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CHAPTER I

INTRODUCTION

1.1 Background

Image noise is present in practically all kinds of imaging, whether analog

or digital. The type of noise most noticeable in ultrasound images and small aper-

ture radar (SAR) images is called speckle noise, because it appears in an image

as very dark or very bright spots. Speckle noise results in reduced quality of an

image by blurring fine details such as edges, shapes, pixel intensity values, etc.

Naturally, image noise reduction or removal is a very active and intense field of

research, and there is a vast collection of literature available. Many popular de-

noising techniques involve local averaging. These include the Lee filter (Lee 1980),

the Frost filter (Frost et al., 1982) and the Kuan filter (Kuan et al., 1985). Over

time there have been numerous refinements to these types of filters in order to

improve their performance for specific applications. Another set of noise reduc-

tion techniques is global in nature. Among the most common are variational and

thresholding methods. The variational method was popularized by the paper of

Rudin, Osher and Fatemi (1992). Here, the denoised image is obtained as the

minimizer of a certain functional which measures the combination of the average

gradient (i.e. total variation) throughout the desired image together with its dis-

tance to the noisy image. Thus, the image which minimizes this functional can

be considered the denoised image. Experiments have shown that this method pre-

serves edges relatively well. Its drawback is that low-amplitude variations such

as image texture disappear. Donoho and Johnstone (1994) and Donoho (1995)
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were the first to show that wavelet transform thresholding methods can be used

not only for image compression, but also for filtering / denoising purposes. The

idea is that the wavelet coefficients which fall below a certain threshold value are

attributable to noise; thus setting them to zero will remove this noise. The draw-

back is that Gibbs-like effects can appear, which are very detrimental to image

quality. Furthermore, some experimental results indicate that wavelet transform

thresholding is inferior to Fourier transform thresholding (Mateo and Fernández-

Caballero, 2009). To overcome this problem, there have been some studies which

combine the threshold with the variational method. Chan and Zhou (2000) first

apply wavelet thresholding, followed by the variational method. Krommweh and

Ma (2010) do not set the wavelet coefficients falling below the threshold to zero,

but set them to a value which minimizes the total variation.

Most studies and experiments on noise reduction by wavelets assume that

noise is additive and Gaussian distributed. On the other hand, speckle noise

in ultrasound images is usually modeled to be of multiplicative nature having

the Rayleigh distribution. In addition, the denoising quality naturally depends

on the choice of wavelet used, particularly its smoothness. It is of interest to

investigate what noise reduction techniques are appropriate for speckle noise and

what wavelets to use for this purpose.

In practical applications, ultrasound images are frequently modified by a

logarithmic transformation to improve readability. This transformation changes

the multiplicative Rayleigh distributed noise to additive-type noise, and one would

expect that linear methods, of which the wavelet method is one, should perform

better in this case. It is thus interesting to compare the performance of noise

reduction with and without the logarithmic transformation.
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1.2 Research Objectives

The main objective of this thesis is to study the effectiveness of the wavelet

transform combined with thresholding to reduce noise in a digital image whose

pixel intensities are Rayleigh distributed. In particular, it seeks to find out what

wavelets are best suited for this purpose and to which wavelet coefficients thresh-

olding should be applied.

The second objective is to investigate whether applying the logarithmic

transform will improve the performance of the noise-reduction methods, in partic-

ular the wavelet transform method.

Lastly, the performance of the wavelet noise reduction method is to be

compared with other methods.

1.3 Organization

This thesis is organized as follows. In Chapter II, the types of noise and

common techniques for noise reduction are reviewed. The theory of wavelets is

presented in Chapter III, and the wavelets used in this thesis are introduced.

Chapter IV discusses several metrics that can employed to measure image quality.

Chapter V presents the experimental results of the investigations, as well as a

discussion of them. The final Chapter VI then summarizes the results of this study.

For the sake of completeness, the Octave computer code used for computations is

listed in the Appendix.



CHAPTER II

BASIC BACKGROUND

In this chapter, we introduce the representation of digital images and review

the various common image noise reduction methods.

2.1 Image Noise

In digital image processing, an image is commonly divided into a finite

number of dots, called pixels. Thus, the image can be represented by an array

of some size m × n, and each entry of this array is providing information on the

corresponding pixel of the image. For example, if the image is black and white,

as in an ultrasound image, then a single numerical value is assigned to each pixel,

representing the gray-level or brightness or intensity of the image at this pixel.

In order to obtain a workable model, image noise is usually considered as

consisting of two components, an additive and a multiplicative one. Mathemati-

cally, one uses an equation

g(x, y) = f(x, y) · u(x, y) + η(x, y) (2.1)

where f(x, y) denotes the brightness of the original noiseless image g(x, y) the

brightness of the corrupted image, u(x, y) is the multiplicative component and

η(x, y) is the additive component of noise, all at pixel (x, y). This means that

multiplicative noise is amplified by pixel brightness, while additive noise is inde-

pendent of pixel brightness.

In ultrasound imaging, the additive component is insignificant when com-
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pared to the multiplicative component, and may thus be ignored. Thus, Equation

(2.1) simplifies to

g(x, y) = f(x, y) · u(x, y). (2.2)

The goal of noise reduction is to find an algorithm which replaces the noisy pixel

values g(x, y) with some “denoised” values f̃(x, y) which are close to the noiseless

values f(x, y).

There is vast literature on image denoising techniques. Broadly speaking,

they fall into two categories: local methods and global methods. In addition,

statistical tools are often part of the denoising process. In the following, we will

review the most common of these denoising methods.

2.2 Local Filtering Techniques

The most simple and common noise reduction techniques in digital image

processing are of local nature. The idea is that the pixels in vicinity of a given pixel

should have similar values. Hence, given a pixel (x, y), a small area of surrounding

pixels is designated as a window, and the numerical value of the given pixel is

replaced by some type of average of the values of all the pixels within this window.

In practice, one usually chooses a window of square size where the pixel (x, y)

is located at the center of the square. In the following, Sxy will denote the set

of coordinates of all the pixels inside the window around pixel (x, y). Thus, its

cardinality |Sxy| will denote the number of pixels in this window. Furthermore,

f̃(x, y) will denote the value of the denoised image at pixel (x, y).
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2.2.1 Mean Filter

The mean filter is the simplest of the local filters. It simply replaces the

pixel value g(x, y) of the noisy image at pixel (x, y) with the arithmetic mean of

the values of all pixels inside the window:

f̃(x, y) =
1

|Sxy|
∑

(s,t)∈Sxy

g(s, t). (2.3)

As a drawback, this filter tends to blur the image and results in loss of detail,

unless the window is chosen extremely small.

The mean filter works best when noise is additive with zero mean. We note

that multiplicative noise can always be converted to additive noise: Applying the

natural logarithm to (2.2) we obtain

ln g(x, y) = ln f(x, y) + lnu(x, y),

assuming that all quantities are positive.

2.2.2 Median Filter

Alternatively, in the median filter one replaces the given pixel value with

the median of all the pixel values in the window. Its mathematical model is given

by the equation

f̃(x, y) = median
(s,t)∈Sxy

g(s, t).

This filter is good at reducing impulsive noise and theoretically preserves edges

better than the mean filter.

Many local filters are based on the statistical properties of the noise. One

assumes that all quantities are random variables and that noise whether of additive

or multiplicative type at different pixels is identically distributed and uncorrelated,
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and independent of the pixel intensity. Thus, one considers models

g(x, y) = f(x, y) + u(x, y),

resp.

g(x, y) = f(x, y) · u(x, y).

where at each pixel (x, y), the random variables f(x, y) and u(x, y) are indepen-

dent, u(x, y) and u(x̃, ỹ) are uncorrelated, yet identically distributed for (x, y) 6=

(x̃, ỹ).

We will use the following notations:

ν = ν(x, y) = E(f(x, y)) : mean of the original, noise-free image intensity at pixel

(x, y)

σ2
f = σ2

f (x, y) : variance of the original, noise-free image at pixel (x, y)

µ = µ(x, y) = E(g(x, y)) : mean of the noisy image intensity at pixel (x, y)

σ2
g = σ2

g(x, y) : variance of the noisy image at pixel (x, y)

n = E(u) : mean of noise u

σ2
n : variance of noise.

It is natural to assume that noise is pixel-independent, and that the noise-

free pixel values f(x, y) and noise u(x, y) are independent random variables. The

values of ν and σ2
f are in general unknown. The values of µ and σ2

g can be estimated

from the noisy image by local averaging: Placing a small window Sxy around pixel

(x, y), then µ(x, y) is estimated by equation (2.3) while σ2
g(x, y) can be estimated

by

σ2
g(x, y) =

1

|Sxy|
∑

(s,t)∈Sxy

( g(s, t)− µ(x, y) )2 . (2.4)

Since noise is pixel-independent, the values of n and σ2
n can be estimated from the

image in a similar way, by considering a window which lies in a uniform region of

the image, provided that the type of noise (additive vs. multiplicative) is known.
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The first two basic filters below perform some weighting between no filtering

at all and mean filtering by setting

f̃(x, y) = β(x, y)g(x, y) + (1− β(x, y))µ(x, y) (0 ≤ β ≤ 1). (2.5)

Each filter computes the appropriate value of the weight β = β(x, y) from the

above local statistics differently. A value of β closed to 1 means that no filtering

takes place, while a value closed to 0 means that mean filtering is taking place.

2.2.3 Lee Filter

The basic idea (Lee, 1980) is as follows: if the variance among the pixel

values within the window is small, then this variance stems mainly from noise,

and one can use mean filtering. On the other hand, a large variance is the result

of edges within the window which must not be blurred out, and hence no filtering

should take place. To be precise, the weight for additive, uncorrelated noise with

zero mean (n = 0) is

β = β(x, y) =
σ2
g

σ2
g + σ2

n

.

Note that since noise is of additive type in this model, then ν = µ and σ2
f = σ2

g−σ2
n.

On the other hand, when noise is multiplicative with mean n = 1, one

obtains that ν = µ and

σ2
f =

σ2
g − σ2

nµ
2

(1 + σ2
n)

. (2.6)

In this case, after linear approximation of Equation (2.2), as derived in (Lee, 1983),

g(x, y) ≈ A(x, y)f(x, y) +B(x, y)u(x, y) + C(x, y),

noise can be considered of additive kind (no longer of zero mean or pixel indepen-

dent), and the weight is now approximated slightly differently (Lee, 1980) by

β = β(x, y) =
σ2
f

σ2
f + µ2σ2

n

.
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Since in practice, all the variables must be estimated from the noisy image, it may

happen that the above fraction becomes negative; hence one must choose

σ2
f = max

(
σ2
g − σ2

nµ
2

1 + σ2
n

, 0

)
.

2.2.4 Kuan Filter

Assuming multiplicative noise of mean n = 1, noise is first converted to

additive noise by writing

g(x, y) = f(x, y) + (u(x, y)− 1)f(x, y).

