(A= A(t)). In fact, we study the existence of mild solution for the system gov-
erned by

{ S0 1+ ARe(t) = Fal) + [ (- o)glals))ds, 0StST o

z(t) = o(t), —-a<t<0,

where A(t) : D(A(t)) € X — X is a linear, not necessarily unbounded operator
‘on a Banach X. The main assumption is that the family operators {A(£)}scjo,m

generates the evolution system {U(t, 5),0 < s < ¢ < T'}, which is a two parameter



family of bounded linear operators. We obtain sore results under the following
agsumptions :

(1) f and g are Lipschitz continuous on X, {(domain of A%) and map into
4 Banach space X.

(2) ¢ € O(1-a,0], X,).

(3) he L7([0,a + T],R).

We also consider (1.3) in the case when f = f(t,z(t)) and ¢ = ¢(¢, z(t)). We
only use the original contraction mapping theorem and develop a step by step
approach to prove the existence and continuous dependence of solution. We need
not proof and make use of a priori estimates, such as Gronwall’s Lemma. Instead,
we develop a step by step approach, which vields a mild solution after a finite
number of iterations. Such a method is particularly useful for applications and
computations. Furthermore, it easily and clearly gives good estimates of solutions
showing continuous dependence of solutions on initial conditions.

Moreover, semigroup theory has also found extension applications in the
study of control theory. In control theory, optimal control problems are minimum
problems which describe the behavior of systems that can be modified by the
action of an operator. Two kinds of variables (or sets of variables} are involved:
one of them describes the state of the system and cannot be modified directly by
the operator, it is called the state variable; the second one, on the contrary, is
under the direct control of the operator and is used to modify the state of the
system, it is called the control variable.

The operator tries to modify the state of the systemn indirectly, acting on
control variables; only these may act on the system, through a link control-state,
ﬁsually called controlled equation. Finally, the operator, acting directly on controls
:_a,nd indirectly on states through the state equation, must achieve a goal usually
‘{yritten as a minimization of a functional which depends on the control that has
been chosen and on the corresponding state : the so-called cost functional. Just
ito give a simple example, consider a car which is driven only by acting directly on
controls that are the accelerator, the brakes and the steering-gear; the state of the
car could be for instance its position and velocity which, state equations are then
the equations of mechanics which, to a given choice of acceleration and steering
'.'angle, associate the position and velocity of the car, also taking info account
‘the specifications of the engine (technological constraints, nonlinear behaviors,...).

Assume that, for instance, the driver wants to minimize the fuel consumption to



run along a given path; he has then to choose the best driving strategy to minimize
‘theicost functional, which is in this case the total fuel consumption.

A recent, most productive development is the theory of optimal control of
distiibuted parameter systems. It is well known that evolution systems are an
immportant class of distributed parameter system and the optimal control of infi-
nite dimensional system is a remarkable subject in control theory. Some authors
including us investigated the existence of solution (e.g., Ahmed (1991), Ahmed
and: Teo (1981), Fattorini (1999}, Lions (1971) and Li and Yong (1995},

Recent results on delay differential equations and control theory to many
phenomena in the real world began to be described. Some authors investigated
the existence of solutions, for example, Ahmed and Xiang {1996), Bensoussan,
Da, Prato, Delfour and Mitter (1992), Wu (1996), Da Prato and Ichikawa (1993),
Xiang (2000) and Xiang and Kuang (2000). To the knowledge of the author, opti-
mal controls for integrodifferential equation with delay have not been intensively
studied. Here we consider the optimal control problem for a class of delay systems -
which is different from the delay equations studied by these authors.

In this thesis we shall study the optimal control problem
T
Hinimizg f i, 2(2), ult)dt
0

subject to u € U,y which is called the set of admissible controls and z € X,

satisfying the state system which is obtained by (1.3), that is,

{ 0 | A z(t) = £t 2() + [ h(t — s)g(s,2(s))ds + B(t)u(t),0 <t < T
z(t) = p(t), —a<t<0,0€C(—q0] X
where f,g:[0,7] x X, — X is Holder continuous with respect to ¢ and Lipschitz
‘continuous with respect to z, h € L' ([0,a + T}, R), B(t) € L(E,X),0<t LT
‘and F is separable reflexive Banach space {control space). By Balder’s results,
again using step by step approach we obtain existence result of optimal controls.
The thesis is organized as follows. Chapter II collects some basic concepts
and results from functional analysis, semigroup theory and evolution equations
that are necessary for the presentation of the theory in later chapters. In Chapter
IIT we study the problems of existence, uniqueness and continuous dependence
of mild solutions for the system governed by an integrodifferential equation with
délay. Chapter IV concerns the problem of existence of optimal control of abstract
‘semilinear integrodifferential equation on Banach spaces, and we considere a La-

grange problem for a class of semilinear integrodifferential equation with delay.



.F}?apter V concerns some examples from semilinear partial differential equations
of parabolic type with delay as an application which extends some results of chap-
ter IIT and IV.



Chapter 11
Mathematical Preliminaries

In this chapter we recall some basic concepts and results that are necessary
fOl the presentation of the theories in later chapters. Most proofs for the standard

results will be omitted.

2.1 Operators in Banach Spaces

e Banach Spaces

Definition 2.1.1. Let X be a (real) vector space. A norm {|-|| on X is a mapping
from X into R satisfying the four conditions:

(Z) ||z = 0 for all z € X.

(%) ||z} = 0 if and only if z = 0, the zero element of X.

(131) ||lez|l = || |jz|| for all z € X, ax € R.

() |z + vl < llzil + |lyll for all z,y € X.

The pair (X, ||-]) is called a normed vector space. Often when the norm
being used is obvious, we simply say that X is a normed vector space (or X is a

iiormed space).

Definition 2.1.2. (1) A normed vector space X is complete if every Cauchy
séquence {z,} C X is convergent (to limit which belongs to the spacej}.

(i7) A normed vector space X is called a Banach space if it is complete.

For example, given —co < a < b < 00, let C(le,b]. R) denote the set of
‘allreal-valued continuous functions defined on [o,b] = {z ¢ R:a <z < b} . Thus
[ €C([a,b,R) is continuous on the right at a, continuous on the left at & and

“(tworsided) continuous at ¢ for any ¢: a < ¢ < b. The vector space operations on



([, ], R) are, as usual,

(f +9)(z) = flz)+glz), (af)(z)=af(z)foral e la,b];

where f,g € C{[a,b],R) and o € R. With respect to

[fIl = max {{f(z}] 2 € [a, 0]},

C([a, b], R) becomes a Banach space (Belleni-Morante, 1979, pp.15-16).
¢ Linear Operators

Definition 2.1.3. Let X and Y be two given Banach spaces over the same field
Rof real numbers (or C of complex numbers), and let D be a subset of X. A
apping A that sends each z € D into a unique y € Y is called an operator with

domain D(A) = D and range
R{A)={y:yeY;,y= Alz),z € D(A)}

contained in Y. We may write thisas 4 : D(A) C X - Y. The element y = A(x)
is'the #mage of x € D(A) under the mapping A. In the following, we shall generally
ase the word ‘operator’ for mappings between X and Y with X # R and reserve
the word ‘function’ for mappings from a subset of R into Y.

We remark that, for simplicity, we write Az instead of A(z). (The symbol
‘Az is justified for linear operators by definition 2.1.6.)

If the operator A is one-to-one (1-1), i.e., if
Ty, 3y € D{A), Axy = Az === 27 = Zo,
(where the symbol == means “implies”), we can define the inverse operator
ATV Y O DA N = R(A) - DA)=RA CX

by
Ay =2 Az =y,z € D(A),y € R(A).
Definition 2.1.4. A is said to be densely defined if D(A) is dense in X (that is,

if every element z in X is the limit of a sequence of elements in D(A), i.e., the
closure of D{A), D(A) = X).



Definition 2.1.5. Let X and Y be two Banach spaces and let the operator
4 D(A) C X — Y. The operator A is bounded on D{A) if there exists a positive
sconstant M such that

Az, < M |lz|, for all z € D(A).

‘Definition 2.1.6. Let operator A : D(A) C X — Y where D(A) is a subspace

‘6f the (real) vector space X. Then A is said to be a linear operator if
Alaz + By) = aAz + JAy

Hforall z,y € D(A) and o, § € R.

When we say that A is a linear operator, it will always be understood that
‘D(A) is a subspace of the appropriate vector space X (ie. az+ By € D(A) for
‘allz,y € D(A) and o, 8 € R).

The following result gives several characterizations of bounded linear op-

‘erators between Banach space.

‘Theorem 2.1.7. Let X and Y be two Banach spaces and 4 : X — Y be a linear
‘operator. Then the following statements are equivalent:

(¢) A is continuous at 0, the zero vector in X.

(éi) A is continuous on X.

(ii1) A is bounded on X.
(Belleni-Morante, 1998, pp. 30-31)

Because of the above result, linear bounded operators are also called con-
tinuous linear operator. Now, for any Banach spaces X and Y, let £L(X,Y) be
‘the set of all bounded linear operator from X to Y, and £(X) if X =Y. For any
a,BeRand A, B e L(X,Y), we define oA + 3B as follows:

(aA+ BB)(z) = adxr + Bz for all x € X,

‘Then, £(X,Y) is also a vector space. By Theorem 2.1.7, the norm of the bounded
linear operator A4, denoted by ||A]|, is defined by

HAv’C“y
HI“X

141 msup{ e X, |af #o}. (2.1)

AR eéquivalent Al is

1Al = sup {[|Az[ly : z € X, [|z] <1}
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Tt is not hard to show that |j-| defined by (2.1} is norm on £(X,Y). Moreover,
+we can show that £(X,Y) is a Banach space under this norm (Belleni-Morante,
11979, pp.41-43).

We can introduce different notions of convergence in the space of bounded
Iinear operators. The natural one based on the norm in £{X,Y) is called uniform

‘convergence.

‘Definition 2.1.8. Let { A, } be a sequence of bounded linear operators in £L{X,Y)
‘so-that

1A = Allgxyy = Oasn — oo

‘then we say that A, converges uniformly to A as n — co.

Frequently in applications we will use a different kind of convergence.

Definition 2.1.9. Let {A,} be a sequence of bounded linear operators in £{X,Y")
so that
iAne — Azlly = 0asn —ooforallz € X
then we say that A, converges strongly to A as n — oo.
If a bounded linear operator depends on a parameter t from some interval
of R, we can define strong continuity, and uniform continuity with respect to £ in

‘an analogous manner.

Definition 2.1.10. Let 7(t) € L(X,Y) for every ¢t € [a,b]. T'(t) is said to be

wniformly continuous at ty € [a, b], if
[7°(6) = T(o)ll pox,yy — 0 as t — ta.

‘Definition 2.1.11. Let T(t) € L{X,Y) for every ¢ € [a,b]. T(t) is said to be

“strongly continuous at ty, if
\T(t)x ~T{to)z|ly — Oforallz € X ast — to.

‘Example 2.1.12. Consider the operator e!, where A € £{X), and e is defined
‘by
A2t‘2 Angn

Al
e =1 + At + oY -

then

eAf. Atg

—e — eAto(eA(tmtg) _ I)
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Hence
[l = e iy < 1™l oy ™™™ = Il 2y -
'B.U.t:
I 2
HBA(,‘,-to) - I“L(X) < HA(t -~ 1) + M R
2! L{X)
=APEENE
< k|t —to] + uslimlls
2!
gflt—tol _ 1,

where || Al|z(x) = k. Moreover HeAtDHﬁ(X) < el and so

He/‘lt _ eAtU S ek”ol(ek]t——ig‘ . 1).

||£(X)

i

Hem’ - e’“““ax) — (Jast— 1.

Hence for ¢ € [a,b], e is uniformly continuous. [

Theorem 2.1.13. (Uniform Boundedness Theorem) Let X and ¥ be Banach
spaces and let A be a subset of £(X,Y) such that {Az, A € A} is bounded in
Yo for each z € X. Then ||Al]| £ C (A € A) for some constant C; that is, A is
bounded in £{X,Y).

e Closed Operators

Let X and Y be two Banach spaces. The cartesian product X x ¥ of X
and Y is the set (of all ordered pairs)

XxY=A(z,y):zeX,yeY}.
Addition and scalar multiplication are defined in X x ¥ by

(@1, 91) + (22, 32) = (214 %2, 5 + 12)
a(ml) yl) = (04331, ayl)
foriall z1,20 € X, 1,42 € ¥ and o € R. Then X x Y is a Banach space with

Horm
[z, y)ll = lizllx + lylly s e Xyel (2.2)

(Belleni-Morante, 1998, p.27)



12

Definition 2.1.14. Let X and Y be two Banach spaces. For any operator
A D(A) C X =Y, the graph of A is the subset G(A) of X x Y defined by

G(A) = {(z,y) :y = Az, z € D{A)}.

Definition 2.1.15. Let X and Y be Banach spaces. A linear operator A :
DAY C X — Y is said to be closed if its graph is a closed subspace of X x Y.
fE(iuivalently, A is closed if z, — z and Az, — y as n — oo implies z € D{A)
andAt = y.

We remark that the norm (2.2) is often called the graph norm on X x Y,

for reasons which should now be fairly clear.

Theorem 2.1.16. {Closed Graph Theorem) Let X and Y be Banach spaces and
suppose A : X' — Y is a linear operator and A closed in A x Y. Then A is
bounded, that is, A is continuous.

(Yosida, 1980, p.79).

¢ Resolvent Operators

Definition 2.1.17. Let X be a Banach space and let 4 : D(A} C X — X be
4 linear, not necessarily bounded, operator. The resolvent set p(A4) of A is the
set-of all complex numbers A for which AJ — A is invertible, i.e., (Al — A)"'is a

bounded linear operator in X, that is, the resolvent set p(A) of A is given by
p(A)y={2eC: (M -A) e L{X)},

I is the identity linear operator in X. When A € p(A), R(A, A) = (A — A)7! is
called the resolvent operator of A at \.

If A is closed linear operator then for all A, p € p(A), R(A A) — R(p, A) =
= (A=) R(\, A)R(p, A) (see Belleni-Morante, 1998, p.50).

¢ Fixed Point Theorems

Ini this section we discuss some fixed point theorems and their applications. Fixed
points have long been used in analysis to solve various kinds of differential and

integral equations.

Definition 2.1.18. Let X be a Banach space and let A: X — X be an operator
(not necessarily linear). A fized point of A is a point x € X such that

Az = 1.
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In other words, a fixed point of A is a solution of the equation
Ar =x,z € X.

Definition 2.1.19. Let X be a Banach space and let A : X — X be an operator.
The operator A is called Lipschitz continuous (or, briefly, A is Lipschitz) if

Az — Ay|| < Llz -yl (2.3)

for-some constant L and all z,y € X. If 0 < L < 1 then A is called a contraction.
Now (2.3) of course implies A is continuous, and more importantly pro-
vides a uniform modulus of continuity. It turns out to be useful to consider also

operators A satisfying a variant of (2.3), namely
[Az — Ayl < Lllz —y|", 0 <y < L.

Such an operator is said to be Hélder continuous with exponent v. We denote the
family of all Holder continuous with exponent v on X by C7(X, X)
The following theorem implies that a contraction mapping on Banach space

always has a unique fixed point.

Theorem 2.1.20 (The Contraction Mapping Theorem)

Let X be a Banach space and let A : X — X be a contraction. Then the equation
Ar =2

has a unique solution in X, i.e. A has a unique fixed point 2. Further, this fixed
:_pqi'nt may be obtained by the method of successive approximations as follow :

xg € X arbitrary, z, = Az,—1 (n > 1); 2 =lim .
TL== 00

i@é}leni—Morante, 1998, pp.54-55)

Corollary 2.1.21 Let X; be a closed subset of the Banach space X and assume
that A maps X, into itself and is a contraction on Xjy. The equation Az = z has
‘alhique solution =z € Xg.

(Belleni-Morante, 1998, p.55)
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2.2 Semigroups of Linear Operators
o Definitions and Basic Properties of Semigroups

Let X be a Banach space and {T'(t),t > 0} a family of bounded linear operators
X, that is, for each ¢t > 0, T(t) € L(X) where £(X) denotes the space of

bounded linear operators in X.

