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CHAPTER I

INTRODUCTION

In quantum mechanics, two interesting and beneficial phenomena are

quantum superposition and quantum entanglement, which have been recognized

as critical resources of quantum computing and quantum information processing

(Nielsen and Chuang, 2010; Marinescu and Marinescug, 2011; Preskill, 2004;

Barnett, 2010). The simplest entanglement is the Bell state (Sych and Leuchs,

2009) in which a pair of quantum bits (or qubits) is formed. A quantum

bit is a two-state quantum mechanical system, such as the polarization of a

single photon and the spin of electron. An essential feature of the multiple

qubits is that it can have entanglement. Quantum entanglement is a physical

phenomenon that occurs when pairs or groups of particles are generated or

interact in ways such that the quantum state of each particle cannot be described

independently. The Bell system has been studied intensively. For instance,

the Bell singlet state is explored in the suppression of disentanglement (Liu

and Chen, 2006). The system consists of two atoms inside the same cavity,

where the interaction of these atoms is allowed by exchanging photons inside a

lossless cavity (environment). It is shown in their work that, with the success

of suppressing decoherence, the entanglement can be stabilized and even enhanced.

The innovative work of Ting Yu and J. H. Eberly (Yu and Eberly, 2004)

discussed two initially entangled qubits and examined the dynamics of their

disentanglement due to spontaneous emission. The decoherence decay of a single
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qubit under the master equation and the Kraus representation are constructed in

the Ting Yu and J. H. Eberly work. In conclusion, the dynamical evolution of

the initially atoms in the entangled state will disentangle in a finite-time which is

not caused by the spontaneous emission.

Figure 1.1 The entanglement decay of the atoms initially in the entangled states by

spontaneous emission with between 0 and 1 (Yu and Eberly, 2004).

The study of R. Tanas and Z. Ficek (Tanas and Ficek, 2004) discussed

about the creation of entanglement in a system of two two-level atoms through

the spontaneous emission. In this system, the two two-level atoms are separated

by an arbitrary distance and interact with each other through the dipole-dipole

interaction. It is shown that the spontaneous emission can lead to a transient

entanglement between the atoms even if the atoms are prepared initially in

an unentangled state, and for su�ciently large dipole-dipole interactions the

entanglement exhibits oscillatory behavior with considerable entanglement.
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Figure 1.2 The time evolution of the concurrence ’(t) (solid line) for two initially

excited atoms (Tanas and Ficek, 2004).

Our research follows the work of Ru-Fen Liu and Chia-Chu Chen, in which

the master equation of the density matrix is solved directly (Liu and Chen, 2006).

In general, it is di�cult (or say, impossible) to directly solve the master equation

of a system with interactions. We study the master equation in the approach of

Kraus operators in the interaction picture. It is believed that the Kraus operator

representation may provide another approach for solving the master equation of

interacting systems.

Open quantum system is a quantum mechanical system which interacts

with the external system called “environment”. Normally, these interactions im-

portantly change the dynamics of the system and result in quantum distribution,
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where information limited in the system is lost to its environment. In general,

consider bipartite system AB. The system go through a unitary evolutions and

describing the evolution of subsystem A alone. Initially, assume that the two sub-

systems are not entangled and can be described by the density matrix (fl). The

evolution of the total system is control by the unitary time-evolution operator

U(t), which induces to the new density matrix (flÕ) is known as the Kruas repre-

sentation or the operator-sum representation. The Kraus operators (Kraus, 1983)

in one-qubit system are derived in Ref. (M. ArsenijeviÄ� and DugiÄ�, 2017), but

it is still unclear to apply the Kraus operator representation of two-qubit with

photon bath. (Breuer and Petruccione, 2002; Dodd and Halliwell, 2004; Rivas

and Huelga, 2012)



CHAPTER II

THEORY

2.1 The Fundamental concepts of quantum mechanics

This chapter describes the mathematical description of quantum physics

and concepts (Peres, 1993) that are applied to study quantum information (Nielsen

and Chuang, 2010). Probability interpretation of quantum theory has the proba-

bility amplitudes more than probabilities as the fundamental quantities. We will

see that the rule for the dynamic evolution and quantum measurements, together

with the existence of entangled states, are significant for quantum information.

2.1.1 Pure quantum state

The state of a physical system is a pure quantum state if it is entirely

identified by a state vector |�Í that resides in the Hilbert space H. If the basis

|ÂiÍ is selected for the Hilbert space, the state vector |�Í can be expanded by

linear combinations of the basis vectors as,

|�Í =
ÿ

i

–i|ÂiÍ, (2.1)

where –i are complex, and the general state of |�Í is normalized by

È�|�Í = 1

ÿ

i

|–i|
2 = 1. (2.2)
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2.1.2 Mixed quantum state

The state of a physical system is called a mixed state when the quantum

mechanical system can not be described by wave functions. As mentioned above,

the states described by wave functions are called pure states. It is necessary to

have a new formalism instead of the wave function method to study mixed states.

It is found that the density operator may be a convenient mean. We define the

density operator to be a combination of pure states,

fl =
ÿ

i

pi|�iÍÈ�i|, (2.3)

with conditions 0 Æ pi Æ 1 and q
i

pi = 1. As an special instance, if the state is a

pure state then the density matrix reduces to

fl = |�ÍÈ�|. (2.4)

It is convenient to introduce a measurement of the purity of a state, P = Trfl
2

with the properties,

fl
2 = fl for pure state,

fl
2

”= fl for mixed state. (2.5)

To ensure that fl describes the physical state, it has to satisfy the following condi-

tions:

• fl = fl
† is Hermitian.

• Eigenvalues of fl are positive (⁄i = 0).

• Trfl = 1, normalization.

We will use the density matrix formalism, because it can be used for both pure
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and mixed states.

2.2 Single Qubit

Qubit is a quantum system which can be identified as two states system. We

name the vector states |0Í and |1Í. The qubit can hold only one-bit of information

under its ability to prepare the data in these states. Then the qubit is given by,

|�Í = –|0Í + —|1Í, (2.6)

where |–|
2+|—|

2= 1. Using this criterion, we can reparameterize the qubit state

vector to,

|�Í = cos◊

2 |0Í + sin◊

2e
iÂ

|1Í, (2.7)

where the spherical polar coordinates. ◊ and Â, define a point on the sphere in

3-dimensional space. A sphere where any pure qubit state is located is called the

Bloch sphere.

Figure 2.1 The pure state on the surface of the Bloch sphere.

