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Abstract

Various diagrams of the reactions of nucleon-antinucleon annihilation into two and
three mesons have been analyzed. The comparison of the theoretical predictions
by different diagrams with experimental data show that the 3P, quark-antiquark
creation and destruction mechanism is more reasonable than the 3S; mechanism in
nucleon-antinucleon annihilations, and the A2 and A3 diagrams are dominant over
other processes for the nucleon-antinucleon annihilation into respectively two and
three mesons. Illustrated in details are the evaluations of the transition amplitude
and the corresponding optical potential of the nucleon-antinucleon annihilation into
two mesons in the A2 diagram. The derived optical potentials from the A2 and A3
diagrams have been applied to study the nucleon-antinucleon atomic states.

To further verify the argument that the 3P, quark-antiquark creation and de-
struction mechanism is more reasonable than the 3S; mechanism in nucleon-antinucleon
annihilations, we have also studied the reactions of clectron-position annihilation
into nucleon-antinucleon pairs in the 3P; model. The experimental data are reason-

ably produced.
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Chapter 1
Introduction

The consistent description of the strong interaction at low and intermediate ener-
gies is still a prominent problem in theoretical physics. Although the basic theory,
Quantumchromodynamics (QCD), was already developed in the early 70’s[1, 2, 3, 4],
at present we are far from a fundamental understanding of the phenomenology of
strongly interacting hadrons at low energy.

The QCD describes the interactions between the constituents of the hadrons,
quarks and gluons, in the framework of a nonabelian gauge theory. Due to this
nonabelian structure of the theory, the gauge bosons (gluons) are allowed to inter-
act with each other which in turn leads to a strong momentum dependence of the
coupling constant a;. At small distances (or at large momentum transfers) o, be-
comes small, leading to the so-called asymptotic freedom[5, 4], hence a perturbative
treatment of QCD is possible and quite successful. At large distances (or at small
momentum transfers) the quark-quark couplings become large and presumably give
rise to quark confinement(6]. Hence in the low and intermediate energy domain of
hadron physics the perturbative treatment of QCD fails.

Based on the lack of effective methods in obtaining solutions to QCD in the
nonperturbative confinement region, one has to resort to the development of efiective
models. An important ingredient in model building is to reduce the degrees of
freedom of QCD and to determine the effective interactions between them. In doing
50, several approaches have been developed.

In the more traditional meson-exchange-models, the strong interaction is de-



scribed in the framework of the observable, physical degrees of freedom, such as
baryons and mesons. The idea here is that quark degrees of freedom are negligi-
ble, whereas the extended structure of hadrons can be described by effective form
factors, which are fitted to experimental data.

In the nonrelativistic constituent quark model, quarks and antiquarks are kept
as the relevant degrees of freedom, whereas the interaction between the quarks,
particularly the confinement, is described by effective, QCD inspired potentials.
The gluonic degrees of freedom are eliminated by introducing the notion of dressed,
i.e. ”constituent”, quarks as compared to the naked, i.e. "current”, quarks as
originally defined in perturbative QCD. The original success of the nonrelativistic
constituent quark model is based on the classification and description of the baryon
and meson spectrum and of particular properties, such as magnetic moments and
rms radii[7, 8]. Successful descriptions of nucleon-nucleon observables have been
advanced in the nonrelativistic quark model(9, 10, 11, 12] as well as in the meson-
exchange picture. Thereby, the advantage of the quark model is based on the fact
that a large number of experimental observables can be understood qualitatively
and quantitatively by a low aumber of free parameters.

Other aspects of the strong interaction can be studied in the nucleon-antinucleon
(NN) system. Antinucleons used as probes for the study of the strong force dy-
namics are particularly, with respect to the annihilation, without counterpart in
the matter-matter interaction. An antinucleon can annihilate with a nucleon into
any energetically allowed system with total baryon number B = 0 ( B = +1 for
N, -1 for N, and 0 for mesons). In NN annihilation at rest a substantial energy
2myc? ~ 1.88 GeV/c? is available, thus one can populate a variety of multi-meson
final states. The complexity of the NN system as compared to the NN system is
also enhanced by the fact that N and N are distinguishable particles, hence the
NN wave function does not have to be antisymmetrized. Thus for NN twice the
number of partial wave states are allowed as for the NN system, where I + L+ S =
odd (I = total isospin, S = total spin, and L = relative orbital angular momentum)
due to the Pauli principle. This enhanced complexity and the multi-channel nature
of NN annihilation offer a richness of dynamical content which poses a considerable

challenge to microscopic theories.



