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ดวน คอง เลอ : การสร้างคืนและแบบจ าลองตบั 3 มิติเพื่อการจ าลองการผา่ตดั (3-D LIVER 
RECONSTRUCTION AND MODELING FOR SURGICAL SIMULATION) อาจารย์ท่ี
ปรึกษา : ผูช่้วยศาสตราจารย ์ดร. ปรเมศวร์ ห่อแกว้, 206 หนา้. 

ในช่วงไม่ก่ีทศวรรษท่ีผ่านมาไดพ้บการใช้ภาพทางการแพทยข์องตบัอย่างกวา้งขวางเพื่อ
ประโยชน์ในการวินิจฉยั และการบ าบดัรักษา โดยเฉพาะอยา่งยิง่ในการผา่ตดัตบั แมภ้าพถ่ายของตบั
ท่ีบนัทึกโดยเคร่ืองกวาดภาพจะประกอบดว้ยข่าวสารท่ีส าคญั และสอดคลอ้งกบักายวิภาค ทวา่ความ
ซบัซอ้นเชิงโครงสร้างรวมถึงความต่างชดัระหวา่งตบัและเน้ือเยื่อรอบขา้งท่ีต ่า ก่อเกิดความทา้ทายท่ี
ส าคญัหลายประการท่ีจ าเป็นตอ้งเผชิญ ประการแรก เพื่อประโยชน์ต่อการน าเสนอจ าเป็นตอ้งระบุ 
บริเวณของตบัให้เด่นชดัดว้ยเทคนิคการสะกดัภาพ หลงัจากนั้นจึงสร้างแบบจ าลอง 3 มิติของตบั
จากบริเวณท่ีสะกัดเพื่อสร้างจินตทศัน์ของอวยัวะ เป็นท่ีทราบกันว่าความเขา้ใจท่ีลึกซ้ึงของกาย
วิภาค และโครงสร้างของตบัก่อนการผ่าตดัคร้ังส าคญั จดัเป็นขอ้ก าหนดเบ้ืองตน้ท่ีส าคญัประการ
หน่ึงเพื่อลดความเส่ียง และสร้างความมั่นใจว่าผูป่้วยจะรอดชีวิต โดยเฉพาะอย่างยิ่งการระบุ
ต าแหน่งและอณาบริเวณของช้ินส่วนซ่ึงมีหน้าท่ีอิสระอย่างถูกตอ้ง มีส่วนช่วยศลัยแพทยใ์นการ
ผา่ตดับริเวณท่ีก าหนดไดโ้ดยไม่ก่อใหเ้กิดความเสียหายต่อบริเวณอ่ืน ๆ อีกทั้งยงัลดการสูญเสียเลือด 
ส าหรับการผ่าตดัปลูกถ่ายตบัจากผูบ้ริจาคท่ียงัมีชีวิต การวดัปริมาตรของช้ินส่วนปลูกถ่ายท่ีแม่นย  า
มีความส าคญัยิ่งยวดต่อการหลีกเล่ียงความไม่สมบูรณ์เพียงพอของตบัภายหลงัการผ่าตดั ในทาง
ปฏิบติัจินตทศัน์ 3 มิติมีบทบาทช่วยสนับสนุนการแบ่งปันข่าวสารของตบั และอวยัวะแวดลอ้ม 
กระบวนการดังกล่าวมุ่งเน้นเพื่อลดความเข้าใจท่ีไม่ตรงกันระหว่างสมาชิกของกลุ่มศัลแพทย์ 
นอกจากน้ีจินตทศัน์ยงัมีประโยชน์ต่อแพทยฝึ์กหัด และศลัยแพทยใ์นการฝึกปฏิบตัิเทคโนโลยี
ใหม่ ๆ 

ดวัยแรงบนัดาลใจจากเหตุผลดงักล่าว วิทยานิพนธ์น้ีจึงเสนอ วิธีการสร้างคืนตบั 3 มิติโดย
อาศยัภาพถ่ายทางการแพทย ์ในการน้ีจกัเร่ิมจากการสะกดัแบบจ าลองกายวิภาค 3 มิติของตบั และ
หลอดเลือดออกจากภาพเชิงปริมาตร โดยใช้กลยุทธ์การสะกดัภาพ หลงัจากนั้นช้ินส่วนท่ีส าคญั
จ านวน 8 ช้ินจะถูกแบ่งจ าแนกออกจากตบัตามนิยามทางกายวิภาคซ่ึงอา้งอิงกบัโครงข่ายหลอดเลือด 
ถดัมาจึงสร้างจินตทศัน์ 3 มิติ และจ าลองสถานการณ์เฉพาะผูป่้วยเพื่อสนับสนุนการวางแผนก่อน
การผ่าตดั และการบริหารจดัการหลงัการผ่าตดั สุดทา้ยการหาค่าตวัแปรของโครงข่าย และการ
แปลงท่ีคลา้ยคลึงจะใชใ้นการช่วยประมาณปริมาตรของช้ินส่วนปลูกถ่าย ซ่ึงพิจารณาจากความเขา้
กนัไดข้องช้ินส่วนในการปลูกถ่าย ผูวิ้จยัตรวจสอบความถูกตอ้งของวิธีการท่ีน าเสนอกบัชุดขอ้มูล
สาธารณะช่ือว่า MICCAI SLIVER 2007 และด าเนินการทดลองการสะกดัแยกตบั เปรียบเทียบ
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LIVER/RECONSTRUCTION/MODELING/SURGICAL SIMULATION 

Over recent decades, medical image of the liver has been widely used in 

diagnostics and treatment, particularly in hepatectomy. Although the liver images 

recorded by scanners provide useful information relevant to the anatomy, the structural 

complexity as well as the low contrast between liver and surrounding tissues lead to 

major challenges needed to be solved. Firstly, to have a better presentation, the 

segmentation is applied to locate and highlight the liver. Then, the 3 -D liver model 

generated from segmented results is used for visualization. It has been known that 

deeper understanding of the anatomy of liver and its structure prior a major surgery is 

considered as one of most important prerequisites to reduce the risks and ensure the 

survival of patients. Particularly, the correct localization of functionally independent 

segments assists surgeons to operate on a specified region without causing damages to 

other regions as well as reducing the blood losing. In living donor liver transplantation, 

accurate measurement of graft volumetry (GV) of liver in donor is critical to avoid the 

liver insufficiency in post-operation. In real practices, the 3 -D visualization enables 

information sharing of liver and its peripherals. It aims to avoid the misunderstanding 

between members of surgical team. The visualization is also useful for trainee and 

surgeons in practicing new technologies. 
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Motivated by these reasons, this thesis proposes a method for 3D liver

reconstruction by using medical image. To this end, a 3D anatomical model of a liver

and vessels were first extracted from a volumetric image, using image segmentation

strategies. Subsequently, eight segments on the extracted liver were separated based on

anatomical definition and vascular network. Next, 3D visualization and subject-specific

surgical simulation were performed to support both pre-operative planning and post-

operative administration. Finally, mesh parameterization combined similarity

transformation assists to estimate the GV, which was used to assess the compatibility

of the graft to be implanted. The proposed method was evaluated on a public datasets

MICCAI SLIVER 2007. The experimental results on segmentation of liver were

benchmarked against the state-of-the-art methods, based on major clinically relevant

metrics. Both visual and numerical assessments reported herein indicated that the

proposed system could improve the accuracy and reliability of segmentation.

Simultaneously, the accurate localization of functional segments of liver implied that

the proposed method could faithfully label all Couinaud's segments, especially the

caudate, with lesser degree of user interaction. The preliminary findings suggested that

it canbe integrated into augmented surgical planning and intervention.
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INTRODUCTION 

 

This chapter presents an overview of the importance of the segmentation and 

modeling of the liver in the abdominal region in visualization, monitoring, and simula-

tion applications. Section 1. 1 introduces the anatomy and functions of liver, then the 

important of problem of the segmentation in surgical plaining. The motivation, pur-

poses and scope of this work are given in sections 1. 2, 1. 3 and 1. 4 . The outline of the 

thesis is presented in section 1. 5.
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1. 1 Liver segmentation in surgical planning 

Over recent decades, cancer has been known as one of leading causes of death 

worldwide. It was reported in 2018 (Bray et al., 2018; WHO, 2018) that, there were 

18.1 million new cancer cases and 9.6 million cancer deaths in 2018. In a recent report, 

these number were updated, with 19.3 million and 10.0 million, respectively (Sung et 

al., 2021). The global burden is estimated to grow to 28.4 million by 2040 (Society, 

2018). Among different cancer types, the rate of new liver cancer case and liver cancer 

death are 841,080 (4.7%), and 781,631 (8.2%) in 2018; and 905,667 (4.7%), and 

830,180 (8.3%) in 2020, respectively (shown in Figure 1.1).  

 

Figure 1.1 The incidence rate and mortality rate of cancer in 2020. 
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Thanks to the developments of information technology and advancements in 

modern medicine, they allow the doctor and radiologist can visualize the internal organs 

the individual body in two dimensions (2-D) or three dimensions (3-D) modality by 

using medical acquirements, such as CT, MRI, Ultrasound.  Therefore, the reconstruc-

tion and extracting the information of 2-D/3-D tissues play a vital role in the diagnosis, 

monitoring and surgery planning. However, organs in the human body, including heart, 

liver, spleen, kidney, stomach, gallbladder, inferior vena cava, artery, vein, and other 

organs are of complex 3-D structures (as shown in Figure 1.2). Additionally, their 

shape, size, weight, and location are different among individuals that will be changed 

or deformed under the impact of the disease. The segmenting and 3-D modeling of these 

objects, therefore, are the important pre-processing stages enable a surgeon makes a 

decision if a patient should be applied a surgery or not. Besides, understanding of the 

volume, the anatomy and vessel structure, the segments of an organ using the modeling 

of this organ on a computer or virtual reality enable doctors to predict the successful 

surgical intervention and the ability of the regeneration of tissues operated before they 

perform a major surgery on the specified patients.  
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Figure 1.2 The anatomy of abdominal organs under 3-D model 

1. 1. 1  Liver: anatomy and function 

 In a human abdomen, the liver is one of the largest organs located at the 

right hand of the upper body, near to the heart, and lung. The liver plays an important 

role in our body and functions as a filter to prevent the release of toxin into the blood. 

The weight of a liver varies in the gender and age of people, with an average of about 

1.44 to 1.66 kg (de la Grandmaison, Clairand, & Durigon, 2001). The ability of the 

regeneration of liver after a partial resection surgery is one of special characteristics 

this tissue. The volume of liver rapidly increases within 7 first days after major surgery. 

After 3 to 12 months, the process of regenerating will be completed (M. F. Chen, 

Hwang, & Hung, 1991; Fausto & Riehle, 2005). Because of the special properties, the 

liver cannot be substituted by any artificial machine (László, 2014). Moreover, unlike 

other organs in a human body, the liver is combined from the parenchyma and a system 
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of the vessels. The analysis of the structural liver is mainly based on two aspects, which 

are morphological and functional anatomy. In terms of the morphological anatomy, the 

liver comprises of two independent lobes:  left lobe and right lobe. Unlike the previous 

one, functional anatomy partitions the liver into functionally independent segments 

based on the internal vessel which are of obvious importance in hepatic surgery (Robin 

& Eduard, 2015). The process of the hepatic vascular (hepatic artery, hepatic vein, por-

tal vein) is described as follow: the hepatic artery supplies the oxygenated blood flow 

to the liver; the hepatic portal vein carries the blood which contains the nutrients and 

toxins from all parts of  digestive tract (gastrointestinal tract, gallbladder, pancreas, and 

spleen) to the liver; the de-oxygenated blood drains hepatic veins and inferior vena cava 

before coming in the right atrium (Corness, McHugh, Roebuck, & Taylor, 2006). Based 

on the location of hepatic vein and hepatic portal vein, Couinaud, in his seminar in 1954, 

classified the liver into eight independent functional segments, called by Couinnaud’s 

classification. Moreover, each segment can be resected and implanted and able to re-

cover after resection and the surgery on them own and do not affect other segments 

(Gong & Chen, 2011). The segments of the liver are shown in Figure 1.3.  

 

Figure 1.3 The Couinaud classification 
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 As mentioned earlier, the liver’s vital function is to filter the blood flow 

from the digestive tract before passing it back to the rest of the body. As a consequence, 

the liver can be subject to by several different diseases, including Fascioliasis, Cirrho-

sis, Hepatitis, Alcoholic liver disease, e.g.(Newman, 2018). Cancer is a group of vari-

ous disease relevant to the unhanded growing, increasing in size and number of abnor-

mal cells. There are several therapies applied for treating liver cancer, such as interven-

tional radiology, chemotherapy, radiation therapy, and the combination of these tech-

niques (László, 2014; Reitinger, Bornik, Beichel, & Schmalstieg, 2006). Among these 

methods, surgical intervention to remove the tumor is an efficient solution in preventing 

the recurrence (the re-growth of cancer after hepatectomy) of the tumor and extending 

the life of patients with primary and secondary stage(Martel et al., 2015). 

1. 1. 2  Segmentation and simulation 

 The liver segmentation is defined as the delineating the liver from other 

tissues typically in CT or MRI image. The segmentation of CT/MRI image is com-

monly presented by closed contours with one slide is the liver region of interest and 

other slide is the background. The segmented liver contains not only the parenchyma, 

but also the vascular system and tumor if it exists. This process is the required step in 

the 3-D liver reconstruction, 3-D modeling, and simulation task. Numerous benefits of 

the reconstruction of accurate 3-D model in medicine has been discussed in (Lamade et 

al., 2000; Nakayama et al., 2017; Yeo et al., 2018). Using the 3-D liver model recon-

structed from segmented liver, the surgeons can accurately calculate the total liver vo-

lumetry (TLV), future liver remnant volume (FLRV). Regarding anatomy, 3-D liver 

model is beneficial in determining independent segments, as well as in recognizing the 

location of vessel of the liver. For tumor and vessel detection, segmentation of liver is 



7 

 

one of the first and most significant requirements. In surgical planning, using of 3-D 

liver model enables to efficiently compute the positional relationship between the vas-

cular branch and tumor. As reported by (Lamade et al., 2000), in comparison with 2-

D CT image, 3-D model reconstruction of the liver increased the precision in tumor 

localization and the target area of the resection proposal were improved up to 37% and 

31 %, respectively. Besides, it substantially contributed to reducing amount of time 

required to plan the surgery. Nowadays, 3-D simulation has become more popularly for 

training and supporting for clinicians in practicing new techniques (Agha & Fowler, 

2015). 

 There are several different factors that influence the post-operative liver 

function, such as the minimal volume of the future liver remnant, patient’s age, diabetes, 

chemotherapy-associated injury, operative blood loss and cholestasis. Among these 

factors, the risk of insufficient volume of liver is the most popular reason leads to post-

operative liver failure. It is a prominent cause of death after major hepatic surgery in 

patients (Loffroy et al., 2015). In surgical intervention, the lower of risks in surgery, the 

higher the survival rate. To remove the tumor from the liver and guarantee the regener-

ation capacity, for example, the median of FLRV mass after a resection surgery is 25% 

(range from 15% to 40%) of TLV. This rate increases up to 50% (range from 25% to 

90%) in cirrhotic, depending on the stage of the disease and the patient age. For trans-

plant surgery, the minimal FLRV for living donor liver transplantation (LDLT) is 40% 

(30-50%), whereas the accepted graft body weight ratio was 0.8-1.0% (Ben-Haim et al., 

2001) (or 0.6-1.2 (S. Breitenstein, C. Apestegui, H. Petrowsky, & P. A. Clavien, 2009; 

Clavien et al., 2010; Clavien, Petrowsky, DeOliveira, & Graf, 2007; Gotra et al., 2017; 

Ribero et al., 2007)). Most surgeons concurred that, the major hepatic resections on the 
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livers whose volumetry is below these thresholds may potentially put patients to liver 

insufficiency or small/large for size syndrome. In some special case, a novel pre-oper-

ative strategy referred as the portal vein embolization (PVE), is applied on patients be-

fore a major surgery. This procedure aims to reduce or block blood flow to abnormal 

regions and increases the size of the remnant liver volume (Clavien et al., 2010; May 

& Madoff, 2012). This process is generally re-evaluated after 3 to 4 weeks to assess the 

growth of the liver volume and hypertrophy (E. K. Abdalla et al., 2006). If a volumetry 

of the liver after applied PVE is above thresholds, patient is eligible to an actual surgery, 

otherwise, another therapy is considered.  

 Due to the requirements of the minimal liver remnant previously men-

tioned, the accurate measuring of the liver volume has substantially contributed to a 

successful surgery. There are several approaches have been proposed for calculating 

the TLV and FLRV. Based on the body surface area of patient, Vauthey et al (Vauthey 

et al., 2000) proposed a method for estimating the TLV as follow, 

 𝑇𝐿𝑉 (𝑐𝑚3) = 706 × 𝑆𝐵𝐴 + 2.4, where SBA, the body surface area (in 

𝑚2) was computed in previously study (Mosteller, 1987). 

 This formula has been considered as the standardized estimation for 

comparing the FLRV between other patients. Some other methods for predicting based 

on SBA and biological metrics were also introduced in (Vauthey et al., 2002). Most of 

them rely on the weight or height of an individual. Alternatively, another technique 

based on the medical image obtained from CT or MRI modality is useful for measuring 

TLV (Soyer, Roche, Elias, & Levesque, 1992). It differs from the previous approaches 

that, this technique directly measures the size of liver volume on images. It thus requires 

the contour of the liver manually segmented by user for all slices. The set of contours 
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and the distance of two adjacent slices was then used to compute the TLV (Martel et 

al., 2015). Although, both methods have been utilized for calculating the TLV, the es-

timation should not be recommended in general use. An analysis of the difference be-

tween these methods on 116 patients have been reported in (Martel et al., 2015).  

 In addition to assessing TLV, the safety and efficiency of a surgical re-

section also depend upon the determining of the positioning of portal vein branch (PVB) 

in whole liver as well as the PVB in tumor. It has been established that, the liver is 

divided into eight-functional independent segments, depending on the distribution of 

the hepatic vascular system (3 hepatic vein branches located at left middle and right 

slide; and 2 portal vein branches located at upper and lower parts). The location of liver 

in abdomen and its vessel system are illustrated in Figure 1.4. 

 

Figure 1.4 The segmentation of the liver in abdominal CT 

 (The liver is shown in the flesh color (a) and two main its vascular sys-

tems are drawn in yellow and white color (b)) 

vena cava 
Hepatic vein 

Portal vein 



10 

 

 Regarding the role of simulating surgical planning, using 3-D recon-

struction model for indicating hepatectomy has become a standard in surgical training 

and maintaining patient’s safety. A notable quote words stated here is “Simulation is a 

technique not a technology - to replace or amplify real experience with guided experi-

ences that evoke or replicate substantial aspects of the real word in a fully interactive 

manner” (Gaba, 2004). In training, simulation enable trainees and experts to learn ad-

vanced methods and practice themselves on liver models. During the simulation proce-

dure, they can immediately recognize mistakes and re-perform operations until it is sat-

isfied. In real surgery, the simulation of the liver on specified patient allows clinicians 

to plan a complicated and predict preoperative risks. Additionally, it is also considered 

the best option in sharing visual information of the liver’s anatomy as well as vital 

anatomic landmarks, among members in surgery team (Oshiro et al., 2015). It is re-

ported that, lacking of the communication between surgeons may lead to 43% surgical 

errors (Agha & Fowler, 2015). Recently, there are several 3-D liver surgery simulation 

systems have been developed in advanced countries, especially Japan. Among of these 

systems are: OVA (Hitachi Medical Corporation), SYNAPE VINCENT (Fujifilm Med-

ical), Ziostation (Ziosoft) and VitualPlace (AZE) from Japan; HepaVision (Mevis) from 

Germany and VR-Render (IRCAD) from France (Mise et al., 2013). 

 In summary, there is an indirect but notable relationship between the 

segmentation, 3-D simulation task and surgical planning of the liver. An efficient seg-

mentation of the liver leads to the accurate of liver volumetric measurement. As a con-

sequence, a an efficient 3-D visual simulation leads to a significant improvement of 

operation planning in liver surgery (Gotra et al., 2017). 
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1. 2  Motivation 

In traditional surgical planning, the surgeons used a series of 2-D gray-scale 

images acquired by CT scanner, MRI, or Ultrasound as an important information chan-

nel for the pre-operative volumetric analysis of livers. However, 2-D images neither 

sufficiently provide the depth in view nor the correspondence between liver and adja-

cent organs, as well as the volume of organs and the structure of vascular system. By 

using a stack of 2-D images, a 3-D liver model can be rendered by several different 

approaches, including Multi-planar, Surface (Contour based surface reconstruction, 

Isosurface Extraction based on Marching Cube), Volume representation (T. S. Kumar 

& Vijai, 2012). It is worth to note that, the reconstructed 3-D model comprises not only 

the liver but also a number of surrounding tissues, such as heart, kidney, spleen. There-

fore, the segmenting of liver in 2-D images to separate the liver and vessel system from 

other surrounding structures, is typically considered as the first step of toward com-

puter-aided diagnostic and intervention. Generally, the contours of the liver in 2-D im-

ages are manually extracted by radiologists using a graphical user interface tool. It de-

pends on the area of the body imaged and the radiologist’s setting about the slice thick-

ness, the number of slices in CT images commonly varies from 100 to 500. This number 

can reach up to 2000 slices for a fully body scanning procedure (Pescia, 2011). There-

fore, one of the most shortcomings of the manual segmenting of liver is significant 

time-consumption since the radiologist need to draw liver contours in all slices. This 

makes the segmentation more subjective and generally not reproducible. Due to limita-

tions previously mentioned, the building of an effective and accurate segmentation, 

modeling, and simulation of the liver from medical images are very useful for both 

surgeons and patients with or without underlying liver disease. 



12 

 

In recent decades, LDLT is the best choice for treatment with patient in end-

stage. By the way, a proportion of disease liver could be replaced by the one from donor. 

Beside some requirements of the health screening, such as blood testing, medical eval-

uation, the risks of complication of liver, i.e. liver disease, incompatibility of graft size, 

are also excluded (Gong & Chen, 2011). For example, the FLRV greater than 30% is 

safety for donor, while the graft body weight is about 1% for recipient. Moreover, it is 

mentioned that (Namgoong et al., 2020; Schukfeh et al., 2018), the shape of graft will 

affect to outcome of a surgery in LDLT with infants. Thus, the pre-operative estimation 

of GV is essential in finding suitable donor. Another important factor in hepatectomy 

is, to retain the recovery ability of remaining liver, the resection should reduce the blood 

losing. This means that the cutting path must parallel to hepatic veins and maintain 

portal vein(Gong & Chen, 2011). Thus, a method for segmentation of liver into inde-

pendent functional area is critical for the success of surgery. 

 

1. 3  The purposes 

Motived by benefits and challenges above, and in an attempt to assist the radi-

ologist and surgeon in building 3-D liver model and 3-D hepatic surgical planning sim-

ulating of liver on computer, the expected purposes of this study are two folds. Firstly, 

the liver will be segmented and presented under a set of 2-D contours; then the 3-D 

liver model can be reconstructed; second, the surgeons would use the information of 

the location, and surface of the liver for modeling and simulating an operation. Lastly, 

the segmentation of liver into segments allows surgeons plain a surgery. In order to 

achieve these goals, the thesis focuses on solving following issues: 
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- Building a method for extracting features of liver region from abdominal CT 

scan based on the probability map; applying a local information-based model for en-

hancing the probability map; improving the efficiency of the graph-based model in bi-

nary classification; proposing a liver anatomy-based technique to refine the segmenta-

tion result. After segmented into 2-D contours which separate liver and surround tissues, 

the 3D model of liver was then reconstructed in high resolution.  

- Having 3D model of liver, the functional segments of liver were obtained by 

using atomical landmarks and vascular network. Each segment has its own inflow and 

outflow blood by Couinaud’s scheme. In LDLT, the FLVR is important. Therefore, 

calculating graft size in liver of donor is firstly considered to avoid causing of malfunc-

tioning liver to donor. Given some landmarks on both recipient and donor’s liver, the 

volume of the graft may be estimated based on spherical conformal map (SCM) and 

rigid body transformation. This assists surgeons to simulate on computer before per-

forming a major surgery on real individual. 

 

1. 4  Scope of research 

Although CT image has been shown advantages in medical applications, the 

segmentation of medical image is non-trivial because of complexity as well as the rep-

resentation of multiple organs. For example, the CT image of liver may contain other 

objects such as heart, stomach, kidney, etc.… Some of them have similar intensity with 

liver. They are separated in abdominal region but will be shown overlaid in CT slice. 

Additionally, it can be noted that, CT liver image may contain healthy liver, liver with 

lesion and vascular systems.  
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The development of an integrated segmenting system of all parts is still a chal-

lenge. Although this study aimed at developing a method for 3-D reconstruction and 

surgical plaining simulation, it only focuses on segmenting of normal (healthy) liver 

which used for LDLT application (see in Figure 1.5) and liver in which lesions (if exist) 

must lay entirely inside it. Because of the similarity of intensity of lesion region and 

background, the boundary between may be destroyed, it leads to the deformation of 

overall liver shape. Actually, the tumor and vessel segmentation are yet other different 

problems that are relevant to liver segmentation, specially, the tumor and vascular sys-

tem are sectioned from normal parenchyma.  

 

Figure 1.5 Some cases of CT image of the liver 

As mentioned above, the objective of current research is to apply in LDLT. The 

liver in Figure 1.5 c. contains major tumors which is not suitable for liver transplanta-

tion, therefore it is not consider in this study. Liver in Figure 1.5 b has tumor enclosed 

by healthy parenchyma thus the boundary is retained and could be successfully seg-

mented, but it is up to specified situation, the surgeons will have a decision which liver 

(a). Healthy (b). Tumor (c). Tumor 

Successful Successful Not considered 
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is suitable in transplantation. In opposite, the liver in Figure 1.5 a is healthy and could 

be considered as a candidate for transplantation surgery. 

 

1. 5  Outline of the thesis 

The thesis proposal is structured in five chapters. The content of each chapter is 

summarized as follows. 

Chapter 1 presents the objective of this work, anatomy of liver as well as basic 

knowledge in surgical intervention of liver. The role of segmentation, and surgical 

plaining simulation are also discussed before entering the description of the purposes 

and scope of the thesis. 

Chapter 2 provides an overview of the most common medical image modalities 

(CT and MRI), image processing, popular segmentation method. A discussion of recent 

approaches liver segmentation, functional segmentation, and mesh parameterization are 

also given in this chapter. 

Chapter 3 proposes a novel framework for liver segmentation, functional seg-

mentation of liver by Couinaud’s scheme. A method for estimation of graft on donor’s 

liver is presented in the last part.  

Chapter 4 presents a discussion on the preliminary results on segmentation and 

3D reconstruction using a public database. In detail, the qualitive and quantitative com-

parison between related approaches are evaluated based on five errors metric and time-

consuming. 

Chapter 5 gives a conclusion in strong/weak points of the proposed methods 

and proposes future works. 

 



 

 

  

LITERATURE REVIEW 

 

This chapter begins with an overview of medical image and basic image pro-

cessing techniques that utilized as the pre-processing, post-processing as well as a cru-

cial process in medical image segmentation, particularly in liver segmentation. They 

are organized as follows: The overview of medical imaging modalities is shown in sec-

tion 2. 1. The filtering algorithms that were applied to reduce noise and preserve edge 

of objects in image, morphological operator, common texture features, such as Gray-

level Co-occurrence Matrix (GLCM), Local Binary Patterns (LBP), and basic methods 

for general segmentation image are presented in section 2. 2. In the section 2. 3, state-

of-the art methods for liver segmentation are reviewed and criticized to find out the 

most suitable way for the objectives of the thesis. Numerous techniques for representa-

tion, and re-processing are given in the section 2. 4. Section 2. 5 surveys recent literature 

on major approaches to functional segmentations. Section 2. 6 gives brief description 

of mesh parameterization of liver. Section 2. 7 presents the liver surgical simulation. 
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2. 1  Medical imaging 

The human abdomen is structured by a number of 3-D complex tissues, most of 

them are inside the body and take most crucial roles to human life. Once these organs 

are malfunctioned, the diagnosis and treatment of diseases of them are the challenges 

with radiologists and surgeons. To tackle this problem, the ability of the observation 

internal organs inside the body is the critical condition. The advancements of the mod-

ern medicine and the developments in electrical device have allow to actualize this abil-

ity in practice by constructing images of organs and show them in monitor. By this 

concept, the medical imaging as a non-invasive technique have been used to acquire 

the image of organs inside body without opening up the body. There have been a num-

ber of medical imaging techniques with their own risks and benefits have been devel-

oped and applied in clinics during recent decades. Some of them are Computed tomog-

raphy (CT), Magnetic Resonance Imaging (MRI), Ultrasound (US), Positron Emission 

Tomography (PET), Single Photon Emission Computed Tomography (SPECT)(Gan-

guly, Chakraborty, Balitanas, & Kim, 2010). Each of them provides different medical 

information about tissues being studied or observed related to possible disease, injury, 

or the effectiveness of medical treatment. Two most common medical imaging modal-

ities and their benefits/risks are presented below. 

2. 1. 1  Computed Tomography 

 X-ray, commonly referred as Röntgen radiation, have been discovered 

by a German physics professor Wilhelm Röntgen in his experiment in 1985. Due to the 

ability of the passing through several different matter, x-ray have been used in many 

fields of medicine and physics. In medicine, X-ray is used in taking images of tissues 

inside the human body, this technique is called Computed Tomography or Computer 
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Axial tomography (CAT). CT has been first introduces by Hounfield et al  in 

1972(Hounsfield, 1973), it uses special X-ray taken from different angles to capture 

detailed image. The process of a CT scanner can be described as follow: The x-ray pass 

through the body of the patient in many different directions, a detector or/multi-detector 

located opposite site will record this signal and store them as a temporal “image”. A 

computer then combine these “images” into a completed image, referred as a slice. A 

motorized table will move the patient toward to continue to capture another slice. The 

number of slices in CT image depends upon the numbers of the detector and radiolo-

gist’s configuration (Sunder, Howard, Kyoko, Wolfgang, & David, 2019). The CT data 

are generally saved in the matrix format. 