By including mixed states, one can decompose the density matrix of any
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arbitrary state with the well known Pauli matrices.

fl = 1
2(1 + n̂ · ‡̨) (2.8)

where n̂ = (n1, n2, n3) is called the Bloch vector. If the Bloch vector n̂ satisfies

|n̂|
2= 1, then it is a pure state and located on the surface of the 3-dimensional ball

(see Figure 2.2, Bloch sphere). If |n̂|
2
< 1, fl is the mixed state and the vector lies

inside the sphere (Bloch ball).

Figure 2.2 Bloch ball.
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2.3 Two Qubits

Since the density matrix of two qubits are living in Hilbert space H ©

C2
¢ C2, one needs to create a basis by using the 4x4 hermitian matrices with 16

elements. These basis operators can be tensor products of the basis operators of

the single qubit, such as, 12 ¢12,12 ¢ ‡i, ‡i ¢12, ‡i ¢ ‡j. For any two qubits, the

density matrix may given by,

fl = 1
4(11 ¢ 12 +

ÿ

i

ai12 ¢ ‡i +
ÿ

i

bi‡i ¢ 12 +
3ÿ

i,j=1
ci‡i ¢ ‡j), (2.9)

where the coe�cients ai, bi and ci are real and responsible for the non-local corre-

lations between subsystems.

2.4 Quantum entanglement

The entanglement occurs in a quantum mechanical system consisting of

two or more parties. This property makes the Einstein, Podolsky, Rosen (EPR

Paradox) (A. Einstein and Rosen, 1935) and other physicists dislike the quantum

mechanics since it predicts highly counterintuitive processes.

For a system of two qubits, which are in the product space of two Hilbert

spaces of the two subsystems H = H
A

¢ H
B, the density operators usually cannot

be written in the form of the product of flA and flB. If the density operators can

be written as a product fl = flA ¢ flB, we say the state is separable. If a state is

not separable then it is called entangled state. For instance, the four Bell vectors

are the typical entangled states,

---�+
f

= 1
Ô

2
(|0Í1 ¢ |0Í2 + |1Í1 ¢ |1Í2),

---�≠
f

= 1
Ô

2
(|0Í1 ¢ |0Í2 ≠ |1Í1 ¢ |1Í2),
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---�+
f

= 1
Ô

2
(|0Í1 ¢ |1Í2 + |1Í1 ¢ |0Í2),

---�≠
f

= 1
Ô

2
(|0Í1 ¢ |1Í2 ≠ |1Í1 ¢ |0Í2), (2.10)

where |00Í , |01Í , |10Í, and |11Í are the well-known form of the computational basis.

2.5 Closed and open systems

As we know, the time evolution of a closed quantum system is described by

a unitary operator. For an open quantum system, however, the time evolution is

not unitary. The time evolution of open systems can be described by the so-called

Kraus representation, which is constructed from a larger closed system which is

the system together with the environment.

The time evolution of closed systems is given by the Schrödinger equation,

ih̄
d

dt
|Â(t)Í = H(t)|Â(t)Í, (2.11)

where H is the Hamiltonian of the system. Since we are describing the closed

system, the evolution of the state can be expressed by the time-evolution unitary

operator U(t), which will change the initial state |Â(0)Í to the state |Â(t)Í,

|Â(t)Í = U(t)|Â(0)Í. (2.12)

We consider the isolated system, the Hamiltonian is time-independent. So the

unitary operator is,

U(t) = exp[≠iHt]. (2.13)

If the system has been considered as a quantum statistical ensemble then

the state of the vector cannot explain this ensemble. Moreover, the system can be
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described by fl(t),

fl(0) =
ÿ

i

ai|Âi(0)ÍÈÂi(0)|, (2.14)

since the state vectors depend on time, the density matrix of the time can be

written by,

fl(t) = q
i

U(t)|Âi(t)ÍÈÂi(t)|U †(t),

= U(t)fl(0)U †(t)
(2.15)

By di�erentiate the equation with t,

d

dt
fl(t) = ≠i[H(t), fl(t)]. (2.16)

This equation is the time-evolution equation for the closed system, which

is called Liouville-von Neumann equation.

Figure 2.3 The schematic picture of an open quantum system.

Now we turn to the open system. Shown in Figure 2.3 is a system with

external interactions. The combined system is closed and the time evolution

of the dynamical system is given by a unitary operator U(t). The interactions

between the system and environment are related to the correlation between them,

which will have an impact on the characteristics of the system. Therefore, the
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reduced system must be described by the master equation of, which described in

the section on Born-Markovian dynamics.

A reservoir or heat bath can represent the environment comprises with an

infinite number of degrees of freedom. That typically leads to behavior that is not

reversible. Next, we need to determine the density matrix that shows the states

of the system. The density matrix without any indices should be the state of the

total system, while S and E stand for specific subsystem. Consider the quantum

mechanical system that is the state of the tensor product S ¢ E of Hilbert spaces.

The mixed state is described by the density fl matrix, that is the non-negative

trace class operator on the tensor product. Partial trace of fl with respect to the

environmental system E is indicated by flS, known as the reduced state of fl in

system A.

flS = TrEfl, (2.17)

from the equation (2.17), we can reduce the environment term then, the density

matrix of the system can be written as,

flS(t) = TrE[U(t)fl(0)U †(t)], (2.18)

where U(t) is the time evolution operator of the total system. To obtain the

equations of motion of systems, we can take the partial trace over the environment

on both sides of the equation (2.24) for the total system,

d

dt
TrEfl(t) = d

dt
flS(t) = ≠i[H(t), fl(t)] + D[fl(t)], (2.19)

where D[fl(t)] is the decoherence term for an open system, the equation (2.21)

called “the master equation”.
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2.6 Two-level model

An atom with two energy eigenvalues is described by two-dimensional state

space |0Í and |1Í. These states are the complete orthogonal basis. The eigenvalue

of the energy are E0 and E1.

Figure 2.4 Two-level atom model.

The Hamiltonian in the energy representation,

Hatom = E0|0ÍÈ0|+E1|1ÍÈ1|. (2.20)

A possible alternative for the operator in this space is,

|0ÍÈ0|+|1ÍÈ1| = 1,

|0ÍÈ0|≠|1ÍÈ1| = ‡z,

|0ÍÈ1| = ‡≠,

|1ÍÈ0| = ‡+, (2.21)

where the operator ‡+ generates the transition from the ground state to excited
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state by absorbing energy and ‡≠ reduces the transition from excited state to

ground state while releasing energy. On the contrary, with ‡z is the Hermitian

operator.

If we exclude from the Hamiltonian in the term 1
2(E0 + E1) · 1 where the 1

refers to the unit matrix, we will calculate the corresponding energy and find the

Hamiltonian of two-level systems as,

Hatom = 1
2 h̄Ê‡z, (2.22)

where Ê is the transition frequency Ê = 1
h̄
(E1 ≠ E0).