The first decisive evidence for the existence of the antiproton (p) was obtained
at the Berkeley Bevatron in 1955[13], with the first experimental observaticn of an
NN annihilation being detected soon thereafter in 1956[14]. These early experiments
reported the electric charge of the antiproton to be opposite to the one of the proton
and the mass of the antiproton to be equal to the one of the proton, essentially
confirming Dirac’s hypothesis of a "charge conjugate” particle (antiparticle) for a
strongly interacting particle.

In the 1960s and 1970s, bubble chamber experiments for NN annihilations were
carried out at Brookhaven and CERN. In this work, bubble chambers of liquid hydro-
gen and deuterium were used, thus the reactions were essentially dominated by initial
NN atomic states with orbital angular momentum L = 0. The results[15, 16, 17]
coming from these experiments are the earliest hints of so-called dynamical selec-
tion rules (DSR). Dynamical selection rules relate to the fact that certain channels
in the transition NN — M;M, (where M; = m,n,p,w, etc), which are allowed
by conservation of the I¢(J¥C) quantum numbers, are suppressed. The observed
dynamical selection rules cannot be explained by simple geometric or statistical mod-
els, therefore, provide critical constraints on microscopic models for the annihilation
dynamics.

A strong boost in the study of NN interactions at low energies followed the
operation of the Low Energy Antiproton Ring (LEAR) at CERN, which started
producing first experimental results in 1983. LEAR provides beams of 's at very
low momentum with high intensity and good momentum resolution. The most im-
portant advantage of LEAR was probably its ability to separate the contributions of
different initial partial waves of the Pp atom to the annihilation. The new technique
to distinguish annihilation from orbital angular momentum S- and P-wave states
is crucial. It confirmed and also extended the experimental observatior of DSR in
the mechanism of NN annihilation into mesons, which yield key signatures for the
underlying annihilation dynamics. The experimental program at LEAR contains
the following main items:

1. measurements of total, annihilation, elastic and charge-exchange NN cross sec-
tions, as well as spin observables.

2. measurements of a variety of annihiiation channels, particularly the determina-



tion of branching ratios for two-body decay modes such as 7t7~, KtK~, p, etc.
in dependence on the initial pp atomic states (L = 0, 1).

3. measurements of energy shifts and width broadenings of the NN atomic states
due to the strong interaction.

4. meson spectroscopy: understanding of the mass spectrum and of dynamical
properties, such as decay modes for the meson states below a mass scale of about
2 GeV. This includes the search for new meson states which lie outside the known
SU(3) nonets of quark-antiquark Q@ mesons. These new meson states are ”exotics”
(glueballs ggg, hybrids QQg, quark molecules szjz) predicted by QCD, but also
more " conventional” resonances, such as NN unclear bound states or meson-meson
molecules.

Particularly with respect to the latter point, LEAR experiments have yielded
evidence for broad mesonic resonances X with a width I' > 50 — 100 MeV, which can
not be explained by the standard flavor SU(3) QQ picture. Two solidly established
examples of such resonances are the AX(1565) and E(1410) seen in annihilation
reactions of the type NN — 7X, nrX. The ability of the LEAR facility to distin-
guish annihilation from initial S and P-wave NN states was essential to determine
their quantum numbers (J¢(JPC) = 0%(2*¥*) and 0*(0~+) for the AX and E, re-
spectively).

On the other side, theoretical attempts in understanding antiproton physics
soon followed after the discovery of the antiproton and the emergence of the few
experimental data on NN reacticns. It was soon realized that in the framework
of meson-exchange theory the NN and the NN interactions are intimately related
by the so-called G-parity rule[18]. This close connection between the NN and NN
force encouraged early hopes that an analysis of NN observables could possibly
provide additional information on the meson-exchange model of the NN potential.

