พงศธร ภูพิศุทธิ์ : การแยกสลายยีสน้ำมันด้วยความร้อนแบบเร็วสำหรับการผลิตเชื้อเพลิง ชีวภาพ (FAST PYROLYSIS OF OLEAGINOUS YEAST FOR BIOFUEL PRODUCTION) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ คร.อภิชาติ บุญทาวัน, 94 หน้า

ถังหมักชีวภาพขนาด 500 ถิตรถูกใช้ในศึกษาการผลิตพลังงานเชื้อเพลิงชีวภาพรุ่นที่ 3 โดย ยีสต์น้ำมัน Rhodosporidium paludigena ยีสต์สายพันธุ์นี้มีใตรกลีเซอไรค์สูงและกรคไขมันหลัก ประกอบด้วย กรดไขมันที่มีการ์บอนอะตอม 16 และ 18 ซึ่งมีลักษณะคล้ายกับกรดไขมันที่ถูกพบใน พืช ยีสต์น้ำมัน R. paludigena ถูกหมักโดยใช้มันสำประหลังเป็นสารตั้งต้น เซลล์ยีสต์ถูกแยกออก โดยกระบวนการกรอง จากนั้นล้างและถูกทำให้แห้งโดยใช้เทค โนโลยีทำแห้งแบบพ่นฝอย กระบวนการแยกสลายตัวด้วยความร้อนแบบเร็วของยีสต์น้ำมันถูกศึกษาที่อุณหภูมิ 400-600 องศา เซลเซียส เพื่อหาอุณภูมิที่เหมาะสมสำหรับการผลิตน้ำมันชีวภาพและถ่านชีวภาพ ผลการทดลอง แสดงให้เห็นว่าในสภาวะที่เหมาะสมของการสลายตัวของยีสต์น้ำมันได้รับน้ำมันเชื้อเพลิงชีวภาพ สูงสุดที่ 60 % ภายใต้อุณหภูมิ 550 องศาเซลเซียส การจำลองการกลั่นน้ำมันเชื้อเพลิงชีวภาพจาก สภาพที่เหมาะสมโดยเทคนิดแก็สโดรมาโตกราฟฟิพบว่าน้ำมันนี้ประกอบด้วย แนฟทาหนัก 2.6 %, เคโรซีน 20.7 %, ไบโอดีเซล 24.3 % และน้ำมันเตา 52.4 % นอกจากนี้น้ำมันเชื้อเพลิงชีวภาพที่ อุณหภูมิที่ 550 องศาเซลเซียส ได้ถูกนำไปกลั่นที่อุณหภูมิ 150 องศาเซลเซียส โดยเครื่องกลั่น ระยะทางสั้น ผลิตภัณฑ์ที่ได้จากการกลั่นวัดได้ 49 % ผลิตภัณฑ์เชื้อเพลิงเหลวนี้สามารถใช้สำหรับ พาหนะและอุตสาหกรรมต่างๆ เช่น การสันคาปของเครื่องยนต์ หมือดังไอน้ำ กังหันไอน้ำ เละอื่นๆ

สาขาวิชาเทคโนโลยีชีวภาพ ปีการศึกษา 2562 ลายมือชื่อนักศึกษา

ลายมือชื่ออาจารย์ที่ปรึกษา

PONGSATORN POOPISUT: FAST PYROLYSIS OF OLEAGINOUS
YEAST FOR BIOFUEL PRODUCTION. THESIS ADVISOR: ASSOC.
PROF. APICHAT BOONTAWAN, Ph.D., 94 PP.

FAST PYROLYSIS/OLEAGINOUS YEAST/BIO JET PRODUCTION/ FERMENTATION

A third-generation biofuel production was investigated in a 500-L bioreactor using an oleaginous yeast *Rhodosporidium paludigena*. This strain contains high triglyceride content, and the main fatty acids are C16 and C18 which are very similar to fatty acids found in vegetable oils. The *R. paludigena* yeast was cultured using cassava starch as substrate. The cells were separated using microfiltration then washed and spray dried. Bio-oil and biochar were obtained from fast pyrolysis of the dried yeast powder. The fast pyrolysis process was operated at 400-600 °C to obtain the optimal temperature for bio-oil and biochar production. The result of this research showed that the optimal condition of fast pyrolysis giving the highest bio-oil yield of 60% was 550 °C. Simulated distillation gas chromatography technique was used to classified the biofuels content from 550 °C fast pyrolysis. The results showed that the contents were 2.6 % heavy naphtha, 20.7 % kerosene, 24.3 % biodiesel and 52.4 % fuel oil. Moreover, the bio-oil obtained was further distilled at 150 °C using short path distillation technique. The distillate product from short path distillation was measured

to be 49 % wt. This liquid fuel product could be used for transport and industries such as combustion engines, boilers, turbines, etc.

School	of	Bio	otec	hno	logy
Denoor	OI.			шо	USY

Academic Year 2019

Student's Signature

Advisor's Signature_

Co-advisor's Signature

Lyen.