Definition 2.2.1. The family of operators {T'(¢), > 0} is said to be a semigroup
of bounded linear operators on X if

(i) T(0) = I, (I is the identity operator on X},

(it) Tt +s) =T ()T (s) =T(s)T(¢) for all £,s > 0.
The semigroup {T(¢),t > 0} is said to be uniformly continuous if £ — T(t) is

continuous on [0, 00) in the uniform operator topology, that is,
lim [ 7(2) — Tl ) = 0.

_E_gui_valelatly, from the definition it is clear that if {7'(¢t),t > 0} is a uniformly
continuous semigroup of bounded linear operators then
}i{% |T() = T(tO)“g(X) =0,
for all 1o € [0, o),
Definition 2.2.2. The operator A: X 5 D{A) — R(A) C X defined by

t—0+

D(A) = {:z: € X : lim A;z exists in X}
Az = lim Az for z € D(A),
1—0t
‘where, for t > 0, A,z = LUE=2
‘semigroup {T(¢t),t > 0} on X.

cr € X, is called the infinitesimal generator of the

‘Theorem 2.2.3. A linear operator A: X D D(A) — R{A) C X is the infinitesi-

mal generator of uniformly continuous semigroup of operator {T'(¢},¢t > 0} in X

lf,and only if A is a bounded linear operator.
(Ahmed, 1991, p.4)

Definition 2.2.4. (Co-semigroup) The semigroup {T{t},t > 0} is said to be

“strongly continuous at the origin if for each € X,

i tx —- = [
i{f&”T( )T 517”)(
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That is, ¢ = T'(t)z is continuous from the right at ¢ = 0 for each z € X.
A strongly continuous semigroup of bounded linear operators on X will be

called a semigroup of class Cy or simply a Cy-semigroup.

1t readily follows from the semigroup property that strong right continuity
at origin implies strong right continuity for every ¢ > 0, we have only to note that
T(+h)z—T(t)x = T()(T(h)z~z) for h > 0. To obtain left continuity, we have

to invoke the uniform boundedness principle.

Theorem 2.2.5. (Properties of Cy-Semigroups) Let X be a Banach space and
{T(t),t > 0} a Cy-semigroup on X with A as its infinitesimal generator. Then,
(1) There exist constant M > 1 and w > 0 such that

1T 2y < Me" for all £ > 0.

(2) For each = € X, ¢+ T{t)z is a continuous X-valued function on {0, co).
(3) For z € X,t € [0, 00),

l t4-h
}L%E/t T(T)xdr =T1(t)x.

(4) For z € X and t > 0,y T(7)adr € D{A) and

A ( /0 t T(T)ﬂ?d’i’) = T(t)z ~ .

(5) For z € D(A), T(t)r € D(A) and 7 (t)x = AT(t)z = T(t)Ax.
(6) For z e D(A), 0 < s <t

/t AT (T)zdr = /t T(ryAxdr = T(t)x — T'(s)x.

(7) (#) D(4) = X and
(i1) A is closed operator or equivalently its graph I'(A) = {{z,y} €

X %X :y= Az}is a closed subset of X x X.

(8) Let B be the infinitesimal generator of Cy-semigroup {S(¢),t > 0}.
If A= B, then T(t) = S{t) for all t > 0, that is, each Cy-semigroup generator
generates a unique semigroup.

(9) The set NG, D(A™) is dense in X.
(Ahmed, 1991, pp.5-11)
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Let {T(t),t > 0} be a Cp-semigroup. From Theorem 2.2.5 (1) it follows
that there are constants w > 0 and M > 1 such that

1Tl gy € Me™ forall t > 0. (2.4)

M, w) denote the class of Cp-semigroup {T(¢),t > 0}.

If w =0, T(t) is called a uniformly bounded semigroup. ie., [T'(¢)|| < M.
Hw=0,M=1,T(t) is called a contraction semigroup, t.e., |[T()| < L.
I M =1, T(t) is called a quasi-contraction semigroup, i.e., [T{¢£}|| < e

{In fact, the set G(M,w) can also be defined for w < 0; in this case we have
"1_:_ f}) ” < Me—lwlt.)

We can now give necessary and sufficient conditions for an operator A to

generate a semigroup which belongs to the class G(M,w).

Theorem 2.2.6. (Hille - Yosida Theorem] A linear (unbounded) operator A is
the infinitesimal generator of a Cy-semigroup {7°(¢),t > 0} satisfying |T(t)]| <
Me“t for some w > 0 and all ¢ > 0 if and only if

(i) A is closed linear operator whose domain D{A) is dense in X.

(1) For all real numbers A > w, A € p(A) and

RN A < ~forn=12... (2.5)

M
(A —w)
(Pazy, 1983, p.20)

Remark 2.2.7 The condition that every real A\, A > w, is in the resolvent set of A
together with the estimate (2.5) imply that every complex A satisfying ReA > w
is in:the resolvent set of A and
| R(X A" < M for ReA > w,n=1,2,....
(ReA —w)"

(Pany, 1983, pp.20-21)

e. Differentiable and Analytic Semigroups

Definition 2.2.8. A Cy-semigroup {T(t),t > 0} in a Banach space X is said to
be differentiable if , for each z € X, T(t)z is differentiable for all ¢ > 0.

We have seen in Theorem 2.2.5(5) that if T(¢) is a Cy-semigroup with
féli'ﬁ”ﬁﬁitesimai generator A and x € D{A) then ¢~ T'(t)z is differentiable for { > 0.
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Theorem 2.2.9. If {T(¢),t > 0} is differentiable semigroup with A being its

?inﬁﬁ_ité_silnal generator then it is differentiable infinitely many times and, for each

(z) L) =T™(t) = AT(t) € L(X) for t > 0.
(zz) TO(t) = (AT (L))" for ¢ > 0.
(#44) T'™ () is uniformly continuous for ¢ > 0.
[ARied, 1991, pp. 73-74).

Definition 2.2.10. Let A = {z € C: §; < argz < #3; 8, <0 < 62} and suppose
(2} € L(X) for all z € A. The family {T(z),z € A} is called an analytic
wgroup in A if it satisfies the following properties :

(1) z = T(z) is analytic in A, that is for each z* € X* and z € X,

the scalar valued function z — z* (T(z)z) is analytic in the usual sense uni-
formly with respect to z* € Bi(X*) = {z*:|lz"]|y. <1} and 2 € By(X) =
: |_5CHX <1}

(1) T{0) = I and lim,_o, . T(2)x = z for each z € X

(134) T(z1 + 2z2) = T(21)T(22) for 21,22 € D,

A complete characterization of analytic semigroups is given in the following
theorem.
Theorem 2.2.11. Let A be the infinitesimal generator of a uniformly bounded
Co-semigroup {T(¢),t > 0} with 0 € p(A). The following statements are equiva-
lent:

{(a) T(t) can be extended to an analytic semigroup from [0, c0) to a sector

dround it, given by,
DNg = {z:jargz| < 6} for some 6 > 0,

and ||7'(z)| is uniformly bounded in every closed subsector &y C Ay, § <8
(b) There exists a constant C' > 0 such that, for every ¢ > 0 and 7 # 0

%
i

(c) There exist 0 < 6 < § and M > 1 such that

R0 +ir, Al px) <

p(A)DEx{)\E(C:largM <-g-+5}u{0}
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and M
|R(A A < o for all A € £, )\ # 0.
(d) T'(t) is differentiable for ¢ > 0 and there exists a constant C' > 0, such

IAT®)) < -f— for >0,
(Ahimed, 1991, p.82)

¢ Fractional Powers of Closed Operators

We concentrate mainly on fractional powers of operators A for which —A is the

infinitesimal generator of an analytic semigroup. The result of this section will be

din the study of solutions of semilinear initial value problems. Throughout

this section, we will use the following general assumption.

Assumption 2.2.12. Let A be a densely defined closed linear operator with
D(A) and R(A) in X for which the resolvent set

pA) o8 ={AeC:0<w< |agA <nUV

where V' is a neighborhood of zero in € and

M
14 1A

IR, A < for A € £

For an operator A satisfying Assumption 2.2.12 and a > 0 we define

1
A= — | 274~ zI)""dz (2.6)
27t J o
where the path C runs in the resolvent set of A from coe ™ to coe”, w < 0 < 7,

o

avoiding the negative real axis and the origin and z™¢ is taken to be positive
for real positive values of z. The integral (2.6) converges in the uniform operator
topology in L{X) for every a > 0 and thus defines a bounded linear operator A™.

If &= n, an integer, the integrand is an analytic function in 3.7 and the path of

integration C' can be transformed to a small circle around the origin. Then using
the residue theorem it follows that
- 1 —n -1
A= — [ 27HA -~ 2]) 7 dz
2w C
and thus for positive integral values of a the definition {2.6) coincides with the

classical definition of (A~1)".
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If w < 3, ie, if —A is infinitesimal generator of an analytic semigroup

: ,t > 0} we obtain still another representation of A~%. In fact, suppose A
sfy the assumption 2.1.12 with 0 < w < £ and let {T'(¢), t > 0} be the
nigroup corresponding to the operator —A. Then for every 0 < o we have

Ama _ f‘ﬁfomtamlT(t)dt for a > 0
! for v =0

{(gee Pazy, 1983, p. 70)
Fheorem 2.2.13 There exists a constant (0 < ¢ < oo such that

A~ sy SCforall0 <o < 1.

'E(X}

(Pazy, 1983, p.71)

Let A satisfy Assumption 2.2.12 with 0 < w < %, that is, —A4 is the

imfinitesimal generator of an analytic semigroup {7'(¢), ¢ > 0}. It is known that

18 a one-to-one, bounded linear operator on X (Pazy, 1983, p.72). For every

0, we define

4o { (A=)~ for a > 0 @7

{ foroo=0

Theorem 2.2.14. The operator A%, 0 < a < 1, as defined by (2.7) , satisfies the
following properties :

(a) A is a closed operator with domain D(A%) = R(A™®) the range of
A%

(b) 0 < 3 < o implies D(A%) ¢ D(A¥).

(c) D(A®) = X for every a > 0.

(d) If @, 3 are real then

APy = A™ APy

for every = € D(A") where v = max{a, 3, a + 8}
(Pazy, 1983, p.72).

Theorem 2.2.15 Let —A be the infinitesimal generator of an analytic semigroup
AT(t),t > 0} in X. If 0 € p(A) then,
(a) T(t) : X — D(A®) for every t > 0 and a > 0.
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(b) For every = € D(A*} we have
T() A% = A%T(t)x for all & > 0.
(¢) For every t > 0, A*T'(t) € £{X) and
AT ()] pxy € Mat™e™,6 >0

for soime constant M, > 0.
(d) For 0 < o <1 and z € D(A®) then

(T (t)z — 2l < Cat® [ A%

for 'some constant C, > 0.
(Pazy, 1983, pp.74-75)

2.3 Differential Equations on Banach Spaces
¢ The Homogeneous Initial Value Problem

At the beginning of this section, we motivate the study of semigroups of operators
via differential equations on Banach spaces which are abstracts formulation of
initial value problem for partial differential equations.

Let X be a Banach space and let A: X D D(A) — R(X} ¢ X be a given

operator and consider the homogeneous initial value problem in X given by

{‘%%Q:Am(t),wo

2(0) = xq. (28)

Whelea,o e X,

Definition 2.3.1. A (classical) solution of (2.8) is a function z : [0,00) — X
Sk that

(1) = € C([0, 00}, X) N CH{0, 00}, X).

(1) z(t) € D(A) forallt > 0.
2l = Az(t), t> 0

(#33) (2.8) is satisfied, i.e.,{ ¢
.’E(O) = Ig.

Theorem 2.3.2. Let D(A4) = X, p(A) # §). Then (2.8) has a unique classical

solution =(¢) which is continuously differentiable on [0, 00), for every initial value
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ED(A) il and only if, A is the infinitesimal generator of a Cg-semigroup
Y, £> 0} in X.
(Pazy, 1983, pp.102-104)

"Theorem 2.3.3. (i) If A is the infinitesimal generator of a differentiable semi-
group {T(¢),t = 0} in X then for every zp € X, (2.8) has a unique (classical)
solution z(t) = T(t)zo,t > 0.

(#1) If A is the infinitesimal generator of an analytic semigroup {7'(t},¢ > 0}

then for every zp € X, (2.8) has a unique (classical) solution z(t) = T°(¢)xq, ¢ > 0.

Proof. (i) Since {T(t),t > 0} is a differentiable semigroup for ¢ > 0, the
X-valued function ¢t — T'(¢)xg is differentiable for every zg € X and

d

&—gT(i).ﬁo = AT(t).lg for ¢t > 0.

Further, by Theorem 2.2.9(i11), AT(¢)xy is Lipschitz continuous for ¢ > 0 and

hence we conclude that z(t) = T()zg, t > 0, is the unique (classical) solution of

(#2) This follows from the simple fact that, for analytic semigroups, T'(f)z €
(A) for every z € X and ¢ > 0; and consequently every analytic semigroup is
also a differentiable semigroup. O

If A is the infinitesimal generator of a Cy-semigroup which is not differen-
tiable then, in general, if z ¢ D(A), the initial value problem (2.8) does not have
a solution. The function £+ T{t)zg is then a generalized solution of (2.8) which

we will call a mild solution.

¢ The Nonhomogeneous Initial Value Problems

onsider the nonhomogeneous initial value problem:

{d“;—{;):Am(t)%«f(t),t>O

2.9
z(0) = x¢. (29)

where f:[0,T) — X,z € X.

Definition 2.3.4. A function z : [0,7) — X is a (classical) solution of (2.9} if
(2) z € CJ0,T), X)NnCH(0,T), X).
(1) z(t) € D(A) forallt e (0,T).
(4ii) (2.9) is satisfied on [0, 7).
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orem 2.3.5. (Ezistence and Uniqueness) Let A be the infinitesimal generator
-semigroup {T'(¢),t > 0}. If f € L}([0,77], X) then for every z¢ € X, (2.9)
‘most one solution. If it has solution, this solution is given by

x(t) = T(t)xg -1—/ T(t—s)f(s)ds,0 <t <T. (2.10)

Proof. Define z(s) = T{t — s)z(s) for 0 < s < ¢t < 0. Since z(s) € D(A4)
=0 and z € C'((0,T),X), z is differentiable and it is given by

dz(s)

o = ~AT(t — 8)z(8) + T(t — s} = (5)
= —AT(t — s)z{s) + T{t ~ s) (Az(s) + f(5))
= —AT(t — s)x(s) + AT(t — s)z(s) + T(t — 5) f(5)
= T(t—s)f(s) for s > 0.

The sécond equation follows from the fact that x is solution of (2.9) in the sense of
f@ieﬁmtion 2.3.4, and the third follows from the fact that x(s) € D(A) for s > 0 and
F{t) commutes with A on D(A). Since f € L}[0, 7], X) and |T(#)|| < Me*t,t >

the last expression is integrable. Integrating this over interval [0, ] we obtain

z(t) — z(0) = /0 T{t — s)f(s)ds
x(t) = T({t)xy + /.LT(t — 8)f(s)ds.
0

'The uniqueness follows from the uniqueness of the semigroup associated to the
operator: A. This complete the proof. LJ

Definition 2.3.6. Let A be the infinitesimal generator of a Cy-semigroup {T(¢), ¢ >
wp € X and f € L0, 7], X). A function z € C([0,7), X) given by (2.10)
alled a mild solution of (2.9) on [0,T].

The definition of the mild solution of {2.9) coincides when f = 0 with
he definition of T(t)zo as the mild solution of the corresponding homogeneous
equation. It is therefore clear that not every mild solution of (2.9) is indeed a

(classical) solution even in the case f = 0.