However, the applicability of the G-parity transformation is only limited to the
long and intermediate range elastic part of the NN potential. At short distances,
typically at around r ~ 1 fm, where the nucleon and antinucleon as objects of
finite size overlap, the annihilation mechanism sets in. The annihilation prccess is a
dominant feature in the NN interaction. For instance, in low energy NN scattering,

the annihilation cross section is about twice as large as the elastic[19, 20, 21].



The central idea in describing the short-ranged annihilation processes for the
NN system consists of repiacing the multi-channel problem by an effective optical
potential Vope. Vope is a complex potential of the form V,,; = V,up + iWopn, where
Wann is the absorptive part and V., the dispersive real part due to annihilation.
In general, this optical potential is non-local in coordinate space, thereby possessing
an explicit state and energy dependence.

In earlier works[22, 23, 24, 25] the annibilation was parameterized by a local,
energy-independent optical potential of simple forms, such as Gaussian or Woods-
Saxon. The elastic medium and long range part of the NN interaction was ob-
tained by G-parity transformation of realistic meson-exchange potentials for the
NN system, for example such as the so-called Boun[26] and Paris(27, 28, 29] po-
tentials. These models are very successful in fitting experimental data of NN scat-
tering (integrated, differential cross sections and spin observables) with few free
parameters(22, 25]. A more refined version of such an approach, which allows ad-
ditional state and energy dependence of the optical potential, thereby doing a fine-
tuning to the recently acquired scattering data, is pursued by the Paris group[30, 31].
In the one channel optical model for the NN system, all information about individ-
ual mesonic annihilation channels has been sacrificed. Thus, one is able to calculate
the cross section for NN annihilation. However, all the information about individual
annihilation channels has been integrated over.

A further step in describing the annihilation processes in more detail is the
investigation of statistical models, which are able to describe pion multiplicity and
charge distributions for the final annihilation products[32, 33, 34]. The basis of
these models is the idea that when the proton and antiproton are close together,
the total energy of the system is concentrated in the region of the three-quark
and three-antiquark object. Each final state is created according to its statistical
weight. The description of the annihilation by theses models is based on a simple
phenomenological ansatz, however they fail to reproduce special branching ratios of
NN into mesons, particularly with respect to the DSR.

Microscopic derivations of the annihilation potential for the NN system are
essentially based on two approaches: the baryon-exchange model and the nonrela-

tivistic constituent quark model. Both models make basic assumptions about the



relevant degrees of freedom in the NN transition into final state mesons, thereby fix-
ing the underlying dynamics with a certain amount of free parameters. The aim here
is to work out a theoretical foundation which at the same time is able to describe
the detailed annihilation mechanism (such as annihilation cross sections for NN
into specific meson channels or branching ratios for NN annihilation from atomic
states) as well as global NV observables (such as NN scattering cross sections).

In the more traditional approach of hadronic models, where for example the NN
interaction is set up in the framework of meson-exchange, the NN annihilation into
mesons is described by baryon-exchange(35, 36, 37]. The relevant inputs here are the
baryon-baryon-meson vertices, which are taken in analogy to the ones obtained from
the meson-exchange picture of the NN force. The vertex form factors, which account
for the off-shell behavior of the exchanged baryon, are distinct from those applied
to t-channel exchange, where the meson is off-shell. Much of the phenomenological
success of the baryon exchange picture at low energies is due to the introduction of
arbitrary form factors at the hadronic vertices, which are given no interpretation in
terms of the underlying quark-gluon degrees of freedom.

For a short range process such as NN annihilation, which involves appreciable
overlap of the N and N, a description in terms of quark-gluon degrees of freedom
seems more appropriate. However, for low energy NN processes we are in the
strong coupling regime of QCD, where a first principle calculation is beyond our
realm at present. Thus, a phenomenological approach was chosen in which one
considers NN transitions into mesons corresponding to different quark line diagrams,
describing the fiavor flux from the initial NN to the final meson states. At the
same time, a prescription for the effective QQ dynamics in terms of color, spin and
flavor dependence must be adopted. In the absence of a firm guiding principle, this
phenomenological prescription is by no means unique and a number of possibilities
have been explored in the past.