 Due to advantages of CT scan technique, it has become increasingly 

popular in clinical practices over recent years. It has been well-known that, the CT im-

age allows the radiologists to delineate several different tissues based on the linear at-

tenuation coefficient of the radiodensity after X-ray pass through them, using a quanti-

tative scale (called by Hounsfield scale or CT number) (Hounsfield, 1973). The Houns-

field scale is then renormalized and scaled in a Hounsfield Unit (HU) scale. Assume 

the radiodensity of the distilled water (𝜇𝑤𝑎𝑡𝑒𝑟) and the air (𝜇𝑎𝑖𝑟) at standard pressure 

and temperature (SPT) are 0 HU and -1000 HU, respectively. The HU scale of a linear 

attenuation coefficient (𝜇) is a linear transformation defined as (Kalra, 2018) 

𝐻𝑈 = 1000 ×
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟 − 𝜇𝑎𝑖𝑟
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Table 2.1 Examples of Hounsfield Units (Wilson, 2005) 

Tissues The average CT number or HU 

Bone 700 to 3000 

Clotted blood 80 

Liver 40-60 

Fresh blood 55 

White matter 46 

Gray matter 43 

Muscle 10 to 40 

Kidney 30 

Cerebral spinal fluid 15 

Water 0 

Fat -50 to -100 

Lung -500 

Air -1000 

  

The HU values shown in Table 2.1 approximately varies from -1024HU to 

1368HU depend upon the density of tissues. The CT number of the air is -1000HU 

because it is the least dense structure. The soft tissues are higher density than water, 

whereas the bone is the highest density on the CT image. Furthermore, most digital 

image detectors in the advanced CT scanner can produce images with 4096 different 

gray-tones (from -1024 HU to 3071 HU). However, the human eye can approximately 

discriminate around 30 gray-tones (Wilson, 2005). To highlight for a tissue of interest 
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in the original image, a process based the HU value, called by the windowing, is applied. 

It aims to increase the image contrast of this tissue and eliminate the irrelevant areas by 

cropping the “view” of CT number and maps it into a gray-scale intensity image, as 

seen in Figure 2.1. This process defines two parameters referred as window width and 

window level. The first parameter is the range of CT number to be displayed, whereas 

the second parameter refers the mean (the middle) of CT number. Accordingly, HU 

values of tissue that are not in the range of the predefined window are set to black, if 

these values are less than the window, or white if they are greater than the window. The 

soft tissue in abdomen is set by “soft tissues-window” (window width, ~400; window 

level: 30-50). Regarding the liver CT image in abdomen, the values of window width 

and level may also be inspected in range (100-150) and (70-80), respectively, mean-

while the inspection of bone using “bone window” (width,~ 2000; level, ~600) may 

useful in detecting pathologic within the abdomen and pelvis (Baumgarten, 2006; Larbi 

et al., 2018; Sahi et al., 2014). The differences of the contrast of the CT liver image 

after applying the windowing process are demonstrated in Figure 2.2. 

 

Figure 2.1 The windowing of CT image 
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Figure 2.2 The distribution of CT number 
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(Soft tissues and original liver in CT image is shown in (a). The unenhanced 

image, contrast-enhanced image (with window width=150, window level=88) and their 

histograms are shown in (b), (c), (d) and (e), respectively) 

2. 1. 2  Magnetic Resonance Imaging 

 It differs from CT imaging. Magnetic Resonance Imaging is medical 

imaging technique for creating images by producing a strong magnetic field surround-

ing the body and radio waves. Under a powerful magnetic field, the magnetic direction 

of atoms in the body will be realigned. After that, a radio wave will spin them in an 

opposite direction. Once the radio wave is turned off, atoms will return to their original 

direction. Based on the emitting energy from the changing of magnetic field, the phy-

sician can identify tissue types. 

 Applying each technique in patients primarily depends on the patient’ 

case history, the radiologist’s target and type of tissues being imaged. Nonetheless, it is 

worth noting that, there is no the best modality for all cases. Based on the analyzing of 

risks and benefits of imaging modalities, the radiologists and surgeons will propose an 

appropriated technique to capture images of organs. Some advantages and disad-

vantages of two techniques are shown in Table 2.2. 
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Table 2.2 A comparison between CT and MRI technique 

Feature CT MRI 

Technique 

Use X-ray 

Radiation 

Considerable cost 

Use powerful magnetic and Radio-

wave 

Costlier than CT scan (about twice) 

Result 

Used for capturing of the 

bone fractures, tumors, can-

cer monitoring, finding in-

ternal bleeding 

Provide a detailed image of soft tis-

sues (herniated disks torn ligaments 

soft tissue issues) 

Risk 

Harm to unborn child 

The gravity from a small ra-

diation from CT scanner 

 

The loud noise from closed system 

The increase of the temperature in pa-

tient’s body 

The claustrophobia 

Benefit 

Painless 

Quickly 

Painless 

Provide good detail of tissues 

Time 5 - 10 minutes 10 minutes to 1 hour 

 

 (Jason & Stacy, 2017; Richard & Goergen, 2018; Sunder, Howard, 

Kyoko, Wolfgang, & David, 2018; Sunder et al., 2019). 

 Two examples of CT, MRI images illustrated in Figure 2.3 show the 

differences in appearances between two modalities. 
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Figure 2.3 The CT and MRI image of liver, brain 

(U. Kishan & Lee, 2016)(Datar, M., & Stebbins, 2019) 

2. 1. 3  Digital Imaging and Communications 

 Due to the differences of the medical equipment from various manufac-

turers, a medical image of individual recorded by a specified scanner from one vendor 

may be incompatible to that by another scanner. Digital Imaging and Communication 

in Medicine (DICOM), developed by the American College of Radiology (ACR) and 

National Electrical Manufacturers Association (NEMA) in 1993, is the special standard 

for storing, printing, transmitting (Bidgood & Horii, 1992; R. N. Graham, Perriss, & 

Scarsbrook, 2005). During recent years, this format has been conformed by many med-

ical imaging modalities, such as CT, MRI, mammography, etc. The header of DICOM 

file format contains not only the image data but also various important information 

relevant to the patient, study, physician, and image description. An example of DICOM 

header file of CT image is given in Table 2.3. 
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Table 2.3 The important information in DICOM head file 

Patient Study Physician Image 

Accession number 

Patient’s name 

Patient ID 

Patient’s Birthday 

Patient’s sex 

Another patient ID 

Patient age 

Study date/time 

Series date 

Study description 

Series description 

Study ID 

Study instance UID 

Series instance UID 

Referring physi-

cian’s Name 

Performing physi-

cian’s Name 

Name of physi-

cian(s) reading 

study 

Operator’s Name 

Image type 

Image date 

Image time 

Image number 

Rows, Columns 

Pixel spacing 

Slice Thickness 

 

 In clinical practice, to track the patient’s history, all medical images rel-

evant to this patient are stored. Each study corresponds to medical image technique (CT, 

MRI, Ultrasound) have been applied on the patient. Generally, each study may contain 

multiple series (axial, coronal), for example, the radiologists can use a CT scanner to 

capture various tissues of the same individual. Thus, each series should include many 

images, in which information of organs is present by numbers. The hierarchy of DI-

COM is divided in four levels, i.e., patient information, study information, series infor-

mation and data image (Bidgood, Horii, Prior, & Van Syckle, 1997). An illustration of 

a common structure of DICOM is shown in Figure 2.4. 
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Figure 2.4 The organization of a DICOM 

(The image data is presented by multiple images (a, b) or multiple-slices image (c)) 

 

2. 2 Digital image processing 

To have a better understanding about techniques that recently used for liver seg-

mentation, definitions and basic knowledge of image processing and segmentation 

methods are presented. Due to the limitation of scope of this thesis, it only summarizes 

the most popular methods that were directly/ indirectly included into research related 

to liver segmentation. More details on each method were found in original studies listed 

in references. 

hierarchy 

Patient

Study 1 (CT)

Study 2 (MRI)

Serie 1

Serie 2

Serie...

Study...

Image data

Image data

Image data

a)

b)

c)



27 

 

2. 2. 1  Digital image 

 Image processing is referred as a set of processes that used for enhancing, 

analyzing, and extracting of useful information from image to apply in other fields, such 

as art, medicine, education, astronomy, etc. Nowadays, most of such manipulations are 

generally performed on a computer or other electronic devices. An image is first loaded 

into memory of the computer. It is then processed to make useful information associated 

with that image. Due to resource limitations, a computer can only present information 

under numbers with finite precision. Therefore, an image must be discretized to be pre-

sented digitally, a such image is called by the digital image (da Silva & Mendonça, 2005). 

 A digital image is defined as a 2-D function 𝑓(𝑥, 𝑦) of two discrete spa-

tial variables 𝑥, 𝑦. In gray-scale image, the magnitude 𝑓 at a given point shows the var-

iation of the intensity of the image at that point. For a color image which contains three 

channels (Red, Green, Blue), the magnitude of 𝑓 composes 𝑓𝑅 , 𝑓𝐺 , 𝑓𝐵 which referred as 

the value of red, green, blue color in the image. Generally, the size of an image is limited 

by a pair (𝑀,𝑁) which indicate for the height and width of the image. 

2. 2. 2  Fourier transform 

 An alternative image presentation based on frequency has been widely 

used in image processing. This technique has been derived from Fourier transform of 

two variables (Gonzalez & Woods, 2002). Fourier theorem stated that any periodic 

function can be analyze as the sum of sine and/or cosine function of different frequency 

(called Fourier series). Instead, the non-periodic function can be also expressed by the 

integral of sine and/or cosine for all frequency. This presentation is referred as the Fou-

rier Transform.  
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 Assume that 𝐹(𝑥, 𝑦) is the continuous function defined on spatial do-

main of two continuous variables (𝑥, 𝑦). The Fourier transform of 𝐹(𝑥, 𝑦) is given by 

the following expression. 

𝐹(𝑢, 𝑣) = ∫ ∫ 𝐹(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (2.1) 

where 𝑖 is the complex number, 𝑖2 = −1. This equation is called by the toward trans-

form. The original of function 𝐹(𝑥, 𝑦) can be obtained from its transform by the fol-

lowing equation 

𝐹(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑢, 𝑣)𝑒𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑢𝑑𝑣

∞

−∞

∞

−∞

 (2.2) 

 The frequency component in (2.1) is expressed as a complex exponential 

function that may be re-written as a combination of sine and cosine function. According 

to the Euler’s theory 

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 (2.3) 

 Equation has two parts: real (𝑅𝑒) and imaginary (𝐼𝑚) parts. By substi-

tuting (2.3) into (2.1), it can re-write the Fourier transform equation of continuous func-

tion under complex as follow 
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𝐹(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑢, 𝑣)[cos 2𝜋(𝑢𝑥 + 𝑣𝑦)

∞

−∞

∞

−∞

− 𝑖 sin 2𝜋(𝑢𝑥 + 𝑣𝑦)]𝑑𝑢𝑑𝑣 

(2.4) 

 The spectrum which is defined as the magnitude, and phase of transform 

are computed by 

|𝐹(𝑢, 𝑣)| = [𝑅𝑒2(𝑢, 𝑣) + 𝐼𝑚2(𝑢, 𝑣)]2 
(2.5) 

𝜔(𝑢, 𝑣) = tan−1
𝐼𝑚(𝑢, 𝑣)

𝑅𝑒(𝑢, 𝑣)
 (2.6) 

where 𝑅𝑒(𝑢, 𝑣) and 𝐼𝑚(𝑢, 𝑣) presents for the real and imaginary component in Fourier, 

respectively. Figure 2.5 shows an example of Fourier transform of a CT image. 

 Given a discrete function 𝑓(𝑥, 𝑦) of a digital image of size (𝑀 × 𝑁) on 

spatial domain. The Fourier transform of that image on frequency domain is defined by 

equation (Gonzalez & Woods, 2002) 

 

𝐹(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑖2𝜋(

𝑢𝑥
𝑀

+
𝑣𝑦
𝑁

)

𝑁−1

𝑥=0

𝑀−1

𝑦=0

 

(2.7) 

 The original image on spatial domain is inverted from the Fourier trans-

form as the expression: 
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 𝑓(𝑥, 𝑦) = ∑ ∑ 𝐹(𝑢, 𝑣)𝑒𝑖2𝜋(
𝑢𝑥
𝑀

+
𝑣𝑦
𝑁

)

𝑁−1

𝑥=0

𝑀−1

𝑦=0

 
(2.8) 

where 𝑢, 𝑣, 𝑥 , 𝑦 are discrete variables, in that 𝑢, 𝑥 ∈ [0,𝑀 − 1], 𝑣, 𝑦 ∈ [0, 𝑁 − 1]. 

 

Figure 2.5 An example of Fourier transform 

 (The original image is showed in the first column. The magnitude of 

frequencies extracted from Fourier transform is showed in the second column) 

 Fourier transform has been widely used in various applications of digital 

signal and digital image processing. In image processing field it can be used in image 

enhancement, image filtration, image restoration, image compression (Smith, 1997). In 

medical image processing, Fourier transform can be applied in low-pass filter that re-

duce noise of CT image (Mihaylova & Georgieva, 2016; Tang & Tang, 2012). Shape 

descriptor based on Fourier transform can be used to smooth contour (Gloger, Kuhn, 

Stanski, Volzke, & Puls, 2010). In signal processing, Fourier transform is utilized to 

compress the signal of the audio. 
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2. 2. 3  Image processing 

 Generally, digital image processing can be grouped in to three level: 

low-level, middle-level, and high-level. Processing of image at low-level invokes the 

basic processes to enhance, reduce noise, smooth and sharp image. Most algorithms in 

this group require input images and outputs ones. The next process level refers to tech-

niques for extracting information present in an image. It requires the input that are im-

ages, whereas its output returns features, segmentations, classifications of objects in 

image that characterized by feature vectors, contours, edges, segments, or what the ob-

ject is. The higher and more difficult level, the higher-level processing, that are used 

for analyzing the meaning of an image. 

 There exists consistency among levels of processes that ensures that an 

efficiency process in lower level will improve the accuracy for next level processes. 

The windowing process mentioned in section 2. 1 is an example of this statement. As a 

consequence, the segmentation in CT image is not an exception. Next items in this sec-

tion will present some techniques of filtering, morphology operation, feature descrip-

tion before coming to approaches for basic segmentation. 

2.2.3.1  Filtering 

 The image data contains not only the useful information that 

describe objects but also noise (referred as noise image) which is not easy to remove 

from image. Noise image normally comes from the image acquisition (sensor), trans-

mission, storage process. It is recognized by the abrupt variation of the intensity at a 

few regions or whole image. Most noise image can destroy the structure of image, as 

well as cause lacking important information. It leads to low accurate image processing. 

The best solution for reducing/removing noise is the detection of noisy model. Based 
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on the distribution of image noise, the noise model can be classified into the following 

groups: Impulse noise (salt and pepper), Gaussian noise, Rayleigh noise, Erlang noise, 

Exponential noise, Uniform noise, Periodic noise (Gonzalez & Woods, 2002).  

 The filter is one of popular methods used for reducing/ remov-

ing noise. For example, the median filter is used to eliminate a noise image of salt and 

pepper, whereas the Gaussian filter is used for denoising in Gaussian noise. In another 

aspect, the filters in frequency domain are more efficient in resolving periodic noise 

model. 

 In many image processing applications, the distinction of ob-

jects in adjacent regions in image is equivalent to detecting boundary (edge) between 

those objects. As their properties, filters can be used to smooth image, such as mean 

filter, Gaussian filter. They are isotropic filters that do not take into account local infor-

mation while reducing noise. This means that the kernel size of filter is independent of 

the underlying pattern direction. Consequently, isotropic filters reduce the detail and 

blur the boundary. Inspired by the heat diffusion, Perona et al (Perona & Malik, 1990) 

introduced an efficient tool for smoothing image without removing details, also called 

Perona–Malik diffusion (see in Figure 2.6). The main idea of this method can be sum-

marized as follow. 

 Assume 𝐼𝑖,𝑗
𝑡  be the intensity of pixel at location (𝑖, 𝑗) at time 𝑡, 

the updating of that pixel at 𝑡 + 1 is given by 

𝐼𝑖,𝑗
𝑡+1 = 𝐼𝑖,𝑗

𝑡 + 𝜀 ∑ [𝑐𝑧𝐼𝑧
∗]𝑖,𝑗

𝑡

𝑧∈{𝑈𝑝𝑝𝑒𝑟,𝐿𝑜𝑤𝑒𝑟,𝐿𝑒𝑓𝑡,𝑅𝑖𝑔ℎ𝑡}

 (2.9) 
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where 𝜀 ∈ [0,
1

4
]; 𝐼.𝑖,𝑗

∗𝑡  is the intensity of the pixel at the upper, lower, left, right of 𝐼𝑖,𝑗
𝑡 ; 

𝑐.𝑖,𝑗
𝑡  is the conduction coefficient that is defined as the follow. 

𝑐.𝑖,𝑗
𝑡 = 𝑔(|𝐼.𝑖,𝑗

∗𝑡 |) (2.10) 

 The function 𝑔(. ) is given by two the following formulate. 

𝑔(|𝐼.𝑖,𝑗
∗𝑡 |) = 𝑒

−(
‖∇𝐼.𝑖,𝑗

∗𝑡 ‖

𝐾
)

2

 
(2.11) 

 Or 

𝑔(|𝐼.𝑖,𝑗
∗𝑡 |) =

1

1 + (
‖∇𝐼.𝑖,𝑗

∗𝑡 ‖

𝐾 )

2 
(2.12) 

with K is a threshold, ‖𝐼𝑖,𝑗‖ is the magnitude of gradient vector at pixel located (𝑖 , 𝑗). 

 A modified version of (Perona & Malik, 1990) has been intro-

duced in (Whitaker & Xinwei, 2001). It is based on the calculating of the level-set cur-

vature to control the conduction coefficient. According to the authors, this method is 

more aggressive than anisotropic diffusion at enhancing and preserving edges, and it 

less sensitive to the edge contrast parameter. 
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Figure 2.6 An example of smoothing image 

 (The original is shown in the first column. The second and third 

column present filtered images using isotropic (Gauss filter) and anisotropic diffusion 

filter, where t =10, K=20 and g is defined as (2.11)) 

2.2.3.2  Morphological operators 

 Morphological operators are collection of techniques for image 

processing based on the ordering of pixel values. They can be used for both binary and 

grey-scale image. The input of morphological operators is an image, structure element 

and a set of operators, such as intersection, union, complement and inclusion. The struc-

ture element that serves as the kernel of an operator consists of numbers located in a 

shape of disc, square or cross. The center of structure element is placed at its origin.  

 In terms of segmentation, most morphological operations have 

been used in post-processing as a simple method refinement segmentation result, such 

as dilation and erosion operator. The dilation operator is commonly applied to fill holes, 

for example holes caused by vessel system in liver as well as connect broken line. 

Whereas erosion is useful for removing isolated pixels. Figure 2.7 and Figure 2.8 

demonstrate the efficiency of dilation and erosion operator. 
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Figure 2.7 Dilation operator 

 (The broken text (left) can be recovered by dilation process 

(right) (Gonzalez & Woods, 2002)). 

 

Figure 2.8 Erosion operator 

 (The first column is the input image. The second one shows the 

result of erosion. The last column shows the dilation of image in the second column 

(Gonzalez & Woods, 2002). Both structure element size of dilation and erosion are set 

with the same structuring element). 
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2.2.3.3  Texture feature 

 Extraction and descriptor information in through texture fea-

tures presented in image play a crucial role in digital image processing tasks. Depending 

on the kind of applications, information in image can be extracted as global or local 

features, that convey essence information about object and serve as the basis for a va-

riety of image processing tasks. Global feature is used to describe an image as a whole 

and generalize an entire as a feature vector or shape descriptor (i.e., the liver can be 

drawn as closed contour). In opposite aspect, local feature in image is extracted at the 

pixel or region level (Awad & Hassaballah, 2016). It aims to recognize or distinguish 

objects in image based on the difference of information of points or regions. In gray-

scale image, the difference is generally presented by the variation of intensity that char-

acterize for each object. Unfortunately, due to noise image, low contrast in intensity, 

the extracting of global or local feature is still a challenge. In term of liver segmentation 

in medial image, we investigate some texture features that have been popularly used in 

related research. They are Grey Level Co-occurrence Matrix, Local binary pattern. 

 Grey Level Co-occurrence Matrix 

 As shown by its name, Gray Level Co-occurrence Matrix 

(GLCM) is used to reveal the spatial structure of texture in image. It evaluates statistics 

of the occurrence frequency in a pair of two pixels with the same level of gray value at 

a specified direction and distance (Haralick, Shanmugam, & Dinstein, 1973). GLCM is 

a matrix of size of 𝐿 × 𝐿, where 𝐿 is the number of levels of gray.  

 An element 𝑐∆𝑥,∆𝑦(𝑖, 𝑗) in GLCM matrix is calculated by 
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𝑐∆𝑥,∆𝑦(𝑖, 𝑗) = ∑ ∑{
1 𝐼(𝑥, 𝑦) = 𝑖 ∧ 𝐼(𝑥 +△ 𝑥, 𝑦 +△ 𝑦 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

𝑁

𝑥

𝑀

𝑦=1

 
(2.13) 

where 𝑖, 𝑗 ∈ [1, 𝐿]; 𝑀,𝑁 are the height and width of image 𝐼; 𝐼(𝑥, 𝑦) is the intensity of 

pixel at row 𝑦, column 𝑥 in image, respectively. See in Figure 2.9. 

   

Figure 2.9 An example of computing GLCM 

(with L=8, ∆𝑥 = 1, ∆𝑦=0) 

 Haralick et al (Haralick et al., 1973) have suggested 14 texture 

features that can be extracted from GLCM matrix. They are Angular second moment, 

Contrast (Figure 2.10 b), Correlation, Sum of squares (Figure 2.10 c), Inverse differ-

ence moment, Sum average, Sum variance, Sum entropy, Entropy, Difference variance, 

Difference entropy, Information of correlation (2 features), Maximum correlation co-

efficient. Some of them specify the textural characteristics, while others present the 

complexity and nature of image.  

𝑦 𝑥 
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Figure 2.10 An example of GLCM 

 Local binary pattern 

 Local binary pattern (LBP) is a simple and efficient texture op-

erator for presenting a grayscale. It is based on comparing the value of current pixel 

with its 8-neighbors along a circle of clockwise or counterclockwise and gives the re-

sults as binary values. Then eight-binary values are converted into decimal (ranged 0 

to 255) and their histogram can be used to describe the texture image. Figure 2.11 

illustrates the determining of LBP with 3-by-3 neighbors. 

 The original LBP  introduced by Ojala et al in 1996 (Timo 

Ojala, Pietikäinen, & Harwood, 1996) considers 3-by-3 neighbors in a square shape. In 

their improved version in 2002 (T. Ojala, Pietikainen, & Maenpaa, 2002), they have 

extended LBP operator by using a neighbor of different size and shape (circle, instead 

of square) with a non-integer radius which referred as 𝑉𝐴𝑅𝑃,𝑅 (rotation invariant local 

variance), where P is the number of element in circle radius of R (as given in Figure 

2.12). LBP is also re-written as 𝐿𝐵𝑃𝑃,𝑅, with P=8 and R=1. 

a)  Energy c) Entropy b) Contrast 
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Figure 2.11 An example of LBP 

 (The value of current pixel (50) is compared to its neighbors 

values (a). The binary value (00100101) (b) is converted into decimal number (37)(c)). 

 

Figure 2.12 The structure of neighbors by different parameters (P, R)  

2. 2. 4  Image segmentation 

 Over the years, segmentation image has been a main task in image pro-

cessing and computer vision field due to its useful applications, particularly, object de-

tection, object recognition and medical image processing. It is a process of subdivision 

an image into multiple regions base on some characteristics, such as color, intensity, 

boundary. The segmentation in nontrivial image, nevertheless, is the most difficult pro-

cess among different digital image processing tasks. Due to the variability in shape and 

size of objects in image, low contrast intensity, blurred edge (boundary), overlapping 

between objects, segmentation is still an open problem, and the accuracy segmentation 
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strongly relies on many factors, such as time consumption, applied technique, field. 

There exist numerous methods that used for segmenting in common image. Regarding 

segmentation in medical image, some popular techniques are reviewed in following 

paragraphs before coming a discussion of state-of-art method. 

 Region growing 

 Seeded region growing was firstly introduced by (Adams & Bischof, 

1994). It is a simple method for segmentation in image based on grouping pixel into a 

regions using predefined constrains (Gonzalez & Woods, 2002). This algorithm starts 

from a region which includes a given pixel, also referred as seed points, neighbor pixels 

are added into a list if they satisfy some criteria, such as the similarity of intensity, color. 

Each candidate in list is considered as a seed point for the next step. The growth of 

regions stops once the list is empty. Figure 2.13 show an example of region growing 

in CT liver image. 

 Assuming 𝐼 is the entire image, the goal of region growing is to parti-

tions 𝐼 into subregions {𝐼1, 𝐼2, … 𝐼𝑛} that satisfy the following conditions 

(1) The pixel in image is segmented: ⋃ 𝐼𝑖 = 𝐼𝑛
𝑖=1  

(2) 𝐼𝑖 is connected region, ∀𝑖 ∈ [1, 𝑛] 

(3) There is no overlap between regions: 𝐼𝑖 ⋂𝐼𝑗 = ∅, ∀𝑖 ≠ 𝑗 

(4) Each pixel in a region must be stratified a pre-defined constrain: 

𝑃(𝐼𝑖) = 𝑡𝑟𝑢𝑒, ∀𝑖 ∈ [1, 𝑛] 

(5) If two pixels have different properties, they should belong to differ-

ent regions: 𝑃(𝐼𝑖 ⋃𝐼𝑗) = 𝑓𝑎𝑙𝑠𝑒, , ∀𝑖 ≠ 𝑗 
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Figure 2.13 An example of region growing 

 Thresholding 

 The threshold based – segmentation method is defined as labeling of a 

pixel based on the comparison between intensity of this pixel (𝐼(𝑥, 𝑦) with a threshold T. 

The pixels for which 𝐼(𝑥, 𝑦) > 𝑇 is called by object; otherwise, this pixel is referred as 

background. The thresholding technique can classified into three groups: global thresh-

olding, local thresholding and adaptive thresholding (Gonzalez & Woods, 2002). The 

first group uses single or multi-threshold which is fixed or directly estimated from image 

in the entire image. Otsu has been known an efficient method for estimating threshold 

based on minimizing the intra-class variance (Otsu, 1979). The second group, adaptive 

thresholding, bases on dividing original image into sub-regions, then a different threshold 

are applied for each sub-regions. The last group only consider pixel that lies on boundary 

between objects based on gradient and Laplacian operator. It enables to improve the 

shape of histogram as well as make histogram to be less dependent on the size of objects 

and background. Some examples of thresholding are illustrated in Figure 2.14. 
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Figure 2.14 A result of thresholding 

 (The original image is shown in (a). the results of Otsu method with 

single thresholding(b), adaptive thresholding and Otsu method with multi thresholding 

are given in (b, c, d), respectively). 

 Statistical shape model 

 Statistical shape model (SSM) has been commonly used in many appli-

cations of computer vision recognition, reconstruction, classification. It is a useful tool 

for modeling shape of object based on the analyzing the normal shape variation of a 

class of shape (J. Graham & Baldock, 2000). This model is built from a collection of 

training shape set, in which each sample is characterized by a landmark vector which 

manually defined by experts. The corresponding between each element in feature vector 

is constrained for all samples in training set. A new shape is reconstructed by the linear 

combination of principal shape variations associated with their parameters. Therefore, 

in order to capture a various shape, the training set must contain enough variation. How-

ever, this leads to the under-fitting problem. To have an efficient description of shape 

of samples in a training set, a conventional method is applied for extracting the im-

portant/ characteristic features in dataset. It has been well-known that Principal Com-

ponents Analysis (PCA) is a powerful tool that is used to represent data by projecting 

c) d) b) a) 
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them into a new space, in which the variation in original data is presented more clarify 

(Gonzalez & Woods, 2002). 

 Let �̅� mean shape of a training set {𝑠1, 𝑠2 …𝑠𝑀}. The feature vector of 

each sample is presented by 𝑠𝑖 = [𝑥1, 𝑠2, … , 𝑠𝑁]
𝑇
, where M is the number of samples; 

N is number of features; the superscript “𝑇” means the transform operator of a matrix. 

The mean shape and covariance matrix 𝐶 are given respectively by  

�̅� =
1

𝑀
∑𝑠𝑖

𝑀

𝑖=1

 
(2.14) 

𝐶 =
1

𝑀 − 1
∑(𝑠𝑖 − �̅�)(𝑠𝑖 − �̅�)𝑇

𝑀

𝑖=1

 (2.15) 

 Eigenvectors (P𝑗) and their eigenvalue (𝜆𝑗) associated to P𝑗 can be com-

puted from covariance matrix 𝐶. Let 𝑃 = [𝑝1 𝑝2 … 𝑝𝐾] be a matrix whose K columns 

corresponding to K eigenvectors, so that λ𝑗−1 ≥, ∀𝑗 ∈ [1, 𝐾] and 𝐾 ∈ [1,𝑀]. A presen-

tation of new shape in this basis can be given by 

𝑠 = �̅� + 𝑃𝛼 (2.16) 

where 𝛼 = [𝛼1, 𝛼2, … 𝛼𝐾]𝑇is the parameter of the new shape. 

 Active shape model (ASM) (Cootes, Taylor, Cooper, & Graham, 1995) 

is an application of SSM, which present a new shape based on principal component. 

The ASM processes image and that matches a new shape to a model. It can be described 

as the follow:  
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 Let 𝑠∗ be the current shape (𝑠0 is generally the mean shape). 

(1) For each point (𝑥) in initial shape, search in image points (𝑦) 

which is the best fit to (𝑥). 

(2) Find parameter b: 𝑏 = 𝑃𝑇(𝑠 − �̅�) 

(3) Reconstruct a new shape: 𝑠 = �̅� + 𝑃𝑏 

(4) Update current shape 𝑠∗ = 𝑠 

(5) Repeat from (1) to (4) until convergence 

 Level set method 

 Segmentation is defined as dividing an image into disjoint regions or 

objects (Gonzalez & Woods, 2002). On the other hand, it can be considered as a prob-

lem of determining closed contours of regions or objects. Level set method introduced 

by Sethian (Osher & Sethian, 1988) is a mathematical method that is used to implicitly 

describe a contour based on tracking the propagation of a surface a specified level. 

 Let 𝜙(𝜒) be a surface defined on 𝜒 = (𝑥1, 𝑥2, … , 𝑥𝑛). The 𝑙-level set of 

surface 𝜙(𝜒) is given by 

𝐶𝑙 = {𝜒|𝜙(𝜒) = 𝑙}} 

(2.17) 

 In a special case, 𝑛 = 2, the ℓ-level set present a contour. The evolution 

of surface can be considered as the propagation of contour at time 𝑡 with 𝑧𝑒𝑟𝑜-level. 

Assuming 𝜒(𝑡) is the position of 𝜒 at time 𝑡, 𝐶𝑙 in (2.17) is re-written by the equation. 

𝐶𝑙 = {𝜒|𝜙(𝜒(𝑡), 𝑡) = 0} (2.18) 
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 The curve 𝐶𝑙 divides surface 𝜙 into partitions, including internal parti-

tion consists points inside contour, external partition consists points outside contour. 