The second term on the right is now considered as signal dependent, additive noise

(which differs from the usual assumption that noise be pixel-independent). From

here Kuan et al. (1985) derive formula (2.5), where now

β = β(x, y) =
σ2
f

σ2
f + (µ2 + σ2

f )σ
2
n

,

and σ2
f is still as in (2.6).

2.2.5 Lee-Sigma Filter

The Lee-Sigma filter (Lee, 1983) was designed specifically for speckle noise

reduction in SAR images. It is essentially the mean filter, with one major modifi-

cation: It is assumed that those pixels inside the window whose values lie within

the range of two-standard deviations from the value of the center pixel do not

represent speckle noise, and are therefore included in the averaging process. Pix-

els whose values lie outside of this range represent speckle noise and are excluded

from averaging. Assuming multiplicative noise of mean n = 1, one sets

Qxy =
{

(s, t) ∈ Sxy : |g(s, t)− g(x, y)| ≤ 2σng(x, y)
}
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and averages by

f̃(x, y) =
1

|Qxy|
∑

(s,t)∈Qxy

g(s, t).

However, some particular situations require separate treatment: when the center

pixel (x, y) has intensity which is very different from all of the surrounding pixels

– meaning it represents spot noise – then the cardinality of the set Qxy will be

very small, possibly one, so that no or little averaging takes place. In this case, in

order to remove the noisy center pixel, one replaces the above set Qxy with a very

small window around (x, y) which only contains the direct neighbors of (x, y).

2.2.6 Frost Filter

This is another type of mean filter developed for image enhancement in

SAR images, assuming multiplicative noise. The contribution to the averaging

process of each pixel within the window is now position dependent; pixels closer

to the center carry a larger weight. The model is

f̃(x, y) = K1

∑
(s,t)∈Sxy

γ(s, t)g(s, t),

where the weight γ is given by

γ(s, t) = exp

[
−K

(
σg(x, y)

µ(x, y)

)2 ∥∥(s, t)− (x, y)
∥∥] .

Here, ‖ · ‖ denotes the Euclidean norm, so that
∥∥(s, t) − (x, y)

∥∥ represents the

distance between pixel (s, t) and the center pixel (x, y). The constant K is a

parameter influencing the filter characteristics, and K1 is chosen so that mean

image intensity remains unchanged,

K1 =

 ∑
(s,t)∈Sxy

γ(s, t)

−1 .
In regions where the ratio σg/µ is large signifying edges in the image, γ(s, t) will

be close to zero at all except the central pixel, so that no filtering takes place. In
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regions where this ratio is small, γ(s, t) will be close to 1, and averaging will take

place.

2.3 Global Filtering Techniques

As for global filtering techniques, here one considers the image as a bounded

function defined on the rectangle I = [0,m]×[0, n], the value of the function f(x, y)

at each point (x, y) denoting the image brightness at that point. Two methods

have become popular : variational methods and thresholding methods.

2.3.1 Variational Methods

In the variational model popularized by the paper of Rudin, Osher and

Fatemi (1992), the image denoising problem is formulated as an optimization prob-

lem: The denoised image f̃ is obtained as the minimizer of a functional

E(f̃) =

∫∫
I

[
|∇f̃ |+ λJ(f̃ , g)

]
d(x, y),

where ∇f̃ denotes the gradient and J(f̃ , g) is a data-fidelity term. The purpose

of the first term involving the gradient is to obtain a smooth denoised image,

while the data fidelity term measures how well the denoised image f̃ matches the

unknown noise-free image f ; it is derived from assumptions on the probability

distribution of the noisy image by using Bayesian statistics. The parameter λ

specifies how the two components of this functional are weighed against another.

By the method of calculus of variations, the minimizer f̃ can be found numerically

as the solution u of an Euler-Lagrange partial differential equation,

∂

∂x

(
ux√
u2x + u2y

)
+

∂

∂y

(
uy√
u2x + u2y

)
− λ ∂

∂u
J(u, g) = 0,

where the outward normal vanishes on the boundary of I. The data fidelity term

J(f̃ , g) is chosen appropriate for the characteristics of the noise. In ultrasound
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imaging, the noisy image is commonly modeled to have the Rayleigh distribu-

tion (Burckhardt, 1978). Seekot (2008) has derived a data-fidelity term for the

variational model corresponding to this distribution, giving the Euler-Lagrange

equation

∂

∂x

(
ux√
u2x + u2y

)
+

∂

∂y

(
uy√
u2x + u2y

)
+ 2λ

g2 − u2

u3
= 0.

2.3.2 Thresholding Methods

Another popular way to reduce noise in an image is by thresholding. This

concept will be explained at the end of the next chapter.



CHAPTER III

WAVELETS AND WAVELET

THRESHOLDING

In this chapter, we review the mathematical background from wavelets

required. In particular, we introduce the Haar and the Daubechies wavelets db20.

We also explain how wavelet techniques can be used in denoising or compression

using thresholding.

3.1 Discrete Wavelets

The basic idea of one-dimensional wavelet theory is to decompose the

Hilbert space L2(R) into an infinite direct sum {Wj}j∈Z of subspaces

L2(Rn) =
∞
⊕

j=−∞
Wj

of special form:

1. All the spaces Wj are isomorphic. In fact, for each j, the dilation operator

D : f(x) 7→
√

2f(2x) is a Hilbert space isomorphism of Wj onto Wj+1.

Therefore, the j-fold composition Dj of this dilation operator, Dj : f(x) 7→

2j/2f(2jx) is a Hilbert space isomorphism of W0 onto Wj, for each j.

2. The space W0 has an orthonormal basis consisting of integer translates of a

single function ψ, that is,

B0 :=
{
ψ0,k : ψ0,k(x) = ψ(x− k), k ∈ Z

}
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is an orthonormal basis of W0. By this, the space W0 is invariant under

integer translations:

f(x) ∈ W0 ⇔ f(x− k) ∈ W0 for all k ∈ Z.

This function ψ is called the mother wavelet.

Then by 1., the j-fold composition Dj maps the basis B0 to a basis

Bj :=
{
ψj,k : ψj,k(x) = 2j/2ψ(2jx− k), k ∈ Z

}
of Wj, for each j. By this, the space Wj is invariant under integer dyadic

translations:

f(x) ∈ Wj ⇔ f

(
x− k

2j

)
∈ Wj for all k ∈ Z.

The spaces Wj are called detail spaces. Thus,

B =
∞⋃

j=−∞

Bj =
{
ψj,k : j, k ∈ Z

}
is an orthonormal bases of L2(Rn), called a wavelet basis.

3. Thus, one can express an element f ∈ L2(R) in terms of these subspaces,

f =
∞∑

j=−∞

Qjf

where Qj denotes the projection of f onto the space Wj,

Qjf =
∑
k∈Z

dj,kψj,k

and where

dj,k = 〈f, ψj,k〉 = 2j/2
∫
R
f(x)ψ (2jx− k) dx.

For fixed scale parameter j, the collection {dj,k : k ∈ Z} is called the set of

wavelet coefficients of f at scale 2j, and the total collection {dj,k : j, k ∈ Z}

is called the wavelet transform of of f for the mother wavelet ψ.
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By Parseval’s identity, the doubly-indexed sequence
{
dj,k
}
j,k∈Z is an element

of `2(Z× Z), so that the map

WT : f ∈ L2(R) 7→
{
dj,k :, k ∈ Z

}
∈ `2(Z× Z)

is a linear isomorphism, called the discrete wavelet transform. Then f ∈

L2(R) can be expressed in this bases as

f =
∞∑

j=−∞

∞∑
k=−∞

dj,kψj,k (3.1)

with convergence in the L2-norm. This reconstruction is called the inverse

wavelet transform.

4. In practice, one cannot work with infinitely many subspaces Wj. One there-

fore designates a smallest and largest scale level jmin and jmax, respectively,

and works in the subspace

jmax

⊕
j=jmin

Wj of L2(R). (3.2)

Now if in addition

(a) the function f has compact support,

(b) the mother wavelet ψ has compact support,

then for each j, only finitely many coefficients dj,k are nonzero, and an ele-

ment f in the space (3.2) can be expressed as a finite sum

f =

jmax∑
j=jmin

kmax(j)∑
k=kmin(j)

dj,kψj,k,

that is,

f =

jmax∑
j=jmin

2j/2
kmax(j)∑
k=kmin(j)

dj,kψ
(
2jx− k

)
,
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3.2 Wavelets from Multiresolution Analysis

Almost all wavelets, and in particular, all wavelets of compact support

(Hernandez, 1996) can be obtained by a process called multiresolution analysis as

introduced by Mallat (1989). When wavelets are constructed by such a multires-

olution analysis, then (3.2) can be improved to working in the space

Vjmin
⊕

jmax

⊕
j=jmin

Wj,

where Vjmin
is again a shift-invariant subspace of L2(R), and

Vjmin
=

jmin−1
⊕

j=−∞
Wj.

Definition 3.1. (Multiresolution analysis)

A multiresolution analysis (MRA) on L2(R) is a sequence of closed subspaces

{Vj}j∈Z of L2(R) satisfying the following properties:

(M1) : Vj ⊆ Vj+1 for all j ∈ Z (”nested sequence”),

(M2) :
⋃
j∈Z

Vj is dense in L2(R),

(M3) :
⋂
j∈Z

Vj = {0},

(M4) : f(x) ∈ V0 if and only if f(2jx) ∈ Vj, for all j,

(M5) : there exists a function ϕ(x) ∈ L2(R), called the scaling function, such that

the collection of integer translates {ϕ(x− k)}k∈Z is an orthonormal basis of V0.

Let us briefly outline how wavelets can be obtained from a multiresolution

analysis. By (M4), the dilation operator D is a linear isometry of Vj onto Vj+1 for

all j. Applying the dilation operator j-times, it follows that the collection

{Djϕ0,k}k∈Z = {ϕj,k}k∈Z = {2j/2ϕ(2jx− k)}k∈Z

is an orthonormal basis of Vj, for all j. In particular, when j = 1 then

{ϕ1,k}k∈Z = {
√

2ϕ(2x− k)}k∈Z
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is an orthonormal basis of V1. Now by (M1), ϕ ∈ V1 as well, and thus it can be

expressed in terms of this basis,

ϕ =
∑
k∈Z

gkϕ1,k (3.3)

where

gk =< ϕ,ϕ1,k >=
√

2

∫ ∞
−∞

ϕ(x)ϕ(2x− k) dx. (3.4)

The sequence {gk}k∈Z is called the scaling filter and is an element of `2(Z), in fact

by Parseval’s identity,

‖{gk}‖l2(Z) = ‖ϕ‖L2(R) = 1. (3.5)

It follows that the sequence {hk}k∈Z defined by

hk = (−1)kg1−k

is also an element of `2(Z) of norm one, so that the function ψ defined by

ψ =
∑
k∈Z

hkϕ(1,k) (3.6)

is an element of V1. The sequence {hk} is called the wavelet filter.