2.7 Creation and annihilation operators

We start with the Hamiltonian of the harmonic oscillator,

H = p
2

2m
+ 1

2mÊ
2
x

2
, (2.23)

where all symbols have the meaning generally inspired by unique identification.

H = h̄Ê(x
Ú

mÊ

2h̄
≠ ip

1
Ô

2mÊ
)(x

Ú
mÊ

2h̄
+ ip

1
Ô

2mÊ
), (2.24)

we will calculate the quantum mechanical model on the right-hand side of the

equation. It di�ers from a classic for two reasons. First, there is an operator

that operates with the state instead of a function. Secondly, the position and

momentum operators do not commute. We get,

H = p
2

2m
+ 1

2mÊ
2
x

2 + iÊ

2 [x, p] = H ≠
1
2 h̄Ê, (2.25)

since [x, p] = ih̄. Now we introduce the notation,

a = x

Ú
mÊ

2h̄
+ ip

1
Ô

2h̄mÊ
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a
† = x

Ú
mÊ

2h̄
≠ ip

1
Ô

2h̄mÊ
, (2.26)

so we can write the Hamiltonian as,

H = h̄Ê(a†
a + 1

2). (2.27)

Let’s consider some features of a and a
†. That gives (a)†

”= a, which looks

slightly, because we have chosen the name wisely from the start. Please note that

both the operators are Hermitian. Next, we will look at the commutation proper-

ties of the two operators. First, because x commutes with itself, and similarly for

p, we have ([x, p] = ih̄),

[a, a
†] = 1

2h̄
[x, ≠ip] + 1

2h̄
[ip, x] = 1, (2.28)

with the commutator, and the equation (2.27), we can find the commutation co-

e�cients of H with a and a
†,

[H, a] = [h̄Êa
†
a, a] = (h̄Êa

†
aa ≠ ah̄Êa

†
a)

= h̄Êa(a†
a ≠ aa

†) = ≠h̄Êa(aa
†

≠ a
†
a). (2.29)

We can calculate the similarity with a
† as well, or we can use conjugation equation

Eq (2.28),

[H, a
†] = h̄Êa

†
. (2.30)

These new operators work on the energy-eigenstate |EÍ, with energy E.

The formalities are more common than it already is, and a note that the operator

works in a quantum state, and are not the representative of this state-specific.

With one of the above commutators, we have,

[H, a]|EÍ = (Ha ≠ aH)|EÍ = (E ≠ h̄Ê)a|EÍ. (2.31)
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This equation means that |EÍ is an eigenvector H with energy E ≠ h̄Ê. The

annihilation operator term used for a is, therefore, appropriate. We can repeat

the calculation with the a
† instead of a, and we will get that a

†
|EÍ is the state of

energy with energy E + h̄Ê. Hence, a
† is the raising operators.

Now, we will find the energy of the lowest state. First, we realize that

the energy is always positive, with the definition of the Hamiltonian we have

used, because it consists of two non-negative terms, proportional to x
2 and p

2.

This means that there is the lowest energy state which we will denote |E0Í. The

application of a in this state gives a state with the lower energy. The solution is

that the state must vanish. Concerning the wave functions, this must mean that

it is identical zero,

a|E0Í = 0. (2.32)

If we use the Hamiltonian on this state, we have,

H|E0Í = h̄Ê(a†
a + 1

2)|E0Í = 1
2 h̄Ê|E0Í (2.33)

The lowest energy for the state is h̄Ê

2 . If the raising operator applied to

this states, it would increase energy with h̄Ê. This energy was precisely the

amount that reduced by using a lower operator. We can repeat the arguments

for the excited states. We, therefore, conclude that the operators are working on

raising and lowering the same ladder of eigenstates. It is also seen clearly from

the lowering operator decreases the energy and convert it to the lower energy

eigenstates, and the raising operator will return the energy eigenstate to the state.

As a result, the final factor we can find that there is a change of state,
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which normalized by application of raising and lowering operators. We know

from previous studies of the Hamiltonian and the actions of the a and a
†, that,

a
†
a|EnÍ = n|EnÍ. The formula in the set notation of the same equations read

bra-ket as,

a
†
a|nÍ = n|nÍ, (2.34)

we will choose a phase factor, and the normalized factor n =
Ô

n. Therefore,

conclude that,

a
†
|nÍ =

Ô
n + 1|n + 1Í

a|nÍ =
Ô

n|n ≠ 1Í. (2.35)

2.8 Dynamical map

We introduce the concept of dynamic maps and relationships with the the-

ory of open systems. We assume that the initial state of the total system is the

product states,

fl(0) = flS(0) ¢ flE(0), (2.36)

where flS and flE are the density matrices of system and environment, which have

no relation at t = 0. The evolution of the state system can be expressed with the

help of quantum dynamically map K(t) in such a way,

flS(0) ‘æ flS(t) = K(t)flS(0). (2.37)

The dynamical map K(t) is one of the one-parameters series which are trace-

preserving. The map is a general description of the time evolution, where the

initial state fl(0) is mapped onto the complete physical states fl(t), as shown in the

commutative diagram in Figure 2.5.
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Figure 2.5 Diagram of the commutative dynamical map.

Now we have defined a dynamic map, Kt with all the features to guarantee

one to get the physical state. We will discuss how to create such a map in the

next chapter, which turns out to be the Kraus representation.



CHAPTER III

CALCULATION METHOD: KRAUS

REPRESENTATION

The time evolution of a closed quantum system can be described by an

unitary operator U(t). For open quantum systems, however, the time evolution

is not unitary. The evolution of an open system may be described by the Kraus

representation, which is constructed by considering a larger (closed) system.

Usually, the general solutions for the master equation can be derived from the

method of the Kraus representation.

3.1 Kraus representation for one qubit

The simplest system for the Kraus representation is one qubit system consist

of a two-level atom inside a cavity. In this section we show the derivation of the

Klaus operators for this simple qubit system, where the interaction between the

atom and the cavity is simulated by the coupling between the atom and photons.

The dynamical system is given by the total Hamiltonian (h̄ = 1):

Htotal = Hatom + H“ + Hi

= 1
2Ê0‡z + Ê(a†

a + 1
2) + (⁄a‡+ + ⁄

ú
a

†
‡≠) (3.1)

with, H0 = Hatom + H“, [H0, Hi] = 0,

‡≠ = ‡x ≠ i‡y
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‡+ = ‡x + i‡y

‡x, ‡y and ‡z are the Pauli matrices.