The propagation of surface with respect to 𝑡 is represented by  

𝜕𝜙(𝜒(𝑡), 𝑡)

𝜕𝑡
= 0 (2.19) 

 It has been proven that, if 𝑓(𝑥, 𝑦) is a differentiable function, the change 

of 𝑓 can be approximated by the linear combination of its components as  

∆𝑓 ≈ 𝑓𝑥∆𝑥 + 𝑓𝑦∆𝑦 (2.20) 

 By applying (2.20), equation (2.19) is approximated by 

𝜕𝜙

𝜕𝜒(𝑡)

𝜕𝜒(𝑡)

𝜕𝑡
+

𝜕𝜙

𝜕𝑡

𝜕𝑡

𝜕𝑡
= 0 

⟺
𝜕𝜙

𝜕𝜒(𝑡)

𝜕𝜒(𝑡)

𝜕𝑡
+

𝜕𝜙

𝜕𝑡
= 0 𝑜𝑟 ∇ϕ𝜒𝑡 + 𝜙𝑡 = 0 

(2.21) 

where ∇ϕ =
𝜕𝜙

𝜕𝜒(𝑡)
, 𝜒𝑡 =

𝜕𝜒(𝑡)

𝜕𝑡
 and 𝜙𝑡 =

𝜕𝜙

𝜕𝑡
, . Note that, ∇ is the gradient operator, 𝜕 is 

the derivation. Equation (2.21) gives the movement of surface 𝜙 at time 𝑡. 𝜒𝑡 is the ve-

locity of movement. Let 𝐹 be the force normal to surface, where 𝐹 = 𝜒(𝑡)
∇ϕ

|∇ϕ|
. Equa-

tion (2.21) is re-written as follow  

𝐹|∇ϕ| + 𝜙𝑡 = 0 𝑜𝑟 𝜙𝑡 = − 𝐹|∇ϕ| (2.22) 

 The derivation of a function 𝑓(𝑥) on finite domain has following form 
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𝑓′(𝑥) =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

(2.23) 

 In this way, the level set equation can be approximated by 

𝜙𝑡 =
𝜕𝜙

𝜕𝑡
=

𝜙(𝑡 + ∆𝑡) − 𝜙(𝑡)

∆𝑡
 

⟺ ∆𝑡𝜙𝑡 =  𝜙(𝑡 + ∆𝑡) − 𝜙(𝑡) ⟺  𝜙(𝑡 + ∆𝑡) =  𝜙(𝑡) + ∆𝑡𝜙𝑡 

(2.24) 

 By substituting (2.22) into (2.24), we have the equation for the evolution 

of 𝜙 at time 𝑡 + ∆𝑡 

𝜙(𝑡 + ∆𝑡) =  𝜙(𝑡) + −∆𝑡 𝐹|∇ϕ| (2.25) 

 In image processing, the key element of level set method is under the 

definition of 𝜙(𝑡 = 0) and speed function F. Generally, the initial 𝜙(𝑡) is given by a 

coast contour. Value of 𝐹 can be directly obtained from the curvature measurement or 

the edge strength in image. For example, 𝐹 = 1
(1 + |∇𝐺𝜎𝐼|2

⁄ , where 𝐺𝜎 is Gaussian 

filter, with standard derivation of 𝜎.  Figure 2.15 shows an example of level set method 

on CT liver image using initial contour of square. 

 The high computational cost is the most disadvantage of level set 

method. The reason is because the evolution of zero level set is calculated from the 

evolution for all the level set. In order to reducing time consumption, an improvement 

of original level set has been introduced in (Sethian, 1996). In this model, the processing 

of updating the surface at time 𝑡 of zero level set is based on its neighbors. It was also 

known as the “narrow band approach”. 
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Figure 2.15 The result of level set method 

2. 3  Liver segmentation approaches 

One of interesting applications of image segmentation, which have been exten-

sively explored during a few decades in medical field is liver segmentation. Liver is the 

biggest organ in abdomen and plays a vital role as a filter to release impurities from 

blood. Consequently, live is easily to prone to various disease such as hepatitis and 

cancer (N. M. Altarawneh, S. Luo, B. Regan, & G. Tang, 2015). Liver segmentation in 

CT image is crucial and necessary step for disease diagnosis, surgical planning, chem-

ical treatment, 3D liver visualization and volumetric measurement, and treatment. It 

allows radiologist to detect internal structure of human body without opening body. 

Currently, this is one of the most common methods for modelling internal organs in 

abdomen because of the high signal-to-noise ratio, the high resolution, and the consid-

erable cost. The images acquired from a CT scanner, however, also include liver and 

adjacent organs such as stomach, heart, and vessel. Additionally, as a 3D complex struc-

ture, the liver itself is soft and inhomogeneous; the shape and size may be change due 

to pathology; the intensity of surrounding organs is quite similar to liver (E. L. Chen, 

Chung, Chen, Tsai, & Chang, 1998; Y. Chen, Wang, Zhao, & Yang, 2009; Foruzan, 
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Zoroofi, Hori, & Sato, 2009; S. J. Lim, Jeong, & Ho, 2005; R. G. Mohamed, Seada, 

Hamdy, & Mostafa, 2017; Withey & Koles, 2007); in some CT images, the liver may 

lie alternately with other organs and far from main region. This leads to the low accu-

racy segmentation. The manual segmentation process is the golden standard for liver 

segmentation. However, it is tedious, time-consuming, and often performed by radio-

logical specialists who have insights of the shape, location and size of liver; therefore, 

the results totally rely on the experience and skill of these experts. Figure 2.16 illus-

trates some challenges of liver segmentation.  

 

Figure 2.16 Challenges associated with liver segmentation 

(Inhomogeneity of intensity in the liver region (a), fuzzy separation between 

liver and heart (b) and the multi-segments geometry within single slide (c). In addition, 

these cases exhibit different intensity ranges of liver tissue) 

With increasing of the number of CT images and the need of reduction of time 

consumption, the computer-aided segmentation system has been widely used in more 

clinical practices. It handles the tasks with the same accuracy, achieves fast and accurate 

results and supports faster communication. However, there is no the best solution that 

applied for all problems. An overview of recent approaches for liver segmentation can 
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be found in (Gotra et al., 2017; Khan, Ahmed, Kiran, & Adnan, 2016; Luo, Li, & Li, 

2014; Mharib, Ramli, Mashohor, & Mahmood, 2012; F. Mohamed, A. & Viriri, 2017; 

Zaitoun & Aqel, 2015). However, some of the prominent studies are reviewed here. 

They can be divided into groups, including thresholding, region growing, level set – 

deformable model and statistical shape model. More detail of these approaches is pre-

sented in below items. 

2. 3. 1  Thresholding 

 Selver et al (Selver et al., 2008) proposed parallel learning and segment-

ing liver from abdominal CT angiography (CTA). In this work, CTA images were di-

vided into low and high contrast groups. It made use of knowledge on the anatomy of 

kidneys, ribs, and livers, in combination with thresholding technique, to remove irrele-

vant parts and to highlight the region of interest (ROI). K-Means and Multi-Layer Per-

ceptron (MLP) classifiers were subsequently applied to high and low contrast data, re-

spectively, depending on their histogram appearances, based on automatic switching 

mechanism. Heuristic post processing was finally used to remove over-segments, while 

remaining errors may be manually corrected. A prior knowledge of anatomy of liver is 

useful for segmentation. In (Foruzan et al., 2009), authors introduced a multi-step heu-

ristics method using thresholding and anatomy of liver. First, based location of liver 

and intensity of bone, initial boundary was first estimated in largest slice. The histogram 

of liver that has been learned from different datasets was divided into two parts. Then, 

a technique, called by “split thresholding” is employed to find true boundary of liver. 

Several basic image processing methods, such as morphology operator, filter, fill hole, 

smoothing filters, largest connected component, were used to refine the result. Anatomy 

of liver was also used in (Yussof & Burkhardt, 2009) to remove non-liver regions based 
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on 3D-connected component. Anisotropic diffusion method filter was applied to 

smooth image before building histogram of liver image. Liver was then segmented us-

ing thresholding on this histogram. Similar studies were found in (Antonidoss & 

Kaliyamurthie, 2014; Zayane, Jouini, & Mohamed, 2011). In recent research (Avşar & 

Arıca, 2018), Avşar et al proposed a three-stages based  method for liver segmentation. 

Firstly, a bilateral filter was employed to smooth image, then edges were extracted us-

ing gradient operator. Authors introduced two different models to segment images into 

five parts (liver, vertebra, tumor, lining, and others). They are watershed and threshold-

ing. Texture features, such as pixel value, directional derivative, LBP, difference of 

pixel with its neighbors were utilized to classify liver and non-liver. 

2. 3. 2  Region growing 

 Selection of the initial seed point and stop condition are the key factors 

of this approach. Beck et al (Beck & Aurich, 2007) used a graphic user interface tool 

(HepaTux) that enables user to click a seed point voxel on three-dimensions planer view. 

The growth of regions will be stop when the intensity in neighbors significantly differs 

from seed point, otherwise, a voxel will be included into the region. During this process, 

a “virtual knife” can be used to remove over-segmentation. A postprocessing step is 

used to extend the segmentation result by computing a “limited” convex hull. Seed 

points can be automatically specified based on analyzing histogram of intensities of CT 

image (S. S. Kumar, Moni, & Rajeesh, 2011; Ruskó, Bekes, Németh, & Fidrich, 2007). 

In (Ruskó et al., 2007), the upper and lower values of intensity were used to threshold 

in order to build a binary mask. Erosion operator was applied on this mask. Last, the 

largest isolate region at center of liver is considered as initial seed point. Heart was 

separated from liver by constructing curves connecting the bottom of both lung lobes 
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along large gradient values. Tumor and vessel were added to liver region by hole filling 

algorithm. Kumar (S. S. Kumar et al., 2011) estimated seed point based on the range of 

histogram. Lesion in liver was extracted using Fuzzy C Mean (FCM). It differs from 

previous approach, Chen et al (Y. Chen et al., 2009) employed mean and standard der-

ivation of the intensity of previous slice as a condition for stop function, whereas seed 

point was calculated from centroid of liver region of this slice. However, the initial seed 

point was manually selected by user. Basic image processing, such as anisotropic dif-

fusion, morphology, hole filling was also used in denoising image and refining result. 

In (Maklad et al., 2013), a seed point was manually placed on IVC for extracting ab-

dominal blood-vessels (ABV), which was classified into hepatic (HPV) and non-he-

patic (non-HPV) blood-vessels. These vessels were then exploited for liver segmenta-

tion. This method achieved the highest score in its class. However, should any errors 

arise, interventions were required from the user. These included re-selecting the seed 

point, separating kidneys from a liver, untangling HBV from non-HBV, or removing 

IVC at the entry and exit points. While Lu (X. Q. Lu, Wu, Ren, Zhang, & Li, 2014) 

used Quasi-Monte Carlo method for selecting seed and growth of region. The stop func-

tion was given by average gradient using Robert operator. 

2. 3. 3  Contour delineation 

 Contour -based segmentation, including active contour and level set 

method, have been increasingly used in liver segmentation. Additionally, initialization 

of contour is the first and significant step of this technique. Lim et al (S. J. Lim et al., 

2005) explored the prior knowledge of liver, such as position, shape and intensity, fol-

lowed by multiscale morphology operator to search initial boundary. Liver contours 

were classified into three groups based on gradient-label map. The intensity and 
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gradient-map value were utilized to optimize liver contour. Chi et al (Chi, Cashman, 

Bello, & Kitney, 2007) proposed a combinational strategy of rotational template match-

ing, k-mean clustering and gradient vector flow geodesic snake. First, template match-

ing method learned from a training set was integrated with thresholding to automati-

cally find initial contour, followed by edge enhancement process. K-mean clustering 

was then applied to reduce the confusion of the boundary between liver and heart, vessel, 

kidney. Last, the evolution of contour was constrained by Laplacian diffusion of gradi-

ent of intensity and curvature, that are referred as external and interforce of contour. 

Method introduced by Dawant (M Dawant, Li, Lennon, & Li, 2007) required initial 

contour must be specified by user on one slice at middle slice of CT image. However, 

speed function of level set was defined as function of the path of the contour. A group 

of operators, such as thresholding, morphology, region labeling, were employed to pre-

vent the growth of the front to skin and the ribs. Initial contour is also determined by 

integrating of thresholding method on the image of gradient, called by gradient level 

set image and seed point (J. Lee et al., 2007). The ROI of liver was manually selected 

to decrease the computation time. The stop function of level set was derived from the 

curvature diffusion filter. Instead, Wimmer defined a 3-D rough surface that pass 

through some given contours (from 6 to 8 contours, which drawn by user in image-

planes). Both image and shape information, which were used to determine the distance 

between input contour to a current point, were included to the energy function of level 

set. Chartrand’ rough mesh was generated in the same way (Chartrand et al., 2017; 

Chartrand et al., 2014). Template matching was implemented to initialize, whereas La-

placian was applied for segmentation phase. On the contrary, Garamendi (Garamendi, 

Malpica, Martel, & Schiavi, 2007) defined the energy function based on the mean of 
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region of interest (ROI) inside liver, which specified by expert. Then, Chan-Vese’s Al-

gorithm, another version of level set, was employed for segmentation. Li (D. Li, Liu, 

Chen, Li, & Yin, 2014) introduced a method for initializing level set using L1 norm, 

whereas GLCM was employed in refinement step. Yang et al (X. Yang et al., 2014) 

manually initialized a few seed points from specified slices, then fast marching thresh-

old-based level set was applied in these seed points. However, the low contrast between 

foreground and background made it difficult to stop the level set evolution. Addition-

ally, the number of seed point could be normally up to 10–15 points, specified on 4–5 

slices, to sufficiently capture their variations. Another level set -based method by 

(Nuseiba M. Altarawneh, S. Luo, Brian Regan, & Guijin Tang, 2015), built initial con-

tour at the middle slice using a distribution model, which learned from training set, and 

level set method. For other slices, the similarity between distribution of region inside 

contour and prior distribution model, the prior shape information, and previous contour, 

were employed to define energy function for level set. A recent study (Le & Tran, 2018) 

built 3-D surface  using some segmented contours by user. This surface is then used as 

the initial condition for segmenting adjacent slices. Edge information combined with 

region information obtained from 3-D voxel on surface, were used to generated energy 

function for level set in 3-D space. In Hu ’study (Hu, Wu, Peng, Liang, & Kong, 2016), 

initial contour of liver was estimated by the convolutional neural network (CNN) and 

thresholding. Then anatomy of liver and probability map were used to drive initial sur-

face to optimal position. Marcin (Ciecholewski, 2014) constructed 2D liver contour by 

combining both left and right-hand side ones, defined by 5 and 3 polylines, respectively. 

Provided a centroid of an image, a starting point of a contour was first located by com-

paring its intensity with that of lumbar spine section. Subsequent points were iteratively 
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traced on respective polyline, based on their geometric distance to a current point and 

its intensity within discretized ranges. A shortcoming of this method was being depend-

ent on the location of lumbar spine and symmetry of an input image. Additionally, di-

rectly comparing intensities between points on a polyline was sensitive to imaging noise. 

2. 3. 4  Graph based segmentation 

 The main idea of graph - based approach is to define region term and 

boundary term of graph cut (GC). To this end, Beichel (Reinhard Beichel, Bauer, 

Bornik, Sorantin, & Bischof, 2007) defined region term based on the difference be-

tween current voxel and distribution of given see point, whereas boundary term was 

calculated from image gradient, also referred as “surfaceness” measurement. Two re-

finement models include chunk -based refinement and mesh-base refinement were em-

ployed to optimize the segmentation results Another study with same technique also 

can be found in (R. Beichel, Bornik, Bauer, & Sorantin, 2012). Energy function can be 

obtained from the binary image of input image (Yussof & Burkhardt, 2011). First, input 

image was converted to binary mask, after anisotropic diffusion applied. A sequence 

operator of morphology, 3-D and 2-D largest connected component were used to refine 

binary image before GC was performed in it. Peng (Peng et al., 2015) extracted three 

texture features(intensity, LBP, VAR) for building GC energy function. Boundary term 

was calculated from intensity of image, whereas second term was measured by Was-

serstein distance from current pixel to seed point of liver region and seed point of non-

liver region. additionally, balance parameter for energy function was learned from a 

training set. To obtain better appearance of liver, using a seed point selected by user 

Liao (Liao et al., 2016) built both intensity and PCA model that were integrated into 

boundary function of GC. Location of pixel in liver region of previous slice supported 
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for reducing searching space of GC. Bottleneck detection removed segmentation before 

hole filling algorithm was performed. To make automation of proposed technique, 

(Liao et al., 2017) used density peak clustering algorithm to specify seed point. Graph 

cut applied on super-voxel, instead pixel was an approach proposed in (W. Wu, Zhou, 

Wu, & Zhang, 2016). Several image processing methods, such as maximum intensity 

projection (MIP), adaptive thresholding, morphological operator, were used to ex-

tracted liver region in abdominal CT image. Then super voxels of input image were 

generated by simple linear iterative clustering (SLIC). Lastly, Gaussian mixture model 

(GMM) mapped voxels into probabilistic values, which were latter integrated into en-

ergy function. Unlike previous model, Lu et al (F. Lu, Wu, Hu, Peng, & Kong, 2017) 

built probability map using CNN, which trained from some training set. Initial liver was 

first located by CNN model after filtered input image by anisotropic diffusion filter. 

The combination of initial liver and probability map were employed in GC function. 

Huang et al. (Q. Huang, Ding, Wang, & Wang, 2018) divided a CT image into subre-

gions by using K-Mean, computed on an initial slice. A contour was then roughly esti-

mated as that enclosing one with the highest number of pixels. Graph-cut with Gaussian 

parameters and inter-slice gradient being incorporated into region and boundary terms, 

respectively, were applied to assemble small regions. Vena cava was detached by a 

rectangular template. Other over-segments were removed, if they were less overlapped 

with a specified template and their average intensities fell out of a specified range. In-

terior void due to tumor was discarded by concave filling, except, however, those on 

boundary. 
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2. 3. 5  Statistical shape model 

 This approach requires a prior model learned from a training set of land-

marks extracted from shape samples. Principal analysis components were generally 

used to build statistical shape mode (SSM). To do so, Heimamn (Tobias Heimann, 

Meinzer, & Wolf, 2007) employed 20 training volumes of liver to build 3-D model. 

Each model characterized 2500 landmarks was used as SSM for liver segmentation. 

Local search was utilized to find initial parameters for SSM before coming local search 

which deforms mesh to input image. At each interaction, external force which controls 

the moving of a vertex to boundary and internal force which ensures the fitting between 

deformable mesh and SSM, were used to updated vertices based on Lagrangian equa-

tion of motion. Similarly, Kainmuller (Kainmüller, Lange, & Lamecker, 2007) built 

SSM with 7000 landmarks from 102 samples. The initial parameter of SSM was esti-

mated using histogram of region inside liver and the liver after growing 5 voxels, 

whereas the location of liver was given by anatomy of liver. The initial mesh then used 

to input for freeform deformable segmentation procedure. Seghers’ model (Seghers et 

al., 2007) consists 20 samples with 2004 landmarks and 6000 edges that connect two 

landmarks. The initial model was generated based on the affine registration of input 

image to reference image. For each landmark, 100 candidate points that are best 

matched were selected before an optimal strategy was employed to keep only one can-

didate. Alternatively, Saddi (Kinda, Saddi, Rousson, & Cheriet, 2007) generated SSM 

from 50 samples, using sign distance function to present for shape information instead 

of landmark. Pose and shape of liver was estimated by prior shape information based 

on intensity distribution inside or outside of liver before segmentation results were re-

fined by template matching algorithm. Erdt  (Erdt, Steger, Kirschner, & Wesarg, 2010) 
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constrained the initial model, which was built from 220 sample with 3612 landmarks, 

using prior shape information and curvature of model. A four-steps iteration was em-

ployed to deform image to model. The first step was to find a boundary points that best 

matched to current model points. These points were then used to reconstruct new model. 

Third and fourth steps aimed to constrains the free-form deformation and reconstruct 

model. The SSM, included 35 samples (from IR-CAB and MICCAI(T. Heimann et al., 

2009)), was built using Multimodal Prior Appearance Model (MPAM) (Chung & 

Delingette, 2013) instead of PCA. Firstly, intensity profiled extracted from image used 

to build similarity graph, followed by build of Laplacian matrix. Expectation maximi-

zation (EM) was employed on Spectral which given by eigenvector of Laplacian matrix. 

This study used MPAM to model liver. Cheng et al. (X. Chen, Udupa, Bagci, Zhuge, 

& Yao, 2012), proposed a combination of active appearance model (AAM), live wire 

(LW), and graph-cut for learning textual model, recognizing object of interest, and ob-

taining its final clustering, respectively. Similarly, Li et al. (G. Li et al., 2015), imposed 

morphological constraint on an initial boundary for anatomically plausible liver, by 

means of principal component analysis (PCA). Any excessive variations left in unseen 

instances was regulated by deformable GC. Considering pathological cases, Li et al. (X. 

Li et al., 2018) adopted hybrid (2D and 3D) densely connected UNet (referred to as H-

DenseUNet) for segmenting both liver and liver tumor. The 2D DenseUNet was used 

to extract their features within a slice, while 3D DenseUNet allowed learning of spatial 

information between consecutive ones. These DenseUNet models were fused and opti-

mized to obtain final liver and tumor segmentation. Despite relatively high scores in its 

class, these models took 9 hours to converge and 30 hours in total for training. Once 

completed, a new instance could be segmented within 30 to 200 seconds per image. 
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Conclusion  

Unlike MRI, imaging tissue with CT often exhibits ambiguous boundaries be-

tween adjacent organs, due to similar X-ray absorption. Priors on liver shape and size 

could very well offer spatial cue in segmentation. Therefore, several studies exploited 

gradual variation across consecutive slices, covering the anatomical structure 

(Chartrand et al., 2017; Y. Chen et al., 2009; Liao et al., 2017; Liao et al., 2016; W. Wu 

et al., 2016), to improve segmenting accuracy. For instances (Liao et al., 2017; Liao et 

al., 2016) localization from the previous slice was incorporated into the GC energy 

function to limit the search space, during optimization. Meanwhile, spatial information 

gathered from neighboring slices were found exploited to seek suitable seed points (Y. 

Chen et al., 2009), to determine VOI via MIP (W. Wu et al., 2016), or to build a 3D 

model from a user defined contour stack (Chartrand et al., 2017). Depending on the 

amount of user interaction, it is possible to classify mentioned approaches into two 

class: fully automatic and semiautomatic method. It has long been debated whether a 

fully or semi-automatic method is suitable for a given CAD problem.  

Despite several attempts to accelerate the process by automatic seed point se-

lection (S. S. Kumar et al., 2011),(W. Wu et al., 2016),(Liao et al., 2017), if an under-

lying CT image includes multiple regions, its localization may be less accurate or even 

lie completely in non-liver areas (e.g., tumor, or dark object). It was, therefore, pointed 

out in [13] that interactive methods and those based on statistical deformable model 

outperform their automatic counterparts, especially those without prior model. Thus far, 

due to particularly diverse morphology of a liver, universal model would require pro-

hibitively large sample collection for training. On the other hand, with limited known 

liver samples, higher interaction would be required from user’s part. Depending on 
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specific purpose and expected degree of confidence, care must be observed when bal-

ancing these requirements and devising a liver segmentation scheme. Previous studies 

have attempted liver segmenting methods, implemented on various medical systems. It 

was generally perceived that those with higher degree of user interaction involved out-

performs their counterparts, inevitably at a cost of greater time consuming and endeavor 

required. Beichel’s study, for example, reach to score of 82/100 with time consumption 

of 36 minute and high degree of user interaction (T. Heimann et al., 2009). Maklab’s 

work (Maklad et al., 2013) obtained high score in the leaderboard, but user may be 

asked to fix some errors during process. It has been mentioned in (T. Heimann et al., 

2009) that, the higher of user interaction, the better of segmentation result. On the other 

hand, improving segmenting accuracy of fully automatic liver extraction often relied 

on supervised machine learning (ML) strategies and expert systems that required model 

training, and thus large amount of data, which is not always available. As can be seen 

in Kainmuller’s method, 112 samples with 7000 landmarks were required for building 

SSM model. Li’s research (X. Li et al., 2018) reached to highest score in comparing to 

others. However, this system required 131 samples for training the model, and took 30 

hours for training and 30-200 second for evaluating an image. Inspired by the dilemma, 

this study considered the balance between segmenting accuracy and user interaction, 

suitable for typical clinical setting with limited domain of experts. It proposes a semi-

automatic liver segmentation from 3D CT images.  
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2. 4  3-D representation and pre-processing 

2. 4. 1  Volumetric data 

 Image data acquired from CT or MRI scan are usually stacked as a set 

of 2-D images, also called as volume grid. A volume gird is a regular grid with a number 

of volume pixels (called by voxel) ordered in a regular pattern. In contrast to a vertex 

on polygon, voxels themselves are not associated with information regarding their po-

sitions (coordinate), instead, they are often 3-D scalar values which correspond to pixel 

values in 2-D image (e.g., the intensity). The location of a voxel can be designated from 

positions relative of surrounding voxels. Volume data contains either surface or internal 

structure that overlaid by voxels at surface. An example of 3-D volume data is illus-

trated in Figure 2.17.  

 

Figure 2.17 The 18 voxels of scalar values composed from 3 slices. 

2. 4. 2  Volumetric visualization 

 Volumetric visualization is a process for generating a 2-D graphical 

presentation of a 3-D volume data. It is useful in many applications, particularly in 
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medical field. Volume described by voxels can be visualized by various techniques, 

such as multiplanar rendering, surface rendering (contour-based surface reconstruction, 

isosurface extraction based on marching cube), volume rendering (ray casting, shear 

warp factorization and splatting) (Kaufman, 2003; T. S. Kumar & Vijai, 2012). Both 

benefits and drawbacks of each technique will be discussed in next item. 

2.4.2.1  Multi planar visualization 

 This is a simple method used to visualize structure of an object 

by a combination of planes across volume data at a specified intersection line. There is 

no constrain on the number of planes required in this method. The output of this method 

is a 2-D presentation and the amount of information depend on the number of planes. 

Usually, there are three planes, include axial, coronal and sagittal which provide infor-

mation of width, height, depth of an object in 3-D space (as seen in Figure 2.18). It 

enables surgeons to locate tumor inside liver as well as relationship of tumor with sur-

rounding tissues. The most important advantage of multi planar visualization is the sim-

plicity and efficient execution time. However, the fully 3-D structure of object cannot 

be presented by using a few planes.  

 

Figure 2.18 Multiplanar visualization of liver 
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2.4.2.2  Surface rendering 

 Surface rendering is invoked to techniques used to generate a 

3-D presentation of an object, based on associated geometric information, such as ver-

tex, edge, triangle, polygonal mesh. Its objective is to define an approximated surface 

contains within volumetric data based on interpolation. There are two most popular 

techniques for building surface of volumetric image from medical image, i.e., contours 

based – surface reconstruction and iso-surface reconstruction (T. S. Kumar & Vijai, 

2012). 

 Contour-based reconstruction is a technique based connecting 

of 2-D parallel contour extracted from each slice in a volume to generate a 3-D surface 

of volumetric data. The reconstruction of 3-D surface using a set of iso-contour has to 

address three main issues, including the valid connection between a contour with its 

neighbors (how to connect vertices between contours), creating a set of triangles from 

edges, and the branching problem calls for a serious attempt when the numbers of con-

tours in each plane are different (D. S. Wang, Hassan, Morgan, & Weatherill, 2006). 

This technique is divided into sub-categories, including contour stitching method and 

field-based method (Nilsson, Breen, & Museth, 2005). 

 The second technique generates 3-D surface based on the con-

struction of polygon mesh of an iso-surface with predefined threshold. To this end, each 

voxel on rectangle grid, usually presented by a scalar value, will match to fixed thresh-

old (𝑇). Assume 𝑣 is value of a voxel on grid, 𝑃(𝑣, 𝑇) is a binary function, where 

𝑣, 𝑇 ∈ 𝑅2. Voxel 𝑖𝑡ℎ is inside surface if 𝑃(𝑣𝑖, 𝑇)=1, otherwise, this voxel is outside sur-

face. A surface can be implicit defined as a set of faces formed intersection points be-

tween internal and external voxels. A surface is considered as an iso-surface if 𝑇 is 
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applied for entire volume data, T is called by iso-value. Among methods for extracting 

of iso-surface from volumetric data, Marching Cubes, introduced in (Lorensen & Cline, 

1987), have been widely used in medical applications. A detail description of the tech-

nique will be given in section 2. 4. 4. 

2.4.2.3  Volumetric rendering 

 Volumetric rendering is a set of methods for visualizing vol-

ume data without imposing any geometric structure of data. It differs from iso-surface 

rendering technique, which generates a hard surface based on iso-value. This technique 

allows one to observe internal structure by a combination of setting up a camera and 

the opacity and color of each voxel. Volume rendering technique can be categorized 

into four sub-methods: ray-casting, resampling or shear-warp factorization, texture slic-

ing, and splatting (McReynolds & Blythe, 2005). However, the most disadvantage of 

volumetric rendering-based visualization is complexity. Regarding liver segmentation 

task, to have a better of visualization of 3-D anatomy of liver, vascular systems and 

tumor should be independently segmented by another process. By using segmentation 

result, liver and its components are clearly visualized and processed. 

2. 4. 3 Three-dimensional file format 

 Three-dimensional model can be used for visualization, printed out and 

store in computer under a document. In order ensure the consistency between systems 

used to create or present 3-D models, there exist many file formats designed for gener-

ating and storing them. They are different in the way of structure elements of a 3-D 

object, such as datatype, list of vertices, edges, faces, color normal, topology and others. 

Most 3-D visualization tools support a conversion between file formats. Some of them 
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are Stereo Lithography (STL), Polygon File Format or the Stanford Triangle Format 

(PLY) and Visualization Toolkit (VTK) file format. 

 Stereo lithography 

 Created by 3D systems (https://www.3dsystems.com/) in 1988. This file 

format is useful for rapid prototyping, 3D printing and computer-aided manufacturing. 

It allows one to present the surface geometric of 3-D object by vertices, normal and 

face. The color presentation of object is not included in this type of file format. Content 

of file can be given either in ASCII or binary format. 

 Polygon File Format 

 Polygon File Format is designed by Stanford graphics lab in the mid-

90s. It is used to described 3-D data obtained from a scanner. This file format can either 

present topology of 3-D object, such as datatype, list or vertices, edges, faces, normal, 

texture coordinate or color of vertices, color of face in ASCII or binary format. 

 Visualization Toolkit file format 

 This file format is introduced by Visualization Toolkit (https://vtk.org/). 

It is divided into two sub-formats, include serial format that easy for reading/writing 

data in file by hand and programmatically, XML format that optimize for random ac-

cessing and compressing. VTK file format supports both ASCII and binary type. 