Now express the integer translates of ϕ and ψ in terms of the basis vectors

ϕ1,k of V1. By (3.3),

ϕ(x− l) =
∑
k∈Z

gkϕ1,k(x− l) =
∑
k∈Z

gk
√

2ϕ(2(x− l)− k)

=
∑
k∈Z

gk
√

2ϕ (2x− (k + 2l)) =
∑
k∈Z

gk−2lϕ1,k(x)

and similarly by (3.6),

ψ(x− l) =
∑
k∈Z

hk−2lϕ1,k(x).
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It follows by Parseval’s equality that

<ϕ(x−m), ψ(x− l) >=
∑
k∈Z

gk−2mhk−2l =
∑
k∈Z

gk−2m(−1)k−2lg1−k+2l

=
∑
k∈Z

(−1)k+m−lgk+(l−m)g1−k+(l−m)

=
∞∑
k=1

(−1)k+m−lgk+(l−m)g1−k+(l−m) +
∞∑
k=0

(−1)−k+m−lg−k+(l−m)g1+k+(l−m)

=
∞∑
k=1

(−1)k+m−lgk+(l−m)g1−k+(l−m) +
∞∑
k=1

(−1)1−k+m−lg1−k+(l−m)gk+(l−m)

=
∞∑
k=1

[
(−1)k − (−1)−k

]
(−1)m−lgk+(l−m)g1−k+(l−m) = 0.

Similar computations give

<ψ(x−m), ψ(x− l) >=
∑
k∈Z

hk−2mhk−2l

=
∑
k∈Z

(−1)k−2mg1−k+2m (−1)k−2lg1−k+2l =
∑
k∈Z

g1−k+2lg1−k+2m

=
∑
k∈Z

gk+2lgk+2m =< ϕ(x+ l), ϕ(x+m) >= δl,m

by (M5). This shows that the collection {ϕ0,k, ψ0,k}k∈Z is orthonormal in V1. Thus,

if we let W0 denote the orthonormal complement of V0 in V1,

V1 = V0 ⊕W0

then {ψ0,k}k∈Z will be an orthonormal set in W0. One can show that this collection

is total in W0, that is, is a basis of W0.

In general, for each j, let Wj denote the orthogonal complement of Vj in

Vj+1, that is,

Vj+1 = Vj ⊕Wj.
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Applying induction, we have for each n > jo,

Vn = Vn−1 ⊕Wn−1

= Vn−2 ⊕Wn−2 ⊕Wn−1

= Vn−3 ⊕Wn−3 ⊕Wn−2 ⊕Wn−1

...

= Vjo ⊕Wjo ⊕Wjo+1 ⊕ · · · ⊕Wn−1.

(3.7)

One can show that (M1)–(M3) imply that for each jo ∈ Z,

L2(R) = Vjo ⊕
∞
⊕
j=j0

Wj

and also

L2(R) = ⊕
j∈Z

Wj.

Now sinceDj mapsW0 isomorphically ontoWj, the collection {ψj,k}k∈Z = {Djψ0,k}k∈Z

is an orthonormal basis for Wj, for each j. This shows that {ψj,k : j, k ∈ Z} is a

basis of L2(R), and hence ψ is a mother wavelet.

Remark. Given smallest and largest scaling levels jmin and jmax, then (choosing

n = jmax + 1, jo = jmin we obtain from (3.7) that

Vn = Vjmin
⊕

jmax

⊕
j=jmin

Wj. (3.8)

Since for each j, {ϕj,k : k ∈ Z} is an orthonormal basis of Vj, where

ϕj,k(x) = 2j/2ϕ(2jx− k),

then

{ϕjmin,k : k ∈ Z} ∪ {ψj,k : jmin ≤ j ≤ jmax , k ∈ Z}

is an orthonormal basis of Vn = Vjmax+1.
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Given f ∈ L2(R), we first denote its orthogonal projection onto the space

Vn by f̂ , so that

f̂ =
∞∑

k=−∞

cn,kϕn,k, cn,k = 〈f, ϕn,k〉, n = jmax + 1.

Next, the decomposition (3.8) gives

f̂ =
∞∑

k=−∞

cjo,kϕjo,k +

jmax∑
j=jo

∞∑
k=−∞

dj,kψj,k,

where jo = jmin and the scaling coefficients cjo,k and the wavelet coefficients dj,k

are given by

cjo,k = 〈f̂ , ϕjo,k〉 = 〈f, ϕjo,k〉 and dj,k = 〈f̂ , ψj,k〉 = 〈f, ψj,k〉,

respectively. We observe that when f and the wavelets have compact support,

then only finitely many of these coefficients are zero.

Remark. One can show that if the scaling function and the wavelet are also

elements of L1(R) (Walnut, 2002), for example if ϕ has compact support, then∣∣∣∣∫ ∞
−∞

ϕ(x) dx

∣∣∣∣ = 1 and

∫ ∞
−∞

ψ(x) dx = 0. (3.9)

Because of this, compactly supported mother wavelets have a graph that looks

similar to an oscillation wave, thus the name ”wavelet”.

3.2.1 Haar Wavelets

Haar wavelets are the simplest types of wavelets, and were known long

before the development of wavelet theory.

Example: Let us explain this concept by a simple example. The Haar

scaling function is the characteristic function of the unit interval,

φ(x) = ϕ(x) =


1 if x ∈ [0, 1)

0 else
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and the mother wavelet is

ψ(x) =



1 if x ∈ [0, 1/2)

−1 if x ∈ [1/2, 1)

0 else.

We choose to work in the space V4, and use the decomposition V4 = V0 ⊕W0 ⊕

W1 ⊕ W2 ⊕ W3. Now a basis of V4 is given by the set of functions
{
ϕ4,k(x) =

24/2ϕ(24x− k) : k ∈ Z
}
, that is,

ϕ4,k(x) =


4 if x ∈

[
k
16
, k+1

16

)
0 else.

(3.10)

Similarly, bases of V0,W0, . . . ,W3 are given by the functions

ϕ0,k(x) =


1 if x ∈ [k, k + 1)

0 else

and ψj,k(x) =



2j/2 if x ∈
[
k
2j
, k+1/2

2j

)
−2j/2 if x ∈

[
k+1/2
2j

, k+1
2j

)
0 else,

(3.11)

for j = 0, 1, 2, 3. By (3.10), elements of V4 are piecewise constant on intervals of

length 1/16 so this is the best resolution which we can work with. The scaling

function, mother wavelet and the first few wavelets ψj,k are shown in Figure 3.1.

Now consider a function f supported on the interval [0, 2n]. Then by (3.11),

the only possibly nonzero scaling and wavelet coefficients are

c0,k = 〈f, ϕ0,k〉 =

∫ 2n

0

f(x)ϕ0,k(x) dx =

∫ k+1

k

f(x) dx, k = 0 . . . 2n − 1

and

dj,k = 〈f, ψj,k〉 =

∫ 2n

0

f(x)ψj,k(x) dx

= 2j/2
∫ 2k+1

2j+1

k

2j

f(x) dx− 2j/2
∫ k+1

2j

2k+1

2j+1

f(x) dx, k = 0 . . . 2n+j − 1,
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Figure 3.1 Bottom to top : the Haar scaling function φ, Haar mother wavelet

ψ and wavelets ψj,k at scales j = 1, 2 on the interval [0, T ] = [0, 1]. (Source:

https://www.researchgate.net)

so that

f̂ =
2n−1∑
k=0

c0,kϕ0,k +
3∑
j=0

2n+j−1∑
k=0

dj,kψj,k

=
2n−1∑
k=0

c0,kϕ0,k +
2n−1∑
k=0

d0,kψ0,k +
2n+1−1∑
k=0

d1,kψ1,k +
2n+2−1∑
k=0

d2,kψ2,k +
2n+3−1∑
k=0

d3,kψ3,k.

There are altogether 2n+4 coefficients to be computed.

For ease of notation, let use set

ψ−1,k(x) = ϕ0,k and d−1,k = c0,k

so that the above becomes

f̂ =
3∑

j=−1

Nj∑
k=0

dj,kψj,k (3.12)

where Nj = 2n − 1 when j = 0,−1 and Nj = 2n+j − 1 else.
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3.2.2 The Daubechies Wavelets

The Daubechies wavelets (Daubechies, 1988) are the most commonly used

wavelets. This is a family of wavelets with compact support, labeled db{2N},

N a positive integer. The scaling function of a db{2N}-wavelet is supported on

the interval [0, N − 1], and the scaling filter has length N . The corresponding

wavelets have vanishing p-th moments for 0 ≤ p ≤ N − 1. Table 3.1 shows the

scaling coefficients of the db2–db10 wavelets. There is no closed form known for

these wavelets, although their values at dyadic rationals can be computed by an

appropriate algorithm.

Table 3.1 The nonzero scaling coefficients for the db2 - db10 wavelets (Source:

Daubechies (1992)).

db2 db4 db6 db8 db10

a0 1 0.6830127 0.4704672 0.3258034 0.2264190

a1 1 1.1830127 1.1411169 1.0109457 0.8539435

a2 0.3169873 0.6503650 0.8922014 1.0243269

a3 −0.1830127 −0.1909344 −0.0395750 0.1957670

a4 −0.1208322 −0.2645072 −0.3426567
a5 0.0498175 0.0436163 −0.0456011
a6 0.0465036 0.1097027

a7 −0.0149870 −0.0088268
a8 −0.0177919
a9 0.0047174

Figure 3.2 shows the graphs of various Daubechies scaling functions. They

become smoother with increasing N , in fact, they are C1 functions for N ≥ 3.

In this thesis, Haar wavelets and Daubechies wavelets db20 are used. The

graphs of the db20 scaling function and mother wavelet are shown in figures 3.3

and 3.4, respectively. There is a related class of wavelets called Symlets whose

graphs show better symmetry than the Daubechies wavelets. In our experiments,

the db20 wavelets performed marginally better than the Sym20 wavelets, therefore
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Figure 3.2 The Daubechies scaling functions D4, D8, D12 and D16.

only results for the Daubechies wavelets are presented.

3.3 Two-dimensional Wavelets

Since images are two-dimensional objects, one also needs a two-dimensional

wavelet transform. One way to deal with a two-dimensional domain is to compute

two one-dimensional wavelet transforms separately, first in y-direction and then in

x-direction. This is the way chosen in this thesis. We explain the idea by using

the above example of the Haar wavelet.

Consider a noisy image g(x, y) on the square I2 = [0, 2n] × [0, 2n], and

assume that the best resolution possible is 1
16

length units. The image pixels will

be spaced accordingly in each direction by this distance, and this resolution is

achieved with scaling level jmax = 3; i.e. working in the space V4 in each direction.
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Figure 3.3 The Daubechies scaling function db20.

Figure 3.4 The Daubechies mother wavelet db20.

Taking the one-dimensional wavelet transform in y-direction gives by (3.12)

g(x, y) =
3∑

l=−1

Nl∑
m=0

dl,m(x)ψl,m(y), dl,m(x) =

∫ 2n

0

g(x, y)ψl,m(y) dy,

the coefficients dl,m(x) still depending on x. Next taking the wavelet transform of

each coefficient function dl,m(x) gives

dl,m(x) =
3∑

j=−1

Nj∑
k=0

dj,kl,mψj,k(x), dj,kl,m =

∫ 2n

0

dl,m(x)ψj,k(x) dx.