Quark line diagram models have been investigated by the delsinki group[38, 39,
40], the Osaka group[41, 42] and the Tiibingen group(43, 44, 45], among others. An
overview of the various quark models with a detailed discussion can be found in
ref.[46]. The picture emerging from the phenomenological analysis is that quark line

diagrams with so-called planar topology for the NN annihilation into two and three



mesons (denoted as A2 and A3, respectively), maximizing the number of nonper-
turbative @@ interaction vertices, provide a reasonable account of the annihilation
data. Here the spin-flavor-orbital structure of the @@ dynamics is described by
the 3Py model, where QQ pairs are created or destroyed with vacuum quantum
numbers 19(JP¢) = 0+(0*+), 3P, in LS-coupling. The optical potential due to
the annihilation diagrams A2 and A3, together with a suitable medium and long
range elastic potential, based on meson-exchange theory, has also been applied to
NN scattering observables, thereby being able to explain the data far better than
previous microscopic quark model calculations {47, 48].

There is another exciting point about the NN system, namely the possibility
of NN bound states or resonances. In contrast to the NN counterpart, for which
no bound states exist (with the exception of the loosely bound deuteron), the NN
interaction is strongly attractive, particularly at short and intermediate distances,
and does not have a repulsive core. While the NN force is ultimately repulsive due
to the Pauli principle, the NN force is dominated by short range annihilation. The
range and the strength of the annihilation potential determine the width of these
bound states of the NN system: a strong longer range annihilation would broaden
the states to the extent that they are essentially unobservable. The NN bound
states have been studied in the quark annihilation model in which the short range
annihilation potential is derived in the diagrams A2 and A3 [49]. The model predicts
a reasonable results.

The aim of the current work is to study (1) the NN annihilation diagram A2
in details; (2) the NN atomic states, which are mainly bound by the Coulomb
interaction, in a powerful numerical method, the Sturmian function method; (3)
the processes of electron-position annihilation into nucleon-antinucleon pairs in the
nonrelativistic 3P, quark mocdel; (4) proton-proton high energy elastic scattering;

(5) and proton-neutron high-cnergy charge exchange scattering.



Chapter 2

Analysis of Annihilation

Mechanism

For a short range process such as the NN annihilation, where the baryons have con-
siderable overiap, a description in terms of quark-gluon degrees of freedom seems
most appropriate. However, for low energy NN processes we are in the strong
coupling regime of QCD, where the perturbative theories developed in high-energy
particle physics become useless. Thus we have to choose a phenomenological ap-
proach, in which one considers transitions for NN into mesons corresponding to
different quark line diagrams (describing the flavor flux topology), as summarized
in Fig. 2.1. At the same time a prescription for the effective Q@ dynamics in terms

of color, spin and flavor dependence has to be adopted.

2.1 3P, or 3S;

Quark-antiquark pairs can be created or destroyed with vacuum quantum numbers
I6(JPC) = 0+(0**) (3P, in LS-coupling) or with effective gluon quantum numbers
333,, in color {8}). Experimental data on the relative branchirg ratios for NN
annihilation into two and three mesons provide strong constraints on the dynamical
models. Particularly the observation of Dynamical Selection Rules (DSR), in which

certain annihilation transitions are suppressed, although allowed by I¢(J¥C)



Fig. 2.1 Quark diagrams for nucleon-antinucleon annihilation into two and three

mesons.



conservation, offer key tests on the annihilation dynamics[50, 46]. Different annihi-
lation topologies with an effective Q@ dynamics lead to distinct predictions for the
DSR in different quark models. The phenomenological analysis indicates that quark
line diagrams with planar topology applying the 3Py QQ vertices are the dominant
processes in NN annihilation into mesons. A good description of NN annihilation
data over a range of energies can be achieved within this approach, although discrep-
ancies remain in particular channels[43, 44, 45, 46]. The viewpoint developed here
is, that NN annihilation can be treated in an analogous fashion to meson decay,
which can be well described phenomenolegically using an effective 3Py vertex([51].
The connection between the 2Py dynamics and strong coupling QCD has been well
established[52, 53, 54, 55]. The NN system shares the same quantum numbers as a
QQ state, differing only in mass and internal quark structure, hence it seems consis-
tent to apply the 3Py model to the NN annihilation dynamics. In the following we
will substantiate the claim that diagrams with planar topology are effectively the
dominant quark mechanism in describing the NN annihilation process.