Fheorem 2.3.7. Let A be the infinitesimal generator of a Co-semigroup {T°(¢),t >
0}, Theén the following results hold
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(i) If o € D(A) and f € C'([0,7], X) then (2.9) has a unique (classical)

(4¢) If 2o € D(A) and f € LY([0,7],X) satisfying (a) f(t) € D(A) for
(0,7 and (b) Af € LY[0,T], X), then (2.9) has a unique (classical) solution.
(Ahmed, 1991, pp.154-155)

2.4 Evolution Equations

Let X be a Banach space. Forevery t, 0 <t <7 let A(f): D(A(®)) C X — X
be a linear operator in X and let f(t) be an X-valued function. Consider the

linear initial value problem :

{%@M(t)x(t):ﬂt) Oss<tsT (2.11)

z(8) = zp.
The initial value problem (2.11) is called an evolution problem.

Definition 2.4.1. An X-valued function z : [s,T] — X is a classical solution of
@) ifx e O, T, X)NC ({5, T, X), z(t) € D(A(t)) for s<t<T, and
satisfies (2.11)

Definition 2.4.2. A two parameter family of bounded linear operators U (¢, s),0 <
$ <t < T, on X is called an evolution system (or evolution operator) if the fol-
lowing three conditions are satisfied :

(i) U(s,s) = 1.

(15) U(t, s) = U, ")U(r,s) for 0 <s <r <t < T

(112) (t,s) — Ult, s} is strongly continuous for 0 < s <t < T (that is,

U )z e C(A,X) forevery 1 € X, A ={(t,5) € 0,7 : 0 < s <t <T}).

In the following we shall present sufficient conditions for the existence
of an evolution operator U/, in the parabolic case. We will need the following
assumptions :

Assumption 2.4.3.

(A1) : {A(t),0 <t < T} is a family of closed densely defined linear operator in
X such that the domain D(A(%)) of A(t) is independent of t, L.e. D(A(f)) =
D(A).
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(A2) : For each t € [0,T], the resolvent R(X, A(t)) of A(t) exists for all A with
ReA £ 0 and there is a constant A{ such that

M
I+ [A

TR A £ <
for ReA € 0,t € {0,7)].
(AS) There exist constants L and 0 < o < 1 such that
”(A(t) - A(S))A(’T)_luﬁ(x) <Lt~ S{a
for s,t,7 € [0,T].
Here £(X) denote the Banach algebra of all bounded linear operators on
X We note that (A1) and (A2) imply that for every ¢t € [0,T], —A(#) is the

infinitesimal generator of an analytic semigroup {e™™ 0 <7 <0} in L{X).

Moreover, there exist positive constants C' and & such that

eTTA <Ce™ ™ r >0 (2.12)
£{X)
and Comir
“A(t)GWTAMHL(X) = _ST_*“’— >0

forall 0 <t < 7T (see Amann, 1978, pp.7-8).
For each o > 0, the inequality (2.12) implies the fractional power A~%(t)

exists and is given by
1 oo
A7) = —— / 7ol TGy 0 <t < T
Q o) Jo

1t is known that A~*(t) is a one-to-one, bounded linear operator on X. We define

For o= 0, we set A%(¢) = 1.

stneorem 2.4.4. (¢) A%(t) is a closed bijective linear operator in X.
(i1} D(A=(t)) = X.
(#44) 0 < o < 3 implies D{AP(t)) C D{A*(t)).

(iv) If o, 5 € R then

ATE (e = A2 (1) AP (Yo = AP () A% (t)x
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vory z € D(AY(t)) where v = max {a, 8,a + §}.
() For 0 <a< <1 ands,tel0,T],

D(A%(s)) € D(A*(1))

[A%(s) AP < Cla, B).
i, 1978,p.8)

In the following we let ||z||, = ||A%z|| for z € D(A%) and 0 < & < 1, and we
‘enote by X the Banach space (D(A%), ||-||,)- Then X5 — X, for 0 < a << 1
with Xg = X). (Amann, 1978, p.8)
eorem 2.4.5. Under the Assumptions (A1}-(A3) there is a unique evolution
foperator U(t,s) on 0 < s < ¢ < T, satisfying:

@ UG s)| < Cr0<s<t< T

(#) For 0 < s <t <T,U(t,s) - X — D(A) ie, U(t,s)X C D(A) and

I(t; ) is strongly differentiable in X. The derivative %U {t,s) € L{X) and

it s strongly continuous on 0 < s <& < T Moreover,

%U(i,s)—}—A(t)U(t,s) =0for0<s<t<T
d C
s — <
| Gut.) =1 i < =

|A@QU(E, s)A(s) || < Clor 0< s <t < T,
(#4i) For every v € D(A) and t € (0,T), U(t,s)v is differentiable with

“egpect to s on 0< s <t < 7T and

%U(t, s)v = U(t, s)A(s)v.

. 1983, pp. 150-151)

Theorem 2.4.6. Let {A(t) }sepm satisfy the Assumptions (A1)-{A3). For every
<T and zg € X the initial value problem
{ B A®e(t) =0, s<t<T

z{s) = xo.

(2.13)

‘has a unique solution = given by z(t) = U{t, s)xy, where U(t, s) is the evolution

erator constructed above.
1983, p. 164)
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Definition 2.4.7. Let {A(t)}eor satisfy the Assumptions (A1)-{A3) and
), 0 < s < ¢ < T be the evolution operator provided by Theorem 2.4.5.
ction « € C{[0, 7], X) is said to be mild solution of (2.11) if z satisfies the

integral equation

z(t) = U{t, s)zg + / Ult, 7y f(r)dr.

Theorem 2.4.8. Let {A(2),0 <t < T} satisfy the Assumptions (A1)-(A3) and
et U {t,; s) be the evolution operator provided by Theorem 2.4.5. If f is Holder
continuous on [0, 7"} then the IVP

0 4 AWs(t) = f(t), 0<t<T
’L(O) = Iq-

has,fcu every zg € X, a unique classical solution z given by
t
z(t) = U(t,0)zg +/ Ut 7)f(r)dr,0 <t < T,
0

Moreover, z € C*({0,T], X), provided zg € D{A).
FAmann, 1978, p.8)
In the following theorem we collect the most important regularity proper-

fies of the evolution operator. For abbreviation we denote the norm in £(X,, Xs)

Theorem 2.4.9. (Properties of the evolution operator)
(1) Suppose that 0 < @ < § < 1. Then

Ut 8) o < Clan B,7)(E — 5)77
forB—~a<vy<land0<s<t<T. Moreover, if 0 < o < 3 <1, then
U, 8)llg0 < Cla, B).
(14) Suppose that 0 < a < 8 < 1. Then
1U@,7) = Uls, T)lige < Cla B} It — 8]

for0<~y< f—aand (t,7),(s,7) €D, A ={(t,s) €[0,T?:0<s <t <T}.
(i) Let 0 < a < 1,0< o < T and f € C(lo,T], X). Then

< Clayy)|s — ¢ max [ £(7)]x

a<T<T

f: U, 7)f(r)dr — /(: Uls,7)f{r)dr

o
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__f)f< l—aando <s,t <1
Gr)Let 0 <a < G <1 and let

t
K(z, £)(t) = U(t,0) -+ / Ut ) f(r)dr.0 <t < T
0
en K is a continuous linear operator from Xz x C([0, 7], X) into C?([0, T}, X4)

everyd € (0,0 — al.
__1_1}’};',_-'1978, pp. 9-10}




Chapter III

Semilinear Integrodifferential

Equations

At the beginning of this chapter, we motivated the study of evolution operator via
initial value problems for PDEs. We shall now show that the theory developed in
the previous chapter answers all the basic questions of existence, uniqueness and
continuous dependence of solution for the system governed by an integrodifferen-
tial equation with delay :

{ 0 4 A@)2t) = fla@)+ [1 h(t = s)gla(s)ds , t € [0,T)
z(t) = p(t) , t €|—a,0]

We use the following notation : Let X be a Banach space with norm |||},
andlet T be fixed positive number. Let {A(t),0 <t < T} be a family of closed

linear operators in X satisfying the Assumption 2.4.3 :

(Al) : The domain D(A(t)) of A(t) is dense in X and does not depend on , ie.
D{A(t)) = D(A).

(A2) : For each t € [0,T], the resolvent R() : A(t)) of A(t) exists for all A with
Re X\ < 0 and there is a constant € that is independent of A and ¢ such that

C
1+ |Al

RO Az <
for ReA < 0,t € [0,7).
{A3) : There exist constants L and 0 < a < 1 such that
[(A() = AN AT M| ey € LIE= sl

for s.4,7 € [0,7].
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Throughout this chapter we presuppose hypothesis (A1)-(A3). In addition

wesiake the following assumptions. Suppose

f: X, — X is Lipschitz continuous, that is, there exists a constant L > 0

such that
(@) = FWlix < Lllz -yl
for all 7,y € X,.
(F2) f:[0,7] x Xo — X is Holder continuous with respect to ¢ and Lipschitz

continuous with respect to x, that is, there exist constants C and 0 < § <1
such that

| £t 1) = Fltnaallly < C {Jts = tol° + 121 = wall |

for t1,t2 € [0,7] and 21,22 € Xo.

3.1 A Class of Semilinear Evolution Equations

Before studying integrodifferential equations, we discuss the semilinear initial

value problems (IVPs) of the form:

{ £ + A@)s(t) = flz(t)), 0<t< T (3.1)

33(0) = Xy

with 2o € X, for some o € [0,1).
We will develop a step by step approach to discuss the regularity, existence
and continuous dependence of mild solution for {3.1). The main idea is also the

basis of studying integrodifferential equations.

Definition 3.1.1. A function z € C([0,T], X, is said to be classical solution of
(3:1) if z € C([0,T), Xo) N CH{0,T], X) with z(0) = o such that z(t) € D(A)
and £8 + A()x(t) = f(2(t) for 0 <t < T.

Definition 3.1.2. A function z € C([0,T], X,) is said to be mild solution of
{3.1) if z satisfies the integral equation

z(t) = U{t,0)zo + /ﬂt Ut,7)f(z(r)ydr , t € [0,T]. (3.2)
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Regularity of Mild Solutions

Ve now turn to consider the conditions of f that will ensure that the mild solution

1) is a classical solution.

yrem 3.1.3. Let { A(f) }iejo,r) satisty the assumptions (A1)-(A3), U(t,s), 0 <
t < T be an evolution system, f satisfy the assumption (F1). Then for every

5 0 < a< # < 1, the initial value problem (3.1) is equivalent to the

seral equation (3.2).
Proof Let z be a solution of (3.1). Then the function

V(t,r) = Ul(t,7)z(r)

différentiable with respect to 7 for 0 < 7 <t < T and

Men) - T o bt + )

= U(t,T)A(T)z(T) + Ult,7) (= A(T)z(r) + flz(r)}))
= U(t,7)f(z(7)).

ntegrating the above equation with respect to 7 from 0 to t, we get

Vit t)—V(t,0) = v/o Ult,7)f(z(r))dr

z(t) = U(t,0)zo + /Ot U, 7)f(z(r))dr , t €]0,T].

Conversely, suppose that z € C([0, 7], X is a mild solution of (3.1). Then

Have

z(t) = U(t,0)zq + ‘/Ot Ut,7) f(z(r))dr

<t < T. Thus by Theorem 2.4.9 (#4) and (441), we get x € C*([0,T), Xo), 0 €
o), i.e.,
la(t) — a(t2)ll, < Clt — taf’

1,12 € 0,T) and 6 € [0, 8 — a). Since f satisfies (F1), then

[f(2(t)) = flaltilx < Llla@) - =(t)l,
< LClt —tal’.
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-)) is Holder continuous with exponent 8, 0 <8 < §—a, t.e., flz(-)) €
]:Xe). By Theorem 2.4.8, we get, for every @z € X = D(AP), z €
], X). Therefore, z € C([0,T],Xs) N CY(0,7T], X), ie., z is classical
o, L

k 3.1.4. Asusual, Theorem 3.1.3 still holds if f satisfies assumption (F2).

asy to show that f(-,z(-)) is Holder continuous, in fact,

£ (81, 0(t0) = St 2(t2)llxc < v { It = 8ol + folts) = w(t2)ll. |

[A

& {[751 —to|® + Cy [ty 732]92}
03 {ltl — tglgl -+ |t1 T tz‘gg} ,Cg = Inax {Cl, Clcg}
S C |t1 - ﬁg]g, f = min{é)l,ﬁg} .

Fa

s Existence, Uniqueness and Continuous Dependence of Mild Solu-

tions

prove theoremm that employs the Lipschitz condition to show existence, unique-

and continuous dependence of solutions.

‘Fheorem 3.1.5. Let {A(t)}iejon) satisfy the assumptions (A1)-(A3}, U(t,s), 0 <

T be the evolution system, f satisfy the assumption (F1). Then for every

5. 0 < a < 8 < 1, the initial value problem (3.1} has a unique mild
ition z € C([0,7], Xa).

Proof We define an operator G; on C([0, T, X,) by:
(Grah)(t) = U(t,0)zg + /i Ult, ) flz'(m))dr, 0<t<T.
0
%-':_f(:')llows from Theorem 2.4.9(41) and (éi:) that G, maps C([0,T7], X,) into
Lfact, [[(Giz')(t) — (Grat)(E2)ll,
MU, 030 — Uta, O)aoll o o U1, T F (@ (P)dr = [ Ulta, 7)F @ (7)) |
2 UG, ) N = [y Ul ) fa (||

Lo B,7,) [t = to]™ + Cala, va) [ty — t] ™ maxogrer [Hf (2 (7))l x

for0<vy, <«f—caand0< v, <1—aand (1,0),(t:,0) € A,
A={(ts)el0,T]x[0,T:0<s<t<T}
’ﬁ,’Y) Itl - t2|T Y= min {’71772} .

(t1,0) ~ Ulta, 0)) ol +
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Now, we claim that if T > 0 is small enough, then (75 is a contraction. To
sahis; suppose that z1,z3 € C([0,7], X.) and ¢ € [0,7]. Then, by Theorem

{#), we have
1@ ) — GOl [ IUE ) (i) - F@y ), dr
< C(0,0,7) fyt = 7)1 F(21() = flaa(r))l|x dr o <y <1
g C(O> «, ’Y) Lf[)t(t - T)—’Y H"Ei(’r) - ﬂ?%(’?’)lia dr
< C(0, a,7) Lsupger<r l2i(r) = 23(r)l, ot — 7)7dr
< C(0, ) Lil = |l — 33.15.“0([0,2“],1{&) .
Maximizing the left hand 31de with respect to ¢, we have

T1—

. T
”Glll Glx?”o (10,7],X0) = < C(0,2,7) L1 Y Hmi . xé”cqo.ﬂ,xa) ’

whete I and C are independent of T and thus G, is a contraction, provided T > 0
o small that

1y
< 1.

C(0,a,v)L 7

Given any T > 0 we select Tp > 0 so small that

1—y

T
C(0,0,7)L 10

< 1. (3.3)

contraction mapping theorem, we can conclude that &) has a unique fixed
Le C([0, Ty, X,) such that Gyz' = !, that is,

2HE) = U(t,0)z0 + fo Ut 7 f (o (r))dr , {0, Th]

‘the IVP (3.1) has a unique mild solution z* € C([0, Ty ], Xa).
Now, we define an operator G on C{[ Ty, 2To ], X&) by

t

wﬂmw=mu%wwm+ﬁvmﬂﬂfmmT

Ty
7 S t < 2Ty. By the same argument as before, one can show that G maps
QTO],XQ) into itself. Let us show that (5 is a contraction mapping in
: 05-2To] X,). Suppose that :cl,:zrz € C(|Ty, 2Tp), X,) and ¢ € [Ty, 2T5). Then
1(Goz?)(t) = (Cazd) (D)< f NUE ) (F(2F(r) = f 23 (DD la b7

< C0,0,7) [ (t = )7 1 f(2(r) = Flad(TDx dr o <y <1
< C0,0,7) L [ (t = 1) |23(7) = 23(T)] o dr
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(0, 0,7) Lsupqy<r<on, Hz3(r) = 23(7)l, f;b(t —7)7dr

C
. 1o
< C0,0,7) LA o7 = @lloga, oo

1—
OFT 2

. 1 2
) < C(O:Ofa’}’)Ll — ”531 — % C{[Tu, 218 ],Xa) !