 The ASCII format presents data by ASCII characters which is conven-

ient to read or write by human. However, to reduce file size and increase reading/writ-

ing speed, it is recommended to use binary format. There are many 3-D visualization 

tools available that support most file formats under ASCII or binary format, such as 

Meshlab (http://www.meshlab.net/), Paraview (https://www.paraview.org/), 

https://www.3dsystems.com/
https://vtk.org/
http://www.meshlab.net/
https://www.paraview.org/
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PointCloud (http://pointclouds.org/), .etc. They are open source and cross-platform 

tools that can be used for research purpose and application. 

2. 4. 4  Marching cubes 

 Marching Cube has been widely used in medical applications for volume 

rendering from CT or MRI images. It allows one to create a 3-D surface of the high 

resolution by triangular mesh. The process of marching cube begins from dividing vol-

ume data into discrete cubes. Each cube in the grid is presented by 8-vertices which 

correspond to voxels. By using a binary function, a vertex of cube can either inside or 

outside a surface. Thus, there are 28 of cases that a surface pass through a cube. Due to 

the symmetric property of cube, the number of cases reduced to 15 unique configura-

tions, as showed in Figure 2.19. 

 

Figure 2.19 Fifteen unique configurations of marching cube 

 (The orange circles on cubes present for voxels inside surface. (Image 

downloaded from source and edited by adding numbers: https://en.wikipe-

dia.org/wiki/Marching_cubes, accessed on 20/5/2021)). 

 In order to manage the above cases, an 8-bits number (also considered 

as cube-index) is used as a lookup value, where each bit in sequence number will 
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http://pointclouds.org/),%20.etc
https://en.wikipedia.org/wiki/Marching_cubes
https://en.wikipedia.org/wiki/Marching_cubes
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correspond to a state (inside or outside) of a vertex. Additionally, each configuration 

will form a set of different edges and triangles. By using cube-index, one can determine 

list of edges as well as triangles based on lookup edge-by-cube -index table and trian-

gle-by-cube-index table. Figure 2.20 illustrate building cube-index, edge, and triangle 

lookup table for one configuration of marching cube. 

  

Figure 2.20 An example of build marching cube for configuration 4 

 Assume that the index of vertices on a cube are given by Figure 2.20, 

the cube-index for this configuration can be written as a sequence of follow binary 

number 00010010. Two-bit value of one mean 3𝑡ℎ and 6𝑡ℎ vertices inside surface, oth-

ers outside vertices are set to zero. Edge indices fixed to each vertex can be numbered 

as a 12-bits number, each bit indicates whether an edge to be processed or ignored. 

Similarly, a triangle is generated from vertices by cube-index. For example, edge index 

and table index of two vertices in Figure 2.20 are given by: 

𝑒𝑑𝑔𝑒𝑇𝑎𝑏𝑙𝑒[00010010]  =  110001101100  

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑡𝑎𝑏𝑙𝑒[00010010] = {2,3,11,10,6,5,−1,−1,−1,−1,−1,− 1,−1,−1,−1,−1} 

 Let 𝑇 be iso-value to be used to build 3-D isosurface, the intersection 

point 𝑃 between 𝑃1 and 𝑃2 are computed through linear interpolation as follow 
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𝑃𝑥 = 𝑃1𝑥

|𝑇 − 𝑣2|

|𝑣2 − 𝑣1|
+ 𝑃2𝑥

|𝑇 − 𝑣1|

|𝑣2 − 𝑣1|
 

𝑃𝑦 = 𝑃1𝑦

|𝑇 − 𝑣2|

|𝑣2 − 𝑣1|
+ 𝑃2𝑦

|𝑇 − 𝑣1|

|𝑣2 − 𝑣1|
 

𝑃𝑧 = 𝑃1𝑧

|𝑇 − 𝑣2|

|𝑣2 − 𝑣1|
+ 𝑃2𝑧

|𝑇 − 𝑣1|

|𝑣2 − 𝑣1|
 

(2.26) 

where 𝑣𝑖 is the scalar value associated vertex 𝑖 on volumetric data; |. | is absolute value. 

 To maintain realistic visualization of 3-D object, the normal vector of 

each triangle face can by calculated from its three vertices (𝑃1, 𝑃2, 𝑃3) as the equation: 

�⃗⃗� = �⃗⃗� × �⃗�  (2.27) 

where “× " is cross product operator, 𝑈 = 𝑃2 − 𝑃1 and V= 𝑃3 − 𝑃1. Figure 2.21 illus-

trates for calculation of intersection point and normal vector. 

    

Figure 2.21 The intersection point and normal vector 

 The segmentation results from previous step are store as a binary volume, 

each slice in volume is presented a binary image ordered as in original, the object 
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regions are set the value of 1, whereas the background is set to 0. The size of pixel in 

each image and slice thickness are well-known. The 3-D surface of liver is recon-

structed by Marching cube method with iso-value of 0.5. 

2. 4. 5  Mesh smoothing 

 Due the large thickness between slices in CT or MRI images, to produce 

a faithful 3-D model of liver, reconstructed surface should be smoothed. The problem 

of mesh smoothing invokes to address two properties, denoising and anti-shrinking. 

This section introduces some techniques used for smoothing surface. 

 Let 𝑆 be a mesh surface and 𝑣𝑖 be a vertex on 𝑆; 𝑁𝑖 be a neighbour of 𝑣𝑖, 

such that for each 𝑣𝑗  in 𝑁𝑖, there exist an edge directly connect between 𝑣𝑖 and 𝑣𝑗 . It is 

pointed out that, the smoothing of a surface can be controlled by the diffusion equation 

as follow 

𝜕𝑋

𝜕𝑡
= 𝛼∆2𝑋 (2.28) 

where ∆2 is the Laplacian operator on 𝑋; 𝛼, a small positive number, is used to control 

speed of smoothing. The linear approximation of Laplacian on a vertex 𝑣𝑖  of a mesh, 

also called by umbrella operator, is given by the following equation: 

𝑈(𝑣𝑖) =
1

∑ 𝜔𝑗𝑗
∑ 𝜔𝑗(𝑣𝑗 − 𝑣𝑖)

𝑗∈𝑁𝑖

 (2.29) 

where 𝜔𝑗  is the positive weight; 𝑣𝑗  is the neighbor of 𝑣𝑖 . If 𝜔𝑗 = ‖𝑣𝑗 − 𝑣𝑖‖
−1

, then 

(2.30) is referred as scale-dependent smoothing or Fujiwara smoothing.  

The updating process applied for 𝑋 is computed by: 
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𝑋𝑡+1 = 𝑋𝑡 +  𝛼𝑈(𝑋𝑡) 
(2.30) 

 However, the applying of (2.30) for smoothing leads to shrinkage on sur-

face. It is because the same weight is applied for all neighbours of 𝑣𝑖. To solve this prob-

lem, Taubin (Taubin, 1999) has proposed a new method that uses two coefficients. One 

is to control the shrinkage, and the other is used to inflate the mesh (Zhao & Xu, 2006). 

This technique was based upon explicit Laplacian. The advantages of this model are the 

eliminating shrinkage effects. It performs in linear time and consumes linear memory. 

However, the reducing of time step leads to the increasing of the number of computations. 

 Instead of using Laplacian from diffusion equation, Desbrun (Desbrun, 

Meyer, Schröder, & Barr, 1999) et al used the mean curvature flow for updating mesh 

in smoothing procedure. It used implicit Laplacian technique. The calculating of mean 

curvature was given in (Meyer, Desbrun, Schröder, & Barr, 2003). 

 Each vertex 𝑣(𝑥, 𝑦, 𝑧) on 3-D surface 𝑆 can locally be approximated by 

a tangent plane. Planes contain normal vector are call by planes of principal curvatures/ 

normal planes. The intersection between normal plane corresponding to direction 𝜃 and 

surface forms a curve. Then the curvature of this curve is referred as the normal curva-

ture 𝑘𝑁(𝜃). Let �⃗�  be the normal vector at that point; 𝑘1, 𝑘2 be the maximum and mini-

mum curvature once normal plane rotates around normal vector (see in Figure 2.22). 

The mean curvature is defined by 
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Figure 2.22 Tangent planes, and directions of principal curvatures 

 (Image source: https://en.wikipedia.org/wiki/Curvature, accessed on 

20/5/2021)). 

𝑘𝐻 =
1

2𝜋
∫ 𝑘𝑁(𝜃)𝑑𝜃

2𝜋

0
=

1

2𝜋
∫ (𝑘1𝑐𝑜𝑠

2(𝜃) + 𝑘1𝑠𝑖𝑛
2(𝜃))𝑑𝜃

2𝜋

0
  (2.31) 

 Euler’s theorem stated that the mean curvature can also be computed an 

average of principal curvatures, i.e., 

𝑘𝐻 =
𝑘1+𝑘2

2
  (2.32) 

 Let 𝐴 be the area of small region around; 𝑑𝑖𝑎𝑚(𝐴) be its diameter; ∇𝐴 

be the gradient operator of 𝐴 respect to (𝑥, 𝑦, 𝑧), then mean curvature is calculated by  

2𝑘𝐻�⃗� = lim
𝑑𝑖𝑎𝑚(𝐴)

∇𝐴

𝐴
 (2.33) 

https://en.wikipedia.org/wiki/Curvature
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 Meyer has proposed the equation for computing mean curvature at point 

𝑣𝑖 on surface 𝑆 as following equation: 

2𝑘𝐻�⃗� =
1

2𝐴
∑(cot 𝛼𝑖𝑗 +cot 𝛽𝑖𝑗)(𝑣𝑖 − 𝑣𝑗)

𝑗∈𝑁𝑖

 (2.34) 

where 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are determined as Figure 2.23. 

 

Figure 2.23 The neighbour of a vertex and inter-angles 

 Let 𝐾 = 𝑘𝐻�⃗� ,the updating for mesh is based on solving the following 

linear system (Desbrun et al., 1999)  

(𝐼 − 𝛼𝑑𝑡𝐾)𝑋𝑛+1 = 𝑋𝑛 (2.35) 

2. 5  Functional segmentation for preoperative liver  

Liver resection has shown great outcomes in therapeutic intervention of various 

hepatic diseases. For example, patients suffered from hepatocellular carcinoma, mass-

forming cholangiocarcinoma, and hepatic metastasis, have significantly improved 

prognosis, after underwent the procedure. Nonetheless, its success particularly depends 

on preoperative assessment of liver volume. When making surgical decision, care must 
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be taken to ensure that remaining liver is adequate to maintain its normal function, oth-

erwise the patient would be put at great risks of liver failure. A number of techniques 

have been proposed to determine postoperative liver sufficiency. In particular, future 

liver remnant volume (FLRV) can be estimated and employed as standardized determi-

nant of postoperative outcome. Research by Kishi (Kishi et al., 2009) and Abdalla 

(Eddie K. Abdalla, Barnett, Doherty, Curley, & Vauthey, 2002) et al., reported that this 

ratio correlates well with risks of liver failure, morbidity, and death. Resection has also 

been found operated on both donors and recipients in liver transplantation, for treating 

a patient with chronic liver diseases. In this surgical procedure, the size of a transplanted 

liver must fit to that of the recipient body. As general criterion, the graft weight (GW) 

threshold must be 0.8-1.0% (Ben-Haim et al., 2001) (or 0.6-1.2 (S. Breitenstein et al., 

2009; Clavien et al., 2010; Clavien et al., 2007; Gotra et al., 2017; Ribero et al., 2007)) 

of recipient’s weight. On the other hand, postoperative complications are likely when 

the ratio exceeds 4.0% (Akdur et al., 2015; Allard et al., 2017), or falls below 0.8%. GF 

percentage is also applied in other contexts, e.g., preoperative portal vein embolization 

and post-transplantation assessment of graft regeneration, etc. 

Traditionally, estimation of liver volume and functional segmentation were 

done manually on preoperative imaging, such as computed tomography (CT) (M. C. 

Lim, Tan, Cai, Zheng, & Kow, 2014). Hand delineation of anatomical structure on 

medical images is tedious, time consuming, and prone to inter- and intra-observer var-

iability (Keegan et al., 2004). Therefore, developing automated computer software to 

assist the maneuver could be beneficial in clinical usages. 

Liver functions as an active filter by excreting wastes and toxin from oxygen 

and nutrition from the gastrointestinal circulatory system to the kidneys (Vekemans & 
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Braet, 2005). Contacting with excessive toxin carried via portal vein (PV) usually 

causes liver diseases, such as cirrhosis, fibrosis, and cancer. Unlike some other ab-

dominal organs, a deteriorated liver cannot be substituted by any artificial prosthesis, 

but graft and regeneration of liver remnant. It is well received that a crucial part in 

successful clinical diagnosis, surgical planning, preoperative resection, and postopera-

tive monitoring is played by understanding of subject specific functional structure of 

the liver and major hepatic vasculature.  

As the standardized language among radiologists and surgeons, external shape of 

a liver is divided into two hemi-livers, i.e., left, and right lobes, by hepatic vein (HV). 

Anatomically, Couinaud’s work indicated that a liver comprises of eight functionally in-

dependent segments, each of which has its own vascular in- and out-flow, biliary drainage, 

and lymphatic drainage (Couinaud, 1999; Jones, 2018). With Couinaud’s scheme, the 

subdivisions are based on the distribution of the two internal venous systems, i.e., three 

HVs and two PVs. Particularly, the right (RHV), middle (MHV) and left (LHV) hepatic 

veins divided a liver into the right posterior, right anterior, left medial and left lateral 

sections, respectively. These segments are further separated into interior and superior 

parts, by the left (LPV) and right (RPV) portal veins. Eight functional segments of a liver 

are labelled accordingly as follow: The anterosuperior and posteroinferior sectors of the 

right lobes which contain the segments V, VI, VII, and VIII are demarcated by RHV. 

This plane runs from inferior vena cava (IVC) to the gallbladder fossa, also called 

Cantlie’s line. The falciform ligament separates the left lobe into media (the segment IV) 

and lateral parts (the segments II and III). Finally, the segment I, also referred to as cau-

date, is bounded posterior laterally by the fossa for the inferior vena cava, anteriorly by 

the ligamentum venosum, and inferiorly by porta hepatis. 
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Generally, functional comprehension and corresponding classification enable 

successful surgical procedures, such as accurate removal of only damaged section with-

out causing risks to healthy ones. As such, with self-recovery, an operated liver may be 

able to regenerate within 3-12 months after a major resection surgery (M. F. Chen et 

al., 1991). 

With the recent advances in computerized translational medicine, especially 

computer assisted diagnosis (CAD) and intervention (CAI), a number of methods were 

proposed to reduce time consuming and tedious traditional preoperative planning by 

means of anatomical models and virtual reality (Lamade et al., 2000; Oshiro & 

Ohkohchi, 2017; Reitinger et al., 2006; Yeo et al., 2018). Thus far, existing techniques 

remained yet to be enhanced. Therefore, this work proposes a novel method that is able 

to localize the hepatic vascular networks more accurately and efficiently, and to effec-

tively delineate all functional segments (I-VIII) of a liver on its reconstructed 3D sur-

face, prior to resection surgery. These are in order to better reduce adverse effects on 

patients and complications, thus extending their life expectancy. 

A liver, extracted from 3D tomography, may be described by either a set of 

binary interior voxels (ℝ3) or a 2-manifold (ℝ2) of enclosing ones. Accordingly, clas-

sifying its element into one of Couinaud’s segments can be categorized, by these 3D 

descriptors, into those based on geometric functions on the respective domains, i.e., 

voxel and surface-based approaches. Reviews on the state-of-the-art liver functional 

segmentation are made in the next subsections. 

2. 5. 1 Voxel-based approach 

 With this approach, liver voxels are assigned to these segments based on 

the distances between their locations to a specific branch in the venous network. For 
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example, Selle et al. (Selle, Preim, Schenk, & Peitgen, 2002), determined memberships 

of a segment, in reference to LPV and RPV. Therein, region growing was first applied 

to find a suitable threshold to extract the hepatic vascular network from the images. 

Thinning algorithm was then applied to skeletonize the extracted vessels, to define the 

network geometry, from which a vascular tree was created. After having HV removed 

from this tree using directed graph, a voxel was labelled by Laplacian (LSA) or nearest 

neighbor (NNSA) segment approximation. Nevertheless, computing the Laplacian on 

a voxel domain was intensive. A simpler and more straightforward method was pro-

posed by Huang et al. (S.-h. Huang et al., 2008), where both vessels and liver itself were 

projected onto planes. Firstly, three principal vectors were each defined by the intersec-

tion of the three major HV branches and the nearest point along the respective one. On 

labeling segments on both hemi-livers, two additional planes were each defined by sep-

arate normal vector. The one on the left plane was the average of the three principal 

vectors, while the right one was that of MHV and RHV. Evidently, vessel extraction 

was the key element in both methods. Yang, et al. (X. Yang, Yang, Hwang, et al., 2018) 

improved over Selle’s one. In Yang’s work, region growing was similarly applied to 

intensity images, but up to six Gaussian mixture models (GMM) were estimated. 

Among these GMM, the most suitable threshold interval was chosen to extract venous 

tree, whose major branches were then identified by using local searching. Couinaud 

segments of the liver were finally labelled following (Selle et al., 2002). In addition to 

categorical search, Voronoi algorithm was adopted by Debarba (Debarba, Zanchet, 

Fracaro, Maciel, & Kalil, 2010) and Chen (Y. Chen, Yue, Zhong, & Wang, 2016), et 

al., to classify voxels with their segments. Their difference was in calculating a Voronoi 

diagram. The first method used the distance from a voxel to seed points, handpicked on 
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HV and PV, whereas the other considered only PV, when building eight vascular trees, 

from which distances to each voxel were measured. Zhang et al. (Zhang, Fan, Wan, & 

Liu, 2017), adopted similar strategy, but focused on enhancing vessel segmentations. 

2. 5. 2 Surface-based approach 

 Unlike voxel-based ones, methods in this group classify hepatic seg-

ments directly on a reconstructed 3D liver surface, by various geometric elements, 

mostly ordinary planes. Similar to the previous approach, however, these elements were 

typically derived from main vascular branches. As one of a few exceptions, Boltcheva 

et al. (Boltcheva et al., 2006) defined Couinaud’s regions based on six landmarks, au-

tomatically detected on a liver, instead of its vascular network. Differential geometry 

was employed to detect two points on vena cava, two others on gallbladder bed, and 

two more points on inferior liver border of the left lobe. Five planes were constructed 

from these points and finally used to separate the liver volume. In other similar works, 

a liver was separated by using four (Oliveira, Feitosa, & Correia, 2008) and three 

(Butdee, Pluempitiwiriyawej, & Tanpowpong, 2017) planes. The former fitted the 

planes to three major HVs and PV, while the latter defined the planes from seven man-

ually specified points on RHV, MHV, and LHV. In (Butdee et al., 2017), superior and 

inferior regions were divided by another plane on an imaging slice, where PV was most 

visible. On this plane, caudate lobe was also cut by a Bézier curve, whose four control 

points were manually defined by a user. Specifying these landmarks on a liver is, how-

ever, subjective, and dependent on user’s experience. More consistent approach is to 

do so on salient features, e.g., those on main vascular networks. Provided skeletonized 

HVs and PV, but with their small branches removed, Lebre et al. (Lebre et al., 2019) 

computed four corresponding directional vectors. The first three vectors originated 
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from HV root and pointed along respective hepatic veins, within close proximity to 

their root. The last one was computed from the longest chain of vertical points along Z-

axis. Liver subdividing planes were created from these vectors. Instead of cutting a liver 

by planes, some studies performed subdivision directly on an extracted liver surface 

into patches, corresponding to Couinaud’s regions. For instance, Pamulapati et al. 

(Pamulapati, Venkatesan, Wood, & Linguraru, 2011) first segmented hepatic vessels, 

from which undirected graph was then built, by using GC and skeletonization, respec-

tively. Vessel sections were labelled with either RHV, MHV, LHV, PV, or RPV, de-

pending on their positions and orientations. Surface patches were traced from root to 

ends, via respective branching points in the sub-trees. Much straightforward interactive 

method was proposed by Rusko et al. (Rusko, Mateka, & Kriston, 2013), where B-

spline surfaces were interpolated from user defined control points on 2D slices. These 

control points were placed on the venous traces, provided that: 1) Each surface must be 

interpolated by at least three traces, each of which contained at least three points. 2) 

There was no self-intersection in any trace. 3) The view on which a trace was drawn 

must be consistent, i.e., either axial, coronal, or sagittal. In 2020, the most recent study 

by Alirr and Rahni (Alirr & Abd Rahni, 2020), connected the vena cava with HV cen-

terlines, defined on individual slices, to build three hepatic planes, while the portal 

plane was defined by a selected image slice. Therein, the veins bifurcations were lo-

cated by deforming statistically trained atlas to match extracted vasculature on CT im-

ages. 

2. 5. 3 Summary of latest algorithms 

 Some remarks may be drawn from the above surveys. The methods in 

the former group (Y. Chen et al., 2016; Debarba et al., 2010; S.-h. Huang et al., 2008; 
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Selle et al., 2002; X. Yang, Yang, Hwang, et al., 2018; Zhang et al., 2017) partitioned 

a liver based on membership values associated with interior voxels. Thus, their major 

hinderance was evaluation of membership function for each voxel with respect to rel-

evant features, such as vascular structures, was computationally intensive. In addition, 

no topological violation of any resulted segment was asserted either on individual 

voxels or their aggregation. Nor did they consider exterior anatomical landmarks, 

such as falciform ligament and gallbladder fossa, or liver appearance in general (Selle 

et al., 2002). Although Zhang et al. (Zhang et al., 2017) specifically followed 

Couinaud’s theory, but their empirical assumptions on vasculature were not adequate 

to completely avoid post-process correction by an expert. With much less data in-

volved, when only extracted liver surface and vascular outlines were considered, even 

greater user interaction was inevitable for methods in the second group (Boltcheva et 

al., 2006; Butdee et al., 2017; Lebre et al., 2019; Oliveira et al., 2008; Pamulapati et 

al., 2011; Rusko et al., 2013). Take Butdee’s and Rusko’s method (Butdee et al., 2017) 

(Rusko et al., 2013) for examples. Segmenting required at least ten user defined points, 

and at least three traces, each with at least three points, for creating sectional planes 

and B-spline surfaces, respectively. These subjective processes caused not only fa-

tigue during batch analyses, but also significant observer variability. A deformable 

statistical atlas [28] could help elevating manual intervention, provided that suffi-

ciently large training set was available. Unlike other methods in its group, the one, 

suggested by Boltcheva et al. (Boltcheva et al., 2006), relied solely on the shape of 

liver, while neglecting its interior vasculature. Lastly, most of works in both groups, 

except (Boltcheva et al., 2006; Butdee et al., 2017; Y. Chen et al., 2016; Zhang et al., 

2017), did not report any annotation of caudate lobe (segment I). 
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2. 6  Mesh parameterization 

The 3-D liver surface reconstructed by Marching Cube contains a large number 

of triangular meshes. It provides a detail of 3-D liver model that is useful for diagnostic 

and surgical operation. Generally, the resolution of 3-D liver model depends on the 

number of slices captured by the scanner, i.e., a volumetric data of 394 slices can ap-

proximately produce a mesh of 250k vertices and 500k triangles. Such a mesh is noto-

riously expensive to process, store, render and real-time simulation. Mesh parameteri-

zation offers a simple and efficient approach to dealing these drawbacks. 

The parameterization of a mesh is considered as determining a bijective, uni-

form mapping to map a given mesh in a domain into suitable domain, i.e., unit sphere. 

The mapping must contain two characteristics, minimization of the distortions and 

preservation of area (Brechbuehler, Gerig, & Kuebler, 1992). Mesh parametrization 

have been used in numerous applications of image processing, such as texture mapping, 

mesh completion, mesh compression, mesh editing, surface fitting, morphing (Rose, 

Praun, & Sheffer, 2006). In medical imaging, it is useful in analyzing and comparing 

biological materials, such as the brain, carotid artery and hippocampus (Pui Tung Choi, 

2016), and the modeling of muscles, such as those of the levator ani (S.-L. Lee, 

Horkaew, Darzi, & Yang, 2004) and face (Qian, Su, Zhang, & Li, 2018; Yueh, Gu, Lin, 

Wu, & Yau, 2015).  Base on the technique that is used to minimize distortion on para-

metric domain, the mapping can be classified four groups  (Floater & Hormann, 2005), 

including planar mapping (ignore all distortion), conformal mapping (minimize angle 

distortion), equiareal mapping (minimize area distortion) and isometric mapping (min-

imize a combination of angle and area distortion). Among of these approaches, the con-

formal spherical mapping has been established as a convenient method to retain local 
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geometric information when mapping a genus zero surface to spherical domain (Gu, 

Wang, Chan, Thompson, & Yau, 2004; Y. Wang, Gu, Chan, Thompson, & Yau, 2004). 

It has been commonly accepted that conformal mapping minimizes the angular distor-

tion of surface elements, and thus their geometrical formation (Gu et al., 2004; Y. Wang 

et al., 2004). It has been demonstrated elsewhere (Gu et al., 2004; Y. Wang et al., 2004) 

that, when provided with a mesh with specified topology, it can be mapped onto a struc-

ture with the same diffeomorphism, regardless of its geometry. 

To obtain the SCM of a mesh (Gu et al., 2004; Y. Wang et al., 2004), the Gauss 

map is firstly calculated and used as the input for Tuette map. The conformal spherical 

map is built using the Tuette map. Given a genus zero mesh 𝑀, and a normal vector 

�⃗� (𝑣) at each vertex 𝑣 on 𝑀. A Gauss map 𝑁:𝑀 → 𝑆2 is defined as  

𝑁(𝑣) = �⃗� (𝑣) (2.36) 

Let (𝐾, 𝑓) be a mesh defined on a simplicial complex 𝐾, and 𝑓 be a function 

which embed |𝐾| in 𝑅3, 𝑓: |𝐾| → 𝑅3, 𝑓  denoted for the vector value function; 𝑢, 𝑣 be 

vertices. All piecewise linear functions 𝑓 defined on 𝐾 form a linear space, denoted by 

𝐶∆. The string energy for each edge {𝑢, 𝑣} is presented by 

𝐸(𝑓) =< 𝑓, 𝑓 > = ∑ 𝑘𝑢,𝑣

{𝑢,𝑣}∈𝐾

(𝑓(𝑢) − 𝑓(𝑣))2 (2.37) 

where 𝑘𝑢,𝑣 is the string constanst. Suppose 𝑇𝛼, 𝑇𝛽 are two faces shared the same edge, 

with 𝑇𝛼 = {𝑣1, 𝑣2, 𝑣3}, define the parameters, 
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𝑎𝑣1,𝑣2
𝛼 =

1

2

(𝑣1 − 𝑣3). (𝑣2 − 𝑣3)

|(𝑣1 − 𝑣3) × (𝑣2 − 𝑣3)|
 

𝑎𝑣2,𝑣3
𝛼 =

1

2

(𝑣2 − 𝑣1). (𝑣3 − 𝑣1)

|(𝑣2 − 𝑣1) × (𝑣3 − 𝑣1)|
 

𝑎𝑣3,𝑣1
𝛼 =

1

2

(𝑣3 − 𝑣2). (𝑣1 − 𝑣1)

|(𝑣3 − 𝑣2) × (𝑣1 − 𝑣2)|
 

(2.38) 

𝑇𝛽 is defined similarly. If 𝑘𝑢,𝑣 = 𝑎𝑢,𝑣
𝛼 + 𝑎𝑢,𝑣

𝛽
, the string energy is called by the harmony 

energy. In the trivial case, 𝑘𝑢,𝑣 = 1, the string energy is known as Tuette energy. These 

processes are described in (Gu et al., 2004; Y. Wang et al., 2004). 

Parameterization has many applications in different fields, such as computer 

graphics, medical image analysis, and computational biology (Shen & Chung, 2006). 

In computing, it is useful for several applications, such as texture mapping, smoothing, 

morphing, compression, and so on (Ying Li, Yang, & Deng, 2006). Mesh parameteri-

zation associated with spherical harmonics is used in mesh resampling as well as com-

paring between models (Y. Wang et al., 2004). In this study, parametric mesh is per-

formed to map 3-D liver surface to spherical domain, then spherical harmonics is ap-

plied to resample this model.  

However, particularly for anatomical shapes, a conformal mapping between two 

genus-0 surfaces is not unique but forms a Möbius group. Moreover, the alignment of 

their salient features is not necessarily guaranteed. To resolve this uncertainty, optimized 

Möbius transformation by explicit landmark matching or by modified mesh energy func-

tion was proposed (Lui, Wang, Chan, & Thompson, 2007; Y. Wang, Lui, Chan, & 

Thompson, 2005). While they both created conformal mapping with correspondences, 
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the latter is superior in terms of alignment error, and was hence adopted in this study. To 

define an optimal mapping between two liver surfaces S1 and S2, let K denote a triangular 

simplex of a liver surface and [u, v] be an edge connecting two vertices, u and v. Then, 

let 𝑓𝑠: 𝑆𝑠 → 𝕊 be the SCM of a surface 𝑆𝑠,(𝑠=1,2)onto a unit sphere; 𝑝𝑖,𝑖=1…𝑛, and  𝑞𝑖,𝑖=1…𝑛 

are landmarks defined on both surfaces, respectively, where pi corresponds to qi. Follow-

ing (Lui et al., 2007; Y. Wang et al., 2005), the harmonic energy function that minimizes 

both distortion and landmark differences is given by Equation (2.39): 

𝐸(𝑓1) = ∑ 𝑘𝑢𝑣‖𝑓1(𝑢) − 𝑓1(𝑣)‖2 + 𝛾 ∑ ‖𝑓1(𝑝𝑖) − 𝑓2(𝑞𝑖)‖
2

1≤𝑖≤𝑛[𝑢,𝑣]∈𝐾

 (2.39) 

where 𝑘𝑢𝑣 = cot 𝛼 + cot 𝛽 with 𝛼 and 𝛽 are the opposite angles of an edge [u, v]; 𝛾 is 

a balancing factor. The correspondence, which registered landmarks of S1 to S2, is given 

by 𝑔 = 𝑓2
−1 ∘ 𝑓1. It may be observed that (2.39) can be scaled to different mesh sizes, 

‖𝐾‖, and does not depend on physical coordinates. Therefore, this mapping could han-

dle variability in both the shape and size of the liver. 

It was pointed out (P. T. Choi, Lam, & Lui, 2015) that with conventional ap-

proaches, numerical instability may occur near the spherical poles (where a large number 

of vertices are mapped onto a small region), and near the landmarks. These result in se-

vere distortion and even loss of bijection. To resolve these issues, a Gauss map (Gu et al., 

2004; Y. Wang et al., 2004) was first applied to initialize uniform distribution, then the 

Fast Landmark Aligned Spherical Harmonics (FLASH) proposed by Choi et al. (P. T. 