Combining both,

g(x, y) =
3∑

j=−1

3∑
l=−1

Nj∑
k=0

Nl∑
m=0

dj,kl,mψj,k(x)ψl,m(y), (3.13)

dj,kl,m =

∫ 2n

0

dl,m(x)ψj,k(x) dx =

∫ 2n

0

∫ 2n

0

g(x, y)ψj,k(x)ψl,m(y) dx dy.
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(To be precise, g(x, y) in (3.13) above denotes the projection of g(x, y) onto the

subspace of L2(I2) spanned by the orthonormal family
{
ψj,k(x)ψl,m(y) : −1 ≤

j, l ≤ 3, k = 0 . . . Nj, m = 0 . . . Nl

}
.)

3.4 Thresholding Methods

Thresholding is a common technique used in filtering or in data compres-

sion. For simplicity, we explain this idea with the Fourier transform first.

Let f(x) be a continuous real-valued function on [−π, π]. Then it can be

expressed as a Fourier series,

f(x) =
ao
2

+
∞∑
k=1

[ak cos(kx) + bk sin(kx)] .

where

ak = 〈f(x), cos (kx)〉 =

∫ π

−π
f(x) cos (kx) dx (k = 0, 1, 2, ...).

bk = 〈f(x), sin (kx)〉 =

∫ π

−π
f(x) sin (kx) dx (k = 1, 2, 3, ...).

The pair of coefficients (ak, bk) expresses the contents of frequency k
2π

in the ”sig-

nal” f(x). In practice, there is an upper limit to the frequencies considered, so

f(x) ≈ ao
2

+
N∑
k=1

[ak cos(kx) + bk sin(kx)]

for some integer N .

The idea in compression is that small absolute values of the coefficients ak

and bk do not contribute much to the signal and may be discarded. In denoising,

one assumes that frequencies with small absolute values of these coefficients repre-

sent (additive) noise and should be removed. This is the idea of thresholding: all

coefficients whose absolute values are below some threshold ε should be changed

to zero.
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One distinguishes between hard thresholding and soft thresholding. In gen-

eral, suppose a function f(x) is expressed in terms of a basis,

g =
∑
k

ckϕk.

First fix a threshold value ε. In hard thresholding, one sets all coefficients whose

values fall below this threshold to zero,

c̃k =


0 if |ck| < ε

ck else

which means that the modified ”signal” is

f̃ =
∑
k

c̃kϕk =
∑
k

|ck|≥ε

ckϕk.

Because the map ck 7→ c̃k is discontinuous, there may be artifacts in the modified

signal. Thus in soft thresholding one makes this function continuous, for example

by setting

c̃k = s
(
|ck|
)
ck where s(t) = max

(
0, 1− ε

t

)
.

Then ck 7→ c̃k is a continuous function.

In this thesis, thresholding is applied to the wavelet coefficients of an image.

For example, when g(x, y) represents the brightness of an image, and we apply the

2-dimensional Haar wavelet transform as in (3.13),

g(x, y) =
3∑

j=−1

3∑
l=−1

Nj∑
k=0

Nl∑
m=0

dj,kl,mψj,k(x)ψl,m(y)

then we may apply thresholding to some or all of the wavelet coefficients dj,kl,m.

Results of this will be presented in Chapter V.



CHAPTER IV

IMAGE QUALITY MEASURES

In this chapter, we first explain how the sample image was generated, and

review the image quality metrics commonly used in this thesis to measure the

quality of an image.

4.1 Noisy Image Generation

Noise present in coherent imaging, such as laser optics and ultrasound,

is mostly modeled to be Rayleigh distributed. The underlying model assumes

that waves which are reflected from a surface, due to slight irregularities on the

surface, are composed of a large number of reflected waves which possess small

random amplitudes, and also uniformly distributed random phase shifts. Because

of these phase shifts, the waves with different phases may amplify or cancel out

another at the detector, leading to a noisy image. When the detector measures the

wave amplitude, then the image pixels will be modeled to be Rayleigh distributed

random variables (Burckhardt, 1978 and Goodman, 1985). On the other hand,

when the detector measure the wave power, then the image pixels will be modeled

to be exponentially distributed random variables (Aubert and Aujol, 2008).

In the case of Rayleigh distributed noise, the parameter σ of the distribution

is proportional to the signal amplitude, or equivalently, pixel brightness. Thus,

the probability density function is

p(r) =
r

σ2
e−r

2/2σ2

(r ≥ 0)
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where

σ =
u√
2
,

u denoting the noise-free amplitude of the pixel. This type of noise is usually

considered as multiplicative noise.

It is well known and can easily be shown that p(r) has mean σ
√
π/2 and

second moment 2σ2. Thus, variance is proportional to the square of the mean.

It should be made clear here that “Rayleigh noise” does not mean that

Rayleigh-distributed noise is added to the image. Instead, it means that each pixel

of an image is a random variable that is Rayleigh distributed; the parameter σ of

this distribution depending on the brightness of the pixel in the noise-free image.

Furthermore, it is assumed that the brightness intensities of different pixels are

independent random variables.

Because of the difficulty of obtaining good quality, raw ultrasound images,

for the purpose of evaluating the noise reduction techniques, a synthetic, noisy

version of the well-known Lena image was produced, creating Rayleigh-distributed

noise with the Octave program according to the above formula (See the Appendix).

The original, noise-free Lena image is shown in Figure 4.1, while the noisy image

can be seen in Figure 4.2.

4.2 Image Quality Indices

There are many ways to measure image quality. Naturally, the best way is

evaluation by the human eye, because in the end it is humans who make use of and

evaluate image content. However, this type of evaluation is subjective and cannot

be automated, therefore a number of metrics have been developed for objective

evaluation.
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Figure 4.1 The noise-free Lena image

Figure 4.2 The Lena image with Rayleigh noise
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We will first explain their mathematical meanings, and then the practical

implementation. Throughout, we consider the image a region I2 in the plane

which will be given the Lebesgue measure normalized so that the total measure of

I2 equals one.

1. Average Difference (AD) or Mean Absolute Error (MAE). This is

the the L1-distance between the original noisy image f and the denoised

image f̃ ,

AD =
∥∥f̃ − f∥∥

1
. (4.1)

All areas in the image region I2 carry an identical weight.

If the images are pixellated, of size m× n, then

AD =
1

mn

m∑
i=1

n∑
j=1

∣∣∣f̃(i, j)− f(i, j)
∣∣∣ .

The division by mn corresponds to normalization of the Lebesgue measure in

(4.1) above. Thus, the AD-value measures the average pixel error. Naturally,

the smaller this value the better the two images match; a value of AD = 0

signifies a perfect match.

2. Root Mean Square Error (RMSE). This is the L2-distance between

the two images,

RMSE =
∥∥f̃ − f∥∥

2
.

Areas in the image where the two functions differ by large amounts carry

more weight than areas of small differences.

In the pixellated case,

RMSE =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(
f̃(i, j)− f(i, j)

)2
.

Alternatively, the Mean Square Error (MSE) is often used, MSE =

RMSE2. Again, a value of RMSE = 0 signifies a perfect match.
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3. The Correlation Coefficient (Corr). The correlation coefficient be-

tween two random variables is essentially an L2-inner product of normalized

vectors, measuring how similar both are; therefore

Corr =
〈f̃ − µf̃ , f − µf〉∥∥f̃ − µf̃∥∥2∥∥f − µf∥∥2 ,

where µfand µf̃ denote the means of f and f̃ , respectively, µf =
∫
I2
f(x, y) dA.

In the pixellated case,

Corr =

m∑
i=1

n∑
j=1

(
f̃(i, j)− µf̃

)(
f(i, j)− µf

)
√√√√( m∑

i=1

n∑
j=1

(
f̃(i, j)− µf̃

)2)( m∑
i=1

n∑
j=1

(
f(i, j)− µf

)2)

where

µf =
1

mn

m∑
i=1

n∑
j=1

f(i, j).

The value of this index ranges betwwen 0 and 1, with a value of Corr = 1

signifying a perfect match of the two images.

4. The Signal to Noise Ratio (SNR). There are different definitions of the

SNR. The common concept used in image processing is the ratio of mean

over standard deviation of a uniform section of the image,

SNR =
µf̃
σf̃
.

This index is special in that it does not compare two images, but tries to

extract the image quality information from the image to be evaluated only.

This is the reason that one needs to consider a relatively uniform section of

the image for its evaluation. Obviously, the larger this index the less noise is

present in the image; there is a common criterion (Rose, 1973) which states

that a SNR of at least 5 is needed to be able to distinguish image features

at 100% certainty.
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In the pixellated case,

SNR =

m∑
i=1

n∑
j=1

f̃(i, j)√√√√ m∑
i=1

n∑
j=1

(
f̃(i, j)− f(i, j)

)2 .

For additive, pixel-independent noise this is a good measure, but less so for

multiplicative noise such as Rayleigh noise.

5. Image Quality Index (IQI). This is a relatively new index: it was first

introduced by Wang and Bowik (2002). It is an index comparing two images

and is composed of three equally weighted component indices: correlation,

luminance and contrast, and it is therefore a more broadly based measure of

image quality,

IQI =
σff̃
σfσf̃︸ ︷︷ ︸

correlation

·
2µfµf̃
µ2
f + µ2

f̃︸ ︷︷ ︸
luminance

·
2σfσf̃
σ2
f + σ2

f̃︸ ︷︷ ︸
contrast

where as usual, µf and µf̃ denote the means of the two images to be com-

pared, while σ2
f and σ2

f̃
denote their variances. For a pixellated image,

µf =
1

mn

m∑
i=1

n∑
j=1

f(i, j), µf̃ =
1

mn

m∑
i=1

n∑
j=1

f̃(i, j),

σff̃ =
1

mn− 1

m∑
i=1

n∑
j=1

(f(i, j)− µf )(f̃(i, j)− µf̃ ),

σ2
f =

1

mn− 1

m∑
i=1

n∑
j=1

(f(i, j)− µf )2,

σ2
f̃

=
1

mn− 1

m∑
i=1

n∑
j=1

(f̃(i, j)− µf̃ )
2.

The value of this index ranges between 0 and 1, with a value of IQI = 1

signifying a perfect match of the two images.



CHAPTER V

RESULTS

In this chapter, the results of the experiments are presented. We begin

by summarizing the collection of results from the wavelet transform. We then

compare them with other noise reduction methods, both with and without the

logarithmic transform. But first a note on what wavelet coefficients were chosen

for thresholding.

5.1 Thresholding of Wavelet Coefficients

The Lena image used in this work is the standard, grayscale Lena image

freely available at many internet sites. It is a 512×512 bitmap image with grayscale

values in the 0-255 integer range, and can thus be presented in a computer program

as an array of size 512× 512. Internally in the computer program, integer values

are converted to floating point values.

The largest scaling level which makes sense for an image of that size with the

Haar wavelets is jmax = 8. In order to compare the Daubechies wavelets with the

Haar wavelet, this largest scaling level was also chosen for the Daubechies wavelets.