”" Gats “C([Tg 2T0 ], Xa

and C' are independent of Tp. From (3.3), we get G is a contraction map-
([To, 2To ], Xo). Hence Gy has a unique fixed point 2° € C([Tp, 270 ], Xa)
at Gaz? = 2?, that s,

t

$2() = U(, Ty )z (Ty) + fT Ut ) Fa(r))dr To < ¢ < 2T,

ie IVP (3.1) has a unique mild solution z* € C([Ty, 23], Xa). Now, let
shiow that the TVP (3.1) has a unique mild solution z € C([0, 275 ], X, ). Define

z't), 0<t< T
o(t)=<¢
z?(t), To <t <20

2 (t) = U(t, 00z + [y U, 7)f(z(7))dr

22(t) = U(t, To)z" (To) + [y, Ut 7)f(22(r))dr.

i ) )
= U( t, To) (U(T{;,O)Hig -l-/(; U( Tg,T)f(ﬂIl(T))dT) +/ U(t, T)f($2(7'))d

Ty

Ty ¢
= U(zf,()):r:0+/0 U(t,T)f(:cl(T))dT—l—/ U(t, 1) f(2*(7))dr

T

Ult,0)zg + fg Ult,7)f(z'(r))dr ,0 <1 < T
U(t,0)zo + fOTO Ut, ) f(zr(m))dr + f;ﬂ Ut, 7)f(22(r))dr, Ty <t < 2Ty

z{t) = U(t,0)zg + fot Ut, 7) flz(r))dr ,0 <t < 2Ty,

Therefore, the IVP (3.1) has a unique mild solution z € C([0,2T0], Xa).
Repeating the above procedure in intervals [0,3T5 ], [0,4T5], ..., after finite
15 steps such that nTy > T. We can construct a unique mild solution on the full

“interval [0, T, that is, z € C{[0,T], Xa4),

z(t) = U(t,0)zo + /t Ult,7)fz(r))dr ,0<t <T. O
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316 Under the same assumptions of Theorem 3.1.5, for every zy €

< [ < 1, the initial value problem (3.1} bas a unique classical solution.

Proof The assertion follows immediately from Theorem 3.1.5 and Theorem

lary 3.1.7. Let {A(t) }iepo,r) satisfy the assumptions (A1)-(A3), U(t,s), 0 <
" be the evolution system and f satisfy the assumption (F2). Then for
0 E€Xp, 0 < [ < 1, the initjal value problem

{ B At)s(t) = flt,a), 0<t<T (3.4)

33(0) = X

unique classical solution.

Proof The proof is similar to the proof of Theorem 3.1.5, for (3.4) has a
Hinique mild solution. Theorem 3.1.3 and Remark 3.1.4 imply that (3.4) has a

igue classical solution. O

In the following we denote by D = UXjs, 8 € (&, 1]. For zp € D the IVP

1§ solvable. Hence, by Corollary 3.1.6 we can define a map

F:D— C(0,T), X,) nC*{(0,T], X),

vhich assigns to every zg € D the unique solution F{zo} of (3.1). This map is
‘called the solution operator for the IVP (3.1).
In the remainder of this section we study continuous dependence for the

‘solution operator F.

ﬁéféi'em 3.1.8. Suppose the assumptions of Theorem 3.1.5 hold. Then, there
ists K > 0 such that for 0 <t < T, u,v € X (B € (a,1])

[ Fu — F’U”c(;o,frg,xa) < Kpllu— UHg -
Proof Let x} = Fu,z} = Fv,u,v € Xp. Suppose that 0 S v < vy < < 1,
Ut Mo, < C0O0,B)E—7)70< 7 <t ST

‘We claim that if Ts,0 < Ty < T, is so small enough, then

”33% - 93%”0([0,%],)(&1) < My flu—vfig.
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his, suppose that z1, 23 € C([0, To], Xo) and let No > 0 be as in Theorem

Q:Hows that

< nU(t Oyu — Ut 0)vll,, + [y 1U 7)) = U, 7)f (@50,

LU0 pa = vllg + fo 1T o 1F @) = Fle3(n)lix dr
2618, 0n) lu— v+ CO, a1, 8) [yt = )P (21(r)) — Flah())llx dr
2 0B, 0) u— vl + LCO, 1, B) [yt = 7) 7" 2i(r) — a3l d
= Ci(B,00) lu = vlly + LCO, 1, 8) [yt = 1) P | A (2}(7) ~ 2b(r) x dr
< (B 0n) llu—vls+

LO©, 0, ) fy(t — 1) B[l A% A (2} (7) — 25(r))ll  dr
< Ci(B, ) lu — vfl,+

LO(0, a1, 8) No fy(t —7)8 |4 (2}(r) - 23(r)lix dr,
=GB, en) ilu— v{iﬁ + LC(0,ay, 5) Ny f(f t—7) P llai(r) — a3{(7)l,, 97
<Gy (B, ) llu—vll, + LCO, @1, 8) NoB lal(r) — 23(7),, -

Thesefore,

1Fu = Poll ooy < 2C1(8, 1) lu = vlly = My llu = vl

ided T > 0 is so small that

o’ (3.5)

wlt—‘

ﬁ
G(U:alyﬁ)LNz ﬁ

here M, = 2C, (4, 1) and N = max{1, No}.
Now, let 0 < o < ag < oy < B < 1. The solution z? (i = 1,2) can be
#2(0) = U6, To)ad (1) + J, Ut ) F (@),

fort € [Ty, 27 ). Let us show that

HF’U- - FUIIC([TD,ETB])XQQ) < MQ “'LL W ,Ul]ﬁ :

Suppose that u,v € Xg, «} = Fu and 2§ = Fv. Then
O, T )al(To ) = Ut To )b To oyt i, 10 T) (£ (1) = F@3 ()l d7
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LU, T0) oy 0 153 T0) — 23( L), +
No [7, 1U(,7) (F@HT)) = f(@3(7))la d7, No > 0

< Cylay, a2) My [ — vl g+ No f7, 11U (6 lg e 1F(@h(r)) = F(23(7))]ix dr
< Cylan, o) My llu—vlg+

NoC(0, 1, 8) [ (¢ = 7)1 F(3(r)) = F@3(r) x dr
< Cyla, ag) My u— vil;+LNg C(0, 0, 8) [y, (t—=7) |23 (7) — a3 (1), dr
< Colon, ag) My |u— vl +LNZ c(o o, B) [7, (=) |23 (r) — 23(7)llu, dT
% lw — vl 5+ LN?C(0,an, B) 52— maxTO.(KoIU l23(t) — 23(t) [l »
My =2CyM; and N = max{1, No}. Therefore,
| mT l23(t) ~ 30l

22 |1U« — |5+ LN? C(0, o, B) B maxy, cicor, |23 () = 23(8)
From(35): we get,

AL

M 1
B2, 23 (@) — 30|, € S llu—vlly+ 5 max (l2i(6) - 250,

[ Fu — F’U“c {70,270} Xas) — < Ma |lu ”U”,ca-
For step by step, the ¢th step, choosing 0 < o < ... <y <o < ... <

)

we have max_yym<<in |21(8) — 25(t)ll,, < Millu — vl 5 Alter finite n

steps, we have
Mt) — x(t < M, |lu — .
(RM}?T%QST 27 (t) — 25 (D)l < [l ’Uuﬁ
nn—1
1Fu = Follggomxa <1 D I = Evllogmim smxa +

i==1
| Fu— FUHC’{[(R—E)TO,T],XQ)

mn—1
Ny Z Fu = Flloamym,im) xa,) +

g1
| Fu— FU”C’([(n—l)Tg,T],XQ)

-1
Noy  Myllu—vlly+ Malu— vl

i=1

Kpllu— vl

A

[

VAN

n—1

where K 5= Np Z M, + M, O
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3.2 A Class of Integrodifferential Equations

In this section we wish to consider the questions of existence, uniqueness and

pegularity of mild solution for a system governed by an integrodifferential equation

with delay :

{ S0 L ABa(t) = fa() + [1 hit — s)g(a(s))ds , ¢ € [0,T]

2(t) = ¢(t) , t € [~a,0]. (3.6)

Evolution operator U{-,-) and step by step approach are successtully used

to this class of equation, under one of the following assumption:

(G1) g: X, - X is Lipschitz continuous, that is, there exists a constant L > 0
such that

lg(x) = gWilix < Ll -yl
for all z,y € X,.
(62) g:{0,T] x Xo — X is Holder continuous with respect to ¢ and Lipschitz

continuous with respect to z, that is, there exist constants C and 0 < ¢ < 1
such that

lg(tss 1) = gltn, 22)lix < C{Its — al’ + 12 = ol }

for t1,t; € [0,7] and x1, 22 € Xo.

‘Definition 3.2.1. A function z : [~a,T] — X, is a ( classical ] solution of (3.6)
iz e C(—a, T}, Xa) NCH(0, 7], X) with z(t) € D(A),t € [0,T] and (3.6) is
satisfied.

Definition 3.2.2. A function z € C([—a,T], Xa) is said to be a mild solution
10f (3.6) corresponding to ¢ € C([~a,0}, X,) if = satisfies the following integral

‘equation
U(t,0)0(0) + f3 Ut ) f(z(r))dr+
x(t) = fg Ui, ry(f7, hlr— s)g(m(s))ds) dr, t€[0,7] (3.7)
o(t) , t € [~a,0].
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s Regularity of mild solutions

em 3.2.3. Let {A(t) }ici0,n) satisfy the assumptions (A1)-(A3), U(t,s), 0 <
< T be the evolution system, f and g satisfy the assumptions (F1) and
_respectively. Then for every ¢ € C([~a,0], Xa),0{0) € X0 <a< <1
Gud hoe L2([0,a+T],R), p > 1, the evolution equation (3.6) is equivalent to (3.7).

Proof Let = be a solution of (3.6). Define V(t,7) = U(t,7)z(7) for 0 <
< o0. Since z(7) € D(A) and z € C*({(0, T}, X), V is differentiable and it is

avégi,fr) _ aUa(tT,r)x(T) LU T) 7 (7)

= U(t,7)A(T)z{7} +
U(t,7) (—A(r):c(r) s fe)+ [

-

' h(T — s)g(m(s))ds)

T

= Ut,7)f(z(r))+ UL, 1) / T — s)g(z{s))ds

—&

Ndr + /Oi Ult,r) (f; h{T — s)g(m(s))ds) dr

x(t) = Ult )+ fo 7) f(z(7))dr+

)( " hir - s)glz ())ds)dT, te[o,T].
Conversely, suppose that z € C([—e,T], X,) is a mild solution of (3.6).

or

Then we have

U(t,0)¢(0) + [y Ut ) f(a(r)dr+
2(t) = Jy Uttm) (J7,hlr = s)gla(s))ds) dr , ¢ € 0,7
o(t) , t € [~a,0]
Let us show that the right hand side of (3.6) is Holder continuous. First, to show
ze C([0,T], Xa),v € 0,8 — ). Let

1f(@(s)llx < Mand flglz{s))lx < Na.

Then, for t1,t2 € 0,T], 0 <1, < B—a,0< 7, <1-0,0 <7 <1- g, it follows
from Theorem 2.4.9 (7) and (i%) that
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[lz(tr) = 2(2)l,
(U (1, 0)9(0) — Ut Uy, 7)f(a(r)dr = f3* Ulta, 7) f(2(r))dr
v - (f m—s) ( ())ds)dT—
2 Ut 7) ([T, 00 = 9)gla(s))ds) dr|
< C‘l(a Byt =t le(0)ll 5 + Calo, ’Yz) |ty — to|" maxo<rer | f{z(T))l x +
S b = )glats)as]
<G (0, B,vy) [t — o ™ [lo(O)l 5 + NMiCoalar, 7o) [t — 22| ™ +
Colonva) [t — ta" maxoerer 7, (17 — 9)) l9((5)) 1 ds
Lo, B,71) [t =t [[p(O)ll 5 -+ N1Coler, 7o) By — to|™ +

N2Ca(er,73) [t — to|™ maxogrer [T, 1R(T — )| ds

o

03(05 ")/3) Itl - t2|73 maxo<r <

e, 7)1t =t lp(0)]l g + NiCalay yp) [t — 22| +
NoCs(ar,v3) [t — to|™ maxpcr<r fa+T | (8)] ds
< Ci(e, B7y) 1t — 2" (0 g+ NiCaler, v2) [y — to| "+ NoCa(0, v3) B |1 — £
= Mo, 8,7,) [tr — b+ My |ty — to] ™ A4 My |t — £
KM ([t~ " + [ty — to]™ + [ty — £27%) , M = max {My, Mo, My}
S Mt~ t|" vy = min{y, Va5 Y3} -
Therefore z € C([0,T], Xo)yy € [0, — @). Since f and g satisfy (F1) and {G1)
‘respectively, then
£(z(t) = Fle()lx < Inllz(t) — z(ta)|lo £ MLyt — ta]”
‘and
lg(z(ty)) — glz(t))llx < Lafla(t) — 2, € MLaft 1]

Hence, f(z(-)) and g(z(-)) are Holder continuous. Now, let
H(z(t)) = / " bt — s)g(a(s))ds,t € [0,7).

‘We now show that H(z(-)) is Holder continuous. It follows from Holder inequality
that

NH @(6)) - Hz()lx =
2, PO ) (s — 02))(=d01) — [0, W{6)g(a(tz — 8))(~a)|

f7 bty — s)g(z(s)) )ds — [ h{to — s)g(a(s) dsH
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= | fs " h(O)g((ts — 61))d0s — [57 h(02)g(w(t2 — 62))d:||
= 57" nOY9(a(ts - )80 - 77 hO)g(a(ts ~ 88|
= foa+t1 h(0)g(x(t1 — 0)) fa_i—tl h(BYg(z(ty — 8))dd ~

fa-{—tz h(6)g(z(ts — 0)) dQH (for &) < ia)

a-+i

< fTT RO g (ty — 8)) — glw(ts — 0))] x dO+
JoR2 1h(O)] llg(a(ts — 0)) x d6
< L[ o) 2t — 6) = w(ts — 0)I|,, d6 + No [ 1h(6)] 6

a+t1

a--L3 19 1/ a-ts
< LT )] M [ — ol d 4 N ([247 0) P ag) " (fert 19d0)

a+iy a+ity
< LM |ty —to|" [ |h(6)] d + Nohy |t — ta]"®
< LMRIty — to] " + Nohy |t — ] /*
< Ms (|«¢1 N L P t2|1/‘1) M = max{LM?z, Ngﬁp}

< Myt~ tof" 7 = min {7, 1}
Thus, the right hand side of (3.6) is Holder continuous. By Theorem 2.4.8, we
et for (0) € Xg,x € CH((0,7],X). [

‘Remark 3.2.4. As usual, Theorem 3.2.3 still holds if f and g satisfy the assump-
tions (F2) and (G2) respectively.

e Existence, Uniqueness and Continuous Dependence of Mild Solu-

tions

Theorem 3.2.5. Let {A{t) }iepo.7y satisfy the assumptions (A1)-(A3), U(t,s), 0 <
'$ <t < T be the evolution system, f and g satisfy the assumptions (F1) and (G1)
tespectively and h € LP{[0,a + T),R), p > 1. Then for every ¢ € C([~q,0], Xa)
‘and ¢(0) € X35,0 < a < f < 1, the evolution equation (3.6) has a unique mild
solution z € C{[—a,T], Xa).
Proof Given Tp with 0 < Ty < T, let O = {z € C([-a, Ty, Xo) @ 2{t) =
“o(t), —a < t < 0}. Then ©, is a closed subset of C([~a,Tp}, Xo). We define an
‘operator Gy on £ by
U(t,000(0) + [3 U(t, ) f(a}(r))dr+
(Grah)(t) = o) ( 7 hr — s)g(g;l(s))ds) dr, t€[0,Ty]
o(t) , t € [—a,0].