Choi et al., 2015) were utilized. This linearized Equation (13), based on the north-south 

poles iterative model, while adjusting the Beltrami differential to recover bijective map-

ping. The detailed implementation of FLASH can be found in (P. T. Choi et al., 2015). 
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In this study, a liver surface was assumed topologically spherical and hence, of 

genus-0 form. Thus, it was possible to determine a conditioned SCM, when provided 

with a few anatomical landmarks, that aligned two corresponding liver surfaces (e.g., 

that of donor and recipient). The potential application of such low-distortion mapping 

is demonstrated in a simulation by faithfully projecting functional resections of one 

liver onto another during a preoperative hepatectomy. 

 

2. 7  Liver and general surgical simulation 

The surgery in the past based on the experiments of surgeons in which the liver 

model, vessel and liver’s structure were built in their mind based on medical image. This 

not only led to lack of sharing information between members in team but also subjective 

and instable. The development in medical and computer-assisted liver surgery allowed 

visualization of objects in 3D environment. It was reported that (Nakayama et al., 2017) 

the using of preoperative simulation also allow to reduce surgery time of repeated hepa-

tectomy and segmentectomy. Generally, it  includes three sub-techniques: 3D reconstruc-

tion,  volumetric analysis and surgical simulation(Mise et al., 2013).  

Surgical simulation has been developed since 2005 and used for liver tumor 

surgery in 2007(Oshiro & Ohkohchi, 2017). Afterward, there were several software 

have been available for liver simulation, such as SYNAPSE VINCENT (Fujifilm med-

ical, Japan), HepaVision (Mevis, Germany), syngo.via (Siemens Co., Germany). These 

tools enabled to visualize the structure of liver and vascular network. However, the 

using of this tool depends on the experiences of   user.  For example, SYPNAPSE VIN-

CENT and syngo.via, user is required to select the vessel or trace the portal vein or 

hepatic vein for volumetry analysis. While HepaVision software is an online service, 



84 

 

which the operation is performed by host of software. To non-rigid modeling, LiverSim 

(Oshiro & Ohkohchi, 2017; Oshiro et al., 2015) was developed for tracking the defor-

mation of parenchyma and vessel. This tool enabled to visualize, change color, deform, 

and track the motion.  Another software, Myrian (France) allowed automatically meas-

ure volume of right lobe, however it takes 10-15 min to access the volume of graft 

(Bozkurt et al., 2019). However, surgeon is required to draw tracing lines in a few 2D 

images, then the hyperplane is obtained. Dr. Liver (Humanopia Co. Ltd, Pohang, Ko-

rea), a software for surgical planning (Xiaopeng Yang, Wonsup Lee, Younggeun Choi, 

& Heecheon You, 2012; X. Yang, Yang, Yu, et al., 2018) was developed. It includes 

sub-models such as liver extraction, vessel segmentation, virtual resection, etc.…. 

However, the separation of right and left lobes is performed by a 3D cutting sphere. In 

comparison to other tools which only supported to correctly measure liver and GV (X. 

Yang, Yang, Yu, et al., 2018), both Dr. Liver and syngo.via allowed to estimate GW. 

The former used regression equation, while the latter based on liver volume, volume of 

blood and liver density to calculate GW. To our knowledge, although the available soft-

ware allowed to measure the GV or GW, the compatible of graft shape is not considered. 

It was reported that (Kasahara et al., 2008; Namgoong et al., 2020; Schukfeh et al., 

2018), the shape graft will affect the success of surgery in segment II/III in infants. For 

example, the “thickness-to-anteroposterior diameter in the recipient’s abdominal cav-

ity ratio” is less than 1.0%, the donor may be required to reduce size of graft. Thus, this 

study may help improve the available systems by supporting of estimation of graft 

shape.



 

 

  

METHODOLOGY 

 

This chapter presents three main contents: Liver segmentation, functional seg-

mentation, and parameterization. 

Section 3. 1 focuses on the building of a semi-automatic liver segmentation 

method. It begins with an introduction of two schemes and proposed workflows. A 

novel framework for liver segmentation using probability map, relaxation labeling, GC 

and anatomy-based constrain model, referred as model 1, is presented in next section. 

Some improvements of model 1 based 3-D relaxation labeling, and anisotropic GC are 

proposed to increase the accuracy of system, referred as model 2. Two most popular 

datasets for liver segmentation are used for testing algorithm, followed by a description 

of some segmentation metrics that used to quantitatively evaluate the performance of 

proposed techniques.  

Section 3. 2 describes the proposed scheme, which was based on subject specific 

hepatic vascular network and by using differentiable geometry computing. 

Section 3. 3 presents the conformal parameterization of liver and application of 

estimation of the GV size in LDLT. 
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3. 1  Liver segmentation 

3. 1. 1  Proposed schemes 

 In this thesis, there are two schemes are proposed for segmentation liver. 

They are described as followings: 

 In the first scheme, the local mean and standard derivation of a seed 

point specified by user will be utilized to build probability map based on multivariable 

normal distribution model. In the next step, an adaptive thresholding technique, Otsu’s 

method, is applied to probabilistic image to extract the largest contour among images 

in CT volume. Simultaneously, relaxation labeling, a labeling algorithm based on con-

textual information, is used to enhance the probabilistic map. It aims to reduce the am-

biguity of the boundary between liver and surrounding tissues. Then, GC is automati-

cally implemented on enhanced probabilistic image to segment liver. Due to the com-

plexity of the anatomy of liver, both of segmented livers and the largest contour ex-

tracted from previous procedures are integrated into last step to remove over-segmen-

tation before the 3-D liver model is reconstructed.  

 The latter scheme, there are two improvements to be introduced. The 

first improvement is embedded into the enhancing process of probabilistic map, 

whereas the second one is taken place in the segmenting step conveyed by GC. The 

relaxation labeling algorithm mentioned in above considers the contextual information 

of a pixel from its neighbors in the same slice, so it is 2-D relaxation labeling. In medical 

imaging, the image of a specified organ is captured in continuous ordered slices, the 

distance between slices is fixed and typically small, and object shape do not remarkably 

differ among them. Therefore, the contextual information of pixels in adjacent slices 

could be used to support for the calculation of the probabilistic map of a specified pixel. 
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Such technique is referred to as 3-D relaxation labeling in this study. The next improve-

ment is relevant to computing of GC energy function. The main idea is the using ani-

sotropic diffusion of intensity at the edge of object to build boundary term in max flow/ 

min cut algorithm. The workflows of proposed schemes are illustrated in Figure 3.1 

and Figure 3.2. 

 

Figure 3.1 The workflow of proposed method by model 1.  
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Figure 3.2 The workflow of proposed method by model 2. 

 In both schemes, the input is a series of abdominal images. Orange 

blocks present for the processes. Cyan blocks present for results of corresponding pro-

cesses. The output is the 3-D Liver. The details of proposed method and its improve-

ment are presented in next section. 
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3. 1. 2  Probabilistic model 

 It is noted that the input of the system comes from the probability a pixel 

belongs to liver region based on specified features. In(Liao et al., 2017; Liao et al., 

2016), Liao et al directly used intensity value to build appearance and PCA model. Peng 

(Peng et al., 2015), Lu (F. Lu et al., 2017) and (Zheng et al., 2017) based local binary 

pattern (LBP) and an improved of LBP called by VAR, proposed by Ojala et al (T. 

Ojala et al., 2002), which are invariant to grey scale difference and rotation. It differs 

from other methods in that, instead of using intensity value, this study characterizes 

each pixel by two features: mean and standard deviation (SD) of this pixel and its neigh-

bors. In order to build the initial probability map of liver region, a significant but simple 

method, called by mean - standard deviation based multivariate Gaussian distribution 

model is proposed. This process is separated into two-sub steps: model instantiation 

and probabilistic map building. 

 Model instantiation: A probability of a point 𝐩 being of liver was deter-

mined based on a patch (Φ) of size 𝑚 × 𝑛 centered by that point. To begin with, for 

each pixel 𝐪𝑖 ∈ Φ, the local mean (𝜇𝑖) and standard deviation (𝜎𝑖) of the intensities, 

within its 𝑚 × 𝑛 neighbors (Ω) are computed. In this study, the extent of neighbors in 

x and y directions, i.e., m and n, respectively, were equally set to 11 pixels (approx. 

2.75 – 4.00 mm, either side). The local (𝜇𝑖) and standard deviation (𝜎𝑖) were then aver-

aged over the members, 𝐪𝑖 ∈ Φ. The resultant averages constituted to a 2D vector val-

ues characterizing the given point 𝐩, as expressed in (3.1) 

 Let a vector function f: R2  → R2 map a point 𝐩 to its feature space as 

follows: 
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𝐟(𝐩) = [
∑ 𝜇𝑖𝑖∈Φ

‖Φ‖

∑ 𝜎𝑖𝑖∈Φ

‖Φ‖
]
𝑇

  
(3.1) 

where local mean (𝜇𝑖) and standard deviation (𝜎𝑖) were evaluated for each 𝐪𝑖 ∈ Φ over 

its neighbors (Ω). 

 A normal distribution of a k-dimensional random variable (RV), ex-

pressed by f = [𝑓1, 𝑓2, … , 𝑓𝑘]
𝑇, was defined as: 

𝒫(𝐟) =
1

2𝜋𝑘/2|Σ|1/2
𝑒−

1
2(f−f̅)

𝑇
Σ−1(f−f̅) (3.2) 

where 𝐟̅ ∈ R𝑘, Σ ∈ R𝑘×𝑘 were the mean and covariance matrices of f, respectively. It 

was computed from a set of few manually specified points. In this study, they were 

evaluated by (1) at the seed point. Provided the definition of a vector function of feature, 

f (p) = [f1 f2]
T, having k = 2 dimensions, the corresponding covariance matrix was thus 

given by: 

Σ = [
𝑐𝑜𝑣(𝑓1, 𝑓1) 𝑐𝑜𝑣(𝑓1, 𝑓2)

𝑐𝑜𝑣(𝑓2, 𝑓1) 𝑐𝑜𝑣(𝑓2, 𝑓2)
] (3.3) 

 Probabilistic map building: For each pixel p in image (𝐼), the feature 

𝐹 = [𝑓1, 𝑓2]
𝑇 , 𝑤ℎ𝑒𝑟𝑒  is mean and SD of a path size of 𝑚′ × 𝑛′ centred at p, are deter-

mined, then the probability of pixel is computed using MGM. The detail of building the 

model is described in Table 3.1. 
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Table 3.1 Process of building a multivariate probability density function. 

Input Seed point �̅�, image 𝐼 

 Build model 

 let Φ be a patch of size of w × w pixels, centered at �̅� 

 foreach pixel 𝑞𝑖 in patch Φ do 

  let Ω be a patch size of w × w pixels, centered at 𝑞𝑖 

  compute mean (𝜇𝑖) and standard deviation (𝜎𝑖) at 𝑞𝑖 

 end for 

 calculate 𝑓(�̅�) = [𝑓1̅ 𝑓2̅]
𝑇, following (3.1) 

calculate Σ, following (3.3) 

 Build probabilistic map 

 foreach pixel p in image I do 

  let Φ be a patch of size 11×11 pixels, centered at p 

  foreach pixel qi in a patch Φ do 

   let Ω be a patch of size 11×11 pixels, centered at qi 

   compute mean (μi) and standard deviation (σi) at qi 

  end for 

  calculate f (p) = [f1 f2] T, following (3.1) 

  calculate 𝒫(𝐟), for the point p, following (3.3) 

 end for  

Output The probability density function of image I 

  



92 

 

3. 1. 3  Relaxation labeling 

 It has been well accepted over many decades that relaxation labeling 

(RL) is a probabilistic labeling technique for an object based on contextual information 

(Rosenfeld, Hummel, & Zucker, 1976). Namely, an initial local probability of an object 

belongs to all classes is given, then an iteration will be performed to update this value 

using both the previous probability of current object and the previous values of its 

neighbors until the difference error between current and estimated value is less a given 

threshold or having been run for a number of given iterations. Its aim is to reduce the 

ambiguity of the labeling for an object. This method has been widely used in several of 

applications such as line and curve enhancement (Zucker, Hummel, & Rosenfeld, 1977), 

edge detection (Iyengar & Deng, 1995), image segmentation (Hansen & Higgins, 1997; 

Loukas & Linney, 2005), point matching (J. H. Lee & Won, 2011). A review of relax-

ation labeling and its applications can be found in (Kittler & Illingworth, 1985; 

Richards, Landgrebe, & Swain, 1981). Unlike other works, RL was adopted here to 

improve initial pixel-wise classification, obtained from the prior step. Since basic ele-

ments and their definitions can be found in (Rosenfeld et al., 1976), this section elabo-

rates in detail only supports and compatibility functions 

 Two principal objects considered in RL algorithm in binary labeling 

problem are pixels of image 𝐼 and a set of classes 𝒞. Assume that, at t time, 𝒫𝑝
𝑡 (𝜆) is 

the probability a pixel 𝑝 ∈ 𝐼 assigned label 𝜆 ∈ 𝒞, according to the properties of prob-

abilistic theory, we have 

∑ 𝒫𝑝
𝑡 (𝜆) = 1λ∈𝒞 , ∀𝑝 ∈ 𝑉,𝒫𝑝

𝑡 (𝜆) ∈ [0,1] (3.4) 



93 

 

 Updating of the probability for pixel 𝑝 by label λ at stage 𝑡 + 1 is com-

puted   as follow (Rosenfeld et al., 1976) 

𝒫𝑝
𝑡+1(𝜆) =

𝒫𝑝
𝑡 (𝜆)(1 + 𝑆𝑝(𝜆))

∑ 𝒫𝑝
𝑡 (𝜇)(1 + 𝑆𝑝(𝜇))𝜇∈𝒞

 (3.5) 

where 𝑆𝐩(𝑙) is the support function for pixel 𝐩 by a label, l.  

 Let 𝒩𝐩 be a set of neighbors of 𝐩 and 𝑟𝐩𝐪(𝜆, 𝜇) be the compability be-

tween pixels 𝐩 𝑎𝑛𝑑 𝐪 ∈ 𝒩𝐩 by labels 𝜆 𝑎𝑛𝑑 𝜇, respectively. The support function was 

derived from the compatibility by using following equation. 

𝑆𝑝(𝜆) = ∑ 𝑤𝑝𝑞

 

𝑞∈𝒩𝑝

∑ 𝑟𝑝𝑞(𝜆, 𝜇)𝒫𝑞
𝑡 (𝜇)

𝜇∈𝒞

 (3.6) 

where 𝑟𝑝𝑞(𝜆, 𝜇) was 1, if   and µ were of the same class, or -1 otherwise. The inter-

object weight 𝑤𝐩𝐪 was defined as an inversed Euclident distance between p and q. It 

was also normalized such that its sum over the neighbours 𝒩𝐩 were unity. 

 The denominator in (3.5) guarantees the properties of probability, it 

means that (3.5) is always satisfied. A detail of discussion on the accuracy of (3.5) can 

be found in (Richards et al., 1981). 

 To ensure the performance of the system, the neighborhood size was set 

to only within one-pixel proximity in 8 directions. It is also worth noting that, with 

trivial features, pixel-wise classification may result in vague definitions along connec-

tive tissues. To sufficiently enhance such separation prior to the next stage, probabilistic 
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convergence and hence finalized labeling, was not yet required here. The RL was there-

fore let to update only for a few iterations. Figure 3.3 depicted an example configura-

tion of pixel p and its neighbor q, the initial probabilistic map, and the resultant RL 

enhancement. It is clear that fallacies along the boundary were effectively reduced (red 

circles). 

 

Figure 3.3 An example of probability map and relaxation labeling 

 The original CT image (a) with a seed point (green) is shown in (b), the 

probability map image and RL enhanced results are shown in (c) and (d), respectively. 

The probability values from 0 to 1 are scaled to 0 to 255 for visualization purpose. 
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3. 1. 4  Graph cut 

 Consider an undirected graph denoted by 𝒢 = {𝒱, ℰ}, where 𝒱 is a set 

of vertices and ℰ is the edges connect two vertices by a nonnegative weight 𝑤. Accord-

ing to (Boykov & Jolly, 2001), a minimum cut (referred as min-cuts) partitions 𝒱 into 

two disjoint subsets 𝒱1  and 𝒱2  (𝒱1 ∪ 𝒱2 = 𝒱 ⋀  𝒱1⋂𝒱2 = ∅) is given by 𝒦 ⊂  ℰ  so 

that the following function is minimized | 𝒦| = ∑ 𝑤𝑒𝑒⊂𝒦  

 In binary image segmentation problem, 𝒱 now corresponds to a series 

of pixels 𝑝 in image 𝐼 and ℰ is the links of two adjacency pixels. Additionally, there are 

two special terminals which present for the object and background are added to graph, 

called by 𝑠 (source or object) and 𝑡 (sink or background). Two kinds of links are con-

sidered in the graph. The first kind of link denoted by n-link is the edge connecting two 

adjacency pixels within an image. The other kind connecting two terminals to all pixels 

is denoted by t-link. Assume that each pixel 𝑝 ∈ 𝐼 is labeled to one of considerable la-

bels 𝑙𝑝  in binary label set ℒ , ℒ = {𝒞1, 𝒞2, … , 𝒞|𝐼|},𝒞𝑖 ∈ {0: 𝑜𝑏𝑗𝑒𝑐𝑡, 1: 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑} 

Boykov et al (Boykov & Jolly, 2001; Boykov & Kolmogorov, 2004) proposed an effi-

cient algorithm known as Min-Cut/Max-Flow for solving the min-cuts problem by min-

imization combinational energy (Boykov & Kolmogorov, 2004), i.e.,  

𝐸(ℒ) = 𝛼 ∑𝑅(𝒞𝑝) +

𝑝∈𝐼

(1 − 𝛼) ∑ 𝐵(𝒞𝑝,𝒞𝑞)

𝑝∈𝐼,𝑞𝒩𝑝 

. 𝑇(𝒞𝑝 ≠ 𝒞𝑞) (3.7) 

where 𝛼 is the balanced coefficient between region 𝑅(𝒞𝑝)  and boundary term 

𝐵(𝒞𝑝,𝒞𝑞). If 𝛼 >  0.5, the region information is more important than boundary infor-

mation and vice versa. The size of labels, | I |, equaled the number of pixels in the image. 
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𝒩𝑝 is defined following that in section 3. 1. 3. The conditional probabilities in (3.7) was 

given as follow (Boykov & Jolly, 2001),  

𝑅(𝒞𝑝 = c) = 1 − 𝒫(𝑝|c) (3.8) 

where c was a binary label assigning 0 or 1 to either a background or object pixel, 

respectively. The probabilistic map 𝒫(𝑝) was obtained from the previous stage (3.5) 

 The second term is directly obtained from the intensity and the distance 

between two adjacent as follow (Boykov & Jolly, 2001), 

𝐵(𝒞𝑝,𝒞𝑞) = 𝑒𝑥𝑝 (−
(𝐼𝑝 − 𝐼𝑝)

2

2𝛿2
) .

1

𝑑𝑖𝑠(𝑝, 𝑞)
 (3.9) 

where  𝐼𝑝, 𝐼𝑞 are the intensity value at pixel 𝑝 𝑎𝑛𝑑 𝑞, 𝛿 is the noise distribution, and 

𝑑𝑖𝑠(𝑝, 𝑞) is the Euclidian distance from 𝑝 𝑡𝑜 𝑞. 

3. 1. 5  Bottleneck detection and anatomy-constraint 

 It is known that the liver has a smooth boundary. Additionally, the dif-

ference between the shape of liver in two adjacency slices in a volume depends upon 

the distance between these slices. RL enhanced probabilistic map and graph-cut pro-

vided a reliable and efficient segmentation of the liver, based on intensity distribution 

of the pixels and their spatial relationship. Thus far, due to rather complex geometry of 

the liver and its similar X-ray absorption properties to other organs, there remained 

over-segmentation. This led to low accuracy, commonly found in many existing un-

trained systems or those with inadequate samples. It was observed that over-segments 

often appeared as nodal shapes on the liver boundary. To further improve the results, 
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this study thus imposed an anatomical control over the segmented result, based on bot-

tleneck detection and contour constraint (BN-CC)  

 Bottleneck detection 

 According to Wang et al (H. Wang, Zhang, & Ray, 2012), a potential 

bottleneck in 2-dimensions space is determined by a cost function (ℰ), defined by a 

pair of points (q, p) and p ≠ q, such that  

ℰ =
𝑑𝑖𝑠𝑡 (𝑝, q)

𝑚𝑖𝑛(𝑙𝑒𝑛𝑔ℎ𝑡 (𝑝, q), 𝑙𝑒𝑛𝑔ℎ𝑡(𝑝, q))
< 𝒯𝑏 (3.10) 

where 𝑑𝑖𝑠𝑡 (𝑝1, 𝑝2) was the Euclidian distance between 𝑝 and 𝑞 ; 𝑙𝑒𝑛𝑔ℎ𝑡 (𝑝, q) and 

𝑙𝑒𝑛𝑔ℎ𝑡 (𝑞, 𝑝) were the length in clockwise direction along to contour; 𝒯𝑏 is a prede-

fined threshold. For a liver shapes, it was typically set to 0.60. A drawback of the 

method was that as the threshold increased, it tended to smooth out the contour. In some 

instances, anatomical features such as that on the left lobe was partially brushed off. On 

the other hand, reducing the value caused substantial over-segments, mostly near the 

ligaments. In addition, to avoid concerns on contour modeling, a generic polygonal ap-

proximation was applied to extract key points. Depending on image resolution, this may 

result in too many points being generated. To simultaneously tackle these problems, 

this study introduced a criterion on a candidate point based on its outer angle. Specifi-

cally, only if its exterior angle was less than a given threshold, it would be considered 

in bottleneck detection, otherwise it remained on the segmented contour. It this study 

the threshold for nodal point candidate was set to 150. Figure 3.4 illustrates two ex-

amples of candidate point selections. Segments (p1, p2) and (p3, p3) had cost functions 

of 0.50 and 0.40, respectively, and would be both identified as bottlenecks. As such, 
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this would have incorrectly removed a salient point at the end of left lobe (b). However, 

only the segment (a) (fuzzy liver edge) satisfied the nodal candidate outer angle crite-

rion and hence was removed but leaving the segment (b) untouched. 

 

Figure 3.4 Bottle neck detection using exterior angle constraint. 

 Contour constraint 

 Nonetheless, it was found during a preliminary experiment that depend-

ing on the thresholds, not all bottlenecks could be successfully removed. Information 

on adjacent slices was thus also considered in post-processing. With modern CT imag-

ing, slice thickness was typically small, and object shapes do not differ much between 

adjacent planes. Thus, a contour constraint was imposed on the segmented regions. To 

begin with, each probabilistic map of two adjacent slices were first converted to binary 

images, by using an Otsu’s method. Complementary contours would be extracted from 

these images. Let 𝐶𝑖 = {𝑐𝑖1, 𝑐𝑖2, … } and 𝐶𝑗 = {𝑐𝑗1, 𝑐𝑗2, … } be the sets of contours (in-

cluding bottleneck candidates), extracted from ith and jth slices, respectively. For any 

(𝑐𝑖𝑘, 𝑐𝑗𝑙) ∈ 𝐶𝑖 × 𝐶𝑗 that satisfied the condition: 
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𝒮 =
|𝑐𝑖𝑘 ∩ 𝑐𝑗𝑙|

min (|𝑐𝑖𝑘|, |𝑐𝑗𝑙|)
< 𝒯𝑐 

(3.11) 

then the contour with the least area, i.e., | cmn |, would be removed from the respective 

slice. In the preliminary experiment, a suitable threshold was empirically estimated by 

using simple linear least-square method. The suggested threshold 𝒯𝑐  was given as a 

function of slice distance, dz. 

𝒯𝑐 = 0.8 − 0.05(𝑑𝑍 − 1) (3.12) 

 To avoid inconsistency due to slice orders, post-processing started from 

a slice with the largest contour and stepped one slice at a time in both directions along 

the z axis. For any pair of slices being processed, BN-CC was first applied, following 

(3.9) and remaining contours were constrained, i.e., removed subject to the condition, 

given by Eq. (3.10) and (3.11).  

 Let 𝒞𝑖 = {𝑐𝑖1, 𝑐𝑖2, , , 𝑐𝑖𝑛} 𝑎𝑛𝑑 𝒞𝑗 = {𝑐𝑗1, 𝑐𝑗2, , , 𝑐𝑗𝑚} be the set of contours 

in current slice and previous slice respectively; 𝑆(𝑐𝑢𝑣) : area of the contour  𝑐𝑢𝑣 ; 

S(𝑐𝑢𝑣 ∩ 𝑐𝑢′𝑣′): area of the intersection contour of 𝑐𝑢𝑣 𝑎𝑛𝑑 𝑐𝑢′𝑣′ . The contour-con-

straint algorithm is showed as Table 3.2. 

Table 3.2 The contour-constraint algorithm 

Input 𝒞𝑖, 𝒞𝑗 ,𝒯𝑐 

 init 𝒞 = ∅ 

 foreach 𝑐𝑖𝑘 in 𝒞𝑖 
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 If exist a 𝑐𝑗𝑙 ∈ 𝒞𝑗 such that (

𝑆(𝑐𝑖𝑘∩𝑐𝑗𝑙)

𝑚𝑖𝑛(𝑆(𝑐𝑖𝑘),𝑆(𝑐𝑗𝑙))
≥ 𝒯𝑐) 

        Add 𝑐𝑖𝑘 to 𝒞  

  end if 

 End for 

Output 𝒞 

 

 Figure 3.5 demonstrates some examples of approximated contours from 

slices 𝑖 and 𝑖 –  1 and those after applying BN-CC. In the top row (a) – (c), there were 

2 bottlenecks (p1, p2) and (p3, p4), whose areas were 242 and 52 pixels, respectively. 

They would be both detected by Eq. (9). When intersecting with the one in previous 

slice, whose area was 42670 pixels, the intersected areas were 42 and 51 pixels, respec-

tively. With 𝒯𝑐 set to 0.8 (i.e., dz = 1), only the former would be removed (circled in 

red), leaving the latter (circled in blue). Likewise, not all bottlenecks were removed by 

Eq. (3.9) in the bottom row (d) – (e), unless they satisfied Eq. (3.10). 
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Figure 3.5 The performance of BN-CC 

 The previous and current contours are draw in green and orange colors, 

respectively. The ground truth is drawn white. The first column (a and d) shows the 

bottle neck detecting in CT image after applying graph-cut. The second column (b and 

e) shows the results after applying adjacent contour constraint. The last column (c and 

f) shows the valid contours. Red and blue circles indicate the removed and remaining 

bottlenecks, respectively. 

 Figure 3.6 illustrates for a parallel processing of BN-CC. The algorithm 

begins at the slice contains the largest contour and stepped one slice into both direction 

along the z axis. 
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Previous contour: C = C0

Index of contour C0: k

Apply bottle neck detection

Apply contour-constraint

Update previous contour

C = Cj, 

j = j-1

j = k - 1 

j     End

Apply bottle neck detection

Apply contour-constraint

Update previous contour

C = Ci, 

i = i+1

i = k + 1 

i   N

True True

FalseFalse

 

Figure 3.6 The flow chart of post processing 

3. 1. 6  Improvements 

3.1.6.1  3-D relaxation labeling 

 In 2-D image, the number of neighbors is usually set to 8, thus 

the estimated probability of each pixel is computed from 8-neighbors in this image. 

Motivated by the fact that CT image has low intensity, and the boundary of each tissue 

is not clear, but the liver is largest object in abdominal CT and shape of liver in adja-

cency slices changes lightly. An improved method for RL, called by Multi-slice Relax-

ation labeling MRL in CT image, is proposed. Instead of using single slice, we calculate 

support value for each pixel 𝑝 in one slice from 𝑝’s neighbors in this slice and adja-

cency slices.  
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 Let Π𝑢𝑝 be a set neighbors of pixel 𝑝 in slice 𝑢 and its neigh-

bors. It is now possible to rewrite the support for label 𝜆 at pixel 𝑝  as follow 

𝑆𝑝(𝜆) = ∑ 𝑤𝑝𝑞 ∑ 𝑟𝑝𝑞(𝜆, 𝜇)𝑃𝑟𝑞(𝜇)

𝜇∈𝒞

 

𝑞∈𝛱𝑢𝑝

 (3.13) 

 The coefficient 𝑤𝑝𝑞 is the inversion of distance between pixel 

𝑝 in slice 𝑢 and pixel 𝑞 and slice 𝑣 and can be defined by the equation: 

𝑤𝑝𝑞 =
1

𝑑𝑖𝑠𝑡(𝑝, 𝑞)
 

if pixel 𝑝 and 𝑞 are in the same slice 

(3.14) 

𝑤𝑝𝑞 =
1

√[𝑑𝑖𝑠𝑡(𝑝, 𝑝′)]2 + [𝑑𝑖𝑠𝑡(𝑝′, 𝑞)]2
  

if pixel 𝑝 is in slice 𝑢, and 𝑞 is in slice 𝑣 

(3.15) 

with 𝑝′ is a pixel in slice 𝑣 corresponds to position of 𝑝, and (𝑥, 𝑦) is the location of 

pixel in 2D-space; 𝑑𝑧 slice thickness; 𝑑𝑖𝑠𝑡(𝑞, 𝑝′) = 𝑑𝑧|𝑢 − 𝑣|. Figure 3.7 illustrates 

computing of the weight. 
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Figure 3.7 Two cases of neighbours of pixel 𝑝 

 A high value of |𝑢 − 𝑣| corresponds to a low value of 𝑤𝑝𝑞. It 

means that the support of slice 𝑣  for slice 𝑢  is stronger than slice 𝑣′, ∀𝑣′ > 𝑣 . As 

proven in (Rosenfeld et al., 1976) that, the value of 𝑤𝑝𝑞 should satisfy ∑ 𝑤𝑝𝑞𝑞∈Π𝑢𝑝
= 1 

for all pixels 𝑝 and it is normalized by the following equation 

𝑤𝑝𝑞 =
𝑤𝑝𝑞

∑ 𝑤𝑝𝑞′
 
𝑞′𝛱𝑢𝑝

 (3.16) 

 Given the number of elements in Π𝑢𝑖 , a dictionary of all 

weights (𝒲) parameterized by 𝑣 and 𝑞 can be firstly built and normalized. Then, com-

puting of the support value is trivial, i.e., looking for the value of 𝑤𝑝𝑞 in dictionary. Let 

𝒫𝑡=0 be the initial probability of all pixels in image 𝐼, the process of 3-D RL for image 

𝐼 is described by Table 3.3. 