Experiments have shown that even in case of the Daubechies wavelets, this scaling

level of jmax = 8 produces noticeably better results than lower maximun scaling

levels.

Thus, an image is decomposed as a wavelet sum

8∑
j=−1

8∑
l=−1

Nj∑
k=0

Nl∑
m=0

dj,kl,mψj,k(x)ψl,m(y)
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as described in Chapter III. The wavelet transform of an image is thus also

represented in form of a square matrix, and moving along the rows and columns

increases the scale level in x and y directions, respectively. With increasing scaling

level the number of wavelet coefficients doubles, so most of the entries in the matrix

correspond to coefficients belonging to large scale levels j.

For example, Figure 5.1 shows the matrix of wavelet coeffcients divided into

four equal parts. The coefficients in the grayed-out bottom right quarter belong

to scaling levels jmax in both directions. In “1/4-thresholding”, thresholding is

applied to these coeffcients at highest scale j = l = jmax = 8 only.

Figure 5.1 1/4 thresholding

Figure 5.2 1/2 thresholding
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Figure 5.3 3/4 thresholding

Next is “1/2 thresholding” as shown in Figure 5.2. Here, already half of

the coeffcients undergo thresholding, which are the coefficients dj,kl,m where (j, l) ∈

{(7, 8), (8, 7), (8, 8)}.

In “3/4 thresholding” as shown in Figure 5.3, 75% of the coeffcients undergo

thresholding, namely those where at least one of the scale levels has largest value:

j = 8 or l = 8.

In “15/16 thresholding” as shown in Figure 5.4, all coefficients that have

at least one scale level, j or l in the range {7, 8} experience thresholding.

Finally, there is “63/64 thresholding” of Figure 5.5, all coefficients that

have at least one scale level, j or l in the range {6, 7, 8} experience thresholding.

“Normal thresholding” finally means that all wavelet coeffcients undergo

thresholding.

The best threshold value of ε = 0.0007 in the case of Haar wavelets, and

ε = 0.15 in the case of Daubechies wavelets db20 was obtained by trial-and-error.
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Figure 5.4 15/16 thresholding

Figure 5.5 63/64 thresholding

5.2 Results for Wavelet Methods

In this section, the results for the wavelet method are presented. Tables 5.1

and 5.2 show several image quality indices, for images without and with the log

transform applied, respectively. Images after denoising – for the case where the

logarithmic transform was not applied – are presented in Figures 5.20 through 5.15.

The images are sorted in increasing order as to the number of wavelet coefficients

to which thresholding is applied, beginning with Haar wavelets.

1. All quality indices are best in case of the 63/64 soft thresholding. There is,

however, one exception: in case of the Haar wavelet without log transform,
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15/16 thresholding gives a marginally better IQI index.

2. Soft-thresholding outperforms hard-thresholding by a wide margin in practi-

cally all indices. Visual inspection of the images shows that soft-thresholding

is also much better in removing noise.

3. By all indices, except the IQI index, when the log transform is not applied in

case of 63/64 soft thresholding, the Haar wavelets appear marginally better

than the Daubechies wavelets. However, inspection of the images shows that

there is some pixellation in case of the Haar wavelet.

4. Haar wavelets appear to have a much better SNR ratio than Daubechies

wavelets. One should note, however, that the SNR ratio is derived from

evaluating a uniform area of the original image, and thus neglects effects

such as edges in the image.

5. Applying the log transform has different effects, depending on the thresh-

olding method.

For hard thresholding, applying the log transform improved all metrics. This

is more pronounced for the Haar wavelets than the Daubechies wavelets.

For soft thresholding, the indices measuring differences (MSE, RMSE, AD)

show better results without application of the log transform. On the other

hand, the indices that measure how two images match up (Correlation Co-

efficient, IQI) perform better when the log transfom is applied.

Figures 5.22 and 5.23 give a visual comparison between log and non-log

applications, for the best performing Haar wavelets (63/64 soft thresholding).

Figures 5.24 and 5.25 do the same for the best performing Daubechies db20

wavelets
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Figure 5.6 Haar, 1/4 hard thresh-

olding

Figure 5.7 Haar, 1/4 soft threshold-

ing

Figure 5.8 Haar, 1/2 hard thresh-

olding

Figure 5.9 Haar, 1/2 soft threshold-

ing
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Figure 5.10 Haar, 3/4 hard thresh-

olding

Figure 5.11 Haar, 3/4 soft thresh-

olding

Figure 5.12 Haar, 15/16 hard

thresholding

Figure 5.13 Haar, 15/16 soft

thresholding
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Figure 5.14 Haar, 63/64 hard

thresholding

Figure 5.15 Haar, 63/64 soft

thresholding

Figure 5.16 Haar, hard threshold-

ing applied to all wavelet coefficients

Figure 5.17 Haar, soft thresholding

applied to all wavelet coefficients
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Figure 5.18 db20, 63/64 hard

thresholding

Figure 5.19 db20, 63/64 soft thresh-

olding

Figure 5.20 db20, hard threshold-

ing applied to all wavelet coefficients

Figure 5.21 db20 soft thresholding

applied to all wavelet coefficients
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Figure 5.22 Haar, 63/64 soft

thresholding, log applied

Figure 5.23 Haar, 63/64 soft

thresholding, log not applied

Figure 5.24 db20, 63/64 soft thresh-

olding, log applied

Figure 5.25 db20, 63/64 soft thresh-

olding, log not applied
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5.3 Comparison With Other Methods

In this section, the performance of the best wavelet methods is compared

with that of other methods. Tables 5.3 and 5.4 show several image quality indices,

for images without and with the log transform applied, respectively. Images after

denoising – for the case where the logarithmic transform was not applied – are

presented in Figures 5.26 through 5.33, with the exception of the wavelet pictures

already listed above.

1. The best results overall are for Seekot’s variational method. In this method,

all metrics are noticeable above those for the other methods. This method

has been especially designed for Rayleigh noise.

2. The runner-up is the Mean filtering method. Although it is a simple method,

it even surpasses the other variational method, the ROF method.

3. Without the log transform, the ROF method produces better results than

the wavelet method. However, after the log transform has been applied,

both methods show similar performance. This is surprising, because the

ROF model is for additive-type noise.

4. All models which do not use wavelets perform better without log transform.

The exception is the median filter, which performs exactly the same, with or

without the log transformed applied. This makes sense as the median pixel

in a window does not change when taking the logarithm.
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Figure 5.26 Mean filter, 5× 5 win-

dow

Figure 5.27 Mean filter, 7× 7 win-

dow

Figure 5.28 Median filter, 5×5 win-

dow

Figure 5.29 Median filter, 7×7 win-

dow



50

Figure 5.30 Multiplicative Lee fil-

ter, 5× 5 window

Figure 5.31 Multiplicative Lee fil-

ter, 7× 7 window

Figure 5.32 ROF variational filter Figure 5.33 Seekot variational filter



CHAPTER VI

CONCLUSION

In this thesis, several methods for reducing Rayleigh noise in a synthetic

noisy image were studied, with emphasis on wavelet filters. In particular, the

following questions were investigated experimentally:

1. Are wavelet filters able to remove this type of noise ?

2. What wavelets are best suited for image denoising ?

3. How do wavelet filters compare with other filters ?

4. Will applying the log transform to an image improve the performance of

noise reduction filters ?

Many experiments shown in the literature were performed with lightly noised

images, for example with Gaussian noise. In this thesis on the other hand, a

synthetic image was used for the experiments, severely degraded by Rayleigh noise

in accordance with the theoretical model.

Altogether, these experiments demonstrate that wavelets can be success-

fully used for noise reduction in images. The choice of wavelet has some impact on

noise reduction performance, but to a lesser degree than expected. Daubechies

wavelets and Symlets perform marginally better than Haar wavelets, but one

should use wavelets of high order, Daubechies wavelets of type db20 worked better

than lower order Daubechies wavelets.

More importantly, the experiments showed that soft-thresholding is far su-

perior to hard-thresholding. In addition, thresholding should be applied to the
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wavelet coefficients at all except the lowest scales. There is, however, a side effect

in that images can become pixellated. This pixellization is only noticeable by the

human eye, and is not reflected in the various performance metrics. There is room

for further investigation, for example, whether one should impose different thresh-

olds at different scales, or whether one can improve the soft-threshold function

used.

In this thesis, two one-dimensional wavelet transforms – in each of the

two directions – were applied to obtain a two dimensional transform. Thus, the

wavelet coefficients are determined by brightness changes in x and y directions.

There exist other more complicated two-dimensional transforms, which might be

better provide noise reduction in other directions as well.

Interestingly and surprisingly however, some of the other methods produced

even better results. The simplest of the filters, the mean filter, produced relatively

good metric results. However, images tend to get blurred at larger window sizes.

Seekot’s variational method stood out, both when measured with objective

metrics, or by the human eye. However, the variational methods produces softer

edges than other methods. It would be interesting to try a combination of the

variational and wavelet method to increase image sharpness. In addition, this

methods depends on a weight parameter which here was obtained by trial-and-

error; it would be worthwhile to design an algorithm which can derive the optimal

choice of this parameter in an image.

Another result of this work shows that applying the log transform does not

produce better denoised images for many of the methods. This is surprising in that

Rayleigh noise is of multiplicative type, so it is natural to expect that taking the

logarithmic transform should make methods which work well with additive noise,
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perform better. That our experiments show the opposite is definitely worthy of

further detailed investigation. However, for the wavelets with hard thresholding,

taking the log improved performance across all metrics as expected. For soft

thresholding, on the other hand, the log transform only improved on the “match-

up” indices, faring worse with the “error” indices.

In practical implementations of an ultrasound scanner, there are big bright-

ness differences present within a raw ultrasound image. In order to improve the vi-

suals, manufacturers often apply the logarithmic transform to make image bright-

ness more balanced and suitable for the eye. It remains to be investigated, in

particular using the variational methods, how to best reduce noise in such a mod-

ified image, as the experiments show that all except the wavelet methods perform

worse after the log transform has been applied.
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APPENDIX A

OCTAVE CODE

This appendix lists some of the Octave computer code used in this thesis.