‡x =

Q

cca
0 1

1 0

R

ddb , ‡y =

Q

cca
0 ≠i

i 0

R

ddb , ‡z =

Q

cca
1 0

0 ≠1

R

ddb (3.2)

a, a
† are annihilation and creation operators for a photon.

Ê is angular frequency.

and ⁄
ú, ⁄ are the photon-atom coupling constants.

The solution for the master equation of the density matrix fls(t) can be

written in terms of the Kraus operators. The evaluation of the Kraus operators is

to perform a partial trace over the environment to obtain the reduced state of the

system, flS(t):

fl(t) = U(t)fl(0)U †(t)

flS(t) = TrE(U(t)(flS(0) ¢ flE)U †(t))

=
Œÿ

n=0
Èn|(U(t)flS(0) ¢ flEU

†(t)) |nÍ

=
Œÿ

n=0
Èn|(U(t)flS(0) ¢ |0Í È0| U

†(t)) |nÍ

=
Œÿ

n=0
Èn|U(t) |0Í flS(0) È0| U

†(t) |nÍ

flS(t) =
Œÿ

n=0
Kn(t)flS(0)K†

n
(t) (3.3)

where Kn(t) are the Kraus operator given by,

Kn(t) = Èn|U(t) |0Í , (3.4)
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In the equations above, |nÍ and |0Í are the states of n photons and the vacuum,

respectively. The density operator of the system and environment at t = 0 can

be written in the forms fl(0) = flS(0) ¢ flE(0) and flE(0) = |0Í È0|. One can prove

that H0 and Hi are commutative, [H0, Hi] = 0 when the oscillation frequencies of

atoms and photons are the same, Ê0 = Ê. Then we have,

exp[≠iH0t] Hi exp[iH0t] = Hi, (3.5)

and hence

|Â(t)Í = exp[≠iHit]|0Í

= U(t)|0Í

= exp[≠iHit]|0Í = exp[≠i⁄(‡≠a
† + ‡+a)t]|0Í. (3.6)

The Kraus operators are evaluated,

Kn(t) = Èn|1 + (≠i⁄t)(‡≠a
† + ‡+a) + 1

2!(≠i⁄t)2(‡≠a
† + ‡+a)2

+ 1
3!(≠i⁄t)3(‡≠a

† + ‡+a)3 + 1
4!(≠i⁄t)4(‡≠a

† + ‡+a)4

+ 1
5!(≠i⁄t)5(‡≠a

† + ‡+a)5 + 1
6!(≠i⁄t)6(‡≠a

† + ‡+a)6

+ 1
7!(≠i⁄t)7(‡≠a

† + ‡+a)7 + ...|0Í.

(3.7)

For m=0,

Èn|1|0Í = 1Èn|0Í = 1”n0. (3.8)

For m=1,

Èn|(≠i⁄t)(‡≠a
† + ‡+a)|0Í = (≠i⁄t)[Èn|‡≠a

†
|0Í + Èn|‡+a|0Í]

= (≠i⁄t)[Èn|‡≠|1Í]
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= (≠i⁄t)‡≠[Èn|1Í]

= (≠i⁄t)‡≠”n1. (3.9)

For m=2,

Èn|
1
2!(≠i⁄t)2(‡≠a

† + ‡+a)2
|0Í = 1

2!(≠i⁄t)2[Èn|(‡≠‡≠a
†
a

†
|0Í + Èn|‡≠‡+a

†
a|0Í

+ Èn|‡+‡≠aa
†
|0Í + Èn|‡+‡+aa|0Í]

= 1
2!(≠i⁄t)2(Èn|‡+‡≠|0Í)

= 1
2!(≠i⁄t)2(‡+‡≠)Èn|0Í

= 1
2!(≠i⁄t)2(‡+‡≠)”n0. (3.10)

For m=3,

Èn|
1
3!(≠i⁄t)3(‡≠a

† + ‡+a)3
|0Í = 1

3!(≠i⁄t)3[Èn|‡+‡≠‡+a
†
aa

†
|0Í

= 1
3!(≠i⁄t)3[(‡+‡≠‡+)Èn|a

†
aa

†
|0Í

= 1
3!(≠i⁄t)3[(‡≠)Èn|1Í

= 1
3!(≠i⁄t)3(‡≠)”n1. (3.11)

For m=4,

Èn|
1
4!(≠i⁄t)4(‡≠a

† + ‡+a)2
|0Í = 1

4!(≠i⁄t)4[Èn|‡+‡≠‡+‡≠aa
†
aa

†
|0Í

= 1
4!(≠i⁄t)4[(‡+‡≠‡+‡≠)Èn|aa

†
aa

†
|0Í
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= 1
4!(≠i⁄t)4[(‡+‡≠‡+‡≠)Èn|0Í

= 1
4!(≠i⁄t)4(‡+‡≠)”n0. (3.12)

After calculating for each term, we can see the pattern of the results as follows:

m = 0 æ ”n01

m = 1 æ (≠i⁄t)”n1‡≠

m = 2 æ
1
2!(≠i⁄t)2

”n0(‡+‡≠)

m = 3 æ
1
3!(≠i⁄t)3

”n1‡≠

m = 4 æ
1
4!(≠i⁄t)4

”n0(‡+‡≠)

m = 5 æ
1
5!(≠i⁄t)5

”n1‡≠

m = 6 æ
1
6!(≠i⁄t)6

”n0(‡+‡≠). (3.13)

Adding all the terms together, we derive,

K0(t) = 1 ≠ (‡+‡≠) + [1 ≠
1
2!(⁄t)2 + 1

4!(⁄t)4

≠
1
6!(⁄t)6 + 1

8!(⁄t)8
≠

1
10!(⁄t)10 + ...](‡+‡≠). (3.14)

Comparing with the Taylor series of sine and cosine functions,

cos(x) = 1 ≠
1
2!(x)2 + 1

4!(x)4
≠

1
6!(x)6 + 1

8!(x)8
≠

1
10!(x)10 + ... (3.15)

sin(x) = x ≠
1
3!(x)3 + 1

5!(x)5
≠

1
7!(x)7 + 1

9!(x)9
≠

1
11!(x)11 + ... (3.16)
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we can write the Kraus operator, K0(t) in the compact form,

K0(t) = 1 + [cos(⁄t) ≠ 1](‡+‡≠), (3.17)

In the same way, we derive the Kraus operator, K1(t)

K1(t) = ≠i[(⁄t) ≠
1
3!(⁄t)3 + 1

5!(⁄t)5

≠
1
7!(⁄t)7 + 1

9!(⁄t)9
≠

1
11!(⁄t)11 + ...](‡≠)

= ≠isin(⁄t)(‡≠), (3.18)

The Kraus operators may be written explicitly in the matrix form,

K0(t) =

Q

cca
cos(⁄t) 0

0 1

R

ddb , K
†
0(t) =

Q

cca
cos(⁄t) 0

0 1

R

ddb ,

K1(t) =

Q

cca
0 0

≠isin(⁄t) 0

R

ddb , K
†
1(t) =

Q

cca
0 isin(⁄t)

0 0

R

ddb . (3.19)

The relation
1q

n=0
K

†
n
(t)Kn(t) = 1 is time independent and satisfied by Kraus

operators, which is shown in Appendix A.