41

Ty show G maps ), into itself. Suppose that #! € €, and 41, ¢y € [0,75). Then
[Gha?)t) = (Grz) ta)l
< |U(t1,0)0(0) = Ulta, 0)0O)l, + | o Ultr, m) (2 (7))dr
[ by, 7) f(z (7 dT“ +Hf (t,7) (7, B h’r—s)g(ml(s))ds) dr —
2 U (ta, 7 (f h(r — 5)g(z'(s)) ds)dTH
< C’l(a',@, v1) [t = ta ™ [l (0) [ 5+ Caler, va) Jt1 — ta]™ maxocrer 1 (21 (7))l +

0

Gl 75) I = ta[® maogrcro || [, A7 = s)g(aH(s))ds|
0y <fB8-—0,0<y, <l —a,0 <y <1 —a0< 1t <Tp.
< Myt — ta| ™ + My ity — o] + My [t — £2]™
<M (|t = ta|™ + {81 — ta]™ + [t — t2|™) , M = max {M, My, Mz}
S Kty —tol" v = min {71, 79,73} -

Since 0 € C([—a,0], X,), then we get
(Grz") (1) = (Gazt)(Ea)||,, = llptr) — @(t2)lla

for t1,ty € [—a,0]. Therefore G5 maps §2; into itself.
Now, we claim that if Ty > 0 is small enough, then (71 is a contraction in

€. To prove this, suppose z!,x} € Q. Then
1(G1a})(®) — (Grad) (Bl
< [ U 7) (£33 (7)) = F@bm))llo dr+
U em) (2 hir = 9)g(eh()ds = [ hlr = $)g(al(s))ds )
< S lUE oo 1F@HT)) = F(2h (7)) dr+
MU o (J7, 1007 = 9) (9(21(5)) = glab(s))}x ds ) dr
< C0,0,7) fy(t =) [ F(@d (7)) = Flab(r))lly drt
C(0,@,7) fi(t = )7 (7, 107 = 5)] lgw3(s)) — gleh(s))llx ds) or

a<y<1,0< T <t < Ty

dr

&

< C(0,0,m) L fy(t = 1) a(r) = 2h(r) o dr+
O, 1) Lo 3t =77 (T, hlr = 8)l b (s) = ab(s)l|o ds ) dr
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< O(O, X, ’Y)L].SHPOSTSTO ”.‘I?% (T) - .I%(T’)!la f()t(t - ""N)Mryd—r + C(Oa ¢, W)L?.'
Jot =107 (J7, 107 = 9)]S0p_nzaes 0 (s) = b(s)ll, ds ) dr

1—
< C0, )L llzd — Bl oqomy ) 7= +

- Iy
C(O:Q,V)Lzh “T; 332”0( {—a,Tp],.Xa) ];--’y

T,
< M{0,a,7) “731 372“0 (|—a,To),Xa) 1o

1 re M{0,a,v) = CL, + CLoh. Hence,

Tl
|Gy — Gle%”O([—a,n],xa) < MO, 7)10 7y [ mé“C([wa,ToLXa)’

vé M is independent of Ty and thus G is a contraction mapping in £, provided

0'is so small that

M0, o, ) % < 1. {3.8)

he contraction mapping theorem, we can conclude that Gy has a unique fixed

tre € such that Gz = x, that is

[ U(,0)0(0) + [{U( tT)f (7))dr+
Js Ut 7y (Jouhlr = 9)g(a(s))ds) dr , t € [0,Ta]

refore the system (3.6) has a unique mild solution z € ;.
Now, define an operator Gs on s = {z € C{([—a,2T}, Xa)
(), —a < ¢ < To} by

cx(t) =

(Ut To)2"(To) + fi, Ut 7)1 (@(r))dr+
I U7) ([T 07 = $)g(a(s))ds ) dr , ¢ € [Ty, 2T0]

z'(t), t € [~a,To),

\

where

(U, 0)0(0) + [} Ut,7) f(z(r))dr+

2 = | fg’ Ult,7) (f:a h{r — s)g(a:l(s))ds) dr, t € [0,13]

olt) , t € |~a,0)].

\

By the same argument as before, one can show that G5 maps {23 into itself.
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Let us show that (3 is a contraction mapping in €25. Suppose that z?, 23 ¢
§2y. Then

1(Gaa?)(t) — (Gax3) (),
< Jo, 107 (F(@37)) = F(@3()) o dr+
Ji [0, (J7u e = 9)g(a3(s))ds = 7, hlr = $)g(z3(s))ds)
< S 10Dl o 1 £@H7) = F(@Bm)] drt
S 10l (7, Ublr = 5) (902 () — 9(3() 1 ds ) dr
< C(0,a,7) fp,(t = )N F@R) = Fb(r) ] drt
C0,0,7) g, (¢ = 77 (J7, 1047 = )] la(@(5)) — g(a3(s)) | ds) dr,

a<y<1,0< 7 <t < T}

dr

[43

< C0,,7) L1 [y, (t = )77 |23 (7) = B3(7)ll, dr+
G0, 7)La f1, 8 = )77 (J7, 157 = )| I3(5) = 23(s) 0 ds ) dr

< C(0, 0, 7)L1supr,crem, 103(r) — 331l g, (—7)7dr+ C(0, 0, ) Lo
St =) ([T 0l = 8)|80p_oc,c, 193 (5) — a3(5) | ds) dr

<0, ’Y)Lz“—o— 123 = 23l oo om0 ).30) +

C(O,oz,ﬂf)Lg/‘LT{’_;y 2% — =3l cgmomy xo)
= M(0, a.*y)%: Hﬂ?% & $2H(:(Ta 270 |, Xa)

where M(0, a,7y) = CL, + CLsh. Therefore,

1Gaa? — G < M?:% |2 - 22

“C([ -a2Tp |, Xa) = 2“0({_@27”01,,\*0) g

where M is independent of 7. From (3.8), we get Gy is a contraction mapping in
{25. By the contraction mapping theorem, we can conclude that G5 has a unique
fixed point 2% € £, such that Goz? = 22, that is

([ U(t,Ty)a( To+fT (t,7)f(x ())m

) - i U( (f 22(s ))ds) dr | Ty <t <27,

Define,
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Then, we get

([ ULt,0)0(0) + [y Ut 7) Fla(r))dr+

) - Jy Ut ) (J2,h(r = s)g(a(s))ds) dr . t € [0, 2]

o(t) , t € |~a,0]

\
Therefore, the system (3.6) has a unique mild solution = € €.
Repeating the above procedure in intervals [ —a, 3Ty), [ —a,4Tg), . . ., after

fnite n steps such that nTy > T, we can construct a unique mild solution z €
-0, T), Xa). O

Corollary 3.2.6. Under the same assumptions of Theorem 3.2.3, for every ¢ €
=a, 0], Xa), 0(0) € X5, 0 <a < f < land h € LP(0,a+T|,R), p > 1, the

syplution equation (3.6) has a unique classical solution.

Proof The assertion follows immediately from Theorem 3.2.5 and Theorem
3.2.3. O

Corollary 3.2.7. Let { A(t)}iejo,1) satisfy the assumptions (A1)-(A3), U(t,s), 0 <
5 < t < T be the evolution system, f and g satisfy the assumptions (F2)
and (G2), respectively and h € LP([0,a + T],R}, p > 1. Then for every ¢ €
[~a,0], Xa),(0) € X5,0 < < B < 1 the evolution equation:

{ ) L At)a(t) = fta(t) + 1, At — s)g(s,z(s))ds , t € [0,T)

3.9
z(t) = (t), t € [—a,0] (3.9)

has a unique classical solution.
Proof By a proof is similar to the proof of Theorem 3.2.5 one show that

(3.9) has a unique mild solution. By Theorem 3.2.3 and Remark 3.2.4, this solution

is'a classical solution. O

In the following we denote by D = UDg, Dg = {¢ € C([~a,0], X4),¢(0) €
Xﬁaﬁ € (a,1]}. For ¢ € D the evolution equation (3.6) is solvable. Hence, by

Céroila,ry 3.2.6 we can define a map
F:D - C(~a,T), Xa)

which assigns to every ¢ € C([~a,0], X,) the unique solution F(i) of (3.6). This

map is called the solution operator for the evolution equation (3.6).
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In the remainder of this section we study continuous dependence for the

solution operator F.

Theorem 3.2.8. Under the assumption of Theorem 3.2.5, there exists Kz < co
such that

| Foy — F%HC([—a,T},XQ) < Kg {H% - (PQHC([wa,G],Xu) + iy (0) — (:02(0)“ﬁ}

for ¢,y € Dp.

Proof Given any T > 0. Let 0 < o < oy < § < 1. We claim that if we
select Tp, 0 < Ty < T so small enough, then

| Foy — FLPQ“C([—&,TQ},XQ) < K {H% 1 tﬁzﬂc(g—a,oa,xa) + le2(0) - soz(O)llg}

for ¢;, vy € Dg. To prove this, suppose that ¢;, 0, € Dy and zl = Fp,, z} = Fop,.

The solution z} = Fi, (i = 1,2), can be written as

([ U(t,0)0,(0) + [ U, 7)f(@(r))dr+
Ut (I bir = s)g(et(s))ds) dr , ¢ € [0,T5]

w; (1), t € [—a,0].

\

By Theorem 2.4.9, there exists C(0, s, 8) such that

for —a

107 lloe, < C0,01,B)(E 7)™
< 7 <t < Tg. Consider,
l23(e) — 238, = IR o)) — (P Dy
< U 0) (92(0) — 2Ol = J§ IV(E7) (F(a (7)) = S, dr+
Ji o) (17t = 5) (gtabis) — o(zbs)) ) ds]| ar
< U010, 121(0) = 2ol llg+ f5 1Tt gy 1) = (b))
F N o, (J7 10 = )l llg(wi(s)) — g(ah(5))lx ds) dr
= U0l 12(0) = 20) g+ J5 1T Tl 0, 17 (1T)) = FlH ()
LU o (S 100 = 8) lg(ad(s) = glab(s)lx ds) dr
(7 Ihtr = )l l9(z1(s)) — g(wh(s)) | ds) dr

_i_f[) “U t T ||0a1

=h+L+Ii+ 1
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Thus,
|21(t) = 23|, S h+ L+ I+ 14 (3.10)

for 0 <t < T. We estimate each of the terms of (3.10) separately.
I < Gi(B, 1) 91 (0) — 22(0)llg
I < C(0,01,8) [yt = 7)1 (ad(r)) = F(25(7))lix dr
< C(0, a1, B)Ly [t = 7)7 P al(r) — 2{(m) 4 dr
= C(0,01,8)Ly fo(t — )P | A% A% (3 (1) = 23())llx dr
) = 23(T)lx dr, No > 0
= NoLiC(0, 00, 8) [ (¢ — 7)7° b (r) — 2b(r) |, dr
< NL,;C(0, al,ﬁ)%mwostsm i (t) — 23},
where N = max{1, Ny}.
Iy < C(0.01,8) fi(t— 77 (f2 107 = )l lg(ai(s)) — g(@h(s))ll ds) dr
< 00,01, )Lz J3t = 77 ([, Intr = )l k(6] — ch(s)lo ds) dr
= 0(0,01,8)La Jy 8 = 1) (J2, 1007 = )l Ior(s) = 0a(6) o ds) dr
< C(0, 00, A)Ls 16 = )7 (les = @alloqoa 47 Jo* W(O)] d0) dr
< RLsC(0, a, B f{}i t— 1) llor = alleqapx.) 47
< hLxC(0, 0, 8) 5 > o = Poll o aoxa)
hsLﬂmhhﬁL%t“Tﬁ(ﬁ%ﬁmﬂﬂ%ﬁ@—$HMM@%”
= L,C(0, 04, 8) f5(t —7)*

(
< NoLiC(0, 00, B) [yt — T) P |A™ (2} (7

(fs lh 7= s)f A A% (] (s) — 23(s))l|  ds) dT
< NoLoC{0, a1, 8) [t = 7)7° (Jg (7 = )l lizi(s) — 23(s)le, ds) dr,
Ny >0
< NoLoC(0, e, 8) fy (t—7) Pmaxogiary [ 21(t) — 25(t) o ga+T| (0)] dodr
< ANoLyC(0, 0, B) [yt = 7)Pmaxocicr, 21 () — 23(t) o, d7

~ 13
< h’NLQC(Ov o, ﬁ)%ﬂ?ma‘xoﬁtSTo Hmi(t) - :Ef]é(t) Hag
where N = max{1, Ny}. Combining (3.10) with these estimates it follows that
23 (t) — z3()lla, < Cl(ﬁ’ ar) [l1(0) — @20l +

NL,C(0, au, /3) max0<t<To i (t) - mé(t)“al +
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hLzC(O,Ozl,ﬁ)T Sl oy — %02“0([_(!'0}’)(&) +
RN LyC(0, ahﬁ)—ﬁ_—ﬁma}{ogsm 21 (t) ~ 23(t)]l,,

< Ch{(B, ) |91 (0) — (0}l 5 + M1 (0, ¢, B) o — Pall ooy T

13
M (0, o, ﬁ)Nz%maxogtho |23(t) — 23(t)la,

where M = {L; + ELQ)C’(O, aq, 3}, Therefore,

[ Fey — F@z”cqo,m,xal) < {H‘Pl - 902|l0([—a,o},xa} + 1 (0) 992(0)”,3} ,
(3.11)
provided Ty > 0 is so small that

MNQT <

i< (3.12)

wl»—‘

where H; = max {2M7,2C, } . Hence,

| Fepy — F‘Pz“c(g_a(ro],xa) < |[Fey - F‘PzHC(g_a,o],Xa) + [ Foy = F‘Pz“c([o,To],Xa)

< e = wallogag xay + No llFoy — Fooll como), o)

< e = palloqan,xe) T Nofa {”‘Pl — @2l o-a0)x)
+ 12(0) = 20)l5 |

< (1+NoH,) {H% = oll o a0, xa)

+ l:(0) — 20}
< Kl{l — @alleqaoyxa + lo2(0) = @2(@“{3}
where Ny > 0, Ky = 1 + NH; and N = max{l, No}.

Now, let 0 < oo < ap <y < 3 <1 and

HU(taTo)“ & 02(011,&2)-

¥y, 2

To show that

| Fipy — FSO2“C([—a,2TO],XR) < Ko {H% - {102I|C([wa,0],)(q) + i1 {0) — 902(0)“,5} :

for vy, € Dg. To prove this, suppose that ¢,, @, € Dg and 121’ e Fc,ol,m% € F,.

The solution z? = Fy,, (i = 1,2), can be written as

((U(t,Tp)z}(To) + f; ,7) f(@}(r))dr+
i, U (f h(r — 5)g(z3(s))ds) dr,
23 () = 4 Ty <t < 2T,
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Consider,
123(t) — 23(t)]l,,

<NU(ETo) (@ To) = 23(To ey +Jr, (U 7) (F2d() = FBT)),, dr

+ Iz, Ut (JL a0 = 9) (a(eh(s)) — glab(o)) ) ds]| dr
<N Tl 193(T0) = 24T, +
S, W07 (F@R() = F@3()D]l, dr+
iy [Tt 7) (S b7 = ) o(at(s)) = gla}(s)))) ds||_ dr+
I, [0 &) (f7, 10 = ) (9(e36)) = 9(ai() ) ds|_ar
=l I+ I+ 1
for Ty <t < 275. Thus,
|23(t) = 25(8)],, £ [+ Lo+ 15+ 1a. (3.13)

We estimate each of terms of (3.13) separately.
I < Calen, ag) |z { Ty ) — a5(To)ll,,
< Gyl ) {1 = #llog-annma) + 1#1(0) = 220}
I = fg, WU 7Y (@) = Fad (T, dr
= [} AT ABU (L, ) (F(23(7) = FE )ik dr
< No fp U@ ) (F3()) = F@3) ]y dr, No > 0
< No [ NU g o [1FHT)) = F@3(7)llx dr
< NoLiC(0, a1, 8 fopy (6 = )78 3 (1) = a3(7)]| a7
< NZL1C(0, 01, 8) [y, (8 = 7) 7% 2f(r) — 23(r)]l, a7

1
< N2L1C(0, o, ) maxgy <ucom, [[23(8) — 23(8) .,
where N = max{1, No}.