Table 3.3 The algorithm of 3-D RL 

Input 𝒫𝑡=0, 𝐼, 𝒞, 𝑑𝑧, 𝑇 

q

p
Slice u

q
Slice v

p
Slice u

p 

dz
Slice k
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Build dictionary of weights 𝒲 by (3.14) or (3.15) 

Normalize 𝒲 by (3.16) 

 for t=1 to T do 

  foreach pixel 𝑝 in 𝐼 

   Compute the support for pixel 𝑝 by (3.13) 

 Update 𝒫𝑝
𝑡  by (3.5) 

  end for 

 end for 

Output 𝒫𝑡=𝑇 

 

3.1.6.2  Anisotropic measurement 

 Low-pass filter has been one of most common techniques used 

to denoise in image based on local gradients. However, it reduces the details of im-

portant information and blurs the boundary and corner in image. To tackle this issue, 

Yang et al (G. Z. Yang, Burger, Firmin, & Underwood, 1996) proposed an efficient 

method, called by structure-adaptive anisotropic filter, for smoothing image without 

decrease image contrast. The main concept of this approach is to build an elliptical 

kernel, whose orientation and shape adapt to the local information of each pixel in im-

age. 

 Firstly, the orientation of kernel at pixel 𝑝 = (𝑥, 𝑦), defined as the an-

gle between normal vector �⃗�  of kernel and horizontal axis, is calculated based on local 

intensity as following equation: 
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𝜃(𝑝) =
1

2
𝑎𝑡𝑎𝑛(

∬ 2𝑓𝑥
′𝑓𝑦

′
𝒩𝑝

𝑑𝑥𝑑𝑦

∬ ((𝑓𝑥′)2 − (𝑓𝑦′)
2
)

𝒩𝑝
𝑑𝑥𝑑𝑦

) +
𝜋

2
 

(3.17) 

 Then, anisotropic measurement and corner strength, used to es-

timate the shape of kernel are given respectively as follows: 

𝑔(𝑝) =
(∬ ((𝑓𝑥

′)2 − (𝑓𝑦
′)

2
)

𝒩𝑝
𝑑𝑥𝑑𝑦)

2

+ (∬ 2𝑓𝑥
′𝑓𝑦

′
𝒩𝑝

𝑑𝑥𝑑𝑦)
2

(∬ ((𝑓𝑥′)2 + (𝑓𝑦′)
2
)

𝒩𝑝
𝑑𝑥𝑑𝑦)

2  
(3.18) 

𝑐(𝑝) = (1 − 𝑔(𝑝))|𝛻𝑓(𝑝)|2 (3.19) 

where 𝑓𝑥
′ =

𝜕𝑓

𝜕𝑥
, 𝑓𝑦

′ =
𝜕𝑓

𝜕𝑦
, ∇𝑓(𝑝) is the gradient at pixel 𝑝 in image 𝑓; 𝒩𝑝 is defined in 

section 3. 1. 3. 

 The shape of kernel at pixel 𝑝 presented by two coefficients 

(𝑠1, 𝑠2) is determined as follow: 

𝑠1(𝑝) =
𝑟

1 +
𝑐(𝑝)
𝜆

 (3.20) 

𝑠2(𝑝) = (1 − 𝑔(𝑝))
𝑟

1 +
𝑐(𝑝)
𝜆

 
(3.21) 

where 𝑟  is the support radius of kernel, and 𝜆  is the normalization factor controls 

smoothing of the corner and boundary which is usually set to 75% of maximum value 

of corner strength. For flat regions, 𝑠1 = 𝑠2, 𝑔 ≈ 0, thus the shape of kernel is a circle, 
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whereas for inhomogeneous regions such as corner or boundary, 𝑠1 > 𝑠2, 1 ≥ 𝑔 > 0 

and the kernel has ellipse form. 

 As shown in (3.7) that, the intensity value plays vital role in 

boundary function meanwhile the distance between two pixels is considered as weight. 

For example, the distance from a pixel to pixels in top, bottom, left, and right is the 

same. Take advantage of anisotropic measurement, it can be seen that if a pixel lies in 

homogenous area, the anisotropic measurement will be low, while it is high at the 

boundary (as shown in Figure 3.8). Thus, the boundary energy in combination with 

local pattern compatibility now can be formulated as the following equation: 

𝐵(𝒞𝑝, 𝒞𝑞) = 𝑒𝑥𝑝 (−𝐹(𝑝, 𝑞)
(𝐼𝑝 − 𝐼𝑝)

2

2𝛿2
)

1

𝑑𝑖𝑠(𝑝, 𝑞)
 (3.22) 

 With 𝐹(𝑝, 𝑞) = max (𝑔(𝑝), 𝑔(𝑞)) 

 

Figure 3.8 An example of anisotropic 

 (The normal vector direction (𝜃) and anisotropic measure(g), 

and shape coefficients (𝑠1, 𝑠2) at 𝑝1 and 𝑝2. However, 𝑔(𝑝1) >𝑔( 𝑝2) , this indicates 
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that 𝑝1 lies in the boundary meanwhile 𝑝2 belongs to a likely homogeneous region. The 

support radius r is set to 3 and scaled for visualization purpose). 

 

3. 2  Functional segmentation for preoperative liver  

This work proposes an integration of salient features of a liver surface and con-

cise representation of its vascular networks, both automatically reconstructed from 3D 

CT. This information was incorporated, as functional definitions and constraints, into 

segmenting a liver, strictly according to Couinaud’s scheme. Compared to the works 

previously discussed, the proposed method was able to completely label all eight func-

tional segments, including caudate, at greater precision, but with minimal user interac-

tion involved. 

Overview of the proposed scheme is depicted in Figure 3.9. Given volumetric 

CT images of a 3D liver scan, the liver and interior vasculature were first extracted 

automatically by using a CAD software written in the laboratory, based on off-the-shelf 

algorithms. Next, centerlines traversing through the vascular networks were recon-

structed, while differential geometric properties were computed on the extracted liver 

surface, simultaneously. Subsequently, the surface properties would be analyses and 

used to characterize key anatomical landmarks, i.e., gallbladder fossa and inferior ridge 

sections. Later, a set of cutting planes were defined, based on vascular passages and 

landmarks. Finally, functional Couinaud’s segments of the liver (I–VIII) were deter-

mined, by means of combinatorial operations on the liver surface and geometric de-

scriptors. 
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Figure 3.9 Key steps of functional liver segmenting scheme. 

 

3. 2. 1 Liver and vessels segmentation 

 Segmenting a liver and its interior vascular network from volumetric CT 

is a challenging task due to inhomogeneous intensity and ambiguous boundaries in 

some areas. Several methods have been proposed in the literature (Moccia, De Momi, 

El Hadji, & Mattos, 2018; Moghbel, Mashohor, Mahmud, & Saripan, 2018). However, 

since their detailed treatment and analyses fell out of scope of this work, we adopted 

generic yet efficient off-the-shelf algorithms and implemented in-house software to per-

form these tasks. Firstly, multivariate mixture models (Yuekao Li et al., 2020), was 

applied to these CT images, to assign an individual voxel to abdominal tissue, vessel, 

Eight independent segments
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and background classes, with associated probabilities. Subsequently, to enhance the fi-

delity of multi-class labelling, relaxation labeling (RL) was performed to regularize the 

initial probabilities, based on contextual information (Rosenfeld et al., 1976). Graph cut 

(Boykov & Kolmogorov, 2004) algorithm was then used to extract the liver and en-

closed vessels, based on their spatial relationship. The corresponding 3D surface 

meshes were finally reconstructed by the Marching Cubes (Lorensen & Cline, 1987) 

and later used as inputs to the subsequent steps in the proposed segmentation pipeline. 

3. 2. 2 Tracing vascular centerlines 

 Referring parts of a liver to respective functional segments required not 

only its morphological cue but also accurate localization and measurement of enclosed 

vascular branches. To this end, skeletonization was a viable tool for consolidating voxe-

late data, while maintaining precise geometry and valid topology of the underlying net-

work. Therefore, in this work, a method proposed by Antiga et al., (Antiga, 2002) was 

adopted. Once skeletonized, all but major branches were trimmed off, based on their 

regional radii. Subsequently, a user was asked to specify the starting and end points of 

the HV and PV. Generally, the former was located at the root, while the latter was at 

the first bifurcation point toward the end of a respective vein, as illustrated in Figure 

3.10. It is worth noted that since their definitions were quite explicit, the criteria could 

be embedded in a computer program and hence having the markers specified automat-

ically. That said, detailed implementation fell out of scope of this study but may be 

found elsewhere (Moccia et al., 2018; Zhang et al., 2017). Apart from this minimal 

intervention, the remaining of segmentation process was fully automatic. 
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Figure 3.10 The extracted venous system with overlaid centerlines 

 (Seven manually specified stating (blue) and end (yellow) points on HV 

and PV are shown in an interior (a) and posterior views (b), respectively) 

 

 Given the extracted centerlines and respective markers on the primary 

venous system, their approximating vectors were next determined by principal compo-

nent analysis (PCA) (Bartholomew, 2010) of all points within the corresponding vas-

cular section. 

3. 2. 3 Functional segmentation 

 Unlike existing methods, a main contribution of the proposed scheme is 

that, from this step onward, virtual resection was performed directly and automatically, 

by referring only to the specified interior vascular markers and differential geometries 

evaluated on the surface. This process was divided into five modules, whose details are 

explained as follow: 

3.2.3.1  Differential Geometry of the Features 

 While other studies relied the separations of anterior from pos-

terior segments and of left from right lobes on some approximating planes that were 

either inferred from distance functions and additional markers, or manually defined, the 

proposed method aimed at detecting discernible anatomical features, which were 
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gallbladder fossa and inferior ridge. Topologically, the gallbladder fossa appears as a 

narrow surface that spreads from the top of falciform ligament to the bottom of gallblad-

der area. The inferior ridge lies at the bottom of the liver, and extends from left to right 

lobe, passing under gallbladder fossa. Geometrically, the former may be characterized 

by the most concave partial surface on the posterior liver. Likewise, the latter corre-

sponds to the most convex path along the inferior fringe. These features were identified 

accordingly by mean curvature expression, described as section 2. 4. 5. 

 The mean curvature is one of the most important intrinsic prop-

erties of a surface and is invariant to geometric transformation. It has been utilized in a 

range of applications, from computational science, medicine, and engineering 

(Horkaew & Yang, 2004; Magid, Soldea, & Rivlin, 2007; Zhao & Xu, 2006). In this 

study, it was evaluated on discrete triangular mesh of the extracted liver (Mesmoudi, 

De Floriani, & Magillo, 2012; Zhihong, Guo, Yanzhao, & Lee, 2011) and then em-

ployed as a determinant for anatomical feature classification. 

 Let 𝑽 = {𝑣1, 𝑣2, … , 𝑣𝑁|𝑣𝑖 ∈ ℝ3, 0 ≤ 𝑖 ≤ 𝑁}, be a set of N ver-

tices constituting a whole liver surface, and 𝑘(𝑣𝑖) be the mean curvature at a vertex 𝑣𝑖. 

Assume further that the distribution of these curvatures over the surface is Gaussian, 

with mean and standard deviation (SD), 𝜇𝑘 and 𝜎𝑘, respectively. Example of typical 

mean curvature distribution overlaid on a liver surface is shown in Figure 3.11.a and 

Figure 3.11.b. 
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Figure 3.11 An example of mean curvature distribution 

 ((a) on a liver surface (b), the corresponding extraction (c) of 

gallbladder fossa (red) and inferior ridge (blue) based on the thresholding and those 

based on anatomical criteria) 

 Firstly, to determine gallbladder fossa, let Vc  V, be a set of 

concave vertices, whose mean curvatures are lower than a threshold, given by a real 

positive constant a, and the Gaussian parameters, i.e.,  

𝑽𝑐(𝑎) = {𝑣 ∈ 𝑉| 𝑘(𝑣) ≤ 𝜇𝑘 + 𝑎 ∗ 𝜎𝑘} (3.23) 

 

 A concave set satisfying the above criterion (rendered in red) 

may consist of multiple connected regions (patches), each of which is denoted by vj, 

i.e., 𝑽𝑐(𝑎) = ⋃ 𝒗𝑗𝑗  . As it appears in Figure 3.11.b, the gallbladder fossa is a narrow 

and highly concave strip, located approximately between left and right lobes. The 
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geometrical appearance of a jth patch 𝒗𝑗 is characterized by a function of its normalized 

width and curvature, that is, 

ℰ(𝒗𝑗) =
1

‖𝐿𝑗‖
∙
|𝑽|

|𝒗𝑗|
∑ 𝑑⊥(𝑣, 𝐿𝑗) ⋅ 𝑒

−(
𝑘(𝑣)
𝜎𝑘

)
2

𝑣∈𝒗𝑗

 (3.24) 

where Lj and || Lj || are the principal axis passing through the centroid of vj, and its length, 

respectively. The norms, | V | and | vj | are the numbers of total vertices and those of the 

jth connected patch, respectively. In addition, the distance function 𝑑⊥(p, L) is the short-

est distance from a point p to a line L. The lower the ℰ value, the more likely the patch 

is of gallbladder fossa. To further ensure accurate identification of the structure, addi-

tional location constraint was imposed on its centroid being closest to that of the whole 

liver, that is, 

𝑑(𝒗�̅�, �̅�) = ‖𝒗�̅� − �̅�‖
2
 (3.25) 

where 𝒗�̅� and , �̅� are centroids of the respective surfaces and d (, ) is a Euclidean dis-

tance between two points. 

 For given a and hence 𝑽𝑐(𝑎) in Eq. (2.38), the surface patch, 

jth that has both the lowest ℰ(𝒗𝑗) and 𝑑(𝒗�̅�, �̅�) was chosen as a candidate. A grid search 

was run for a  [–0.5, 0]. And once completed, the best candidate, whose costs were 

the lowest, was identified. Particularly, if 𝒗𝑗 ⊂ 𝑽𝑐(𝑎𝑗) and 𝒗𝑖 ⊂ 𝑽𝑐(𝑎𝑖) be the running 

candidates found at rounds j and i, with constants, aj and ai, respectively, then a patch 

vj would be identified as gallbladder fossa, denoted by vgal, only if, for i ≠ j, they sim-

ultaneously satisfied the following conditions: 
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ℰ(𝒗𝑗) < ℰ(𝒗𝑖) (3.26) 

𝑑(𝒗�̅�, �̅�) < 𝑑(𝒗�̅�, �̅�) (3.27) 

 Secondly, the inferior ridge (rendered in blue), denoted by vird, 

is simply defined as all connected regions, that are more convex than a specified thresh-

old, given by a real positive constant b and the Gaussian parameters, i.e., 

𝑽𝑥(𝑏) = {𝑣 ∈ 𝑉| 𝑘(𝑣) ≥ 𝜇𝑘 + 𝑏 ∗ 𝜎𝑘} (3.28) 

 Unlike vgal that is defined as a singly connected region, vird, is 

all the regions, 𝒗𝑘, that satisfy Eq. (8), that is, 𝑽𝑥 = ⋃ 𝒗𝑘𝑘 . However, similar to identi-

fying gallbladder fossa, an optimal value of b and hence respective set 𝑽𝑥(𝑏) were de-

termined for b  [0, 0.5], by grid searching. In this case, the best candidate for the 

inferior ridge was that with the least number of vertices but the largest bounding box. 

 In preliminary trials, it was found that the optimal constants, a 

and b in Eq. (3) and (8), in a shape instance as shown in Figure 3.11.c, were –0.3 and 

+0.3 (~38.21% at both ends), respectively. Likewise, the constants were computed au-

tomatically for the remaining of the dataset. 

3.2.3.2  Locating Primary Functional Landmarks 

 Once the gallbladder fossa (vgal) and inferior ridge (vird) were 

extracted from the liver surface, these cloud points were skeletonized by using global 

center technique (Guiqing Li et al., 2013). The resulted curves, i.e., Cgal and Cird, re-

spectively, consisted of ordered vertices, outlining the anatomical features, shown in 

Figure 3.12.a. 



116 

 

 

Figure 3.12 Location of landmarks 

 (Four functional landmarks on gallbladder fossa (T, P) and in-

ferior ridge curves (G, F) (a), and three principal vectors, approximating MHV, RHV, 

and RPV (b)) 

 A falciform ligament marker, denoted by a point T, was first 

placed at the tip of Cgal. Then, the entry point to the main PV, denoted by a point P, was 

placed on the same curve, but closest to the liver centroid. The latter, identified as he-

patic hilum, featured as an inferior margin of the caudate segment. On the Cird curve, a 

corner point G was placed closest to the bottom end of the Cgal. Finally, a point F was 

defined as the one that lied within a spherical neighbor of radius 𝕙 to G and with min-

imal exterior angle. Anatomically, it was located on the same side as T and at the fissure 

on inferior surface between right and left lobes. The points T and F marked both ends 

of falciform ligaments that attaches the liver to the front body wall, and acts like a 

natural plane separating the left lobe into medial and lateral sections (Stehr & 

Gingalewski, 2012; V & BW, 2020). 
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3.2.3.3  Labeling Vessels and Extracting Vectors 

 Subsequently, the primary landmarks located in the previous 

module were used to label five major branches from the vascular network, extracted 

earlier. They were LHV, MHV, RHV, LPV and RPV. To this end, first let 𝑝𝐻𝑉
𝑆  and  𝑝𝑃𝑉

𝑆  

be the starting points of hepatic and portal veins, respectively. In addition, let 𝑑(𝑷, 𝑝𝐻𝑉
𝑆 ) 

and 𝑑(𝑷, 𝑝𝑃𝑉
𝑆 ) be their Euclidean distances to the entry point of main portal vein, P. 

Then, the HV and PV could be distinguished by their distances to this entry point, that 

is, 𝑑(𝑷, 𝑝𝐻𝑉
𝑆 ) >  𝑑(𝑷, 𝑝𝑃𝑉

𝑆 ). Likewise, three and two branches of HV and PV could be 

labelled according to relative distances from their midpoints to the falciform ligament 

markers, T and F, following to Eq. (3.29) and (3.30), respectively. 

𝑑(𝑻, �̅�𝐿𝐻𝑉) <  𝑑(𝑻, �̅�𝑀𝐻𝑉) < 𝑑(𝑻, �̅�𝑅𝐻𝑉) 
(3.29) 

𝑑(𝑭, �̅�𝐿𝑃𝑉) <  𝑑(𝑭, �̅�𝑀𝑃𝑉) (3.30) 

where �̅�𝑉 were the center points of a respective vein, V, i.e., LHV, MHV, RHV, LPV, 

and MPV. 

 Vascular geometries markedly differ across subjects but con-

formed to gross anatomy of the organ (Zhang et al., 2017). Therefore, to ensure adap-

tion to these variations, while maintaining gradual surface resection trajectory, and 

hence realistic preoperative simulation, these hepatic and portal branches were simpli-

fied by approximating vectors. Unfortunately, due to dissensions in the literature re-

garding characterization of the lateral segments, only MHV, RHV, and RPV were thus 

approximated, by using generic PCA, as illustrated in Figure 3.12.b. This statistical 

operation is useful in spanning orthogonal bases that best describes underlying data 
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points with respect to their spatial variances. That being said, unlike other resection 

methods, there was no cutting hyperplane reconstructed at this stage as yet, due to lim-

ited degrees of freedoms (DOF) of the vessels and their incurvate paths. Instead, in this 

work, these principal vectors, each of which approximated a major branch, were jointly 

considered with the previously labelled landmarks to better and more robustly deter-

mine the resection planes. 

3.2.3.4  Determining the Resections Planes 

 One of the most crucial modules is determining the planes that 

separate the liver volumetry into functional segments according to Couinaud’s classifi-

cation. This module began with constructing three vertical planes, namely, 

Π𝑀𝐻𝑉, Π𝑅𝐻𝑉 , and  Π𝐿𝐻𝑉. These planes divided a liver into posterior, anterior, medial, 

and lateral sections. Unlike the other sections, the lateral one was a part of the left lobe 

and was separated by falciform ligament. Both LHV and falciform ligament were thus 

used to create the left ventricular plane (Π𝐿𝐻𝑉). Subsequently, the left and right hori-

zontal planes, namely Π𝑅𝑃𝑉and Π𝐿𝑃𝑉, were used to separate the inferior from superior 

parts. Examples of these planes are illustrated in Figure 3.13. 

 

Figure 3.13 Three vertical and two horizontal planes 
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 Assume that a resection plane is defined, either by orthogonal 

Π𝑛(�⃗� (.), 𝑝) or tangent Π𝑡(ℎ⃗ (.), 𝑝) expressions. The former is a plane, defined by a nor-

mal vector �⃗�   and a point p, while the latter is that containing both tangential vector ℎ⃗   

and point p.  

 Firstly, let ℎ⃗ 𝑀𝐻𝑉 , ℎ⃗ 𝑅𝐻𝑉 , and ℎ⃗ 𝑅𝑃𝑉 be the principal vectors, cor-

responding to MHV, RHV, and RPV, respectively. Let ℎ⃗ 𝑇𝐹 be the vector pointing from 

point T toward F, along the falciform ligament. Accordingly, the vertical planes, de-

fined by these veins are expressed in Table 3.4. 

Table 3.4 Expressions of MHV, RHV, and RPV planes 

Plane Expression Remark 

MHV Π𝑀𝐻𝑉
𝑡 (ℎ⃗ 𝑀𝐻𝑉 , 𝑮)  

RHV Π𝑅𝐻𝑉
𝑡 (ℎ⃗ 𝑅𝐻𝑉, 𝑮)  

RPV Π𝐿𝐻𝑉
𝑡 (ℎ⃗ 𝑇𝐹 , 𝒒) Planar approximation of falciform ligament. 

 

where q is an arbitrary point on LHV, chosen so that the area of a 3D closed curve 

formed by intersection between Π𝐿𝐻𝑉 and liver volume is minimized, as illustrated in 

Figure 3.13. 
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Figure 3.14 Illustrations of the left HV plane (Π𝐿𝐻𝑉) 

 (On anterior (a), posterior (b), superior (c), and inferior (d) 

views. The intersection region between this plane (filled with green) and liver volume, 

given, for instance, a point q is less than a point q’, then the former was chosen) 

 Secondly, for the horizontal planes, let �⃗� 𝑀𝐻𝑉 and �⃗� 𝑅𝐻𝑉 be the 

normal vectors of MHV and RHV planes, respectively, �⃗� 𝑅𝑃𝑉 be a normal vector per-

pendicular to a plane defined by ℎ⃗ 𝑅𝑃𝑉 and an average between let �⃗� 𝑀𝐻𝑉 and �⃗� 𝑅𝐻𝑉, and 

also, r be a point on ℎ⃗ 𝑅𝑃𝑉. Accordingly, the RPV plane is expressed by Π𝑅𝑃𝑉
𝑛 (�⃗� 𝑅𝑃𝑉, 𝒓). 

Finally, the LPV plane, Π𝐿𝑃𝑉, was defined such that it was initially perpendicular to 

Π𝐿𝐻𝑉 and then rotated iteratively about �⃗� 𝐿𝐻𝑉 axis, until it was also normal to a principal 

plane (Π𝑃), in which projections of points on the left branch of PV had greatest variance 

(well distributed). The planes, Π𝐿𝑃𝑉 ⊥ Π𝐿𝐻𝑉 ⊥ Π𝑃, are shown in Fig. 8. 
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Figure 3.15 The left PV plane (Π𝐿𝑃𝑉) (orange)  

 (It lies on the lateral section and is perpendicular to both left 

HV plane (Π𝐿𝐻𝑉) (green) and the principal plane (Π𝑃) (blue) where left PV are well 

distributed) 

 Another contribution of this work is accurate labelling of cau-

date segment, separated from left and right lobes, by anatomical boundaries. Oxygen-

ated and nutrient blood flow enters this segment via PV, before directly draining into 

IVC. Accurate localization of the segment plays a crucial role in diagnosing and surgi-

cal intervention of hepatic diseases (Kumon, 2017), particularly, Hepatocellular carci-

noma (HCC) (Wahab et al., 2011). 

 Nonetheless, computer assisted extraction of caudate segment 

from nearby sections remained problematic, because of its morphological variants and 

ambiguous boundaries, especially on CT images. However, a radiologist could identify 

caudate segment by its general appearance, i.e., rectangle, piriform or irregular form 

(Sagoo, Aland, & Gosden, 2018). From posterior perspective, it is positioned behind the 

hepatic helium and in front of LPV. Its upper end is bounded by HV. To its left is liga-

mentum venosum, whereas its right margin is unclear (Brown, Filly, & Callen, 1982; 

Gang et al., 2009; Sagoo et al., 2018; Wahab et al., 2011). As a result, this structure had 
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so far been disregarded by most CAD studies. To reiterate the survey on this issue, Cheng 

et al. (Y. Chen et al., 2016) adopted Sell’s NNSA technique (Selle et al., 2002) and la-

belled caudate voxels, while Boltcheva (Boltcheva et al., 2006) located this segment by 

extending MHV and RHV planes, and hence extrapolating their intersections with the 

liver. Lastly, Butdee et al. (Butdee et al., 2017)  interpolated the structure by manually 

delineated Bézier curves. Implying caudate segment solely by geometrical elements, 

these techniques discarding its morphological contexts as well as surrounding vascular 

and other hepatic structures, and hence were not sufficiently accurate. 

 It was suggested in (Gang et al., 2009), that IVC can be con-

sidered as the right margin of caudate segment. Unfortunately, IVC is not always dis-

cernable on CT images nor on a liver surface. With the proposed method, IVC was 

hence approximated by a line. It was observed that IVC is almost parallel to falciform 

ligament, which is commonly characterized by concave region in the middle of the liver 

surface (C.2). Therefore, to simplify the IVC, it was defined by a segment AP, as shown 

in Figure 3.16. 

 

Figure 3.16 The bounding planes of the segment I 
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 ((a) depicts left and right planes, while (b) depicts and top, bot-

tom, and posterior planes, respectively) 

 In this figure, P was the entry point to the main portal vein 

(C.3), while A is an intersection between the liver and a line passing P and parallel to 

ℎ⃗ 𝑇𝐹 (C.4). Then, the caudate segment is that bounded by the liver exterior and the fol-

lowing planes, as listed in Table 3.5. 

 To define the top plane, assuming 𝒞 be a curve segment that 

was formed by the intersection between the liver surface and bounded by points P and 

A. Then, B was a point on this curve that had the highest curvature. The normal vector 

and point associated with the top plane was �⃗� 𝑇 = 𝐴 − 𝐵, and the starting point of MHV, 

𝒑𝑀𝐻𝑉
𝑠 , respectively. Similarly, the posterior plane was defined by an orthogonal vector 

�⃗� 𝑃 = �⃗� 𝑇 × �⃗� 𝐿𝐻𝑉 and the starting point of LPV, 𝒑𝐿𝑃𝑉
𝑠  . 

Table 3.5  Expressions of the bounding planes and surface of the segment I 

 

Plane Expression Remark 

Left Π𝐿
𝑡(ℎ⃗ 𝑀𝐻𝑉 , 𝑮) See section 3.2.3.4 for Π𝐿𝐻𝑉

𝑡  

Right Π𝑅
𝑛(�⃗� 𝐿𝐻𝑉, 𝑷)  

Top Π𝑇
𝑛(�⃗� 𝑇 , 𝒑𝑀𝐻𝑉

𝑠 ) See text and Figure 3.16 for �⃗� 𝑇. 

Bottom Π𝐵
𝑛(�⃗� 𝑇 , 𝑷)  

Posterior Π𝑃
𝑛(�⃗� 𝑃, 𝒑𝐿𝑃𝑉

𝑠 ) See text and Figure 3.16 for �⃗� 𝑃. 

Anterior Liver surface Exterior surface of the liver 
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 Finally, provided these planes were defined as such, resections 

of all eight functional segments as per Couinaud’s scheme could be performed virtually 

by tracing along their intersecting curves with the extracted liver surface. 

 

3. 3  Parameterization of a Liver Surface  

The spherical conformal parameterization has been widely used in analysis of 

brain surface, face expression. Given two genus-0 surfaces  𝑆1,2, and their correspond-

ing landmarks, 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛), the registration between land-

marks can be obtained by landmark aligned SCM techniques, e.g., FLASH (P. T. Choi 

et al., 2015). Based on this idea, this study proposed a technique by combination of the 

aligned mapping and rigid body transformation for estimating the GV in LDLT surgery. 

Firstly, a set of landmarks are defined on both recipient liver (referred as recipient or 

𝑆1) and donor liver (referred as donor or 𝑆2). Then the landmark matching spherical 

map is obtained using FLASH algorithm.    

Assume 𝑆1
′  be the symmetric corresponding of 𝑆1 to  𝑆2. It means that 𝑆1

′  has the 

same topology to 𝑆1 but geometry to 𝑆2; 𝑅1 denotes the segment to be resected in 𝑆1.  

It is noted that both 𝑅1 and 𝑅2 may include points on liver surface (called by 𝑣1𝑢, 𝑣2𝑢)  

and interior points (called by 𝑣1𝑖 , 𝑣2𝑖 ) which define the boundary of each segment. 

Moreover, each point in set 𝑣2𝑢 could be computed by its corresponding 𝑣1𝑢. The goal 

is to estimate the GV 𝑅2 on 𝑆1
′ . To do so, the surface points of 𝑅1 (𝑣1𝑢) is firstly aligned 

to the ones of  𝑅2(𝑣1𝑢) by using rigid body transform with iso-scaling. In details, we 

are looking for a transformation,  
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𝑇:  𝑣2𝑢 ≈ 𝐬ℛ(𝑣1𝑢) + 𝐭 
(3.31) 

where 𝒔, ℛ and 𝕥 are the scale coefficient, rotation matrix and translation offset.  This 

least square problem has been efficiently solved using closed-form solution which re-

ported in (Horn, 1987).  Assume 𝑣1 = {𝑣1𝑢, 𝑣1𝑖} and 𝑣1
∗ stands for the registration of 

𝑣1to 𝑣2𝑢, then, 

𝑣1
∗ = 𝐬ℛ(𝑣1) + 𝐭 (3.32) 

Thin Plate Spline (TPS)(Bookstein, 1989) has been known as a smooth surface 

interpolation pass through controls points is applied to minor adjust  𝑣1
∗. Given a set of 

control points 𝑝1≤𝑖≤𝑛, the surface point is defined as follow: 

𝑓(𝑥, 𝑦, 𝑧) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + ∑𝑤𝑖𝑈(‖(𝑥, 𝑦, 𝑧) − 𝑝𝑖‖)

𝑛

𝑖=1

 (3.33) 

Where 𝑎𝑘 is coefficients, 𝑤𝑖 is weight of control point; 𝑈(‖𝜒‖) = 𝜒2log (𝜒).,  

To reconstruct interior point of 𝑅2 (𝑣2𝑖), the control points are uniformly se-

lected from surface points in 𝑣1
∗ and 𝑣2𝑢. Finally, each point in 𝑣2𝑖is obtained by apply-

ing TPS transformation of each point in 𝑣1𝑖
∗ . 