3.2 Kraus representation for two qubits

The model of our system consists of two two-level atoms inside the same

cavity. We assume that these atoms are identical and allowed to interact via

photon exchange with the cavity. The total Hamiltonian is given by (h̄ = 1),

Htotal = Hatoms + H“ + Hi
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= 1
2Ê0�z +

Œÿ

i

Êi(a†
i
ai + 1

2) +
Œÿ

i

(⁄ai�+ + ⁄
ú
a

†
i
�≠) (3.20)

where� i = (‡i + ·i), {+, ≠} stand for the raising and lowering operations, ai(a†
i
)

are the annihilation (creation) operators of photons, and ⁄ and ⁄
ú are the photon-

atom coupling constants with the same strength. The spin operators of atoms A

and B are represented by ‡ and · , respectively. The dynamical equation (master

equation) may be solved directly in the Kraus operator representation.

We consider in this work the total Hamiltonian of the two qubits system

with single mode,

Htotal = 1
2Ê0�z + Ê1(a†

a + 1
2) + (⁄a�+ + ⁄

ú
a

†�≠) (3.21)

The Kraus operators are evaluated by using the unitary operator U(t)|0Í =

e
≠iHit|0Í = e

≠i⁄(�≠a
†+�+a)t

|0Í,

Kn(t) = Èn|U(t)|0Í

= Èn|

Œÿ

m=0

1
m! (≠i⁄t)m(�≠a

† + �+a)m
|0Í

= Èn|1 + (≠i⁄t)(�≠a
† + �+a) + 1

2!(≠i⁄t)2(�≠a
† + �+a)2

+ 1
3!(≠i⁄t)3(�≠a

† + �+a)3 + 1
4!(≠i⁄t)4(�≠a

† + �+a)4

+ 1
5!(≠i⁄t)5(�≠a

† + �+a)5 + 1
6!(≠i⁄t)6(�≠a

† + �+a)6

+ 1
7!(≠i⁄t)7(�≠a

† + �+a)7 + ...|0Í, (3.22)

Note that we have expanded the unitary operator in Taylor series. Starting from

m = 0, we calculate each term of the above equation.
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For m = 0,

Èn|1|0Í = 1Èn|0Í = 1”n0. (3.23)

For m=1,

Èn|(≠i⁄t)(�≠a
† + �+a)|0Í = (≠i⁄t)[Èn|�≠a

†
|0Í + Èn|�+a|0Í]

= (≠i⁄t)[Èn|�≠|1Í]

= (≠i⁄t)�≠[Èn|1Í]

= (≠i⁄t)�≠”n1. (3.24)

For m=2,

Èn|
1
2!(≠i⁄t)2(�≠a

† + �+a)2
|0Í = 1

2!(≠i⁄t)2[Èn|(�≠�≠a
†
a

†
|0Í + Èn|�≠�+a

†
a|0Í

+ Èn|�+�≠aa
†
|0Í + Èn|�+�+aa|0Í]

= 1
2!(≠i⁄t)2[

Ô

2Èn|�≠�≠|2Í + Èn|�+�≠|0Í]

= 1
2!(≠i⁄t)2[

Ô

2(�≠�≠)Èn|2Í + ( �+�≠)Èn|0Í]

= 1
2!(≠i⁄t)2[

Ô

2(�≠�≠)”n2 + ( �+�≠)”n0]. (3.25)

For m=3,

Èn|
1
3!(≠i⁄t)3(�≠a

† + �+a)3
|0Í = 1

3!(≠i⁄t)3[Èn|�≠�+�≠a
†
aa

†
|0Í + Èn|�+�≠�≠aa

†
a

†
|0Í

= 1
3!(≠i⁄t)3[Èn|�≠�+�≠|1Í + 2Èn|�+�≠�≠|1Í]

= 1
3!(≠i⁄t)3[2(�≠)Èn|1Í + 2( �+�≠�≠)Èn|1Í]
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= 1
3!(≠i⁄t)3[2(�≠) + 2( �+�≠�≠)]”n1. (3.26)

For m=4,

Èn|
1
4!(≠i⁄t)4(�≠a

† + �+a)4
|0Í = 1

4!(≠i⁄t)4[Èn| �≠�≠�+�≠a
†
a

†
aa

†
|0Í

+ Èn| �≠�+�≠�≠a
†
aa

†
a

†
|0Í + Èn| �+�≠�+�≠aa

†
aa

†
|0Í

+ Èn| �+�+�≠�≠aaa
†
a

†
|0Í]

= 1
4!(≠i⁄t)4[2

Ô

2Èn|�≠�≠|2Í + 4
Ô

2Èn|�≠�≠|2Í

+ 2Èn|�+�≠|0Í + 2Èn|�+�+�≠�≠|0Í]

= 1
4!(≠i⁄t)4[2

Ô

2(�≠�≠)Èn|2Í + 4
Ô

2(�≠�≠)Èn|2Í

+ 2( �+�≠)Èn|0Í + 2( �+�+�≠�≠)Èn|0Í]

= 1
4!(≠i⁄t)4[2(�+�≠)”n0

+ 2( �+�+�≠�≠)”n0 + 6
Ô

2(�≠�≠)”n2]. (3.27)

For m=5,

Èn|
1
5!(≠i⁄t)5(�≠a

† + �+a)5
|0Í = 1

5!(≠i⁄t)5[Èn| �≠�+�≠�+�≠a
†
aa

†
aa

†
|0Í

+ Èn| �≠�+�+�≠�≠a
†
aaa

†
a

†
|0Í

+ Èn| �+�≠�≠�+�≠aa
†
a

†
aa

†
|0Í

+ Èn| �+�≠�+�≠�≠aa
†
aa

†
a

†
|0Í]

= 1
5!(≠i⁄t)5[4Èn|�≠|1Í + 4Èn|�+�≠�≠|1Í
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+ 4Èn|�+�≠�≠|1Í + 8Èn|�+�≠�≠|1Í]

= 1
5!(≠i⁄t)5[4(�≠)Èn|1Í + 4( �+�≠�≠)Èn|1Í

+ 4( �+�≠�≠)Èn|1Í + 8( �+�≠�≠)Èn|1Í]