A.1 Code to Impose Rayleigh Noise on an Image

pkg load image; // Load imaging octave package

ref = imread(’Downloads/lena512.bmp’);

[m,n]=size(ref);

new=im2double(ref);

for i=1:m

for j=1:n

x = double( new(i,j) );

%%% Rayleigh with sigma ^2=x^2/2 is the same as Weibull with

%%% scale lambda=x and shape k=2.

new(i,j) = wblrnd(x,2);

end;

end;

outfilename=strcat(’D:/temp/lena512 noisy rayleigh unmod.bmp’);

imwrite(new ,outfilename);

%%%% create another image with unchamged mean

new1=new *(2/ sqrt(pi));

outfilename=strcat(’D:/temp/lena512 noisy rayleigh_mod.bmp’);

imwrite(new1 ,outfilename);

A.2 Code for the Mean Filter

pkg load image; // Load package image

w = input(’enter windows size n  (2n+1)x(2n+1) : ’);

// Read original image

ref_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

ref_dble = log1p(im2double(ref_int)); // Log transform applied

%%ref_dble = im2double(ref_int); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

[m,n]=size(ref_dble);

new=noisy_dble;

// Mean Filtering //
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for i=(1+w):(m-w)

for j=(1+w):(n-w)

zz = noisy_dble( (i-w):(i+w), (j-w):(j+w) );

z = zz( : );

new(i,j) = mean(z);

end;

end;

// Reverse log data

ref_dble = expm1(ref_dble);

noisy_dble = expm1(noisy_dble);

new = expm1(new);

figure , imshow(ref_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(new); // Show denoised image

// Calculate MSE , AD & Correlation Coefficient //

ref_small = ref_dble( (1+w):(m-w) ,(1+w):(n-w) );

noisy_small = noisy_dble( (1+w):(m-w) ,(1+w):(n-w) );

new_small = new( (1+w):(m-w) ,(1+w):(n-w) );

mymeas = abs ( ref_small - new_small );

mymeas1 = mymeas .* mymeas;

mymeas2 = ref_small .* ref_small;

MSE = sum(mymeas1 (:));

MSE = MSE/(m-2*w);

MSE = MSE/(n-2*w)

RMSE = sqrt(MSE)

AD = sum( mymeas (:) );

AD = AD/(m-2*w);

AD = AD/(n-2*w)

Corr2 = corr2(ref_small ,new_small)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2))

*( contrast_fg /( contrast_f_sq + contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(new_small ,ref_small)

IQI_Denoising_Noisy= Image_Quality_Index(new_small ,noisy_small)

IQI_Noisy_Original = Image_Quality_Index(noisy_small ,ref_small)

// Calculate SNR on uniform region of original image //

zz1 = new( 1:38, 137:300 );

bg1 = ref_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = new( 164:215 , 480:512 );

bg2 = ref_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;

snr2 = sum(z2(:))/sum(v2(:));

zz3 = new( 480:512 , 230:258 );

bg3 = ref_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;
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snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )

A.3 Code for the Mean Median Filter

pkg load image; // Load package image

w = input(’enter windows size n  (2n+1)x(2n+1) : ’);

// Read original image

ref_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

ref_dble = log1p(im2double(ref_int)); // Log transform applied

%%ref_dble = im2double(ref_int); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

[m,n]=size(ref_dble);

new=noisy_dble;

// Median Filtering //

for i=(1+w):(m-w)

for j=(1+w):(n-w)

zz = noisy_dble( (i-w):(i+w), (j-w):(j+w) );

z = zz( : );

new(i,j) = median(z);

end;

end;

// Reverse log data

ref_dble = expm1(ref_dble);

noisy_dble = expm1(noisy_dble);

new = expm1(new);

figure , imshow(ref_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(new); // Show denoised image

// Calculate MSE , AD & Correlation Coefficient //

ref_small = ref_dble( (1+w):(m-w) ,(1+w):(n-w) );

noisy_small = noisy_dble( (1+w):(m-w) ,(1+w):(n-w) );

new_small = new( (1+w):(m-w) ,(1+w):(n-w) );

mymeas = abs ( ref_small - new_small );

mymeas1 = mymeas .* mymeas;

mymeas2 = ref_small .* ref_small;

MSE = sum(mymeas1 (:));

MSE = MSE/(m-2*w);

MSE = MSE/(n-2*w)

RMSE = sqrt(MSE)

AD = sum( mymeas (:) );

AD = AD/(m-2*w);

AD = AD/(n-2*w)

Corr2 = corr2(ref_small ,new_small)

// Calculate Image Quality Index //
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function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2))

*( contrast_fg /( contrast_f_sq + contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(new_small ,ref_small)

IQI_Denoising_Noisy= Image_Quality_Index(new_small ,noisy_small)

IQI_Noisy_Original = Image_Quality_Index(noisy_small ,ref_small)

// Calculate SNR on uniform region of original image //

zz1 = new( 1:38, 137:300 );

bg1 = ref_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = new( 164:215 , 480:512 );

bg2 = ref_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;

snr2 = sum(z2(:))/sum(v2(:));

zz3 = new( 480:512 , 230:258 );

bg3 = ref_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )

A.4 Code for the Multiplicative Lee Filter

pkg load image; // Load package image

w = input(’enter windows size n  (2n+1)x(2n+1) : ’);

// Read original image

ref_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

ref_dble = log1p(im2double(ref_int)); // Log transform applied

%%ref_dble = im2double(ref_int); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

function ret = varq(u) // Variance

mm = mean(u);

ret = var( u-mm , 1);

endfunction;

[m,n]=size(ref_dble);

new=noisy_dble;

// Multiplicative Lee Filtering //
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var_ref = 1

new=noisy_dble;

for i=(1+w):(m-w)

for j=(1+w):(n-w)

zz = noisy_dble( (i-w):(i+w), (j-w):(j+w) );

z = zz( : );

v = varq(z);

s_z = mean(z);

K = v/(v + s_z*s_z*var_ref); // Weighting parameter

new(i,j) = s_z + K*( noisy_dble(i,j) - s_z);

end;

end;

// Reverse log data

ref_dble = expm1(ref_dble);

noisy_dble = expm1(noisy_dble);

new = expm1(new);

figure , imshow(ref_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(new); // Show denoised image

// Calculate MSE , AD & Correlation Coefficient //

ref_small = ref_dble( (1+w):(m-w) ,(1+w):(n-w) );

noisy_small = noisy_dble( (1+w):(m-w) ,(1+w):(n-w) );

new_small = new( (1+w):(m-w) ,(1+w):(n-w) );

mymeas = abs ( ref_small - new_small );

mymeas1 = mymeas .* mymeas;

mymeas2 = ref_small .* ref_small;

MSE = sum(mymeas1 (:));

MSE = MSE/(m-2*w);

MSE = MSE/(n-2*w)

RMSE = sqrt(MSE)

AD = sum( mymeas (:) );

AD = AD/(m-2*w);

AD = AD/(n-2*w)

Corr2 = corr2(ref_small ,new_small)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2))

*( contrast_fg /( contrast_f_sq + contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(new_small ,ref_small)

IQI_Denoising_Noisy= Image_Quality_Index(new_small ,noisy_small)

IQI_Noisy_Original = Image_Quality_Index(noisy_small ,ref_small)

// Calculate SNR on uniform region of original image //

zz1 = new( 1:38, 137:300 );

bg1 = ref_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = new( 164:215 , 480:512 );

bg2 = ref_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;
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snr2 = sum(z2(:))/sum(v2(:));

zz3 = new( 480:512 , 230:258 );

bg3 = ref_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )

A.5 Code for the Seekot’s Variational Method

pkg load image; // Load package image

//Set up constant

delta_t = 0.01;

h = 1;

beta = 5.75

%% best_beta_log1p = 5.75;

K1 = delta_t/h;

K2 = 2* delta_t/beta;

// Read original image

ref_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

[m,n]=size(noisy_int);

ref_dble = log1p(im2double(ref_int)); // Log transform applied

%%ref_dble = im2double(ref_int); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

// Seekot Method (Solving Euler -Lagrange Equation) //

u_old = ones(m,n)*0.5;

u_old (1,:) = noisy_dble (1,:); u_old(m,:) = noisy_dble(m,:);

u_old (:,1) = noisy_dble (:,1); u_old(:,n) = noisy_dble (:,n);

u_new = u_old;

function ret = M(a,b)

ret = (sign(a)+sign(b)).*min(abs(a),abs(b))/2;

endfunction;

for k=1:1000

delta1000= u_old (3:m,2:n-1) - u_old (2:m-1,2:n-1);

delta00_10 = u_old (2:m-1,2:n-1) - u_old (1:m-2,2:n-1);

delta0100= u_old (2:m-1,3:n) - u_old (2:m-1,2:n-1);

delta000_1 = u_old (2:m-1,2:n-1) - u_old (2:m-1,1:n-2);

delta_11_10 = u_old (1:m-2,3:n) - u_old (1:m-2,2:n-1);

delta_10_1_1 = u_old (1:m-2,2:n-1) - u_old (1:m-2,1:n-2);

delta1_10_1 = u_old (3:m,1:n-2) - u_old (2:m-1,1:n-2);

delta0_1_1_1 = u_old (2:m-1,1:n-2) - u_old (1:m-2,1:n-2);

m1 = M(delta0100 ,delta000_1);

m2 = M(delta1000 ,delta00_10);

m3 = M(delta_11_10 ,delta_10_1_1);

m4 = M(delta1_10_1 ,delta0_1_1_1);

Term1 = delta1000 ./sqrt(delta1000 .* delta1000 + m1.*m1);
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Term1(abs(delta1000)<1E-5) = 0.0;

Term2 = delta0100 ./sqrt(delta0100 .* delta0100 + m2.*m2);

Term2(abs(delta0100)<1E-5) = 0.0;

Term3 = -delta00_10 ./sqrt(delta00_10 .* delta00_10 + m3.*m3);

Term3(abs(delta00_10)<1E-5) = 0.0;

Term4 = -delta000_1 ./sqrt(delta000_1 .* delta000_1 + m4.*m4);

Term4(abs(delta000_1)<1E-5) = 0.0;

usquare = u_old .* u_old;

ucube = usquare .*u_old;

ucube(abs(ucube)<1E-2)=1E-2;

noisy_dble_square = noisy_dble .* noisy_dble;

noisy_term = (noisy_dble_square (2:m-1,2:n-1) - usquare (2:m-1,2:n-1))./ucube (2:m

-1,2:n-1);

u_new (2:m-1,2:n-1) = u_old (2:m-1,2:n-1)

+ K1*(Term1+Term2+Term3+Term4)

+ K2*noisy_term;

u_old = u_new;

end;

// Reverse log data

u_old = expm1(u_old);

ref_dble = expm1(ref_dble);

noisy_dble = expm1(noisy_dble);

figure , imshow(ref_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(u_old); // Show denoised image

// Calculate MSE , AD & Correlation Coefficient //

mymeas = abs ( ref_dble - u_old );

mymeas1 = mymeas .* mymeas;

MSE = sum(mymeas1 (:));

MSE = MSE/m;

MSE = MSE/n

RMSE = sqrt(MSE)

AD = sum(mymeas (:) );

AD = AD/m;

AD = AD/n

Corr2 = corr2(ref_dble ,u_old)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2)) *( contrast_fg /( contrast_f_sq +

contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(u_old ,ref_dble)

IQI_Denoising_Noisy= Image_Quality_Index(u_old ,noisy_dble)

IQI_Noisy_Original = Image_Quality_Index(noisy_dble ,ref_dble)

// Calculate SNR on uniform region of original image //

zz1 = u_old( 1:38, 137:300 );

bg1 = ref_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = u_old( 164:215 , 480:512 );
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bg2 = ref_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;

snr2 = sum(z2(:))/sum(v2(:));

zz3 = u_old( 480:512 , 230:258 );

bg3 = ref_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )

A.6 Code for the ROF Variational Method

pkg load image; // Load package image

//Set up constant

delta_t = 0.01;

h = 1;

beta = 0.251

%% best_beta_log1p = 0.251;

K1 = delta_t/h;

K2 = 2* delta_t/beta;

// Read original image

ref_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

[m,n]=size(noisy_int);

ref_dble = log1p(im2double(ref_int)); // Log transform applied

%%ref_dble = im2double(ref_int); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

// ROF Model (Solving Euler -Lagrange Equation) //

u_old = ones(m,n)*0.5;

u_old (1,:) = noisy_dble (1,:); u_old(m,:) = noisy_dble(m,:);

u_old (:,1) = noisy_dble (:,1); u_old(:,n) = noisy_dble (:,n);

u_new = u_old;

function ret = M(a,b)

ret = (sign(a)+sign(b)).*min(abs(a),abs(b))/2;

endfunction;

for k=1:1000

delta1000= u_old (3:m,2:n-1) - u_old (2:m-1,2:n-1);

delta00_10 = u_old (2:m-1,2:n-1) - u_old (1:m-2,2:n-1);

delta0100= u_old (2:m-1,3:n) - u_old (2:m-1,2:n-1);

delta000_1 = u_old (2:m-1,2:n-1) - u_old (2:m-1,1:n-2);

delta_11_10 = u_old (1:m-2,3:n) - u_old (1:m-2,2:n-1);

delta_10_1_1 = u_old (1:m-2,2:n-1) - u_old (1:m-2,1:n-2);

delta1_10_1 = u_old (3:m,1:n-2) - u_old (2:m-1,1:n-2);

delta0_1_1_1 = u_old (2:m-1,1:n-2) - u_old (1:m-2,1:n-2);

m1 = M(delta0100 ,delta000_1);

m2 = M(delta1000 ,delta00_10);

m3 = M(delta_11_10 ,delta_10_1_1);
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m4 = M(delta1_10_1 ,delta0_1_1_1);

Term1 = delta1000 ./sqrt(delta1000 .* delta1000 + m1.*m1);

Term1(abs(delta1000)<1E-5) = 0.0;

Term2 = delta0100 ./sqrt(delta0100 .* delta0100 + m2.*m2);

Term2(abs(delta0100)<1E-5) = 0.0;

Term3 = -delta00_10 ./sqrt(delta00_10 .* delta00_10 + m3.*m3);

Term3(abs(delta00_10)<1E-5) = 0.0;

Term4 = -delta000_1 ./sqrt(delta000_1 .* delta000_1 + m4.*m4);

Term4(abs(delta000_1)<1E-5) = 0.0;

noisy_term = noisy_dble (2:m-1,2:n-1) - u_old (2:m-1,2:n-1);

u_new (2:m-1,2:n-1) = u_old (2:m-1,2:n-1) + K1*( Term1+Term2+Term3+Term4) + K2*

noisy_term;

u_old = u_new;

end;

// Reverse log data

u_old = expm1(u_old);

ref_dble = expm1(ref_dble);

noisy_dble = expm1(noisy_dble);

figure , imshow(ref_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(u_old); // Show denoised image

// Calculate MSE , AD & Correlation Coefficient //

mymeas = abs ( ref_dble - u_old );

mymeas1 = mymeas .* mymeas;

MSE = sum(mymeas1 (:));

MSE = MSE/m;

MSE = MSE/n

RMSE = sqrt(MSE)

AD = sum(mymeas (:) );

AD = AD/m;

AD = AD/n

Corr2 = corr2(ref_dble ,u_old)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2)) *( contrast_fg /( contrast_f_sq +

contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(u_old ,ref_dble)

IQI_Denoising_Noisy= Image_Quality_Index(u_old ,noisy_dble)

IQI_Noisy_Original = Image_Quality_Index(noisy_dble ,ref_dble)

// Calculate SNR on uniform region of original image //

zz1 = u_old( 1:38, 137:300 );

bg1 = ref_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = u_old( 164:215 , 480:512 );

bg2 = ref_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;
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snr2 = sum(z2(:))/sum(v2(:));

zz3 = u_old( 480:512 , 230:258 );

bg3 = ref_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )

A.7 Code for the Haar Wavelet Method with Hard Thresh-
olding

pkg load image; // Load package image

// Read original image //

original_int = imread(’C:/ Users/xiangeh/Desktop/Denoising Speckle Noise in the 

image/lena512.bmp’);

// Read noisy image //

noisy_int = imread(’C:/Users/xiangeh/Desktop/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

original_dble = log1p(im2double(original_int)); // Log transform applied

%% original_dble = im2double ( original_int ); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

[m1 ,n1]= size(original_dble);

//Set up constant

thold = 0.0007 // Thresholding value

j_max = 8 // should be <= m;

m = 9 // 256 pixels

M = 2^m;

Delta_x = 1/M;

N = 2^( j_max);

// vector containing wavelet coefficients in one dimension

wt1 = zeros( M, 2*N );

inv_wt1 = wt1;

// vector containing wavelet coefficients in two dimensions

wt2 = zeros( 2*N,2*N );

inv = zeros(M,M);

// Haar Wavelet Method //

function ret = Haar_0th_scaling_function(k,M)

if (k==0)

ret = ones(M,1);

else

ret = zeros(M,1);

end;

endfunction;

function ret = Haar_jth_mother_wavelet(j,k,M) // allow j=0.. _j_max

ret = zeros(M,1);

x0_lower =2*k*M;

x0_medium =(2*k+1)*M;

x0_upper =2*(k+1)*M;

twopj =2^(j/2);

for i=1:M

xx=2*i*(2^j);

if ( ( x0_lower < xx ) && ( xx <= x0_medium ))

ret(i) = twopj;

elseif ( ( x0_medium < xx ) && ( xx <= x0_upper ))
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ret(i) = -twopj;

end;

end;

endfunction;

function ret = wavelet_transform(j_max , M, g)

N = 2^( j_max);

ret = zeros (2*N,1);

Delta_x = 1/M;

z = Haar_0th_scaling_function (0,M);

ret( 1 ) = dot(g,z)*Delta_x;

for j=0: j_max

power =2^j-1;

for k=0: power

z = Haar_jth_mother_wavelet(j,k,M);

ret( power + k + 2) = dot(g,z)*Delta_x;

end;

end;

endfunction;

function ret = inverse_wavelet_transform(j_max , M, wt)

N = 2^( j_max);

ret = zeros(M,1);

ret = wt(1)*( Haar_0th_scaling_function (0,M));

for j=0: j_max

power =2^j-1;

for k=0: power

ret = ret + wt( power + k + 2) *( Haar_jth_mother_wavelet(j,k,M));

end;

end;

endfunction;

// take wt of each image row;

for i=1:M

wt1(i,:) = wavelet_transform( j_max , M, noisy_dble( i,:) );

end;

// take wt of each image column;

for i=1:2*N

wt2(:,i) = wavelet_transform( j_max , M, wt1(:,i) );

end;

// Thresholding Method //

// 1/2 Piece Hard Thresholding //

for i=N+1:2*N

for j=(N+2) /2:N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

for i=N/2+1:2*N

for j=N+1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

// 1/4 Piece Hard Thresholding //

for i=N+1:2*N

for j=N+1:2*N

if abs(wt2(i,j)) < thold
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wt2(i,j) = 0;

end;

end;

end;

// 3/4 Piece Hard Thresholding //

for i=N+1:2*N

for j=1:N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

for i=1:2*N

for j=N+1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

// 15/16 Piece Hard Thresholding //

for i=1:N/2

for j=N/2:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

for i=N/2+1:2*N

for j=1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

// 63/64 Piece Hard Thresholding //

for i=1:N/4

for j=N/4:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

for i=N/4+1:2*N

for j=1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

end;

end;

// Normal Hard Thresholding //

wt2( abs(wt2) < thold ) = 0.0;

// Now we have the Wavelet transform. Take the inverse transform //

for i=1:2*N

inv_wt1(:,i) = inverse_wavelet_transform( j_max , M, wt2(:,i) );

end;

for i=1:M
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inv(i,:) = inverse_wavelet_transform( j_max , M, inv_wt1(i,:) );

end;

// Reverse log data

inv = expm1(inv);

original_dble = expm1(original_dble);

noisy_dble= expm1(noisy_dble);

figure , imshow(original_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(inv); // Show denoised image

// Calculate MSE , AD & Correlation Coeifficient //

mymeas = abs ( original_dble - inv );

mymeas1 = mymeas .* mymeas;

MSE = sum(mymeas1 (:));

MSE = MSE/m1;

MSE = MSE/n1

RMSE = sqrt(MSE)

AD = sum(mymeas (:) );

AD = AD/m1;

AD = AD/n1

Corr2 = corr2(original_dble ,inv)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2)) *( contrast_fg /( contrast_f_sq +

contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(inv ,original_dble)

IQI_Denoising_Noisy= Image_Quality_Index(inv ,noisy_dble)

IQI_Noisy_Original = Image_Quality_Index(noisy_dble ,original_dble)

// Calcualte SNR on uniform region of original image //

zz1 = inv( 1:38, 137:300 );

bg1 = original_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = inv( 164:215 , 480:512 );

bg2 = original_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;

snr2 = sum(z2(:))/sum(v2(:));

zz3 = inv( 480:512 , 230:258 );

bg3 = original_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )
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A.8 Code for the Haar Wavelet Method with Soft Thresh-
olding

pkg load image; // Load package image

// Read original image //

original_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image //

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

original_dble = log1p(im2double(original_int)); // Log transform applied

%% original_dble = im2double ( original_int ); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

[m1 ,n1]= size(original_dble);

//Set up constant

thold = 0.0007 // Thresholding value

j_max = 8 // should be <= m;

m = 9 // 256 pixels

M = 2^m;

Delta_x = 1/M;

N = 2^( j_max);

// vector containing wavelet coefficients in one dimension

wt1 = zeros( M, 2*N );

inv_wt1 = wt1;

// vector containing wavelet coefficients in two dimensions

wt2 = zeros( 2*N,2*N );

inv = zeros(M,M);

// Haar Wavelet Method //

function ret = Haar_0th_scaling_function(k,M)

if (k==0)

ret = ones(M,1);

else

ret = zeros(M,1);

end;

endfunction;

function ret = Haar_jth_mother_wavelet(j,k,M) // allow j=0.. _j_max

ret = zeros(M,1);

x0_lower =2*k*M;

x0_medium =(2*k+1)*M;

x0_upper =2*(k+1)*M;

twopj =2^(j/2);

for i=1:M

xx=2*i*(2^j);

if ( ( x0_lower < xx ) && ( xx <= x0_medium ))

ret(i) = twopj;

elseif ( ( x0_medium < xx ) && ( xx <= x0_upper ))

ret(i) = -twopj;

end;

end;

endfunction;

function ret = wavelet_transform(j_max , M, g)

N = 2^( j_max);

ret = zeros (2*N,1);