The transition of a NN system to two or three meson final states must obey
the conservation of I¢(JFC) (I, J, G, P and C are the total isospin, total angular
momentum, G parity, parity and charge conjugation of a system, respectively) quan-
tum numbers, which will forbid some annihilation channels for a certain initial NN
state. Let us, for instance, consider parity (P) conservation here. An NN initial

state hLas the parity:
Pgy = (1) (2.1)
while the two-meson final state has parity
Puyrt, = Puy Py (—1) (2.2)

where L and [ are the orbital angular momenta for the initial NN and the final
two-meson states, respectively, and Py, is the intrinsic parity of the meson i. An

accessible annihilation process NN — M; M, must satisfy the relation

PNN = PM1M2' (23)

The parity conservation implies following transitions from orbital angular momen-

tum S-, P-, and D-wave NN states to two s-wave mesons or one s-wave and one

10



p-wave meson final states:

S — ss(l=o0dd) and sp(l = even)
P — ss(l =even) and sp(l = odd) (2.4)
D — ss(l=o0dd) and sp(l = even)

where s denotes a s-wave meson (QQ);=o, p a p-wave meson (QQ)=;.
As for the G-parity conservation, an accessible annihilation process NN —
M; M, must satisfy the relation

G-IVN = G.M1M2' (25)

where Gy, is the G-parity of the NN initial system and Gy, the G-parity of

two-meson final states defined as
Gmm, = GumGu, (2.6)
with
Gy = (=1)H+ (2.7)

where ¢, [ and s are the isospin, orbital angular momentum and spin of an individual
meson, respectively.
In summary, we list in Table 2.1 the allowed NN — ss process with the total

angular momentum J = 0 and 1 by 1¢(JFC) conservation

2.2 Experimental Evidence for Dynamical

Selection Rules

Different quark diagrams for NN annihilation, as indicated in Fig. 2.1, will possess
dynamical selection rules, which restrict or suppress the possible transitions in eq.2.4
and Table 2.1. These theoretically predicted dynamical selection rules allow in
comparison with experimental data to rule out certain models. Here we give selected
examples for some annihilation channels, which show striking deviations from the
JPC

expected behavior based on I¢(J¥C) conservation laws.
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J=0 J=1

51 =0,8=0 3P0 -—-)ISQ 351 —)1P1
3D1 __>1P1
s1=1,8 =0 150 —-)3P0 351 —)3P1

1p, —38,,3D,
3P, —38,,3D,
3D, =3P,
si=1,8,=1| 15 %P |35, —»'F,5P5F,
3Py =15,,5D, 1p, —38,,3D,
3p, =5D,
3D, »1P, 5P, 5F,

Table 2.1: Allowed lowest NN — ss process by I¢(JFC) conservation. The states
are labelled as 2*1L; with S the total spin, L the total orbital angular momentum

and J the total angular mementum. s; is the spin of the ith meson.

May et al.[56] presented relative decay branching ratios for NN annihilation
from atomic S- and P-wave states to the final state #*7~ 7% as shown in Table 2.2

and Table 2.3. From these tables, we obtain the following ratios for the production

rates:
BR (pp(35:1) — 7¥p¥)
BR (pp(150) = 7%p7) = 0 (2:8)
BR(pp(*P1) — 7°f3)
~ 11 2.9
BR (pp(3Ps) = /) (2:9)
BR (pp(*P;) — n£p¥)
~ 9 2.10
BR(mp(Py) = i) © 2 (2.10)
Also from ASTERIX [57] it is found that
BR(pp(S) — mra7m) o« (2.11)

BR (pp(*So) — wtn=n)
All of the above ratios are in disagreement with the naive expectations based on
the statistical relative weight given by (2J; + 1)/(2J2 + 1), where J;, J; is the total

12



Transitions | Branching Ratios ( % )
15 — 7% p¥ 1.3+ 0.6
1Sy — 7 f, 3.4+0.5
1Sy — (37)ps 117+ 1.8
38, — wp 76.8 & 4.1
38; — mp(1600) 6.9+ 0.7

Table 2.2: Relative branching ratios p — 7¥7~7° from S waves

angular momentum of the initial pp state. Hence for the ratios of eqs.2.8 and 2.11 the
statistical ratio is 3, compared to the experimental values of 40 and 0.5, respectively.
Accordingly, for the ratios of eqs.2.9 and 2.10 the statistical relative weight would
only be 3/5 = 0.6, differing by a factor of 18-42 from experiment.