Iy = i [0t ) (S5 hir = 5) (9(e3(5)) - glab(s)))) ds
= i [amemes Attt 7) (S5 alr - ) (9(at(s)) = 9(a(s) as|| ar

< No Ji, [Tt m) (S22 bt = ) ((at(s) — g(a}(s))) ) ds

dr

o2

dr,Ng >0
1

(23

< No fo 10 7)., (S22 1007 = )] lg(@2(5)) — (a()x ds )



Consider,

l21(t) — 23(2) .,

< U6 To) (2H( To) — 25(T0 )iy + f, 1UCET) (F(23(7)) — f(a

+J [T (Jah(r =) (o(ab(s)) - glad()) ds||_ar
< U T0) o 123(T0) = (T ), +

S, W0 7) (F(@2(0) = Fa3 ()], drt

I |0 7) (J2% hlr = ) (o(ad(s)) — g(a}() ) ds|_ dr

dr

&2

I 76 (f7, 50 = 9) (@36 - 9(ad(s)))) ds
=L+l +1;+1,
for Ty < t < 275. Thus,

l|z3{t) — m%(t)”a2 < I+ T+ I3+ 14

We estimate each of terms of (3.13) separately.
Iy < Ch{an, o) 21 To) — 2H(T)l,
< Gofas, 02) K {1191 = Dalloqoag e + 190(0) = @2(0)l -
L =[5, |U7) (f@3(r)) = Fad (), dr
= [y, 1A @ A0 U (t, 7) (F(X(7)) = F@3(D))x dr
< Ny [, 1U(E7) (F@2(r)) = F(@())) e, 7, No > 0
< No S MU o 122(r)) = F(2E())]|x dr
< NoLyC(0, 04, 8) [, (= 7)77 a3 (r) = a3(7)l  d7
< NLiC(0, 0,8 f; t— 1) |2d(r) - 23(T),, dr

< N?LhC(0, ey, ﬁ) maXTo<t<2To lz}(t) — z3(t)]l,,
where N = max{1, No}.

Iy = [ [, 7) (J5 i = ) (9(a3(9)) = g(a3(s))) ) ds
= fT
< No Ji, ot m) (22w = 9) (9l (s)) = g(a3(s))) ) ds

dr

=344

ay

dr, Ny >

48

(T, 47

(3.13)

Ac2mer gl (¢ ) (f h(T — s) (g(zi(s)) — g(z%(s)))) ds”X dr

(s

< No Jiy 10 o (S5 107 = )1 l9(3(5)) = 9(@3 ()1 ds ) dr
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< NoLsC(0, 01, 8) fy, (¢ = 7)7 (f‘i‘iih v — )| £}(s) - 73(s) |, ds ) dr

= NoLaC(0, 01, 8) [, (¢ = 7 (S22 Ih(r = ) e} (s) —x%(s)i]ads) dr

< NoLaC(0, 1, 8) fy, (6 = 77 (2, n(r = )| lzk(s) — wh(s) o ds +
T 1B(r = 9)l 12 (s) = wh(s)llads ) dr

< NoLaC(0, 01, 8) f, (¢ = )72 (2, 187 = 9)l lia(s) = a(s) s +
2 |(r = )| No ll23(5) = 23(3)]l,, ds) dr

< NoLC{0, 04, 3) f;o(t —~7)7F (}; o1 = vl ogoao xa +

WNoEs {los — allog-agxa * 161(0) = 0201} ) dr

< NopL.C(0, alaﬁ)T ((1 + NoK1) hljg = Palic(aoixa T
RNo [lpr (0) - ( )ls)
= WNoL:C(0, 04, /3) 5 ((1 + NoK1) |1 — @all cgoaoxa +

NoK: [|91(0) = 92(0)])

—~ 21— 3
< ANL;C(0, 0, 8) (1 + NKy) =5 S (“% allo(aonx.y

lox(0) — 22(0) )
where N = max{1, No}.

L= Ji, [t (f7, bir = ) (9@ s)) = glad(s))) ds
“fT

< No fp U

dr

2

Ao gmU(t,7) ([ bl = 5) (9(at(s) = g(a}(s))) ) ds|  dr
o) (7 bl s} 9(a2(6) = 9(a3(s)))) ds|_dr, Mo > 0
< No i, UG lop (J7, Il = )l lg(a3(s)) = 9(@d(s))x ds ) dr

< NoLoC(0,1,8) fi, (¢ =7 ([, In(r = )l 1a3(s) = z3(s)ll ds) dr

< NZLsC(©,n, B) fi, (¢ =7 (Ji In(r = )l lig3(s) = wh(s) I, ds) dr

< hN*L,C(0, al,ﬁ)zl‘%gmaxi"oszsm 23 (8) — 23 ()4,
where N = max{1, Ny}. Combining (3.13) with these estimates it follows that

2 (t) — 23(8),

< Calon, ) Ky {H% - @ziic([_a,c}],xa) + [y (0) = SDQ(O)H,a} +
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1-4

N*L,C(0, a1,ﬁ)]—;°—ﬁm&XTu<t<zTo l22(t) — 23 (), +

hNL2C(0 1, ﬁ) (1 + NKi) {“% - (PQHC({WG.,O],XQ} + lv1 (0) — Wz(o)”,@}
AN2LyC(0, o, ﬁ)zf__——ﬁm&X%g:QTu le3(t) — 23 ()l

= My (ngal ~ Pallog-agxn + 192(0) = 2:0)ll5) +

M]\IQTG 7 MNAX7o< <27, 23 (t) — 250l 0y »
where M = (L1 + th)C(O, a;,ﬁ) and MQ CgKl + hNLgC (1 -+ NK})
From (3.12), we get

2
max (23 - 30, < Ma (e~ eallogoanxn + 1910) = 2:(0)l)
1 2

—E——é TOIS%%}Q{T{) Iia’i(t) - xz(t)“az )

Hence,
| £y — F"PQHC‘({TgQTg],XQz) < Hy {“‘Pl y ‘Pz“c([-a,o],x,,) +[lp (0) = ‘PQ(O)“ﬁ} ;
where Ho = 2M5. Therefore,
| Foy — F%HC(Ewa,ng],Xa) < #Fe - F(PZHC(EWQ,TQ],XQ) +
1 Fe1 ~ Fooliogm,om,xa)
< K {ller = @alleoaxn + 192(0) — @2l +
Nos {61 = Palloqoa, o + 101(0) = 22(0)ls}
= Ko {ller = Callogan i + 161(0) — 02(0)ls)

where Ko = K1 + NH, and N = max{1, No}.
For step by step, the ith step, choosing 0 € v < ... <1 < 05 < .0 <

8 < 1, we have

||$'; - :Egl'C([(i—l)To,iT{)],Xai) < H't {litpl - (fOQElC([—a,Oi,XQ) + ”‘pl({}) - WZ(O)Hﬁ}

and then

| Fo, — F@z”cu-a,mi,xa) < K {H‘P1 - (102“(:'([—(1,0],)(&) + ”501(0) - (102(0)“,6'} .

After finite n steps, we have

2t ~ ‘TEHC([(nwl)Ta, 7], a) <H {”"91 902”0([—0 0], X« + e (0) - @Z(O)Hﬁ} '



Therefore,

1 Foy — Foalloqear)xa)

where K5 = K1 + H.

A

a
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“F‘Pl - FQOZHC([—(:,(nml)To],Xa) +

[[Fo; — Fooll cin-170.71,Xa)

Ko {01~ #licqoagin + 19100 = 220l +
1 {lles ~ eallogaxn = 161(0) = 22O}

Kpg {“‘Pz — Yollogea 0, xa) T ll¢1(0) — 902(0)“,@} ;



Chapter 1V

Existence of Optimal Controls

4.1 Introduction

We recall some basic concepts and results that are necessary for the presentation
of the theories in this chapter.

Definition 4.1.1. Let X be a Banach space and X* be its dual. A sequence
{z,} C X is said to be weakly convergent to z € X if

lim flzn) = f(z),Vf e X"

T3 &

In this case z is called weak limit of the sequence and the notation z, — z or

r, — T are used.

Theorem 4.1.2. If {z,} is bounded sequence in the reflexive Banach space X,
then {z,} has a weakly convergent subsequence.

If, in addition, each weakly convergent subsequence of {z,} has the same
limit z, then 2, — z as n — 0.
(Zeidler 1I/A (1990), p. 258)

Definition 4.1.3. Let X, Y be Banach spaces. We define the following properties
for an operator B: X — Y .

(2) B is continuous iff z,, — = implies
Bz, — Bx as n — 0.
.- . . . w . .
(i1) B is strongly continuous iff , — z as n — oo implies

Ba, — Bx as n — 0.
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(1#i) B is compact iff B is continuous and maps bounded sets into relatively
cormpact sets.

Definition 4.1.4. Let X be Banach space.

(i) A subset C of X is convez if, whenever z,y € Citz + (1 —t)y € C for
all t € [0,1], ie. if the points x and y belong to C, then the segment jointing
them also belongs to C.

(i) A functional f: C — R on a convex set C is called convex iff

fltz + (1 —t)y) <tf{e)+ (1 —8)f(y)
forallt € [0,1] and z,y € C.

Definition 4.1.5. Let X be Banach space. The functional F: M C X — R is
called sequentially lower semicontinuous at the point x € M iff

F(z) <lim F(za)

n—oco

for each sequence {z,} in M with z, — z as n — oo. Furthermore, F' : M C
X — R is called sequentially lower semicontinuous iff it is sequentially lower

semicontinuous at each point of M.

Definition 4.1.6. Let X be Banach space. The functional F/: M C X — R is
called weakly sequentially lower semicontinuous on M iff for each z € M and each
sequence {z,} in M

Tn — T as n — oo implies F(z) < lim F(z,).
=0

Theorem 4.1.7. Suppose that the functional /' : M C X — R has the following
two properties :

(z) M is a nonempty bounded closed convex set in the reflexive Banach
space X.

(it) F is weakly sequentially lower semicontinuous on M.
Then F' has a minimum.
(Zeidler 11/B (1990}, p. 512)

Theorem 4.1.8. Let F : M C X — R be a functional on the convex closed subset
M of the Banach space X. Then F is weakly sequentially lower semicontinuous

if one of the following two conditons is satisfied :
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(¢) F' is continuous and convex.

(it) F is lower semicontinuous and convex.
(Zeidler II/B (1990), pp. 514-515)

Let (£2,7, 1) be a finite nonatomic measure space, X a separable Banach
space and E a separable reflexive Banach space whose dual we denote by E'. Let
[ Qx X xE — (—o00,00] be a given measurable function. The associated integral
functional [; : L2, X) x LM, E) — [—o0, o0} is defined by

Iz, v) = /Q (¢, 2(8), o(E)(dt).

We equip L'(Q, X) with the L*—norm and L'(§), F) with the weak topology
a (LM, E), L=(Q, EN) .

Theorem 4.1.9. The following three conditions:

I{t,-,-) is sequentially Ls.c. on X x F a.e.,

I(t,z,-) is convex on E for every z € X a.e.,
there exist M > 0 and ¢ € L'(Q, R} such that
It,z,v) = P{t) = M (z|| + llv]]) forallz € X,v € F ae.

are sufficient for sequential strong-weak lower semicontinuity of I; on LY, X} x
LY, E). Moreover they are also necessary, provided that I;(Z,7) < oo for some
Te LM X),7e LN, E).

( Balder, 1987, pp. 1399-1400 )

4.2 Controlled System

The dynamics of many physical system, such as visco elastic fluid or thermo-
dynamics are governed by integrodifferential equations on Banach space. The

abstract mathematical model for all systems can be described as follows :

{ B0 4 A@)e(t) = f(t,2() + [*, hlt — s)gls,2(s))ds , t € [0,
Qﬁ(i:) = @(t) , LE [_G‘&O]a

where A(t) is typically a linear unbounded operator in a suitable Banach space, f, g

and h are nonlinear operators. A corresponding control system may be described
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as.

‘{%%+A@m@yxﬂnﬂm+J;h@QO&ﬂ@ﬁ&+BmMQ,tEmT]
z(t) = p(t) , t € [—a,0],

(4.1)
where B is an operator and v is the control.

To work with the general model we shall consider a general Banach space X
to be the state space and E a separable reflexive Banach space where the controls
take their values from. For any Banach space Y and any interval [0,T], T <
00, L7([0,7],Y),1 < p < o0, will denote the Banach space of strongly measurable
Y-valued functions having p-th power summable norms. For any two Banach
spaces X and Y, £( XY} will denote the space of bounded linear operators from
X to Y. We shall introduce further notations in the sequel as required.

In this section, we consider the system (4.1) and discuss the questions of
existence and uniqueness of mild solutions. For the existence of solutions for the

controlled system (4.1), we shall introduce the following assumptions.

(A) X is a separable reflexive Banach space, A(t),0 < t < T satisfy the as-
sumptions (A1)-(A3) and U{¢,8),0 < s < ¢ < T is the evolution operator
corresponding to A(t).

(B1) F is a reflexive Banach space from which the controls u take the values,
B € L(0, T, £L(E. X)).

(H) he LY[0,a+T)],R).

Definition 4.2.1. For any u € LF([0,7], E),1 < p < oo, if there exists a T =
T(u) > 0 and z € C'([—a,T), X,) such that

[ U(t,0)0(0) + [ U, 7)B(ryu(r)dr + [ UE,7)f(r,2(7))dr

+ fot Ut,7) (f:a h(T — s)g(s, x(s))ds) dr,t€{0,7]

() = (4.2)

ot), —a<t<O,

then system (4.1) is called mildly solvable with respect to u on [~a,7] and z €
C([—a, T}, X,) is said to be a mild solution with respect to u on [—a, T

Theorem 4.2.2. Suppose (F2), (G2) ( in chapter III ), (A), (B1) and (H)
hold, ¢ € C([~a,0], Xa),9(0) € X, (e < B) and p > 72 Then for each u €
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LP([0, T}, E),1 < p < oo, the controlled system (4.1) has a unique mild solution
z e C(l—a,T), Xa).

Proof. We define an operator G on C([—a, T}, Xy4) by:
(U, 000(0) + JL Ut 7) flr, 2(r)dr + [y U 7) (J7, h(r = s)-

(G2)(t) = ¢ g{s, z(s)}ds) dr + [ U(t,7)B{r)u(r)dr,t € [0,T),

| o(t), te[—qa,0]

It is enough to show that fot U(t,7)B(r)u(7)dr is continuous. By assumption
(B1) it can be seen that B(-)u(-) € LP([0,T], X). Consider, for 0 <y <ty <T

182 Ulty, 7)B(r)u(r)dr — [ Ulty, 7)B(r)u(r)dr

-

o

U (ty, T)B(T)ulT)dT + f:f Ulty, 7)B(T)u(r)dT—
U, 7)B(ryu(r)dr||

24

< o NU 2, 7) = Ultn, 7)) Bl dr + [ U2, 7) Br)w(r)lq dr

= I1 + Ig.
Thus,

/ ? Ulty, 7)B(rYulr)dr — / MU Brurdr| <L 4L (43)
J0 0

We estimate each of the terms of (4.3) separately. Let 0 < v < f—a, 8 <7, <1
and o < v < 1.
I = Jy (Ut 7) = Ut 7)) B{ryu(r)llo d7

= [P U2, 1) = DU (81, 7) BITYu(r) o A7
< [E U ey ta) ~ o 1U (0, 7)B(T)ul{r)l g d7
< Cilen Bova) lta — ta ™ 7 U (1, D)l s 1B u()ll dr

< Ch(a, Bym) [t — 0] C2(0,8,72) Jo (b = 1) [ B(r)u(r)ll x d7

p1 1

< M|ty — 0" (foh(h _ T)“;zld’f‘) P ( CBEun)Ik d¢)5

p1
LIE Vit N
vzl (L - —
< My fta — 1™ (@ = ) = Myt — ;[



I = [ ||U(t2, 7)B(r)u(r)|, d7
< 2N (b2l o | B Yu(r) |l dr

< C3(0,0,73) J2 (b = 7) 7= | B(r)ulr) || x d7

< Cal0,a29) (Ji2a = ) Bhar) * (Bl )

p(i—73)—1

pgl—-v%)wl R‘;i
< M, ((P“‘l)(tZ""tl) = ) )

p(l—e)—

Hence Iy < Ms(to —t1)" 7 : provided |ty — ;| < 1. Combining (4.3) with these

estimates it follows that

fQU(tg,T)B(T)u(T)dT—/1U(t1,T)B(T)u(T)dT
0 0

< Malty — ™ + Ms(ts <t,) 25—

< Mlts —tq]”

o

where M = max{Ms, M5} and v = min{~y,, ?-Llip"ﬁl”—l}.
An argument analogous to the proof of Theorem 3.2.5 implies that (4.1)
has a unique mild solution z € C(|~a,T], Xs). W

Remark 4.2.3. It can be seen from the proof of the Theorem 4.2.2 that B :
I2([0, T}, EY — LP([0,T], X) is linear and bounded, the theorem is valid.