= 1
5!(≠i⁄t)5[4(�≠) + 16( �+�≠�≠)]”n1. (3.28)

For m=6,

Èn|
1
6!(≠i⁄t)6(�≠a

† + �+a)6
|0Í = 1

6!(≠i⁄t)6[Èn| �≠�≠�+�≠�+�≠a
†
a

†
aa

†
aa

†
|0Í

+ Èn| �≠�≠�+�+�≠�≠a
†
a

†
aaa

†
a

†
|0Í

+ Èn| �≠�+�≠�≠�+�≠a
†
aa

†
a

†
aa

†
|0Í

+ Èn| �≠�+�≠�+�≠�≠a
†
aa

†
aa

†
a

†
|0Í

+ Èn| �+�≠�+�≠�+�≠aa
†
aa

†
aa

†
|0Í

+ Èn| �+�≠�+�+�≠�≠aa
†
aaa

†
a

†
|0Í

+ Èn| �+�+�≠�≠�+�≠aaa
†
a

†
aa

†
|0Í

+ Èn| �+�+�≠�+�≠�≠aaa
†
aa

†
a

†
|0Í]

= 1
6!(≠i⁄t)6[4

Ô

2(�≠�≠)Èn|2Í + 8
Ô

2(�≠�≠)Èn|2Í

+ 8
Ô

2(�≠�≠)Èn|2Í + 16
Ô

2(�≠�≠)Èn|2Í

+ 4( �+�≠)Èn|0Í + 4( �+�+�≠�≠)Èn|0Í

+ 4( �+�+�≠�≠)Èn|0Í + 8( �+�+�≠�≠)Èn|0Í]
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= 1
6!(≠i⁄t)6[4(�+�≠)”n0 + 16( �+�+�≠�≠)”n0

+ 36
Ô

2(�≠�≠)”n2]. (3.29)

For m=7,

Èn|
1
7!(≠i⁄t)7(�≠a

† + �+a)7
|0Í = 1

7!(≠i⁄t)7[Èn|�≠�+�≠�+�≠�+�≠a
†
aa

†
aa

†
aa

†
|0Í

+ Èn|�≠�+�≠�+�+�≠�≠a
†
aa

†
aaa

†
a

†
|0Í

+ Èn|�≠�+�+�≠�≠�+�≠a
†
aaa

†
a

†
aa

†
|0Í

+ Èn|�≠�+�+�≠�+�≠�≠a
†
aaa

†
aa

†
a

†
|0Í

+ Èn|�+�≠�≠�+�≠�+�≠aa
†
a

†
aa

†
aa

†
|0Í

+ Èn|�+�≠�≠�+�+�≠�≠aa
†
a

†
aaa

†
a

†
|0Í

+ Èn|�+�≠�+�≠�≠�+�≠aa
†
aa

†
a

†
aa

†
|0Í

+ Èn|�+�≠�+�≠�+�≠�≠aa
†
aa

†
aa

†
a

†
|0Í

+ Èn|�+�+�≠�≠�+�≠�≠aaa
†
a

†
aa

†
a

†
|0Í]

= 1
7!(≠i⁄t)7[8Èn|�≠|1Í + 8Èn|�+�≠�≠|1Í

+ 8Èn|�+�≠�≠|1Í + 16Èn|�+�≠�≠|1Í]

+ 8Èn|�+�≠�≠|1Í + 16Èn|�+�≠�≠|1Í]

+ 16Èn|�+�≠�≠|1Í + 32Èn|�+�≠�≠|1Í]

= 1
7!(≠i⁄t)7[8(�≠)Èn|1Í + 8( �+�≠�≠)Èn|1Í
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+ 8( �+�≠�≠)Èn|1Í + 16( �+�≠�≠)Èn|1Í]

+ 8( �+�≠�≠)Èn|1Í + 16( �+�≠�≠)Èn|1Í]

+ 16( �+�≠�≠)Èn|1Í + 32( �+�≠�≠)Èn|1Í]

= 1
7!(≠i⁄t)7[8(�≠) + 104( �+�≠�≠)]”n1. (3.30)

For m=8,

Èn|
1
8!(≠i⁄t)8(�≠a

† + �+a)8
|0Í = 1

8!(≠i⁄t)8[Èn|�≠�≠�+�≠�+�≠�+�≠a
†
a

†
aa

†
aa

†
aa

†
|0Í

+ Èn|�≠�≠�+�+�≠�≠�+�≠a
†
a

†
aaa

†
a

†
aa

†
|0Í

+ Èn|�≠�+�≠�≠�+�≠�+�≠a
†
aa

†
a

†
aa

†
aa

†
|0Í

+ Èn|�+�≠�+�≠�+�≠�+�≠aa
†
aa

†
aa

†
aa

†
|0Í

+ Èn|�+�≠�+�≠�+�+�≠�≠aa
†
aa

†
aaa

†
a

†
|0Í

+ Èn|�+�≠�+�+�≠�+�≠�≠aa
†
aaa

†
aa

†
a

†
|0Í

+ Èn|�+�+�≠�≠�+�≠�+�≠aaa
†
a

†
aa

†
aa

†
|0Í

+ Èn|�+�+�≠�≠�+�+�≠�≠aaa
†
a

†
aaa

†
a

†
|0Í

+ Èn|�+�+�≠�+�≠�≠�+�≠aaa
†
aa

†
a

†
aa

†
|0Í

+ Èn|�+�+�≠�+�≠�+�≠�≠aaa
†
aa

†
aa

†
a

†
|0Í

+ Èn|�≠�≠�+�≠�+�+�≠�≠a
†
a

†
aa

†
aaa

†
a

†
|0Í

+ Èn|�≠�≠�+�+�≠�+�≠�≠a
†
a

†
aaa

†
aa

†
a

†
|0Í
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+ Èn|�≠�+�≠�≠�+�+�≠�≠a
†
aa

†
a

†
aaa

†
a

†
|0Í

+ Èn|�≠�+�≠�+�≠�≠�+�≠a
†
aa

†
aa

†
a

†
aa

†
|0Í

+ Èn|�≠�+�≠�+�≠�+�≠�≠a
†
aa

†
aa

†
aa

†
a

†
|0Í

+ Èn|�+�≠�+�≠�+�+�≠�≠aa
†
aa

†
aaa

†
a

†
|0Í]