The deviation from naive expectation comes from the detailed dynamics of the
underlying annihilation mechanism, hence the name ’"dynamical selection rules’. The
detailed extraction of the underlying dynamics can sensitively depend on initial and
possibly final state interactions, in other words, the wave functions of the initial and
final states. Initial NN atomic states are dominated by the Coulomb interaction
between the proton and antiproton. Due to the short-ranged distortion induced
by the nuclear force, however, the NN atomic states can greatly differ from the
hydrogen-like wave functions in the strong interaction region. For instance, the NN
atomic state must have an additional node if there exists a NN deep bound state
with the same quantum numbers. Therefore, the extraction of the underlying quark
dynamics strongly depends on our knowledge of the NN interaction, for instance the
meson-exchange potential. For a theoretical explanation of the "mp” puzzle of eqs.2.8
and 2.10 in terms of the planar annihilation diagram A2, where the proper treatment
of the initial state interaction plays a decisive role, see ref.[43]. Previous examples
were meant to illustrate the occurrence of dynamical selection rules in experiment.
Now we will concentrate on discussing the various theoretical approaches in working

out the underlying annihilation dynamics on the quark level.
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Transitions Branching ratios ( % )
P p(l=0) |  17.6+34
1P, — mp(l = 2) 9.3 3.1

1P, = (37)ps 3.4+0.4
3P, — ntpT 148+ 1.5
3P, - 7f, 21.1+0.7
3P, — (37)ps 10.0 £ 0.8
3P, - m0AX 5.3+£0.6
3Py = nEpT(l = 2) 0.6 £ 0.2
3p, s 70 f, 2.0+ 0.6
3P, — (37)ps 12.9 + 0.6
AP, - WOAX 3.0+0.4

Table 2.3: Relative branching ratios pp — #tn~7° from P waves, where [ is the

relative orbital angular momentum of the two meson system.

2.3 Theoretical Analysis of Annihilation

Mechanisms

Based on the I9(JFC) conservation laws, the R2, R3, and S2 topologies of Fig.
2.1 yield rather strong selection rules for the NN — M; Mo (M, My M3) processcs.
Kspecially for the R2 and R3 diagrams, a large number of annihilation channels is
forbidden. In the R3 topology, an S-wave or P-wave NN system can only decay into
three s-wave mesons or two s-wave mesons and one p-wave meson, respectively. The
selection rules for the R2 and S2 topologies[41, 42, 50] are much more complicated,
as listed in Table 2.4 and Table 2.5.

Table 2.4 shows that very few channels are allowed for the transition of a NN
state to two s-wave mesons in the R2 topology. In particular, all S-wave NN states
are forbidden to decay intc two s-wave mesons. There is no evidence for the R2
selection rules in experiment. In recent years, a large number of reliable branching

ratios for NN — mesons have been measured. In Table 2.6 we list the collected

14



15, | 318, | 38, | 388, | WP |31p, | 3p, |33 | 18P | 38p, | Bp, | 83p,
T - - - e - - + - - - © -
7n - - - - - - - + - - - ©
M - - - - - - +

Pp © - - © - © + - - -
ow - © - - - - - + - + - +

ww e - - - -

)
+
+

P - S S] - + - - - - © - ©
70w - - - S h
n® | - - - | ©
nw - - S] - + - - - - - - -

- + - - - - - -
+

Table 2.4: NN annihilation into twe s-wave meson in the R2 topology. + and -
mean allowed and forbidden transitions, respectively. © indicates a channel which
is allowed by the conservation of the quantum numbers I¢(J7¢), but forbidden in
the R2 topology.
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LK - - - + - - S - - - =) -
wn | - - - - - - - o - - - ©
m . - - - - - ©

pp + - - + - + © - - -
PPw | - + - - - - - + - + - +
ww + - - - - S + - - - + -
np - + + - + - - - - + - S