4.3 Existence of Optimal Controls

In this section, we wish to prove the existence of optimal controls of the controlled
system with time delay (4.1) for the Lagrange problem. By Theorem 4.2.2, the
controlled system (4.1) is mildly solvable on [—a, T] for every u € Uyq.

We consider the Lagrange problem:
(P) Find u’ € Uyq such that
J(u®) < J(u),Yu € Uy,

where
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Here z* denotes the mild solution of controlled system (4.1) corresponding to
the control v € Ugqg. {u,z*} is called an admissible state-control pair, or simply

admissible pair.

For the existence of solutions for problem (P), we shall introduce the fol-

lowing assumptions.

(U) E is a separable reflexive Banach space, Upg = LP([0,T], E),1 < p < oc.

(B2) B(t) € L(E, X)),t€[0,T) and B : L*{([0, T}, E) — L*([0, T}, X) linear and
bounded is given by

(Bu)(t) = B(Hyult), te€0,T)
and B is strongly continuous.

(L) 1:{0,T} x Xo x E — RU {oo} is Borel measurable satisfying the following

conditions:

(1) I(t,-,-) is sequentially lower semicontinuous on X, x E for almost all ¢ € {0, T
(2) I(t,z,") is convex on E for each € X, and almost all ¢ € [0,7].

(3) There exist b > 0,¢ > 0 and ¢ € L}([0,7],R) such that

it ,v) = 6(6) + bliall, +cllolls.

Theorem 4.3.1. Under the assumption (F2), (G2) ( in chapter IIT }, (A), (H),
(U), (B2), (L),and p > 2, the optimal control problem (P) has a solution, that

is, there exists an admissible state-control pair { ud, :c“o} such that
J(u0) = / Ity 2 (£), ()t < J(w), Y € Usa.
[0,7)

Proof. Note that our assumption (L) implies the assumptions of Balder
(Theorem 4.1.9). Hence by Balder’s result we conclude that

(u,z) — Lt 2%(t), u(t))dt
0,7}

is sequentially lower semicontinuous in the weak topology L#([0, T}, E) < L*([0,T], E)
and the strong topology of L*([0, T}, X).
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If inf {J(u),u € Upq} = 00, there is nothing to prove. So we assume
inf {J(u),u € Uy} = m < o0.
It follows from (L)-(3) that

J(u)

I

/ I,z (t), u(t))di, Vu € Uy
0,1

> ¢w&+/ mumMﬂ+/ ¢ ()| di
0,7 0,7 J0,7)

zZ -y

> =00,

Hence m > —v > —oo. Let {™} be a minimizing sequence of J, i.e., J(u") — m
as n — oo. By virtue of (L)-(3),
)z [ iy [ qe@ldire [ el
Jio) 0,7} (0,7
or
m 2 =y +cful ooz -

Therefore, {u"} is a bounded sequence in LP([0, T}, E). That s, {ju™|l, < M for all
n. Hence {u™} is contained in a bounded subset of L*([0, T, E). Since LP([0, T, E)
is a separable reflexive Banach space, it has a subsequence relabelled as {u"} and

there is an element 1©° € U,  such that

in L7([0,T), E). By strong continuity of B, we have
Bu™ % Bu® in LP([0,T), X).
Let {z"} C C([0,T], X.) denote the corresponding sequence of solutions of the
integral equation
(U, 0)0(0) + [ U T)Brw(r)dr + [L Ut 1) (7,2 (r))dr+

(1) = J: U(t, 1) (f:a h(r — s)g(s, x”(s))ds) dr,t €10, T

\ o(t),t € [—a,0l.
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Let 2° denote the solution corresponding to u°, that is,

(U )+ fg B(ryu(r)dr + [ U(t,7)f(r,2%(7))dr+
00 — fo 7 (f_ah (r = )9(5,2%(s))ds ) dr,t € [0,T]

o).t € [=a,0].

~

By assumptions {F2) and (G2) on f and g respectively, we have
| 2M(7)) = Fr, 2 ()| € I [e™(7 —2(7)]| ;0 <7 LT,
and

lg(s,2™(5)) — g(s,2°(s))|| ¢ < Lallz"(s) = 2°(s)], 3

Next, we shall show that

Ha’n - $O||C([~a.T1,Xu) — 0.

By using Holder's inequality, we have

|5 vt 7B (wr(r) = (e dr |

[A

/0 WUt oo [|B(7) () — (7)) | b
(0, , 7) /0 (t = 7)1 B() (wr) — u0(n) || dr

1A

s Ghan (/ot(t e/ | ld’f’> U |5() )| dr,—)%
< con (SR JLEReY
< ' p(l—=)—1 o((0.71.)

Le(j0,11,X)

where o <y < 1— %. Hence,

fo Ut 7B () — () dr

< M{0,0,7) Héun — B’

Lr{[0,T},X)

Since

Bu® % Bud in LP([0,T), E)
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and an argument analogous to the proof of Theorem 3.2.8 that there exists a

constant M* > 0, independent of n such that

& (&) — 2°(®)]|, < M* || Bu" — Bu®

L¥{[0,7],X)

for ¢ € [0,77]. Hence

5~ gy < s, [0 - SO, + g 270 - 00
< M* Eu”—é’up’ )
LP([0,T],X)

This implies that as n — oo,

Ti

B 0

- :EO”C{[-—CL,TLXQ}

e, 2% % 20 in C[—a, T, Xa).
By sequentially lower semicontinuous of J,

n

m < J(@* W) <lm J(=*",u") = m.

=00

This means that the optimal control problem (P) has a solution. g



Chapter V

Applications

5.1 Introduction

In the previous chapter we have applied the theory of evolution systems to ob-
tain existence and uniqueness results of solutions for semilinear integrodifferential
equations with delay and discussed the existence of optimal controls for a La-
grange problem. In this chapter we will apply these abstract results to partial
differential equations.

We turn now to the description of the main concrete Banach spaces that

will be used in the sequel. In doing so we will use the following notations; x =

(21,2,...,Z,) 18 & variable point in the n-dimensional Fucledean space R™. An
n-tuple of nonnegative integers o = (a3, 0, ..., %, ) 1s called a multi-index and
we define

T
ol = > o
i=1
and
x* =z - x% for = (1,22, ).

Denoting Dy = 3—‘2—: and D = (Dy, Ds,...,D,) we have

ger g% oo
Ctm <) az...Daﬂz e .
D= DPDy" D™ = grarpess e
Let Q be a fixed domain in R® with boundary 99 and closure 0. We will
usually assume that 9§ is smooth. This will mean that 9 is of the class C* for
some suitable k& > 1. Recall that 98 is of the class C* if for each point = € 9
there is a ball B with center at z such that 30 N B can be represented in the
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form x; = @(z,..., 23, %1 ..., 2,) for some 1 with o, k-times continuously
differentiable.

By C™(2) (C™ () we denote the set of all m—times continuously differ-
entiable real-valued functions in (ﬁ) . CIM{(§2) will denote the subspace of C™(2)
consisting of those functions which have compact support in 2.

For u € C™(Q2) and 1 < p < oo we define

ifp
el p = ( /Q > 1D°‘u!pdm) : (5.1)

lal<m

Denoting by 6’;”*(@) the subset of C™(€}) consisting of those functions u for which
lull,, < o0 we define W™P(Q) and W™ () to be the completion in the norm
of 5;;""(9) and Ci*(Q?) respectively.
It is well known that W™?(€) and Wy ?(§1) are Banach spaces and ob-
viously Wi™P(f2) € W™P(Q). For p = 2 we denote W™?*(Q}) = H™(1) and
Wi (9) = Hg ($).

The spaces W™P(Q)) defined above, consist of functions v € LP(£) whose

H'”m,p

derivatives D%u, in the sense of distributions, of order k < m are in LP(£2).

If © is a bounded domain then the Holder inequality implies

WmP(Q) c W™ (Q) for 1<r < p.

5.2 Semilinear Parabolic Equations

In the present section we will give some examples to demonstrate some results of
chapter II and IV.

We denote by 2 a bounded domain with smooth boundary 92 in R”. We
let

Alt,y, D)z = Z as{t,y) D%z

la]<2m
where (t,7) denotes a point of [0, T] x 2. We will make the following assumptions:

(H1) The operators A(t,y, D),t > 0, are uniformly strongly elliptic in (2, Le.,

there is a constant ¢ > 0 such that

(=1)"Re ( > aa(ty)e | Zclel™

|al=2m

for every y € Q,0 <t < T and £ € R™.



64

(H2) The coefficients a,(t,y) are smooth functions of the variables y €  for
every 0 < ¢ < T and satisty for some constants ¢; > 0and 0 < <1

laa(t,y) — auls, y)] < c1 |t — s}
for y e Q0,0 < s,t < T and o] < 2m.

Definition 5.2.1. Let A(t) = A(t,y, D) be a strongly elliptic operator of order
2m on a bounded domain 2 in R”, we associate a family of linear operators A, (¢},
0<t<T,in LP{Q), 1 < p < oo by setting

D(Ay(t)) = D = W*™(Q) N Wg™P(Q)
and
Ay (t)u = A(t,y, D)u for uwe D.

Lemma 5.2.2. Under the assumptions (H1) and (H2), there is a constant k > 0
such that the family of operators {Ay(t) + kl},c( 7 satisfies the conditions (A1)-
(A3) of chapter TIL.

Proof. (see Pazy, 1983. pp. 227-228.)

Example 5.2.3. Consider the initial value problem

[ AL, o]
.{Z%'Q. + ZiaISQmaa(t?y)D $(t, y) + k.’l’;(t, y) - fl(tayam(t: y))+
kx(t,y) + fia h{t — 8)gq1(s,y,z(s,1))ds, y € Q0 <t < T

(5.2
z(t,y) =@t y),y € Q,—a <t <0,

Dex(t,y) =0,y € 900 <i<T,0<|af €£m—1,

where 2 is a bounded domain with smooth boundary 8§ in R?, o € C2(|—a,0] x
), h e LY[0,T + a], R) and (H1) and (H2) are satisfied.
Let X = LP(Q2), define D = W2™#(Q) N WP(R2) and
Aplt)z = Z aq(t, y) D%z

jol<2m
for z € D. Then it follows from Lemma 5.2.2 that the family {A,(£) + kI},c
satisfies assumptions (A1)-(A3). For ¢ € [~q,0], we define a function ¢t > ()
by
w(t)(y) = et y),y € Q.
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Tt is well known that CS(Q) s X;. Since X; «» Xg forall 0 <a < 1, it follows
that ¢(t)(-) lies in all the spaces Dpg discussed in Chapter IIL.

Suppose f1 : [0,T] x & x R — R is continuous and there exist constants
N, and 0 <« < 1 such that

tfl(t:yag) - fl(Sayag)‘ S Nl {*t - SP‘ + lg _E‘} .
For z € LP(Q), define
Ft, o)) = filt,y, 2(y)) + kx(y)

To show that f satisfies (F2). By the assumption of f1, we have
Hf(thfﬁl) - f(tzawz)nx

Q
1

110,010} )~ il 22) = a0 dy) "

[

e

AN
o

IA

(

(

(/Q (N (Jts — tol” 4 |22 (y) — z2(y)|) + klz(y) — zo()})° dy)
(/ﬂ (N, -+ B (1 — tal o 21(y) — 220" dy)

s

7

< i n) ([ el o) - s i)

s Gk { (/Q it = ol dy>% o (/ﬂ |71 (y) — z2()) dy)i}

= (Ny+k) {Nlh ~ o] + (fﬂ |21 (y) — $2(y)|pdy>;}
< Coflts —ta|” + 71 — Tollx 1t

where Cy = max {(Ny + k) N, N1 + k} . Introducing fractional power spaces, we
have X, — X for a € (0,1] (such as a = 1. Hence there exists a constant Ch

such that

£ (tn,22) — @)l < G (1 =l + s = 231l

provided z,,x2 € Xo.
Similarly to fi, if welet g1 : [—a,T] X 7 xR — R be a continuous function

and satisfy :

lgl(taya‘g) - 91(5,%5)[ < NZ {lt - SP’ + *E "”EI} )
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for some Ny, then we can prove g that

lg(t, z1) — g(ta, 22)lix < Codlts = L] + |21 — 22|, } -

Hence, the initial value problem (5.2) can be written as

{ S AWa(e) = fa®) + [t - gl eleds te 0T o

z(t) = p(t) , t € [~a,0],

where A(t) = Ay(t) + kI. By Corollary 3.2.7, we have the system (5.3) has a

unique mild solution. Hence the problem (5.2) has a generalized solution z €
C([_G)T]a Lp(ﬂ)) U

Example 5.2.4. Consider the following problem

( Q%c%_y}- + Zla]£2ma’a(t’y)Da$(t!y) + k:ﬁ(t, y) = fl(t:yu l(tsy))—i_
ka(t,y) + [1 h(t = 8)g1(s,y, 2(s,v))ds+
fo Ky, Ou(t,O)de, yeQ,0<t < T,

z(t,y) =t y),y e Q—a <t L0,

L Dox(t,y) =0,y € 00,0 <t <T,0< ja} < m— 1,

where 0 is a bounded domain with smooth boundary 89 in R", ¢ € C3([—a,0] x
), w e LA[0,T) x ), h € LY[0,T +a],R) and K : © x § — R is continuous.
Let X = L2(Q), define D = W2™2(Q) n W*() and

A (t)x = Z aglt, y) D%z

laj<am

for € D. Then it follows from Lemma 5.2.2 that the family {Ap(t) + Kl }ycp
satisfy assumptions (A1)-(A3). Suppose fi, f, g1 and g are defined as in example
5.2.3. Hence f and ¢ satisfy

[ f{t, z) — flto, z)llx < N {t — ta]” +iler — 22|},

and
llg(ts, 21) — g(ta, )il < M {Jts —to|” + llz1 — 22l }

respectively. Let K (y,£) be a real continuous function from 2 x {2 — R such that

/ﬁfﬁ\K(y,E)\gd.ﬂdé < 0.
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Then the integral operator B defined by
Bt = [ K Oult, .t < 0,7)

is compact as an operator € £ (L*(Q), L*(T)) and strongly continuous ( see Re-
nardy and Rogers, 1993 pp. 262-263 ). Now problem (5.4) can be written as

&) L A2 (t) = Flt,z(@) + [5 Rt — s)gs, z(s))ds + B(E)u(t)
te[0,T] 55)
z(t) = (t) , t € [—q,0] 0O

As a direct consequence of Theorem 4.2.2, we have:

Theorem 5.2.5. Under the assumptions stated above, system (5.5) has a unique
mild solution. Hence the problem (5.4) has a generalized solution z € C([—a, T, L*(Q)).

Now, let the function [ : {0,T] x L3(2) x L*(2) — RU {oc}, defined by
e =a [ o) dy+b | )l dy

where a, b are positive. The cost functional is given by
T
J(u) = / I(t, z¥(t), u(t))dt
0
T . >
= [ [ Glstea+biuts ) dya
0

where z* denotes the mild solution of (5.5) corresponding to the control u. We

consider the Lagrange problem (P) :
(P) : Find «° € L2([0, 7], L*(2})) such that

J(u®) < J(w),Yu € L*([0,T), L*()).