The process of rigid and TPS transformation are illustrated in Figure 3.17. 
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Figure 3.17  The rigid and TPS of surface points 

(On segment’s recipient (yellow) and estimated GV (green). The original points 

(a) from source surface are registered on target by rigid body and uniform scaling (b) 

and TPS (c)) 

In summary, the process of graft estimation is as following: The surgeon selects 

a segment to be resected on recipient, then initialize a few surface landmarks in this 

segment.  For a donor’s, liver, a few landmarks which is corresponding to the ones in 

recipient are located. The SCM based on these landmarks is executed before similarity 

transformation is used. Finally, TPS is applied to reconstruct the estimated graft. 

 



 

 

  

EXPERIMENTS AND RESULTS 

 

This chapter briefly presents the dataset which are used for evaluating the pro-

posed methods, Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI) 2007. Five metrics and score are applied to quantitatively compare among rele-

vant methods (section 4. 1). Section 4. 2 evaluates the accuracy of segmentation method, 

section 4. 3 is to evaluate the functional segmentation of liver according Couinaud’s 

scheme. Section 4. 4 and 4. 5 present liver parameterization and application of liver 

simulation in surgical plaining. 
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4. 1  Dataset and evaluation metrics 

The evaluation of performance between different methods is difficult since most 

algorithms are usually not available and re-implementing is time consuming. Addition-

ally, several authors used different evaluation methods on various datasets which are 

often local. The using of a publicly dataset and specified evaluation metrics enable a 

fair comparison between different technique from different researchers. Over recent 

year, the MICCAI (T. Heimann et al., 2009) dataset has been widely used to evaluate 

among different segmentation technique. For quantitative evaluations, segmented liver 

volumes were compared against corresponding references, based on 5 evaluation met-

rics (T. Heimann et al., 2009). They were Volumetric Overlap Error (VOE), Relative 

Volume Difference (RVD), Average Symmetric Surface Distance (ASD), Root Mean 

Square Symmetric Surface Distance (RMSD), and Maximum Symmetric Surface Dis-

tance (MSD). The score for each metric was computed based on error rate (𝑒) and av-

erage user error (�̅�), whose references were provided by (T. Heimann et al., 2009), over 

all instances. The higher these scores, the better the performance.  

The proposed technique was developed by using C and C++ languages and im-

plemented on Linux operating system. It ran on a personal computer equipped with a 

2.4 GHz CPU and an 8 GB RAM. Basic image processing and graphics algorithms 

involved were derived from OpenCV (OpenCV library, 2020) and Visualization 

Toolkit (VTK) (Visualization Toolkit, 2020) and Vascular Modeling Toolkit (VMTK) 

(VMTK, 2020). The first library implemented general and advantaged algorithms 

which used in computer vision applications. The second library has been widely used 

in many medical imaging studies, thanks to its ability to parse standard DICOM image 

and its meta data. It also allows intuitive graphical manipulations of a 3D object, e.g., 
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geometrical operations, material processing, representing a model in points, wireframes, 

or surfaces forms, slicing, and clipping, etc. The third library was typically used to per-

form 3D vascular segmentation, centerline detection, mesh generation, and geometrical 

analyses. In order to visually assess the segmentation results, a surface model of seg-

mented liver was reconstructed by using the Marching Cubes (MC), implemented in 

VTK. The workflow of experiments is illustrated as Figure 4.1. 

 

Figure 4.1 The workflow of experiments. 

4. 1. 1  MICCAI dataset 

 MICCAI 2007 dataset was set forth by (T. Heimann et al., 2009) at Med-

ical Image Computing and Computer-Assisted Intervention (MICCAI) conference, in 

Brisbane, Australia. This dataset has been widely used by several research during a 
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decade. It contains 30 contrast-enhanced CT volumes captured by a variety of different 

CT scanners come from different manufacturers. The dataset consisted of 30 CT vol-

umes. Out of these, 20 volumes were training scans, whose ground-truth (labelled ref-

erence) was provided. The remaining 10 volumes, referred here as testing scans, were 

unlabeled. To evaluate the results on the latter, the authors were required to submit 

segmented livers to MICCAI SLIVER07 website. All images were recorded at a reso-

lution of 512 × 512 pixels. The pixel sizes ranged from 0.55mm to 0.8mm, while dis-

tances between slices ranged from 1.0mm to 3.0mm. The number of slices in each vol-

umetric scan varied between 64 to 502 (T. Heimann et al., 2009). Each CT image in 

MICCAI is presented by one metadata file associated to a raw data file. 

4. 1. 2  Evaluation metrics 

 Segmentation results from proposed approaches are normally compared 

to expert-generated references based on two kinds of measurements, including volu-

metric overlap error and distance error. Depending on each application which the seg-

mentation results is designed for, the user may prefer for a metric over other. There are 

five metrics which extended from these categories were used for evaluation. Each of 

metric is used to measure an aspect of the segmentation quality. It is noted that each CT 

image was independently evaluated on these metrics. It means that the assignment of 

each image was not affected by the number of slices or resolution. In MICCAI dataset, 

the number of slices varies from 64 to 502. This number may increase up to 1000 in 

modern scanner. The using of higher number of slices gives more details of liver surface. 

The missing slice if any in a CT volume will be ignored during segmentation progress. 

It may be filled by using interpolation between two adjacency slices or smoothing after 

reconstructed by Marching Cube if necessary. Let 𝑅  and 𝐺  be sets of voxels in 
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segmentation and reference; 𝒮(𝑅) and 𝒮(𝐺) be sets of voxels on surface of 𝑅 and 𝐺, 

respectively. Each metric is given by follows (T. Heimann et al., 2009). 

 Volumetric overlap error (VOE)[%] 

𝑉𝑂𝐸(𝑅, 𝐺) = 100 (1 −
|𝑅 ∩ 𝐺|

|𝑅 ∪ 𝐺|
) (4.1) 

 Volumetric overlap error is the most popular metric used to evaluate the 

accuracy of segmentation methods. It measures the error rate between the intersection 

and union of two volumes in percent. The higher of volumetric overlap error, the lower 

of accuracy of a method. The VOE of 0 is for perfect segmentation technique, and 100 

for failed segmentation. 

 Relative volume difference (RVD)[%] 

𝑅𝑉𝐷(𝑅, 𝐺) = 100 (
|𝑅| − |𝐺|

|𝐺|
) (4.2) 

 This is a signed distance function and asymmetric. It is used to measure 

the over-under segmentation in percent. However, it should not be used as the only 

measure of the accuracy of segmentation method. This is because even though the rel-

ative volume difference equals 0, it does not imply that two volumes are identical. In 

liver surgical planning, the volume of graft is crucial to avoid post-operative risks such 

as liver insufficiency. Therefore, the using of this measurement in combination with 

other measurements will provide useful information for such an application. 

  Average symmetric surface distance (ASD)[mm] 
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𝐴𝑆𝐷(𝑅, 𝐺) =
1

|𝑆(𝑅)| + |𝑆(𝐺)|
( ∑ 𝑑(𝑠𝑅 , 𝑆(𝐺))

𝑠𝑅∈𝑆(𝑅)

+ ∑ 𝑑(𝑠𝐺 , 𝑆(𝑅))

𝑠𝐺∈𝑆(𝐺)

) 
(4.3) 

where 𝑑 = (𝑥, 𝐴) = min
𝑠𝐴∈𝐴

‖𝑥 − 𝑠𝐴‖ is the shortest distance from an arbitrary voxel 𝑥 to 

surface A; ‖. ‖ denotes the Euclidean distance. 

 Average symmetric surface distance measures average distance between 

each voxel on surface of R to each voxel on surface of G in millimeters. Each voxel 

calculated must have at least one non-object voxel within their18- neighbors. Unlike 

relative volume different, this measurement is a metric. The value of 0 means two sur-

faces are overlap each other. Although VOE metric is normally used in evaluation, it is 

rarely 0 in practice. Therefore, the combination of VOE which measures the identifica-

tion and ASD which measure error distance are normally used to evaluate segmentation 

results. 

 Root mean square symmetric surface distance (RMSD) [mm] 

𝑅𝑀𝑆𝐷(𝑅, 𝐺) =
1

√|𝑆(𝑅)| + |𝑆(𝐺)|√
∑ 𝑑2(𝑠𝑅 , 𝑆(𝐺))

𝑠𝑅∈𝑆(𝑅)

+ ∑ 𝑑2(𝑠𝐺 , 𝑆(𝑅))

𝑠𝐺∈𝑆(𝐺)

 
(

(4.4) 

 This metric is also used to compute the distance between two surfaces 

in millimeters. It is an average of the root mean square of Euclidean distance, instead 

just Euclidean distance. The value of 0 implies a perfect segmentation. RMSD is a sym-

metric measurement, and it can be used to measure the accuracy. It also reflects the 

deviation in error distance rather than average error. 

 Maximum symmetric surface distance (MSD)[mm] 
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𝑀𝑆𝐷(𝑅, 𝐺) = 𝑚𝑎𝑥 (max
𝑠𝑅

𝑑(𝑠𝑅 , 𝑆(𝐺)) ,max
𝑠𝐺

𝑑(𝑠𝐺 , 𝑆(𝑅))) 
(4.5) 

 This measurement determines the maximum distance of maximum value 

from the Euclidean distance between two surfaces in millimeters. It is also known as 

Hausdorff distance. A perfect segmentation method yields the value of 0 of this metrics. 

MSD returns maximum distance error between volumes, it emphasizes the worst error 

rather than average error, which is important in surgical plaining. Because MSD is sen-

sitive to outline elements, so a segmentation algorithm with high value of MSD does 

not really imply the low accuracy. Moreover, a segmentation result with low ASD in 

overall but high RMSD at small area implies high MSD. 

 Score 

 To have an overall evaluation, the score for each metric is calculated 

based the average user error and error by 

𝑆𝑐𝑜𝑟𝑒 = max (100 − 25
ℯ

ℯ̅
, 0) (4.6) 

where ℯ and ℯ̅ are the error of each metric and average user error. The average user 

error for each metric is given in Table 4.1. 

Table 4.1 Average user errors  

Metric 

VOE 

[%] 

RVD 

[%] 

ASD 

[mm] 

RMSSD 

[mm] 

MSD 

[mm] 

Average user error 6.4 ± 1.0 4.7 ± 1.8 1.0 ± 0.2 1.8 ± 0.5 19.3 ± 5.6 
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4. 2  Liver segmentation results 

In the first experiment, 18 asymptomatic livers from 20 labelled instances were 

segmented. Their VOE, RVD, ASD, RMSSD, MSD, and respective and overall scores 

are reported in Table 4.2 (except for the severe cases, i.e., 10 and 16). The average 

overall score for these instances is 72.3  6.09. Six images (35%) had the scores higher 

than the average of the Grand Challenge submissions. Note the robustness against noisy 

data, as shown by a high score of 81.5 in image 05. Nonetheless, without appearance 

prior model, image 09 exhibited a relative low score, due to mostly obscure separation 

against other organs. 

Table 4.2  The evaluation metrices obtained from 18 (labelled) cases. 

CT 

 

VOE RVD ASD RMSSD MSD 

Score 

% Score % Score mm Score mm Score mm Score 

01 10.9 57.4 0.9 95.1 1.9 52.5 3.6 50.5 30.6 60.4 63.2 

02 7.9 69.3 1.3 93.0 1.3 66.7 3.0 57.9 32.9 57.3 68.8 

03 6.7 73.8 -0.4 97.6 1.0 75.8 2.2 69.9 19.2 75.1 78.5 

04 6.8 73.6 -0.7 96.3 0.9 76.8 1.5 78.6 14.4 81.4 81.3 

05 6.3 75.6 -0.4 97.9 0.8 79.5 1.6 77.8 17.8 76.9 81.5 

06 8.2 68.0 0.3 98.5 1.3 67.9 2.9 60.2 24.6 68.1 72.5 

07 8.9 65.1 -1.1 94.2 1.6 61.2 2.9 59.2 23.4 69.7 69.9 

08 9.4 63.4 2.8 85.0 1.7 56.8 3.1 56.7 29.2 62.2 64.8 

09 9.6 62.3 -3.3 82.5 1.7 56.6 3.5 51.0 29.7 61.5 62.8 

11 7.3 71.6 0.1 99.3 1.4 65.8 3.1 56.4 24.1 68.8 72.4 

12 6.8 73.4 1.7 91.1 1.0 74.5 2.0 72.6 23.4 69.6 76.2 

13 10.5 58.8 6.9 63.5 1.6 60.9 2.4 66.9 18.2 76.5 65.3 

14 7.4 70.9 2.6 86.0 1.2 69.1 3.2 54.9 31.9 58.6 67.9 

15 5.6 78.0 2.2 88.0 0.8 80.6 1.6 77.1 17.3 77.6 80.3 
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CT 

 

VOE RVD ASD RMSSD MSD 

Score 

% Score % Score mm Score mm Score mm Score 

17 7.8 69.6 2.0 89.6 1.2 68.9 2.8 60.8 23 70.2 71.8 

18 8.2 68.1 2.9 84.8 1.3 68.4 2.1 71.5 20.2 73.8 73.3 

19 6.4 74.9 1.8 90.7 1.1 72.2 2.7 63.1 38.2 50.5 70.3 

20 6.2 75.7 1.1 93.9 0.9 78.2 1.7 75.9 17.5 77.3 80.2 

Avg 7.8 69.4 1.2 90.4 1.3 68.5 2.6 64.5 24.2 68.6 72.3 

Std 1.5  2.1  0.3  0.7  6.6  6.09 

 

Figure 4.2 shows Box-Whiskers plots of these metrices and overall scores. 

Among these metrices, RVD was consistently the highest, followed by VOE and ASD, 

respectively. 

 

Figure 4.2 Box-Whiskers plots of metrics, and over scores 

Figure 4.3 illustrates two cases, whose total scores were highest (05) and lowest 

(09), respectively, and their locations, where over and under segmentation occurred. 
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Figure 4.3 Examples of 3D segmentations 

(Case 05 (top row) and 09 (bottom row), whose scores were the highest and the 

lowest, respectively. The corresponding images on their right shows CT slices where 

over (b), (c), and (d) and under (f), (g), and (h) segmentation occurred) 

Figure 4.4 illustrates 2 examples of segmented healthy livers (one row for each 

case) by the proposed method, compared with the respective ground truths. Each col-

umn depicts an original image, segmented liver, ground-truth, and respective surface, 

rendered with false colors, representing errors (in mm).  
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Figure 4.4  Selected examples of two healthy livers 

(The first column (a, e) shows an original image. The second (b, f) and third (c, 

g) columns show the segmented results and respective ground truths. The last column 

(d, e) shows the error distance (in mm) between the segmented results and reference 

livers. The green color on the surface corresponds to the low error rate, while red and 

blue colors correspond to the high positive and negative ones, respectively) 

Except seed points, initialized by the user, the remaining process was fully au-

tomatic. However, there were two empirical parameters involved in the process, i.e., 

the weighting factor in graph-cut and the threshold angle for bottleneck condition. As 

a guideline on how to determine the appropriate values, the experiments were run on 

available dataset. The weight and threshold were varied between 0.1 – 0.9 and 120 – 

170, respectively. Figure 4.5 plots the overall scores versus weights (a) and thresholds 

(b), respectively.  
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Figure 4.5 Graph-cuts weight/ bottleneck angle and score 

Referred to these, the combination that yielded the highest overall score was 

chosen. As such, for the results reported herein, we set these numbers to 0.50 and 150, 

respectively. Since these were the only empirical setups required, to assess the score 

variability due to these settings, Figure 4.6 plots overall scores, when varying GC 

weights, with fixed exterior angles (a) and vice versa (b). It is evident that within opti-

mal range, adjusting either of these parameters did not much affect the average scores, 

but slightly their deviations, in practice. 

  

Figure 4.6 Graph-cuts weight / or exterior angle and score 
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a. Score variability with respect to GC 

weights, between 0.1 – 0.9. 

b. Score variability with respect to Exte-

rior angle, between 120 – 170 degrees. 

Visual and numerical assessments revealed one major pitfall of the method in 

this work. Except errors, caused by ambiguous boundary between liver and other ab-

dominal structures, which could only be elevated by means of statistically trained or 

deeply learnt models, the major cause of lower accuracies (compared to (X. Chen et al., 

2012), (Liao et al., 2016)) was due to inferior vena cava (IVC). It was cylindrical and 

appeared oval in a cross-sectional image that connects to the main branches of hepatic 

vein. But it was not considered as a part of the liver, hence excluded from the ground 

references. Nonetheless, it is anticipated that including IVC in surface reconstruction 

did not make a low-quality 3D model, especially in pre-operative planning. If it were, 

however, really necessary to remove this structure, a contrast agent enhancing blood 

passage, could be administered. Alternatively, a model-based approach, targeting a tu-

bal structure, could be employed. To confirm the hypothesis, we manually removed 

portions of this IVC in one dataset and found that the errors significantly decreased. To 

this end, a user could choose few slices above and below the liver, where vena cava is 

found. Excluding these slices would effectively disconnect it from the liver. Besides, 

adding this step would not cause much burden to the user, in addition to specifying a 

seed point. That being said, it would increase observer variability, and hence was not 

included in the above analyses. Figure 4.7 and Table 4.3 illustrate the segmented liver 

before and after partial removal of IVC at bottom. 
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Figure 4.7 An example of manually remove IVC 

(In the original image (a), the green and orange contours show the segmented 

and ground-truth. In the binary image (b), the IVC detected as bottleneck and re-

moved(c). In comparing to the ground-truth (d), the segmented liver after removing 

IVC has the error distance from [-14.7, 10.6], which is lower than the one before re-

moving IVC [-17.4, 19.4]) 

Table 4.3 The errors before and after removing IVC on the above case. 

Metric VOE[%] RVD[%] ASD[mm] RMSD[mm] MSD[mm] 

Before 6.9 3.2 0.9 1.8 19.4 

After 6.4 2.7 0.8 1.4 14.7 

 

Alternatively, the liver and entire hepatic vasculature could be independently 

segmented. To this end, parts of the proposed method could be exploited. Particularly, 

MND, and RL, without GC or related constraints, were simultaneously applied to 
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extract interior vessels, which were subtracted from and later fused with the liver. The 

extracted result is illustrated in Figure 4.8. This vessel segmentation process took about 

additional 1.2 minutes. 

 

Figure 4.8 Segmentation of vessel and liver 

In the second experiment on liver segmentation, the improved method is evalu-

ated on 20 CT images of MICCAI dataset. The distribution of VOE, RVD, ASD, 

RMSD, MSD metrics, and the overall score for all 20 segmented livers are plotted in 

Figure 4.9. The average overall score was 75.69  5.388. The lowest and highest scores 

were 65.3 and 83.1, respectively. Out of 20 instances, 11 instances gave scores higher 

than the average. 

 

Figure 4.9 Sample distribution of metrics 
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(VOE (a), RVD (b), ASD (c), RMSD (d), MSD (e) metrics, and overall score 

(f) for all 20 segmented livers from MICCAI) 

Subsequently, the evaluation metrics, obtained by the proposed method, for 20 

MICCAI images, as well as their processing times, were also compared against those 

obtained by state-of-the-art methods. The comparisons are listed in Table 2. 

Table 4.4 Benchmarking on metrics and processing time 

Metrics VOE RVD ASD RMSD MSD Time CPU 

Peng et al 4.5 ± 1.0 0.15 ± 0.9 0.8 ± 0.2 1.5 ± 0.3 16.8 ± 2.9 2-3 i5, RAM 8GB 

Liao et al 5.8 ± 3.2 −0.1 ± 4.1 1.0 ± 0.5 2.0 ± 1.2 21.2 ± 9.3 4.7 

i7 2.4GH, Nvidia Ge-

Force 16GB RAM 

Chen et al 6.5 ± 1.8 −2.1 ± 2.3 1.0 ± 0.4 1.8 ± 1.0 20.5 ± 9.3 6.0 

Xeon workstation 2.8 

RAM 8GB 

Lu et al 7.4 ± 1.9 4.6 ± 2.8 1.2 ± 0.4 2.8 ± 1.3 38.5 ± 18 12.4 

i7 2.4GH, Nvidia Ge-

Force 16GB RAM 

Wu et al 7.5 ± * 4.2 ± * 1.0 ± * 1.9 ± * 18.5 ± * 0.4 2.4GH, 4GB 

Zheng et al  7.8 ± * 5.1 ± * 1.1 ± * 1.4 ± * 11.1 ± * ** - 

Yang et al 8.9 ± 2.2 2.3 ± 2.0 1.4 ± 0.3 2.4 ± 1.2 24.3 ± 9.6 2.1 

i7 2.4GH, Nvidia Ge-

Force 16GB RAM 

Selver et al 11.9 ± 4.5 -3.4 ± 5.2 1.7 ± 0.6 3.6 ± 1.8 49.3 ± 27.1 7.9 

i7 2.4GH, Nvidia Ge-

Force 16GB RAM 

Model 1 7.8 ± 1.5 1.2 ± 2.1 1.3 ± 0.3 2.6 ± 0.7 24.2 ± 6.6 1.3 i7 2.4 GH, 16GB RAM  

Model 2 7.2 ± 1.3 1.4 ± 1.4 1.1 ± 0.3 2.2 ± 0.6 20.9 ± 4.6 1.4 i7 2.4 GH, 16GB RAM  

Note: Fields denoted with 

* are those not reported in the corresponding works.  

** the author concluded that their method takes a long time for image analysis, but they did not report 

the number. 
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It is evident that Peng’s and Liao’s method outperformed the rest and ranked first 

on VOE, RVD and ASD. Their techniques took 2-3 min and 4.7 min to segment a liver 

on average. Meanwhile, Zheng’s work performed best on RMSD and MSD, but worst on 

RVD and VOE and take a long time for processing. These findings suggested that the 

former performed well on volume overlapping, while the latter did so on point-to-surface 

distance. Regarding VOE, our method is ranked 4rd/9 after Peng, Liao and Chen, however, 

our method did not require interaction, pre-processing, nor multiple landmarks being 

specified by a user and training model like Chen. In addition, another key advantage of 

the proposed method was the lowest standard deviation except Peng’s, which implies the 

most consistent performance. Its average score was also higher than the reported user 

(manual) score. This indicates that the proposed method was highly reproducible and 

could be applied in clinical practice. In some cases, the executing time is important to 

measure efficiency among algorithms if they were run upon the same system computer 

configuration. However, the re-implementation of algorithms is time consuming and dif-

ficult. Therefore, the processing time listed in the table were for reference purpose be-

cause the proposed algorithms have been implemented on difference computers. 

As mentioned in (T. Heimann et al., 2009), there are number of factors affect to 

the accuracy of segmentation technique. The user interactive based method reaches to 

high performance, but it depends on the experiences and skill of users. The model-based 

method invokes to training set which is not always available in practice. Regrading 

mechanic, Despite several attempts to accelerate the process by automatic seed-point 

selection (S. S. Kumar et al., 2011), if an underlying CT image includes multiple re-

gions, its localization may be less accurate or even lie completely in non-liver areas 

(e.g., tumor, or dark object). It was, therefore, pointed out in (T. Heimann et al., 2009) 



144 

 

that interactive methods and those based on a statistical deformable model outperform 

their automatic counterparts, especially those without a prior model. Nonetheless, due 

to the particularly diverse morphology of a liver, a universal model would require a 

prohibitively large collection of training samples. On the other hand, with a limited 

number of known liver samples, higher interaction would be required on the user’s part. 

Depending on the specific purpose and expected degree of confidence, care must be 

observed when balancing these requirements and devising a liver segmentation scheme.  

Segmentations on unlabeled (testing) dataset were also submitted to MICCAI 

website, for online evaluation. The resultant metrices and corresponding overall scores 

for 7 of 10 asymptomatic livers are presented in Table 4.5. Particularly, VOE, RVD, 

ASD, RMSD, MSD metrices were 8.0  1.1, –0.3  2.7, 1.3  0.4, 2.5  1.0, and 24.9  

10.0. These are hence converted to corresponding scores of 68.8, 88.3, 68.0, 64.5, and 

67.1, respectively. Accordingly, the mean overall score was 71.3  7.95. It is also noticed 

that, while the metrices varied across images, they were particularly low for case 08. 

Table 4.5 The evaluation metrics and score obtained from 7 asymptomatic 

CT 

VOE RVD ASD RMSD MSD 

[%] Score [%] Score [mm] Score [mm] Score [mm] Score 

01 7.4 71.1 2.4 87.1 1.1 71.9 2.0 71.9 19.7 74.0 

02 8.4 67.2 -2.1 88.4 1.2 71.2 2.2 69.2 21.2 72.1 

05 9.6 62.6 0.9 95.3 1.5 60.3 2.7 61.6 24.2 68.0 

06 8.6 66.4 3.0 83.8 1.3 66.7 2.2 69.2 20.7 72.7 

07 6.6 74.1 0.3 98.2 0.9 76.6 1.8 73.6 23.3 69.2 

08 8.6 66.5 -4.5 75.9 1.9 52.1 4.7 33.5 47.2 37.9 
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CT 

VOE RVD ASD RMSD MSD 

[%] Score [%] Score [mm] Score [mm] Score [mm] Score 

09 6.8 73.3 -2.0 89.3 0.9 76.9 1.9 72.8 18.2 76.0 

Avg 8.0 68.8 -0.3 88.3 1.3 68.0 2.5 64.5 24.9 67.1 

Std 1.1  2.7  0.4  1.0  10.0  

 

Similar to labeled dataset, the proposed method (noted as Proposed) was bench-

marked* against those proposed by Peng (Peng et al., 2015), Kainmüller (Kainmüller 

et al., 2007), Wu (W. Wu et al., 2016), and Heimann (Tobias Heimann et al., 2007) on 

unlabeled dataset. The results are presented in Table 4.6. With greatest user’s interven-

tion, Peng’s method outperformed the others in terms of all metrices. Meanwhile, sta-

tistical model employed by Kainmüller automatically took care of inter-subject 

variation. Wu’s and proposed method were identical. However, automated ROI 

intiailization by MIP and thresholding was not reliable in presence of multiple or large 

lesions. The proposed method was better than others in term of RVD. 

Table 4.6 Comparison evaluation metrics and score 

Method VOE RVD ASD RMSD MSD Time CPU 

Peng et al 4.6 ± 0.5 1.0 ± 0.8 0.7 ± 0.1 1.5 ± 0.4 16.9 ± 3.7 2-3 i5, RAM 8GB 

Kainmül-

ler et al 

7.0 ± 2.3 -3.6 ± 3.3 1.1 ± 0.3 2.3 ± 0.7 20.9 ± 6.4 15 3.2 GHz 

Wu et al 7.9 ± 1.3 1.3 ± 3.1 1.3 ± 0.2 2.5 ± 0.7 23.6 ± 8.1 0.4 2.4GH,4 GB 

Heimann 

et al 

11 ± 6.9 -1.7 ± 8.4 2.4 ± 2.3 5.1 ± 4.9 35.2 ± 21.3 

10 Standard  

computer 



146 

 

Method VOE RVD ASD RMSD MSD Time CPU 

Model 1 8.0 ± 1.1 -0.3 ± 2.7 1.3 ± 0.4 2.5 ± 1.0 24.9 ± 10.0 

1.3 i7 2.4 GH, 

16GB RAM 

*Note: The scores were evaluated on 7 images, while other works were on 10 images. 

 

With the proposed anatomical constraints, our method was specifically designed 

for segmenting a healthy liver [4], [17], [28] which is used for LDLT. Therefore, the 

liver is required to be healthy. Consequently, it did not work well in highly pathological 

cases, especially when lesions, with similar intensity to the background, are present on 

liver boundary (see in Figure 4.10). 

 

Figure 4.10 Illustration for segmentations of diseased livers 

(c) 

(a) 

(b) 
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While the liver in case (c) was successfully segmented, the other cases (a and 

b) were not. This was due to the healthy parts enclosing the lesion (located near vena 

cava and portal vein entry) remained valid, according to the anatomical constraints. 

There exist several methods specifically developed for tumor delineation and can be 

integrated into our scheme during post-processing. Their detailed analyses and treat-

ments, however, fell out of scope of this study and thus left for future investigation. 

Unlike other methods which based on prior knowledge of liver (statistical based 

method), intensity of CT images (thresholding base method) or location and relation-

ship of surround organs with of liver (vessel, grid, or kidney), another strong point of 

the proposed technique is the ability of extension for segmentation other object, such 

as vessel, or spleen. This is because the proposed techniques segments liver based in a 

few seed points initialized on liver region. Figure 4.11 shows examples of segmenta-

tion of spleen. 

 

Figure 4.11 Results of spleen segmentation 
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4. 3  Functional segmentation results 

This section presents experimental process on public dataset, functional liver 

resections, validations and benchmarking, and relevant discussions. However, while 

visual assessment was straightforward, due to thorough documented liver anatomy, nu-

merical comparison was not quite the case. This was primarily because there have not 

been many studies, presenting entire functional liver segmentation, and there were even 

fewer, validating on the common datasets. Take for instance, Oliveira et al. (Oliveira et 

al., 2008) demonstrated their method on 7 CT images. In that work, the method was 

evaluated for consistency of a specialist’s perception. Similarly, Boltcheva et al. 

(Boltcheva et al., 2006) analyzed 7 images but of a different dataset and measured the 

errors between the resultant resection planes and those defined by experts. Pamulapati 

et al. (Pamulapati et al., 2011) studied 13 CT images. In their experiments, 20 points 

were randomly placed inside a liver, within 2 cm. from its edge. Their (automatically) 

labelled segments were validated against those identified by a radiologist. There were 

few studies analyzing standard references. Rusko et al. (Rusko et al., 2013), for example, 

used 14 out of total 20 CT images from MICCAI dataset. Their method was validated 

by comparing averaged volume of each segment from three test runs against those re-

ported in the literature. Other works (Alirr & Abd Rahni, 2020; Lebre et al., 2019; 

Zhang et al., 2017) employed some samples from public liver images but lacking 

ground truth for functional segments has led to direct comparison being problematic. 

To elevate standardize issues, a benchmarking framework was designed, in this 

study. Firstly, segmented livers were assessed visually, by an experienced radiologist. 

Objective evaluations were made by measuring and comparing relative hepatic sub-
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volumes, at three different levels, i.e., lobes (left and right), sections (lateral, medial, 

anterior, and posterior), and functional segments (I-VIII), respectively. 

4. 3. 1 Liver dataset 

 The recent needs for common ground truth for validating liver segmen-

tation, and particularly the grand challenges called for MICCAI SLIVER07 initiative 

(T. Heimann et al., 2009). Since these data were intended for general purposes liver 

analyses, and due to limited visibility of the vascular networks in some subjects, they 

were hence discarded. Accordingly, only 12 out of 20 volumes were considered in the 

subsequent experiments. Apart from that of liver volume, ground truth of neither its 

vessels nor functional segment annotations was available. Moreover, to ensure robust-

ness of the proposed algorithm, hepatic vasculature extracted (section 3. 2. 1. and 3. 2. 