ow | - - -

+ -+ - - - -] - -
T R B EEE

Nw - - + - + - - - - - - -

Table 2.5: NN annihilation into two s-wave meson in the S2 topology. + and -
mean allowed and forbidden transitions, respectively. © indicates a channel which
is aliowed by the conservation of the quantum numbers I¢(J¥¢), but forbidden in

the S2 topology.
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S P
K*K~ | 1.0840.05 | 0.278+0.051
K°KY | 0.8340.5 | 0.088+0.023
rtr~ | 3.194£0.20 | 4.81+0.49
pFrt | 32.144.2 | 15.0£2.0
P’ | 15.642.1 4.040.9
for® 3.9+1.1 18.3+2.3
ato— 70 6648 45+6
prtr= | 13.741.5 | 3.3540.84
n'ntn~ | 3.4630.67 | 0.61+0.33
axm¥ | 26.946.0 | 9.03%+4.76
np | 3.2940.90 | 0.94+0.53
fon | 0.1540.15 | 1.140.5
n'p 1.81+0.44 ~0.3
wtr~w | 65.546.8 | 70.5+10.5
pw 19.143.7 | 63.8+£12.8
=0 | 8.3+1.2 6.7+1.8

Table 2.6: Branching ratios at rest for S-wave and P-wave Pp annihilation into

mesons. The unit is 1074

data measured by the ASTERIX collaboration[58]. We find that for most two s-
wave meson channels the branching ratios in the S-wave Pp annihilation are at least
comparable with those in the P-wave Dp annihilation, and that the total annihilation
rate for pp(S — wave) = M;(s)Ma(s) and pp(S — wave) — M;(s)M2(p) are of the
same order. If the S2 topology were a dominant process in Pp annihilation into
mesons, then the rate for pp(S — wave) — M;(s)M,(s) would have to be rather
small. This is not the case.

The selection rules for the S2 topology of Table 2.5 are not as strong as for the
R2 diagram. However, since the 27 channel of P-wave Pp annibilation is forbidden,

we would observe a much larger rate for the annihilation pp(S — wave) — mm than

17



for pp(P — wave) — 7, if the S2 diagram were dominant. The experimental results
in Table 2.6 rule out the S2 topology as a dcminant process.

As for the R3 topology, the predicted selection rules are also in conflict with
experimental observations. For example, the R3 model forbids the production of a
3w final state in P-wave NN annihilation, which is in disagreement with the sizable
branching ratio of Table 2.6.

The A2 model offers relatively loose selection rules, as indicated in Table 2.7[50,
46]. Unlike the R2 and S2 topologies, where many two-meson channels allowed by the
fundamental conservation laws are forbidden, none of these channels is forbidden for
either S-wave or P-wave Pp initial states. In the full analysis of two-meson branching
ratios it is shown that the A2 model agrees far better with experimental data than
the corresponding R2 and S2 models[43]. Similarly, three-meson annihilation data
are consistent with an annihilation dynamics dominated by the A3 model of Fig.
2.1. Again, the A3 topology possesses essentially no stringent selection rules as
opposed to the R3 approach. Both S- and P-wave Pp initial states can annihilate
into either three s-wave mesons or two s-wave mesons and one p-wave meson[45].
More quantitative support for the dominance of the planar diagrams A2 and A3 in
the NN annihilation process can be found in refs.[43, 44, 45, 46].
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33 Sl

’ T
| 7O
m

PP

| pow

wWw
™p
7r°w

ne°

nw

+

+
+

+

+

+
+

Table 2.7: NN annihilation into two s-wave meson in

mean allowed and forbidden transitions, respectively.
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Chapter 3

Transition Amplitude of the A2
Quark Diagram

In this chapter, we provide some details on how to calculate transition matrix el-
ements for NN annihilation into two mesons in a quark model. First, we dis-
cuss the relevant QQ dynamics, as defined in the so-called 3P, quark pair cre-
ation/destruction model. Then we introduce the nonrelativistic wave functions for
QQQ baryon and QQ meson states. Finally, we present the derivation of the tran-
sition amplitude in the A2 model.