Similarly to the discussion in Theorem 5.2.5, applying Theorem 4.2.1 we

have the following existence result for optimal control:

Theorem 5.2.6. Under assumptions as in Theorem 5.2.5, there exists a uw €
L3([0,T) x §2,R) such that

J(u®) < J(u),Vu € L*[0,T] x O, R).
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Proof. 1t is sufficient to show that [(-) satisfies assumption (L) (in chapter
IV, section 4.3). For convexity of [, first, we have to show that |z|” is convex. Let
Ii(z) = |z|* . Then, for ¢ € [0,1], we have

Litey + (1 —t)zy) = |tog + (1 — aa)
< 2o+ 261 = 1) |z lze + (1 — )2 2]

Since,

tlzaf? 4+ (1= ) lwol” = |22 = 2601 — t) |1 | fal* — (1 = £)? |zl

= t(1-1) (jul* + 2o foa| + |ef”)
= t(1—1t)(|z1] = |z2))°
> 0.

Hence, {i(tzy + (1 — thas) < tlag | 4+ (1 = 1) |za)?, |z is convex. It follows
that @ —— [, lz(y)|” dy is convex and continuous in L*(Q2). By Theorem 4.1.8,
z— [ lz{y)|* dy is weakly sequentially lower semicontinuous. Similarly, u —-
Iq lu(y)|® dy is weakly sequentially lower semicontinuous. Hence, | satisfies as-

sumption (L). By Theorem 4.3.1 the optimal control problem (P) has a solution.



Chapter VI

Conclusion

6.1 Thesis Summary

In this thesis, we have studied the existence of solutions for a class of semilinear
integrodifferential equations with delay in Banach spaces and sufficient conditions
for the existence of optimal controls for a Lagrange problem, in the case of the

generating operator being time dependent.
e Problems

We used the contraction mapping theorem, the theory of evolution operators and
developed a step by step approach to prove existence, uniqueness and continuous
dependence of mild solution for a class of semilinear integrodifferential equations
with delay and optimal control

First, we considered
{ ) 4 A)z(t) = f@lt) + [*, it - s)g(z(s))ds , L [0,T]
z(t) = o(t) , £ € {—a, 0l

Under the following assumptions :

(6.1)

(F1) f: X — X is Lipschitz continuous, that is, there exists a constant L > 0
such that

if(@) = fWilx < Lilz =yl
for all z,y € X,.
(F2) f:1[0,7) x X, — X is Holder continuous with respect to t and Lipschitz

continuous with respect to z, that is, there exist constants C and 0 < ¢ < 1
such that

Wflty ) — f(t'z,?ﬁ‘z)nx <C {lti - i"zlg + [l '([:2““}
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for t1,to € [0,T] and zy, 25 € X,

(G1) g: X, — X is Lipschitz continuous, that is, there exists a constant L > 0
such that

llg(z) =gl x < Lllz -yl

for all z,y € X,.

(G2) ¢:[0,T] x Xo — X is Holder continuous with respect to ¢ and Lipschitz
continuous with respect to z, that is, there exist constants C and 0 < ¢ < 1
such that

lott, 31) — glts, i < C {1 = al° + s — 2l

for t1,t2 € {0, 7] and 2y, 29 € X,.
This thesis has considered the following problems :
1. Regularity of mild solutions for system (6.1).

2. Regularity of mild solutions for system (6.1), in the case f,g: {0, T]x X —
X.

3. Existence, uniqueness and continuous dependence of mild solution for the
system (6.1). We also considered (6.1) in the case f,¢: [0,T] x X, — X.

The second set of questions investigated deals with the optimal control

problem
2
minimize / (¢, (L), u(t))dt
0

subject to u € U,q {admissible controls) and = € X, satisfying the controlled
system which is obtained from {6.1), that is,

D) o A@)z(t) = f(t, (@) + [*, h{t— 8)g(s,z(s))ds + Bt)u(t),0< ¢t < T
o(t) = o(t), —a<t<0,0¢€C([~a,0],Xa)
(6.2)

That is, to find u° € U,y such that
J(u®) < J(u),Vu € U,

where

J(w) = /w LGRS
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Here z* denotes the mild solution of controlled system (6.2) corresponding to the
control u € Uyy.

We imposed the following hypotheses

(A) X is a separable reflexive Banach space, A(t), 0 < t < T satisfy the assump-
tions (A1)-(A3) and U(t, s),0 < s <t < T is the corresponding evolution
operator.

(B1l) E is another reflexive Banach space from which the controls u take the
values, B € L=([0, T, L(E, X)).

(H) he LY[0,a+ T}, R).
(U) E is a separable reflexive Banach space, Uyq = LP{[0, T}, E), 1 < p < 0.
(B2) B(t) € L(E, X),t € [0,T),B: I?[0,T], E) — LP([0,7],X) given by
(Bu)(t) = B()u(t),t € [0,T]
and B is strongly continuous.

(L) 1:]0,7) x X, x E — R U {oc} is Borel measurable satisfying the following

conditions:

1. U, -, ) is sequentially lower semicontinuous on X, x E for almost all 7 €

2. I{t,z,-) is convex on F for each z € X, and almost all ¢ € [0, T'.

3. There exist b > 0,c > 0 and ¢ € L'([0, T, R) such that
((t,z,v) 2 6(t) + bl + c vl
This thesis has considered the following problems :

1. Existence and uniqueness of mild solutions for the control system (6.2)

2. Existence of optimal controls of the control system (6.2) for the Lagrange
problem (P) :
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(P) Find u® € U,y such that

J(0) < J(1), Y € Upa,

where

o Results

The main results of this thesis is summarized as follows :

(1) Under hypotheses (F1), (G1) and h € L*([0,a + T|,R),p > 1, for every
v € C([—a,0, Xu),9(0) € Xg,0 £ @ < § < 1 the evolution equation (6.1)
is equivalent to the integral equation

U, 0)9(0) + fo U(t, ) f ((r)dr+
a(t) = J Ut (7, hlr = $)g(a(s))ds) dr , te [0,T]
ot} , t € [—a,0.
( see Theorem 3.2.3 )

(2) If f and g satisfy (F2) and (G2) respectively then (1) still holds ( see Refark
3.2.4 ).

(3) Under the same assumptions of (1), for every ¢ € C(l—ea,0],X,),¢(0) €
X50<a<f<l,

- the evolution equation (6.1) has a unique mild solution ( see Theorem
3.2.5 ), and

- the evolution equation (6.1) has a unique classical solution ( see
Theorem 3.2.6 ).

(4) If f and g satisfy (F2) and (G2) respectively, then (3) still holds ( see Corol-
lary 3.2.7 ).

(5) Under the same assumptions of (1), there exists K < co such that
17 — Ferllogamxy < Ko {lor = @allog-anrn = 1e1(0) = 220l |
for ¢,y € Dg where
F:D=UDg— C([—a,T], Xa),

which assigns to every ¢ € C([—a,0], X,) the unique solution G{y) of (6.1)
and Dg = {p € C([~a,0], X}, 0(0) € X5, € (o, 1]} ( see Theorem 3.2.8 ).
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(6) Suppose (F2), (G2) (in chapter II1), (A), (B1) and (H) hold, ¢ € C([~a, 0],
Xe),0(0) € X, (e < ) and p > F—%'& Then for each u € U,q the controlled
system (6.2) has a unigue mild solution z € C((—a, T}, X,) ( see Theorem
4292).

(7) Under the assumptions (F2), (G2) ( in chapter III }, (A), (H), (U), (B2),
(L),and p > 17—, the optimal control problem (P) has a solution, that is,

there exists an admissible state-control pair {uo, a:”u} such that

Tl = /[0 XC 2 (), W0 ()t < J(u), Yu € Una,

( see Theorem 4.3.1 )

6.2 Applications

All results of the abstract framework in this thesis can be applié& to serni-
linear integrodifferential equation with delay. Two examples are presented fdr.
illustration. The first example is concerned about the existence of solutions for
system governed by 2m-order semilinear integrodifferential equations of parabolicﬁ
type with delay. The second, deals with the corresponding controlled system for
the Lagrange problem.

6.3 Discussion and Recommendations

We studied a class of semilinear integrodifferential equations with the gen-
erating operator being time dependent and obtained the existence and uniqueness
of mild solutions. At first, we only used the contraction mapping theory and
developed the step by step approach to prove the existence , uniqueness and
continuous dependence. We did not need any other estimate method, such as
Gronwall Lemma. Furthermore, we discussed the corresponding control system
for the Lagrange problem. By Balder’s results, again using step by step approach
we obtained existence result of optimal controls.

Based on the results and the approach of this thesis, we can continue to

discuss related problems, such as :

1. the existence of mild solutions for integrodifferential equations with operator

valued h,
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2. relaxed optimal control problems for integrodifferential equations

3. integrodifferential inclusion, and so on.

Furthermore, we can consider other application problems and computation algo-

rithm,
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Appendix A
Parabolic Equations

A partial differential equation (PDE) is an equation involving an unknown function
of two or more variables and certain of its partial derivatives.

Fix k£ > 1 and let U denote an open subset in R™,
Definition A-1. An expression of the form
F(D*u{z), D" 'u(z), ..., Du(z),u(z),z) =0,z € U (A1)
is called a k" —order partial differential equation, where
FR* xR % xR'xRxU—R

is given, and
v:U - R

is the unknown.

Definition A-2.
(i) The partial differential equation {A.1) is called linear if it has the form

Z: te(z) D% = f(z)
led<k
for given functions a, (jo| < k) and f. This linear PDE is homogeneous if f = @.
(#4) The PDE (A.1) is semilinear if it has the form
Z ao(z)D%u + ag (D" 'u, ..., Du,u, ) = 0.
jal=k
The linear partial differential operator

Z aalz) D" (A.2)

ol <k



—_—

is said to be elliptic at a point 2° € U if 3, 1 a0(2°)€% # 0 for any real ¢ #0
Suppose now that k& = 2m, m an integer. The operator (A.2) is said to be strongly’

elliptic at 20 if

(—1}™ Re (Zlatﬁmaa(mo)ﬁ"‘) >0 for any real £ # 0.

If the operator is elliptic ( strongly elliptic } at each point of U, then it is said to
be elliptic ( strongly elliptic ) in U.
Let € be a bounded domain in R™ with smooth boundary 0. Consider

the differential operators

Lu = % + Alt,z, D)u = u + aq(t, 2} D%

ot
|| <2m

where the coefficients a,(t, z) are sufficiently smooth function of the variables x
in ) for every 0 <t < T,

Definition A-3. L is said to be parabolic at a point (2,19 if A(t, 2, D) is
strongly elliptic at 2°. L is parabolic on a set A if L is parabolic at each point of
A



Appendix B

Banach Space Valued Functions

A Banach space setting of evolution equations requires taking the derivative in the
Banach space. Hence, integration of Banach space valued function is an important

tool in this setting. Throughout this section, we let X be a Banach space.

Definition B-1. Let I be an interval in R, let (X, ||.||) be a (real) Banach space:
and let w: J — X (so that u(t) € X for all t € I). u is strongly continivous at
to € I if, given € > 0 there exists a § > 0,8 = §(¢, ty), such that

[(t) = ulto)llx <&

whenever t € I and |t —tg| < 8. u is strongly continuous on: I'if it is strongly:
continuous at to for every tq € I. The set of all functions w b= X ‘which are

strongly continuous on I will be denoted by C(I, X).

Remark B-2. (i) When % is an endpoint of I, the definition deals with one-
sided continuity. For example, when [ = [a, b}, we have continuity om the right at
o and on the left at b. When t; is not an endpoint of I, the definition deals with
two-sided continuity at .

(1) The word “strongly” is used to emphasize the difference between this
type of continuity and weak continuity; see [Li ,X. and Yong, J.] p. 47. However,

we shall omit “strongly” when there is no possibility of confusion.

Definition B-3. Let u: I — X. u is (strongly) wniformly continuous on I if,
given £ > 0 there exists a § > 0,8 = §{g), such that for any to and £ € X with
It — tq] < 6,

fu(t) —ulio)lx <&
Definition B-4. Let J be an interval in B, let (X, ||.||) be a (real) Banach space

and let w : [ — X. We say that u is {strongly) differenticble ot ¢ € I if there exists
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an element v € X such that

u(c+ h) — u(e)
h

ie., given € > 0, a positive 6 = §(e, ¢) can be found such that

u(e+ h) — u(c}
h

—vash—0,

- < g

X

whenever ¢+ h € I and 0 < |h| < é. The (necessarily unique) element v is
called the (strong) derivative of u at ¢ and is denoted by «/(c) or by [£4] _ . uis
(strongly) differentiable on 1if u is (strongly) differentiable at ¢ for all ¢ € I.
The set of all functions u @ I — X which are (strongly) éontintousty:
differentiable on I will be denoted by C(I, X). Hence each u € C*(I, X) hasa -
strong derivative u', which is strongly continuous on /.

We are also interested in measurable vector-valued: furictions.  Let X

a Banach space and I a finite Lebesgue measurable subset. of R. Liet f be a
vector-valued function defined on I with value f(t) € X.

Definition B-5. (i) The function f: I — X is called a simple function if there

exist finite many measurable set E; € I, mutually disjoint, and'z; €.X such that

Zaqxﬁ Yt el

where ;x5 is the characteristic function on E; : -
1,t € F;

Xg, (£) =
" { 0,t¢ E,.

(11) The function f: ] — X is said to be strongly measurable if there exists

a sequence of simple functions f, : I — X such that
hm Lfn(t) — FB)llx =0, aetel (B.1)

Strongly measurable vector-valued functions have properties analogous to
those of measurable scalar-valued functions. If f is the strong limit a.e. of a
sequence { f,} of strongly measurable functions, then f is strongly measurable.

Now, for any simple function f(-) =Y. @ixgz(-), we define its Bochner
i=1

/E F(t)dt :i zem(E N Ey)

integral by
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for any measurable set E, m(E N F;) is the Lebesgue measure of the set £ N F,.

Definition B-6. Let f : I — X be strongly measurable. We say that f is
Bochner integral if there exists a sequence of simple functions f, : I — X such
that (B.1) holds and the sequence [} f(t)dt is strongly convergent in X. In this
case, we define the Bochner integrable of f by

ff(t)dt =lm | fu(t)dt.
I I

nN—oo

Thus, by definition, the Bochner integral of f over any measurable set
EcClis

f F@)dt =lm [ fo(t)dt.

n—oo [
It can be shown that the integral is well defined in that it is'independent -
of the choice of the sequence {f,}. A necessary and sufficient conditions that f

be Bochner integrable is that f is strongly measurable and-

/1r 17l dt < oo,

We denote the set of all Bochner integrable functions on' to X by B, X).
If X is the field of scalars, the Bochner integral reduces to the tusual Lebesgue.
integral. B(I,X) becomes a linear vector space under the natural definition of’
addition and scalar multiplication.

The integral B [, f(t)dt for E any measurable set defines a linear trans-
formation from B(I, X) into X. Moreover, the following property holds for the
Bochner integral :

Theorem B-7. If f € B(I,X), then

H [Ef@)de < / |£(®)llydi, B measurable.

The Bochner integral possesses almost the same properties as the Lebesgue
integral. We omit the exact statement here.
Definition B-8. Let O be a nonempty measurable set in RY, N > 1. For X
a Banach space, we denote by L”(€, X) the space of ( equivalence classes of )

strongly measurable function f: £ — X such that

[Ure @< orisp<o
0
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This space is a Banach space when endowed with the norm

Il = ([ 17015 dt) ’

Moreover, LP(2, X) is separable and C§°(£2, X), the space of infinitely differen-
tiable function with compact support is dense in LP(2, X) for 1 < p < oo.

Theorem B-9. {Holder Inequality) Let 1 < p,¢ < oo be given with ;1) —i—é =1
and let f € LP(Q, X} and g € L2, X). Then

[ st s ([ i) v (f ng(wu%fdt)w

where all the integrals exist.
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