2.) were then approximated by principal vectors (Section 3.2.3.3), which were mutually 

considered with anatomical landmarks, to estimate liver resection planes. Consequently, 

detailed information on these vessels, especially at smaller scale, were not imperative. 

In the following experiments, SLIVER07 data were thus acceptable. This section re-

ports both visual and numerical assessment, of the proposed automated Couinaud’s 

functional segmentation. Critical comparisons against state-of-the-art methods and crit-

ical discussion on the findings were also given. 

4. 3. 2 Visual assessment 

 To ensure functional independence among eight segments and thus rapid 

recovery, for instance, after graft transplant, a liver should be resected into segments, 

each of which has sufficient inflow and outflow blood passages. Since not only interior 

venous network, but also differential surface exterior, were considered, the resection 

paths appear natural, yet attuned well to the overall shape and anatomical landmarks, 
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as shown in Figure 4.12. As also clearly noticed on axial and sagittal views, each seg-

ment has at least a pair of in- and out flows. Furthermore, the smallest caudate segment 

was correctly localized by HV, IVC, entrances to MHV and PV, and LPV (Figure 4.13). 

 

Figure 4.12 The distribution of in- and out blood flows 

 

Figure 4.13 Localization of a caudate segment 
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 (In 2D (top row) and 3D (bottom row) on axial (left column) and sagittal 

views (right column), showing the natural anatomical margins) 

4. 3. 3 Numerical assessment 

 In addition to sufficient blood flows, there are other factors that deter-

mine the likelihood of postoperative recovery, such as minimal volume of FLRV, pa-

tient’s age, their diabetes conditions, chemotherapy associated injury, blood loss during 

surgical procedure, and cholestasis, etc. 

 Among these determinants, FLRV is generally accepted as the most pre-

vailing for postoperative outcome (Loffroy et al., 2015). Therefore, to increase patient’s 

survival rate, this factor must be meticulously observed when planning a liver surgery. 

For example, to ensure regeneration capacity of a liver after tumor removal, the average 

FLRV is 25% (15-40%) of a total liver volume. This ratio increases up to 50% (25-90%) 

in cirrhotic, depending on the stage of the disease and patient’s age. For transplant surgery, 

minimal FLRV for the living donor is 40% on average (30-50%), while the accepted graft 

per recipient’s weight ratio is 0.8% (0.8-1.0% (Ben-Haim et al., 2001) or, as indicated in 

more recent studies, 0.6-1.2% (Stefan Breitenstein, Carlos Apestegui, Henrik Petrowsky, 

& Pierre Alain Clavien, 2009; Clavien et al., 2007; Gotra et al., 2017)). 

 It may be concluded that accurate calculation of relative liver volume as 

well as localization of its segments are critical for resection planning. Nevertheless, due 

to lack of common ground truth, and approximation of major vascular vectors, instead 

of dice similarity coefficient (DSC) or volume overlap error (VOE), this study intro-

duced multi-level quantification, based on percentage of segmented volumes over total 

liver. By this approach, this work was able to validate the resultant functional segments, 

against those obtained by four related methods, proposed in the literature. It is 
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hypothesized that any misclassified (or contradicted) areas would manifest not only in 

anatomical violation, but also in adjacent partial volume deviation from its general clus-

ter, at corresponding hierarchical levels.  

4.3.3.1  Overview of Functional Segments 

 Unlike other whole liver extraction studies, where focused was 

placed on its shape boundaries, 12 out of 20 subjects were selected from the SLIVER07 

dataset, based on the clarity of vessel appearance. Volumes of all annotated functional 

segments per subject are listed in Table 4.7 and summarized in Figure 4.14.  

Table 4.7 Percentage of functional segment volumes in liver 

Subject Seg I Seg II Seg III Seg IV Seg V Seg VI Seg VII Seg VIII 

1 3.2% 10.7% 3.3% 19.4% 10.5% 18.2% 10.9% 23.9% 

2 3.0% 7.2% 3.0% 16.9% 10.3% 24.4% 12.2% 23.2% 

3 3.5% 15.2% 6.1% 29.0% 5.4% 16.7% 9.4% 14.6% 

4 3.0% 11.3% 5.3% 23.7% 9.8% 24.6% 9.2% 13.1% 

5 3.6% 10.1% 3.6% 8.5% 19.6% 29.8% 11.6% 13.2% 

6 1.9% 6.9% 3.0% 6.7% 10.6% 28.7% 15.7% 26.5% 

7 3.2% 4.5% 3.6% 14.7% 15.8% 27.8% 13.5% 16.9% 

8 3.2% 10.3% 7.1% 14.0% 6.4% 23.9% 12.1% 23.1% 

9 2.4% 5.1% 4.2% 12.2% 9.7% 31.7% 14.9% 19.7% 

10 1.8% 3.5% 2.7% 21.9% 3.7% 21.1% 13.4% 31.9% 

11 2.1% 6.8% 7.6% 14.1% 3.7% 26.2% 13.4% 26.2% 

12 3.4% 12.3% 6.3% 15.0% 11.5% 28.0% 12.7% 10.9% 

Avg 2.86% 8.67% 4.65% 16.33% 9.74% 25.08% 12.42% 20.26% 

STD 0.6% 3.5% 1.7% 6.3% 4.7% 4.6% 2.0% 6.5% 
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Figure 4.14 Box-Whisker (a) and tree plots (b) of segment volumes 

 Since the liver volumes were subject specific, and hence varied 

in both size and shape, their percentage values, relative to individual whole liver volume 

and corresponding averages are presented here. It can be noted from the table that, seg-

ment VI covered large portion of posterior section and has the most volumes (25.08%), 

while segment I was the smallest (2.86%). 

 Furthermore, besides the shape of exterior surface, hepatic ve-

nous networks played an equally important role in defining and localizing these seg-

ments. Accordingly, there existed noticeable cross-subject variability in the resulted 

resections. Especially, thanks to distributed vascular branches, the segment VIII 
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exhibited the highest variability (6.5%), followed by segment IV (6.3%), whereas seg-

ment I did the lowest (0.6%). 

 An example of these variations is demonstrated in Figure 4.15, 

where segment VIII was compared between subjects 10 (top) and 12 (bottom). It is 

clear that segment VIII in the former case was about one third (31.9%), while that in 

the latter one was only one tenth (10.9%) of the respective whole liver volume. 

 

Figure 4.15 The variation of volumetry between two subjects 

 (Segment VIII, bounded by MHV, RHV, and RPV (solid, 

dashed, and dash-dotted yellow lines), was drawn on a respective liver surface (solid 

blue lines)) 

4.3.3.2  Benchmarking 

 To compare the proposed liver resection methods with recent 

related works, we performed relative volume evaluation, at three detail levels, i.e., lobes 

(left and right), sections (lateral, medial, anterior, and posterior), and functional seg-

ments (I-VIII), respectively. The benchmarking was made among Huang (S.-h. Huang 
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et al., 2008), Rusko (Rusko et al., 2013), Cheng (Y. Chen et al., 2016), Butdee (Butdee 

et al., 2017) et al., and the method in this work. Unfortunately, in (S.-h. Huang et al., 

2008), where venous tree was projected onto a plane, by which these liver segments 

were separated, segment I was thus missed out due to occlusion. Likewise, despite high 

degree of user interaction involved, in (Rusko et al., 2013), this segmented was merged 

with segment IV. In Cheng et al.’s work (Y. Chen et al., 2016), only portal vein was 

considered, inflow and outflow blood to and from each segment was not guaranteed. 

Finally, segment I was explicitly estimated by Bézier curves, which required experi-

enced judgment from an operator, unlike ours where the automated process relied on 

extracted anatomical landmarks. Since different labelling schemes were presented in 

those works, we decided to follow the most closely related one (Rusko et al., 2013) and 

compared segments I and IV in merging, in the following analyses. 

4.3.3.3  Evaluation at Lobe-Level 

 Figure 4.16 compares the averaged lobe volumes on both side 

among different methods. It is evident that, regardless of the methods used, the right 

hemi-liver was always larger than the left one. Particularly, the results were most sim-

ilar to those by Rusko et al., i.e., left: right volumes of 67.50: 32.50. This was not only 

because we analyzed the same dataset, but these findings also implied that the proposed 

resection yielded results, that were closely resemble to those obtained by that intervened 

by an experienced operator. 
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Figure 4.16 Comparisons of relative segment volumes at lobe-level 

 (The results closely resembled to those obtained by Rusko’s 

method. Dotted lines are the average volumes of left and right lobes, for all methods) 

4.3.3.4  Evaluation at Section-Level 

 Table 4.8 presents averaged proportions of volume sizes in 4 

sections, i.e., lateral, medial, anterior, and posterior. It can be noted that this segmenta-

tions concurred with Butdee’s for anterior section (30.0 vs. 29.4%) and with Rusko’s 

for both lateral (13.3 vs 12.2%) and medial (19.2 vs. 20.0) sections. 

Table 4.8 Averaged proportions (in %) of volume sizes in four sections 

Methods Lateral Medial Anterior Posterior 

Huang 14.1 24.7 39.3 21.9 

Rusko 12.2 20.0 40.2 27.6 

Cheng 26.7 18.1 23.3 32.0 

Butdee 17.9 22.1 29.4 30.6 

Proposed 13.3 19.2 30.0 37.5 
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 To gain better insights into differential characteristics, PCA 

was applied to these relative volumes (by column) over these methods (by row). Their 

respective projections onto the principal 2D (eigen) space are plotted in Figure 4.17. It 

is evident from the figure that, this technique yielded similar sectional proportions to 

the semi-automatic methods (Butdee et al., 2017; Rusko et al., 2013) (dotted arrows), 

within 2.0 radius. It is also worth emphasizing here that, in this analysis, section I was 

merged with IV, and associated with medial section. 

 

Figure 4.17 The distributions of volume sizes evaluated at section level 

(By five methods and projected onto a 2D principal plane) 

4.3.3.5  Evaluation at Functional Section-Level 

 Similar to the previous level, Table 4.9 presents the averaged 

proportions of volume sizes in all functional segments. 
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Table 4.9 Averaged proportions (in %) of volume sizes in functional segments 

Methods II III I, IV V VI VII VII 

Huang 3.0 11.1 24.7 20.6 6.1 15.8 18.7 

Rusko 5.9 6.3 20.0 16.2 10.6 16.8 24.0 

Cheng 8.4 18.2 18.1 6.3 15.6 16.4 16.9 

Butdee 13.1 4.8 22.1 11.4 18.6 12.0 18.0 

Proposed 8.7 4.6 19.2 9.7 25.1 12.4 20.3 

 

 The above results indicated that the results were most con-

sistent with Butdee’s, for four out of seven segments, i.e., II, V, VI, and VII. This is 

mainly because we took the same approach in constructing the HV plane. For segments 

II, I & IV, and VIII, the results were comparable to those by Cheng, Rusko, and Huang 

et al.’s works, respectively. Likewise, these are because for these segments we referred 

to the similar markers as did those works. 

 PCA was also applied to these relational data, similar to those 

evaluated at the section-level, and the corresponding projections are plotted in Figure 

4.18, where individual subjects, analyzed by this method are also shown. Contradicted 

segment is manifest in partial deviation from its general cluster. 

 Unlike Figure 4.17, however, due to higher dimension (8) than 

methods (5), PCA was applied to all 12 subjects and averages of compared methods 

(12 + 4 = 16 > 8). Based on Mahalanobis’s distance, all instances but Huang’s average, 

lied within 2.4σ radius (bounded by subject 10) around the average. Apart from that, 

the sample average was closest to Butdee’s (d = 1.0σ), followed by Rukso’s (2.1σ), and 

Cheng’s (2.4σ). Despite similar volumes ratios, the proposed method outperformed 
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these semi-automatic ones, especially in terms of the extent of user interaction and ex-

pertise involved, and hence inter- and intra-observer variability (Keegan et al., 2004). 

Take Rukso’s method, for instance, between three trial runs, the volume variations 

ranged 2.8–5.6%, which is roughly at similar significance levels as those among five 

methods, presented in Table V. 

 

Figure 4.18 The distributions of volume sizes evaluated at segment level 

 (By five methods and projected onto a 2D principal plane. The 

projections of individual samples analyzed by the method are included) 

 

 In addition to state-of-the-art methods, a range of computer 

software has also been developed based on Couinaud’s definition. They are widely ap-

plied in clinical practice and worth mentioned here (Xiaopeng Yang, Wonsup Lee, 

Yunhee Choi, & Heecheon You, 2012), e.g., MeVis LiverAnalyzer™ (MeVis Medical 

Solution, Germany), and Synapse Vincent™ (Fujifilm, Japan), etc. While the former 
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requires its user to submit CT images and then wait for full report, the latter is interac-

tive and thus depends greatly on user’s expertise, e.g., significant manual adjustment is 

required for regions with poor vascular clearance, etc. Therefore, to resolve these limi-

tations, algorithmic enhancement has still remained vital and been an active area of 

research (Alirr & Abd Rahni, 2020; Butdee et al., 2017; Y. Chen et al., 2016; Lebre et 

al., 2019; X. Yang, Yang, Hwang, et al., 2018; Zhang et al., 2017). 

 

4. 4  Liver parameterization 

In addition, to elucidate the merits of the proposed cross-subject correspondence 

of liver resection, a pair of extracted liver surfaces were selected and denoted as source 

(S1) and target (S2). After segmentation, these surfaces were first preprocessed by the 

MeshFix tool (Attene, 2010), to remove degenerated and self-intersecting triangles, to 

fill holes, and to smooth their vertices. Without a loss of generalization ability, each 

processed mesh was resampling to contain 12k vertices (to reduce mesh elements to a 

manageable size, while maintaining visual appearance). Subsequently, functional re-

section was performed on each liver, resulting in eleven landmarks. A description of 

these landmarks is summarized in Figure 4.19. 
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Figure 4.19 Landmark annotations 

(LHV, MHV, and RHV refer to the resection paths along the left, middle, and 

right hepatic veins, respectively; LPV and RPV refer to those along the left and right 

portal veins, respectively) 

Out of these landmarks, three anatomical points (1, 2, and 6) were explicitly 

detected on the gallbladder fossa and falciform ligament, while the other six points (3–

5 and 7–9) were intersections of resection paths; the last two points (10, 11) lay on the 

virtual paths along the left and right portal veins (PV) passing through the liver surface, 

where it exhibited the highest curvature. 

Example localization of landmarks and the respective mapping are illustrated in 

Figure 4.20. It is revealed by the distortion plots with a slight deviation from 0 degrees 

that, by using the FLASH algorithm, stabilized and bijective conformal mapping was 

obtained. The corresponding source to target registrations are shown in Figure 4.21 
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Figure 4.20 The SCM with landmark constraints. 

The first and second rows present the source and target livers in anterior (a,e) 

and posterior (b,f) views. On the spheres in (c) and (g) are shown their landmarks, 

aligned by constrained mapping. The distortions between liver and spherical mapping 

of source and target livers are plotted in (d) and (h), respectively. 

 

 

Figure 4.21 The registration (S’1) of source (S1) to target (S2) 

(in anterior view (a), posterior view (b), and the overlaid error distance (c). The 

errors of this example were between –1.2 × 10−3 to 8.1 × 10−5) 
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To evaluate the correspondence between source and target resections, the resec-

tion on the target liver (ℒ2), based on its interior vasculature was projected onto the 

registered source liver, (𝑆1
′), denoted as (ℒ1

′ ). Subsequently, the Hausdorff distance be-

tween this projected resection and that actually performed on the source (ℒ1) was com-

puted by using MeshLab, developed by the Visual Computing Lab of the ISTI-CNR 

based on the VCG library (Cignoni et al., 2008). Figure 4.22 depicts the resection on 

source and target livers, their conformal parameterizations, and the projected resection 

by symmetric correspondences. 

Table 4.10 lists the maximum, minimum, mean and root mean square errors of 

the Hausdorff distances between the correct (determined from its actual vasculature) 

and projected resection on the source liver. 

 

Figure 4.22 An example of resection on source and target livers 
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(The resection of source (a) and target livers (d), based on hepatic vascular net-

work, their respective SCM (b,e), and the projection of target resection (c) onto the 

registered source liver (f), by using symmetric correspondence) 

Table 4.10 The Hausdorff distance between the correct and projected paths 

Resection Paths 

Max 

[mm] 

Min 

[mm] 

Mean 

[mm] 

RMS 

[mm] 

LHV 33.12 0.15 13.03 15.50 

MHV 38.53 0.45 18.52 21.54 

RHV 72.77 0.36 30.77 36.32 

LPV 24.10 0.23 13.09 14.32 

RPV 62.12 1.06 40.55 43.56 

Average 46.130 0.452 23.192 26.249 

 

It is evident from Table 4.10 that the projections of LHV and LPV exhibited 

the least error, which implies they are the most consistent between the projected and 

correct hepatectomy. In which case, when provided with resection paths on the target 

liver, that one source could be sufficiently determined by conformal correspondence, 

without the extraction of the entire hepatic vascular network. On the contrary, those on 

the right hemi-liver exhibited larger errors. This was due to a greater variation of the 

corresponding segments (e.g., segments IV and VIII). 

It is thus worth emphasizing that the cost function given in Equation (2.39) is 

aimed at balancing between minimized distortion and landmark alignment. This implies 

that exact alignment was not necessarily guaranteed. In fact, in the original FLASH 
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implementation, six sulci, each of which consisted of multiple vertices in a cerebral 

cortex, were imposed to evenly distribute errors. However, since the liver is much mor-

phologically diverse, localized alignment is suggested. To demonstrate this proposition, 

five anatomical landmarks relevant to LHV and LPV (i.e., 1, 2, 3, 4, and 10) were im-

posed as constraints. The corresponding errors between the correct and projected resec-

tion are shown in Table 4.11. 

Table 4.11 The Hausdorff distance between the correct and projected paths 

Resection Paths 

Max 

[mm] 

Min 

[mm] 

Mean 

[mm] 

RMS 

[mm] 

LHV 7.85 0.12 4.05 4.44 

MHV 39.18 0.16 21.54 23.81 

RHV 31.27 0.31 16.94 19.48 

LPV 5.13 0.34 1.94 2.09 

RPV 85.42 0.39 40.92 48.27 

Average 33.707 0.266 17.074 19.618 

 

Figure 4.23 compares these min, max, and mean resection errors between im-

posing 11 and 5 landmark constraints. It is evident that, by localizing the constraints, 

the landmarks and hence the relevant resection, i.e., LHV and LPV, were more con-

sistent. However, it could lead to greater errors in other segments, e.g., MHV and RPV 

paths. Therefore, care must be observed when selecting anatomical landmarks, as they 

play a vital role in resection consistency. 
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Figure 4.23 The error distances between projected and correct resection paths 

4. 5  Liver surgical simulation 

In LDLT, the pre-operative assessment of GV assists surgeons to estimate the 

implanted graft before operating in real liver. This work used landmarks matching SCM 

in combination to rigid body transformation to estimate graft. It is noted that, not all 

liver as well as segments are compatible. In this case, the estimated volume and its 

shape may be bad. In practice, the surgeons may base on specified requirements to de-

cide whether a donor’s liver is suitable or not. Therefore, there are some segments are 

selected for demonstration in current research. Firstly, a few landmarks specify for a 

region are used for SCM constraint (see in Figure 4.19). Then the RVD error and dis-

tance error are measured. The Table 4.12 validates the estimated volume with actual 

volume of the donor.  
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Table 4.12 The RVD and error between estimated and actual volume 

Example Landmarks ID RVD [%] Error distance [mm] 

#1 2,3,4,10 7.1 49.0 

#2 1,3,4,10 2.2 7.0 

#3 1,3,4,10 5.9 8.1 

#4 1,2,3,4,10 -9.0 29.0 

#5 5,6,7,8,9,11 1.2 35.3 

 

The Table 4.13 shows the RVD error and distance error between actual, esti-

mated volume (on donor) and actual volume (on recipient). 

Table 4.13 The RVD and error distance. 

Example Landmarks ID RVD-1 [%] RVD-2 [%] Error distance [mm] 

#1 2,3,4,10 -0.1 7.0 28.7 

#2 1,3,4,10 -6.1 -4.0 10.8 

#3 1,3,4,10 24.4 31.7 13.6 

#4 1,2,3,4,10 10.6 0.6 25.0 

#5 5,6,7,8,9,11 -0.8 -3.5 52.4 

 

In Table 4.13, RVD-1 is the error between actual volume of donor and actual 

volume of recipient, while RVD-2 denotes the error between estimated volume and 

actual volume in recipient. In both tables, the lower and error distance, the more com-

patible between recipient and donor’s graft. The minus (-) in RVD implies the estimated 

volume smaller than the actual one (underestimation), otherwise it is bigger 
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(overestimation). In Table 4.12, the case #1 and #5 have RVD of 7.1% and 1.2%., but 

the error distances are large (49 and 35.3, respectively). Due to the compatibility, case 

#2 and #3 have low error. However, RVD-1 and RVD-2 of case #3 in Table 4.13 are 

too large, so it is not suitable for liver transplantation. The estimated graft in case #4 is 

less than actual volume (RVD of -9.0%). In practice, the difference between the GV in 

pre-operative surgery (calculated by the assumptive plane) and post-operative (by ac-

tual plane) may be 5%, this number may increase up to 10% in comparing to actual 

graft (Kwon et al., 2018). In another work, Wang et al (F. Wang et al., 2011) performed 

a comparison between three methods for estimation GW. The first method used CT 

volumetry, referred as radiological graft volume (RGV), while the second one com-

bined standard liver volume (SLV) and RGV percentage with respect to TVL from CT 

image. The last method based on portal vein diameter and SLV. They reported the error 

of 18.5% ± 14.5, 11.7% ± 15.4%, and 9.5% ± 12.8% corresponding to three meth-

ods, respectively. They assume that the liver density is 1g/cm3
., it led to the GW is the 

same to GV. In some materials, the rate between GW and GV may be 0.84 (or 0.82) in 

right lobe and 0,85 in left lobe (Pinheiro et al., 2017; Yoneyama et al., 2011). The land-

marks, overlaid regions and errors between recipient, actual and estimated volumes are 

illustrated respectively in Figure 4.24. 

By using this technique, the reconstructed segments were no longer limited to 

planar separation and were hence much more flexible to the actual morphology of an 

underlying shape. To lessen estimation errors, a statistical atlas of the livers may be 

built over a training set, and then its mean shape (instead of an arbitrary instance) may 

be used as a reference (Horkaew & Yang, 2004), while regulating Equation (2.39) by 
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plausible variation, only found in this set. Its detailed analyses and discussion, however, 

fall out of the current scope and are left for future investigation. 

 

Figure 4.24 Illustration of estimation of graft in examples



 

 

  

 CONCLUSION AND FUTURE WORK 

 

This study focused on solving the problem of liver segmentation, functional 

segmentation in CT image, and application of SCM with similarity transformation for 

estimation the GV.  

Segmenting a liver from a 3D CT image has remained a challenging area of 

research. This is mainly due to the inherent characteristics of this imaging modality that 

impede it from rendering clear separation between the liver and connective abdominal 

parts. In addition, the inhomogeneity of interior voxels has often contributed to errone-

ous liver extraction. According to the recent survey, model-based and interactive meth-

ods offered by far the most promising results. However, anatomical variations across 

the subject population and high geometrical resolution call for a prohibitively large, 

annotated dataset for realistic model construction. On the one hand, given a model that 

captures all plausible variations, a deformable model approach can be adopted to auto-

matically segment a liver. On the other hand, without such priors, user intervention or 

empirical knowledge is often required, for example, to initialize seed points, estimate 

rough contours, or make small adjustments to segmented results.
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This research proposed a semi-automatic method for segmenting a liver from 

CT images. Its main contribution was to balance between robustness, accuracy, pro-

cessing time, while keeping user interaction minimal. More specifically, the   probabil-

istic model of pixel statistics was first built from a user-defined seed point and then 

enhanced by multi-slice RL. Subsequently, the liver was extracted using the GC algo-

rithm. During graph optimization, a novel local texture compatibility function called 

anisotropic measure was integrated into boundary energy to enhance its robustness. Fi-

nally, BN detection and contour constraints were employed to resolve the remaining 

under- and over-segmentation. The experimental results, both visual and numerical, re-

ported herein demonstrated that the proposed method not only gave comparable seg-

mentation accuracy to state-of-the-art methods, but was also faster and more consistent 

than the majority in its class. The proposed technique is designed to segment on CT 

image of liver which includes a series of slices where shape of object is not much 

change between two adjacent slices. It is also worth emphasizing that this favorable 

performance relied neither on any statistical model nor specific anatomical priors of the 

liver. So, it can thus be readily applied to other similar abdominal organs, such as the 

spleen or vessel. In segmentation of spleen, for example, user is required to initialize 

seed points on spleen region. The probabilistic map is then applied to highlight spleen 

area. The latter steps are applied as in liver segmentation. Parallel or hardware device 

programming are popular techniques to speech up the algorithm. The vital mechanism 

of the former is to divide a process into multiple blocks by using multiple threads or 

CPU, meanwhile the latter is to use hardware devices such as graphics card instead 

CPU. In this study, proposed algorithm was implemented on notebook. However, it is 

possible to improve the processing by applying parallel programming on building 
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probabilistic map, relaxation labeling and refinement steps by dividing images into 8 

(or 16) independent blocks, each block contains N/8 (or N/16) images. 

Regarding functional segmentation, this study presented a novel scheme for la-

beling functional segments of a liver mass and tracing on its surface virtual surgical 

paths for preoperative liver resection. This scheme took into account liver morphology, 

its interior vascular network (deep landmarks), and anatomical landmarks (surface land-

marks). Given a liver and its vascular surfaces extracted from 3D CT, we divided a liver 

into eight functional segments, according to Couinaud’s definition. Among key hepatic 

markers, the proposed method was able to identify and localize gallbladder fossa and 

falciform ligaments on the liver surface, by means of differential geometry operations. 

Unlike existing methods, these and other markers considered herein were practical and 

much faithful to hepatic anatomy than manually specified cutting planes or curves. Be-

sides only a few markers being placed by a user on major vessels, the rest of the process 

was automatic. Accordingly, this significantly reduced observer variability, user fatigue, 

and needs of radiological expertise. To the best of my knowledge, existing schemes 

estimated the caudate lobe (segment I), based primarily on a portal vein or manually 

drawn parametric curves, or more often than not neglected this segment all together. To 

resolve this issue, the proposed method meticulously defined caudate boundaries based 

on surrounding segments and local planes. Particularly the extracted gallbladder fossa 

and falciform ligament forms natural landmarks that enabled its separation from lateral, 

medial, and right sections. Moreover, the principal vectors approximating main HV, 

and PV branches ensured necessary blood passages in and out of each segment. To 

demonstrate its merits, the proposed scheme was validated both visually and numeri-

cally on standard public liver dataset. A Total of twelve subjects were undergone virtual 
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preoperative resection. The resulted functional segments were subsequently validated 

and benchmarked against four related methods. Numerical evaluations at three volu-

metric levels were performed and discussed. One of this main contributions was well 

motivated by a previous work presented in (Boltcheva et al., 2006), where gallbladder 

fossa and falciform ligament were both considered. However, with this work, the struc-

tures of interest were automatically identified, by optimizing parametric curvatures, 

based on their two-manifold distribution. Another key contribution was that, in addition 

to referring to these structures and the centroid of liver mass, the method also detected 

and analyzed its vasculature and other salient anatomical markers, in building resection 

planes. Unfortunately, numerical measurements were not reported in (Boltcheva et al., 

2006), it were thus unable to compare this results with theirs. That said, the proposed 

methods corresponded well to other counterparts, particularly to those depending on 

fair amount of interaction from an experienced user. To summarize, successful liver 

resection procedure is characterized by accurate calculation of postoperative FLRV and 

functional independence of affected regions. Thus, it is anticipated that the proposed 

virtual resection method will benefit both preoperative planning and surgical interven-

tion. Future directions worth considered are much precise extraction of vessels and their 

centerlines (Zhang et al., 2017) (Moccia et al., 2018) and building statistical atlas 

(Horkaew & Yang, 2004) of functional segments model. Empirical results reported 

herein have also confirmed large variations of vascular structures (especially HVs) 

(Fang et al., 2012) and related segments. It is thus worth further explore and correlate 

these resections with, for examples, biliary tree, by using CT-MRCP (MR cholangi-

opancreatography) perfusion and functional parenchyma, by using particular contrast 

material. 
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Having segments, the proposed virtual resection scheme could be integrated 

with other computerized therapeutic interventions. For example, percutaneous radiof-

requency ablation (RFA) is another prospective area of application. This non-invasive 

treatment first locates the tumor and then precisely destroys it by heat through a needle. 

To this end, Egger et al. (Egger et al., 2015) constructed a 3D spherical graph at a seed 

point. Subsequently, max-flow min-cuts was used to segment the ablation zone from 

the background. An automatic approach was taken by Wu et al. (P. H. Wu, Bedoya, 

White, & Brace, 2021). With their method, fuzzy c-mean clustering and cyclic mor-

phology were employed to extract and then refine the ablation zone. Having this zone 

extracted (or during the procedure), the proposed scheme could be applied to determine 

the enclosing liver and functional segments, to gain a comprehensive view of the overall 

treatment. 

It has been known that the estimation of graft to be implanted was crucial to 

avoid liver insufficiency post-operation in liver transplantation. This study integrated 

SCM with similarity transformation to predict the shape and size of graft. Firstly, a few 

anatomical landmarks were chosen in both recipient and donor’s liver at a specified 

area. Then the landmark matching map will be utilized to algin landmarks. Then the 

symmetric corresponding surface points are obtained. Lastly, the similarity transfor-

mation is used to construct interior points of the estimated region. The objective is to 

find the compatible graft in donor with recipient.  

Although obtained some results, the current work still has some limitations:  

- The first one is the complete IVC removal, which is vital for preoperative 

planning and computerized surgical simulation. This can be done by segmenting the 

liver and its vasculature simultaneously. Furthermore, errors may be propagated during 
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post-processing. A novel user experience (UX) and interface (UI) design could help 

make manual editing much more intuitive and efficient. Lastly, the proposed method 

did require a seed point from a user. To fully automate the segmentation, the seed point 

may be chosen, such that the resultant probabilistic map virtually covers an estimated 

VOI. 

- Second, the functional segmentation is based on vessel network enable to en-

sure the independence of segments. Therefore, beside segmented liver, the vascular 

system must be separated into HV and PV. 

- Estimation of GV which supports surgeons in finding the suitable donor, bases 

on a few landmarks may be not enough to constrains the map. In some application of 

brain analysis, this number may up to hundred or more than. Moreover, the estimation 

process depends on the compatibility between recipient and donor’s liver. Therefore, if 

this requirement is not satisfied, it may lead to over or under estimation. In conclusion, 

the using of the proposed technique should in combination to conventional methods 

would be useful. 
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