Delta_x = 1/M;
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z = Haar_0th_scaling_function (0,M);

ret( 1 ) = dot(g,z)*Delta_x;

for j=0: j_max

power =2^j-1;

for k=0: power

z = Haar_jth_mother_wavelet(j,k,M);

ret( power + k + 2) = dot(g,z)*Delta_x;

end;

end;

endfunction;

function ret = inverse_wavelet_transform(j_max , M, wt)

N = 2^( j_max);

ret = zeros(M,1);

ret = wt(1)*( Haar_0th_scaling_function (0,M));

for j=0: j_max

power =2^j-1;

for k=0: power

ret = ret + wt( power + k + 2)

*( Haar_jth_mother_wavelet(j,k,M));

end;

end;

endfunction;

// take wt of each image row;

for i=1:M

wt1(i,:) = wavelet_transform( j_max , M, noisy_dble( i,:) );

end;

// take wt of each image column;

for i=1:2*N

wt2(:,i) = wavelet_transform( j_max , M, wt1(:,i) );

end;

// Thresholding Method //

// 1/2 Piece Soft Thresholding //

for i=N+1:2*N

for j=(N+2) /2:N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

for i=N/2+1:2*N

for j=N+1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

// 1/4 Piece Soft Thresholding //

for i=N+1:2*N

for j=N+1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

// 3/4 Piece Soft Thresholding //
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for i=N+1:2*N

for j=1:N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

for i=1:2*N

for j=N+1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

// 15/16 Piece Soft Thresholding //

for i=1:N/2

for j=N/2:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

for i=N/2+1:2*N

for j=1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

// 63/64 Piece Soft Thresholding //

for i=1:N/4

for j=N/4:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

for i=N/4+1:2*N

for j=1:2*N

if abs(wt2(i,j)) < thold

wt2(i,j) = 0;

end;

wt2(i,j) = wt2(i,j) - thold*sign(wt2(i,j));

end;

end;

// Normal Soft Thresholding //

wt2( abs(wt2) < thold ) = 0.0;

wt2 = wt2 - thold*sign(wt2);

// Now we have the Wavelet transform. Take the inverse transform //

for i=1:2*N

inv_wt1(:,i) = inverse_wavelet_transform( j_max , M, wt2(:,i) );

end;
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for i=1:M

inv(i,:) = inverse_wavelet_transform( j_max , M, inv_wt1(i,:) );

end;

// Reverse log data

inv = expm1(inv);

original_dble = expm1(original_dble);

noisy_dble= expm1(noisy_dble);

figure , imshow(original_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(inv); // Show denoised image

// Calculate MSE , AD & Correlation Coeifficient //

mymeas = abs ( original_dble - inv );

mymeas1 = mymeas .* mymeas;

MSE = sum(mymeas1 (:));

MSE = MSE/m1;

MSE = MSE/n1

RMSE = sqrt(MSE)

AD = sum(mymeas (:) );

AD = AD/m1;

AD = AD/n1

Corr2 = corr2(original_dble ,inv)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2))

*( contrast_fg /( contrast_f_sq + contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(inv ,original_dble)

IQI_Denoising_Noisy= Image_Quality_Index(inv ,noisy_dble)

IQI_Noisy_Original = Image_Quality_Index(noisy_dble ,original_dble)

// Calcualte SNR on uniform region of original image //

zz1 = inv( 1:38, 137:300 );

bg1 = original_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = inv( 164:215 , 480:512 );

bg2 = original_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;

snr2 = sum(z2(:))/sum(v2(:));

zz3 = inv( 480:512 , 230:258 );

bg3 = original_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )
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A.9 Code for the Daubechies Wavelet Method with Hard
Thresholding

pkg load image; // Load package image

pkg load ltfat; // Load packe The Large Time -Frequency Analysis

//Set up constant

thold = 0.15 // Thresholding value

j_max = 8 // should be <= m;

// Read original image

ref_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

original_dble = log1p(im2double(original_int)); // Log transform applied

%% original_dble = im2double ( original_int ); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

[m1 ,n1]=size(noisy_int);

// Wavelet Choose Daubechies 20 tap

WaveletType = ’db20’;

// Take Wavelet Transform

wt = fwt2(noisy_dble ,WaveletType ,j_max);

// 1/2 Piece Hard Thresholding //

for i = m1/2+1:m1

for j = n1/4+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

end;

end;

for i = m1/4+1:m1

for j = n1/2+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

end;

end;

// 1/4 Piece Hard Thresholding //

for i = m1/2+1:m1

for j = n1/2+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

end;

end;

// 3/4 Piece Hard Thresholding //

for i=m1/2+1:m1

for j=1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

end;
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end;

for i=1:m1

for j=n1/2+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

end;

end;

// 63/64 Piece Hard Thresholding //

for i=m1/8+1:m1

for j=1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

end;

end;

for i=1:m1

for j=n1/8+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

end;

end;

// Normal Hard Thresholding //

wt( abs(wt) < thold ) = 0.0;

// Take the inverse wavelet transform //

inv = ifwt2(wt,WaveletType ,j_max);

// Reverse log data

inv = expm1(inv);

original_dble = expm1(original_dble);

noisy_dble= expm1(noisy_dble);

figure , imshow(original_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(inv); // Show denoised image

// Calculate MSE , AD & Correlation Coefficient //

mymeas = abs ( original_dble - inv );

mymeas1 = mymeas .* mymeas;

MSE = sum(mymeas1 (:));

MSE = MSE/m1;

MSE = MSE/n1

RMSE = sqrt(MSE)

AD = sum(mymeas (:) );

AD = AD/m1;

AD = AD/n1

Corr2 = corr2(original_dble ,inv)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2))

*( contrast_fg /( contrast_f_sq + contrast_g_sq));
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endfunction;

IQI_Denoising_Original = Image_Quality_Index(inv ,original_dble)

IQI_Denoising_Noisy= Image_Quality_Index(inv ,noisy_dble)

IQI_Noisy_Original = Image_Quality_Index(noisy_dble ,original_dble)

// Calculate SNR on uniform region of original image //

zz1 = inv( 1:38, 137:300 );

bg1 = original_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = inv( 164:215 , 480:512 );

bg2 = original_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;

snr2 = sum(z2(:))/sum(v2(:));

zz3 = inv( 480:512 , 230:258 );

bg3 = original_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )

A.10 Code for the Daubechies Wavelet Method with Soft
Thresholding

pkg load image; // Load package image

pkg load ltfat; // Load packe The Large Time -Frequency Analysis

//Set up constant

thold = 0.15 // Thresholding value

j_max = 8 // should be <= m;

// Read original image

ref_int = imread(’C:/ Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512.bmp’);

// Read noisy image

noisy_int = imread(’C:/Users/xiangeh/Desktop

/Denoising Speckle Noise in the image

/lena512_noise_rayleigh_.bmp’);

original_dble = log1p(im2double(original_int)); // Log transform applied

%% original_dble = im2double ( original_int ); // Convert image to double precision

noisy_dble = log1p(im2double(noisy_int));

%% noisy_dble = im2double( noisy_int );

[m1 ,n1]=size(noisy_int);

// Wavelet Choose Daubechies 20 tap

WaveletType = ’db20’;

// Take Wavelet Transform

wt = fwt2(noisy_dble ,WaveletType ,j_max);

// 1/2 Piece Soft Thresholding //

for i = m1/2+1:m1

for j = n1/4+1:n1

if abs(wt(i,j)) < thold
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wt(i,j) = 0;

end;

wt(i,j) = wt(i,j) - thold*sign(wt(i,j));

end;

end;

for i = m1/4+1:m1

for j = n1/2+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

wt(i,j) = wt(i,j) - thold*sign(wt(i,j));

end;

end;

// 1/4 Piece Soft Thresholding //

for i = m1/2+1:m1

for j = n1/2+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

wt(i,j) = wt(i,j) - thold*sign(wt(i,j));

end;

end;

// 3/4 Piece Soft Thresholding //

for i=m1/2+1:m1

for j=1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

wt(i,j) = wt(i,j) - thold*sign(wt(i,j));

end;

end;

for i=1:m1

for j=n1/2+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

wt(i,j) = wt(i,j) - thold*sign(wt(i,j));

end;

%%end;

// 63/64 Piece Soft Thresholding //

for i=m1/8+1:m1

for j=1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

wt(i,j) = wt(i,j) - thold*sign(wt(i,j));

end;

end;

for i=1:m1

for j=n1/8+1:n1

if abs(wt(i,j)) < thold

wt(i,j) = 0;

end;

wt(i,j) = wt(i,j) - thold*sign(wt(i,j));

end;

end;

// Normal Soft Thresholding //

wt( abs(wt) < thold ) = 0.0;
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wt = wt - thold*sign(wt);

// Take the inverse wavelet transform //

inv = ifwt2(wt,WaveletType ,j_max);

// Reverse log data

inv = expm1(inv);

original_dble = expm1(original_dble);

noisy_dble= expm1(noisy_dble);

figure , imshow(original_dble); // Show original image

figure , imshow(noisy_dble); // Show noisy image

figure , imshow(inv); // Show denoised image

// Calculate MSE , AD & Correlation Coefficient //

mymeas = abs ( original_dble - inv );

mymeas1 = mymeas .* mymeas;

MSE = sum(mymeas1 (:));

MSE = MSE/m1;

MSE = MSE/n1

RMSE = sqrt(MSE)

AD = sum(mymeas (:) );

AD = AD/m1;

AD = AD/n1

Corr2 = corr2(original_dble ,inv)

// Calculate Image Quality Index //

function ret = Image_Quality_Index(f,g)

mean_f = mean(f(:));

mean_g = mean(g(:));

contrast_fg = mean((f - mean_f).*(g - mean_g));

contrast_f_sq = mean((f - mean_f).*(f - mean_f));

contrast_g_sq = mean((g - mean_g).*(g - mean_g));

ret = (4* mean_f*mean_g /( mean_f ^2 + mean_g ^2))

*( contrast_fg /( contrast_f_sq + contrast_g_sq));

endfunction;

IQI_Denoising_Original = Image_Quality_Index(inv ,original_dble)

IQI_Denoising_Noisy= Image_Quality_Index(inv ,noisy_dble)

IQI_Noisy_Original = Image_Quality_Index(noisy_dble ,original_dble)

// Calculate SNR on uniform region of original image //

zz1 = inv( 1:38, 137:300 );

bg1 = original_dble( 1:38, 137:300 );

z1 = zz1 .^2;

v1 = (zz1 -bg1).^2;

snr1 = sum(z1(:))/sum(v1(:));

zz2 = inv( 164:215 , 480:512 );

bg2 = original_dble( 164:215 , 480:512 );

z2 = zz2 .^2;

v2 = (zz2 -bg2).^2;

snr2 = sum(z2(:))/sum(v2(:));

zz3 = inv( 480:512 , 230:258 );

bg3 = original_dble( 480:512 , 230:258 );

z3 = zz3 .^2;

v3 = (zz3 -bg3).^2;

snr3 = sum(z3(:))/sum(v3(:));

snrvec = [ snr1 snr2 snr3];

SNR = max( snrvec )
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