= 1
8!(≠i⁄t)8[8

Ô

2(�≠�≠)Èn|2Í

+ 16
Ô

2(�≠�≠)Èn|2Í + 16
Ô

2(�≠�≠)Èn|2Í

+ 32
Ô

2(�≠�≠)Èn|2Í + 16
Ô

2(�≠�≠)Èn|2Í

+ 32
Ô

2(�≠�≠)Èn|2Í + 32
Ô

2(�≠�≠)Èn|2Í

+ 64
Ô

2(�≠�≠)Èn|2Í + 8( �+�+�≠�≠)Èn|0Í

+ 8( �+�+�≠�≠)Èn|0Í + 16( �+�+�≠�≠)Èn|0Í]

+ 8( �+�+�≠�≠)Èn|0Í + 16( �+�+�≠�≠)Èn|0Í

+ 16( �+�+�≠�≠)Èn|0Í] + 32( �+�+�≠�≠)Èn|0Í

+ 8( �+�≠)Èn|0Í]

= 1
8!(≠i⁄t)8[8(�+�≠)”n0 + 104( �+�+�≠�≠)”n0

+ 216
Ô

2(�≠�≠)”n2]. (3.31)

After calculating for each term, we see the pattern of the results as follows:

m = 0 æ ”n01
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m = 1 æ ”n1�≠

m = 2 æ
1
2!(≠i⁄t)2[”n0(�+�≠) + ”n2

Ô

2(�≠�≠)]

m = 3 æ
1
3!(≠i⁄t)3(”n1[2(�≠) + 2( �+�≠�≠)])

m = 4 æ
1
4!(≠i⁄t)4[”n02(�+�≠) + ”n02(�+�+�≠�≠)

+ ”n26
Ô

2(�≠�≠)]

m = 5 æ
1
5!(≠i⁄t)5(”n1[4(�≠) + 16( �+�≠�≠)])

m = 6 æ
1
6!(≠i⁄t)6[”n04(�+�≠) + ”n016(�+�+�≠�≠)

+ ”n236
Ô

2(�≠�≠)]

m = 7 æ
1
7!(≠i⁄t)7(”n1[8(�≠) + 104( �+�≠�≠)])

m = 8 æ
1
8!(≠i⁄t)8[”n08(�+�≠) + ”n0104(�+�+�≠�≠)

+ ”n2216
Ô

2(�≠�≠)]

m = 9 æ
1
9!(≠i⁄t)9(”n1[16(�≠) + 640( �+�≠�≠)])

m = 10 æ
1

10!(≠i⁄t)10[”n016(�+�≠) + ”n0640(�+�+�≠�≠)

+ ”n21296
Ô

2(�≠�≠)]. (3.32)

Next, we collect all the calculations to find the term Kraus operators. We have

K0(t) = 1 ≠ (�+�≠) ≠ (�+�+�≠�≠) + [1 ≠
1
2!(⁄t)2(1) + 1

4!(⁄t)4(2)
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≠
1
6!(⁄t)6(4) + 1

8!(⁄t)8(8) ≠
1

10!(⁄t)10(16) + ...](�+�≠)

+ [1 ≠
1
2!(⁄t)2(0) + 1

4!(⁄t)4(2) ≠
1
6!(⁄t)6(16) + 1

8!(⁄t)8(104)

≠
1

10!(⁄t)10(640) + ...](�+�+�≠�≠), (3.33)

K1(t) = [(⁄t) ≠
1
3!(⁄t)3(2) + 1

5!(⁄t)5(4) ≠
1
7!(⁄t)7(8)

+ 1
9!(⁄t)9(16) ≠ ...](�≠) + [(⁄t)(0) ≠

1
3!(⁄t)3(2)

+ 1
5!(⁄t)5(16) ≠

1
7!(⁄t)7(104) + 1

9!(⁄t)9(640) ≠ ...](�+�≠�≠)

K1(t) = ≠i
Ô

2
sin(

Ô

2⁄t)(�≠)

+ i

6
Ô

2
[3sin(

Ô

2⁄t) +
Ô

3sin(
Ô

6⁄t)](�+�≠�≠). (3.34)

K2(t) = [1 ≠
1
2!(⁄t)2(1) + 1

4!(⁄t)4(6) ≠
1
6!(⁄t)6(36)

+ 1
8!(⁄t)8(216) ≠

1
10!(⁄t)10(1296) + ...]

Ô

2(�≠�≠), (3.35)

Applying the power series,

1, 2, 4, 8, 16, 32, ... = 2n≠1 (3.36)

0, 2, 16, 104, 640, ... = 2n≠2(3n≠1
≠ 1) (3.37)

we get

K0(t) = 1 + [cos2( ⁄t
Ô

2
) ≠ 1](�+�≠)
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+ [ 1
12(14 ≠ 3cos(

Ô

2⁄t) + cos(
Ô

6⁄t)) ≠ 1](�+�+�≠�≠). (3.38)

K1(t) = ≠i
Ô

2
sin(

Ô

2⁄t)(�≠)

+ i

6
Ô

2
[3sin(

Ô

2⁄t) +
Ô

3sin(
Ô

6⁄t)](�+�≠�≠). (3.39)

Applying the power series,

1, 6, 36, 216, 1296, ... = 6n≠1 (3.40)

we get

K2(t) = [ 1
3
Ô

2
(cos(

Ô

6⁄t) ≠ 1)](�≠�≠). (3.41)

Now we have the Kraus operators,

Kn(t) = ”n0[1 + [cos2( ⁄t
Ô

2
) ≠ 1](�+�≠)

+ [ 1
12(14 ≠ 3cos(

Ô

2⁄t) + cos(
Ô

6⁄t)) ≠ 1](�2
+�2

≠)]

+ ”n1[
≠i
Ô

2
sin(

Ô

2⁄t)(�≠) + i

6
Ô

2
[3sin(

Ô

2⁄t) +
Ô

3sin(
Ô

6⁄t)](�+�2
≠)]

+ ”n2[
1

3
Ô

2
(cos(

Ô

6⁄t) ≠ 1)](�2
≠)]. (3.42)

The relation
2q

n=0
K

†
n
(t)Kn(t) = 1 is time independent and satisfied by Kraus oper-

ators, as shown in Appendix B.



CHAPTER IV

SUMMARY

In this work, we have derived the Kraus operators of the entangled system

consist of two two-level atoms interacting with the same cavity (photon bath),

K0(t) =

Q

ccccccccccca

1
3(2 + cos(

Ô
6⁄)) 0 0 0

0 cos2( ⁄Ô
2) ≠sin2( ⁄Ô

2) 0

0 ≠sin2( ⁄Ô
2) cos2( ⁄Ô

2) 0

0 0 0 1

R

dddddddddddb

,

K1(t) =

Q

ccccccccccca

0 0 0 0
iÔ
6sin(

Ô
6⁄) 0 0 0

iÔ
6sin(

Ô
6⁄) 0 0 0

0 ≠
iÔ
2sin(

Ô
2⁄) ≠

iÔ
2sin(

Ô
2⁄) 0

R

dddddddddddb

,

K2(t) =

Q

ccccccccccca

0 0 0 0

0 0 0 0

0 0 0 0
Ô

2
3 (cos(

Ô
6⁄) ≠ 1) 0 0 0

R

dddddddddddb

. (4.1)

where the oscillation frequencies of atoms and photons are the same. The relation
2q

÷=0
K

†
÷
(t)K÷(t) = 1 is time independent and satisfied. The results of the Kraus

operators indicate that the system may have only three states, that is, no photon

(K0(t)), one photon (K1(t)) and two photons (K2(t)). Two photons in this system

can be entangled between two atoms.
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The application of the Kraus operators to analyze the time evolution of the

density matrix is underway. We expect to get the results in the near future.

The work here may be largely extended by doing the followings:

• Evaluate the Kraus operators for the entangled system consist of two two-

level atoms interacting with the same cavity, where the oscillation frequencies

of atoms and photons are di�erent.

• Evaluate the Kraus operators for the entangled system consist of two two-

level atoms interacting with the same cavity, where the interaction between

the two atoms, for example, the spin-spin coupling, is included. The calcula-

tions may be carried out for both the equal and unequal oscillation frequen-

cies of atoms and photons.

• Analyze the time evolution of the density matrix by applying the Kraus

operators derived in all the cases mentioned above.
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APPENDIX A

KRAUS REPRESENTATION FOR

ONE-QUBIT

We could evaluate the results by using the relation
Œq

n=0
K

†
n
(t)Kn(t) = 1

which is time independent and satisfied by Kraus operators. Note that we have

followed the condition of the two-qubit system in our calculation where the

parameter ⁄t ”= 0).

Recall the Kraus matrice here,

K0(t) =

Q

cca
cos(⁄t) 0

0 1

R

ddb , K
†
0(t) =

Q

cca
cos(⁄t) 0

0 1

R

ddb ,

K1(t) =

Q

cca
0 0

≠isin(⁄t) 0

R

ddb , K
†
1(t) =

Q

cca
0 isin(⁄t)

0 0

R

ddb . (A.1)

We could check the results of Kraus operators as:

1ÿ

n=0
K

†
n
Kn = K

†
0(t)K0(t) + K

†
1(t)K1(t), (A.2)

1ÿ

n=0
K

†
n
(t)Kn(t) =

Q

cca
cos(⁄t) 0

0 1

R

ddb .

Q

cca
cos(⁄t) 0

0 1

R

ddb

+

Q

cca
0 isin(⁄t)

0 0

R

ddb .

Q

cca
0 0

≠isin(⁄t) 0

R

ddb
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1ÿ

n=0
K

†
n
(t)Kn(t) =

Q

cca
cos2(⁄t) + sin2(⁄t) 0

0 1

R

ddb

=

Q

cca
1 0

0 1

R

ddb = 1, (A.3)

where cos2(x) + sin2(x) = 1. Thus, the Kraus operators for one-qubit system is

satisfied.



APPENDIX B

KRAUS REPRESENTATION FOR

TWO-QUBITS

We could evaluate the results by using the relation
Œq

n=0
K

†
n
(t)Kn(t) = 1

which is time independent and satisfied by Kraus operators. Note that we have

followed the condition of the two-qubit system in our calculation where the

parameter ⁄t ”= 0).

K0(t) =

Q

ccccccccccca

1
3(2 + cos(

Ô
6⁄t)) 0 0 0

0 cos2( ⁄tÔ
2) ≠sin2( ⁄tÔ

2) 0

0 ≠sin2( ⁄tÔ
2) cos2( ⁄tÔ

2) 0

0 0 0 1

R

dddddddddddb

,

K
†
0(t) =

Q

ccccccccccca

1
3(2 + cos(

Ô
6⁄t)) 0 0 0

0 cos2( ⁄tÔ
2) ≠sin2( ⁄tÔ

2) 0

0 ≠sin2( ⁄tÔ
2) cos2( ⁄tÔ

2) 0

0 0 0 1

R

dddddddddddb

, (B.1)

K1(t) =

Q

ccccccccccca

0 0 0 0
iÔ
6sin(

Ô
6⁄t) 0 0 0

iÔ
6sin(

Ô
6⁄t) 0 0 0

0 ≠
iÔ
2sin(

Ô
2⁄t) ≠

iÔ
2sin(

Ô
2⁄t) 0

R

dddddddddddb

,
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K
†
1(t) =

Q

ccccccccccca

0 ≠iÔ
6sin(

Ô
6⁄t) ≠iÔ

6sin(
Ô

6⁄t) 0

0 0 0 iÔ
2sin(

Ô
2⁄t)

0 0 0 iÔ
2sin(

Ô
2⁄t)

0 0

R

dddddddddddb

, (B.2)

K2(t) =

Q

ccccccccccca

0 0 0 0

0 0 0 0

0 0 0 0
Ô

2
3 (cos(

Ô
6⁄t) ≠ 1) 0 0 0

R

dddddddddddb

,

K
†
2(t) =

Q

ccccccccccca

0 0 0
Ô

2
3 (cos(

Ô
6⁄t) ≠ 1)

0 0 0 0

0 0 0 0

0 0 0 0

R

dddddddddddb

. (B.3)

We could check the results of Kraus operators as:

2ÿ

n=0
K

†
n
(t)Kn(t) = K

†
0(t)K0(t) + K

†
1(t)K1(t) + K

†
2(t)K2(t), (B.4)

2ÿ

n=0
K

†
n
(t)Kn(t) =

Q

ccccccccccca

1
9(2 + cos(

Ô
6⁄t))2 0 0 0

0 1
4(3 + cos(2

Ô
2⁄t)) ≠

1
2sin2(

Ô
2⁄t) 0

0 ≠
1
2sin2(

Ô
2⁄t) 1

4(3 + cos(2
Ô

2⁄t)) 0

0 0 0 1

R

dddddddddddb

+

Q

ccccccccccca

1
3sin2(

Ô
6⁄t) 0 0 0

0 1
2sin2(

Ô
2⁄t) 1

2sin2(
Ô

2⁄t) 0

0 1
2sin2(

Ô
2⁄t) 1

2sin2(
Ô

2⁄t) 0

0 0 0 0

R

dddddddddddb



45

+

Q

ccccccccccca

8
9sin4(

Ò
3
2⁄t) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

R

dddddddddddb

2ÿ

n=0
K

†
n
(t)Kn(t) =

Q

ccccccccccca

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

R

dddddddddddb

= 1. (B.5)
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