3.1 The 3P, Quark Pair Creation Model

The dynamics of a Q@ vertex is in principle effectively described by either a vector
(38;) or a scalar (3P,) interaction. Both types of interactions find their parallels in
quark models applied to the baryon and meson spectra, where the vector interaction
corresponds to the effective one-gluon-exchange, the scalar one to the confinement
interaction. A priori it is not. clear whether there is a dominant type of vertex, with
the Q@ creation/annihilation being a nonperturbative process. Phenomenological
studies have shown that meson and baryon decay data can be well understood
applving the scalar 3P, vertex[51]. The vector vertex 35, based originally on a

nonperturbative argument, fails to explain the meson decay data[59]. The same
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picture prevails when analyzing the more complex NN annihilation process. Here
the planar diagrams (A2 and A3), together with the 3P, vertex for the Q@ dynamics,
can explain the experimental data by far the best. Strong coupling QCD supports
the picture emerging from the phenomenology of hadronic transitions, that the scalar
%Py dynamics is the dominant nonperturbative process[52, 53, 54, 55].

In the 3P model, the QQ pair is created or destroyed with vacuum quantum

numbers, i.e.
IS(JFC) = ot {ot), (3.1)

Since the vacuum has parity P = +1, the QQ pair (with intrinsic negative parity)
must be in an odd relative orbital angular momentum. To obtain zero total angular
momentum, the Q@ pair has to be coupled to spin S = 1 which together with orbital
angular momentum L = 1 couples to J = 0, hence 3P,.

In a relativistic ansatz, the vertex is analogous to a scalar interaction for the
Dirac spinors of the annihilating quark and antiquark. The vertex for the fermion-

antifermion-vacuum interaction can be written in momentum space as

[m [m_ . e L
Wy = E; EJ‘_@(JD@%)W(P;’J;‘)NM+pj), (3.2)

where E; = \/p? + m?, m is the mass of the quark/antiquark and the é-function in-
dicates momentum conservation. The Dirac spinors for the quark (u;) and antiquark

(v;) are defined as

Lo Ei +m j’-% X
v(P;, 0i) = \/:-— ( Bitr z) (3.3)

2m Xi
(o E;+m X
u;(pj,05) = \/l“‘—( - ) (3.4)
2m %Xj
with
7 o= oly (3.5)

where y and ¥ are 2-component spinors respectively for quark and antiquark, defined
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as:

-1

X(spin up) = ( _01 ) X(spin up) = ( (1) )

[nserting eq. 3.3 - 3.5 into eq. 3.2 we obtain

x(spin up) = ( (1) ) x(spin down) = ( 0 )

m oot

Wy = E[Xi(ai “Pi — G5 - P)x; | 6 (P + Pj).

In the nonrelativistic approximation, namely E ~ m, we have

1
Wy = 5xiVix;

with
Vij = (8i-Pi—3;-pj) (i + Pj)
= Gy - (9 — Pj) (P + D)

where &;; defined as

Uij = - 2
[t can be easily proven that
Bloj'la) = —V28,504,/2
(Blofla) = V26,5
<B|U'i1jla> = _\/§5a,55a,—1/2

where af‘j are defined as

T . Y
0'1] +1 01])

_ 1
Oij —%(

0 3
1
-1 - T . Yy
Uij = '\—/—5 (Uz] - 'LO’,U)
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The operation of the G;; could be understand as that it operates a quark state
to an antiquark state, or that it projects a quark-antiquark pair onto a spin-1 state.
We may write egs. (3.11) in the form

(0,0(0410%: ® X;lane) = (1) V265160, (5.13)

For the flavor a quark-antiquark pair which annihilates into vacuum must have zero

isospin. So we may introduce an unit operator 1 with the property
<0’ OliF!T? Tz) = \/io.T,O(STZ)O (3'14)
Finally one may write the 3P, operator in the form

Vi = NY(=1)'7#(0,0[5 0,015 05" 15 Y1,(5; — ;) 6(8: +55)  (3.15)
u

where X is the effective coupling strength. The operator does project a general state

onto a 3P, state which takes the form

j0, 0)SPin-spatial ™11 000,01, w)SPIR Y, (q)

g( \1/)—1— 1L, PR Y, () (3.16)

Conventionally, the Py operator is expressed as

Vi )10, 013 (0, 01 03" 1 Y1 (Bi — ) (5 + 75)  (3.17)

55 T
with the two body matrix elements given by
0,000%10%: ® x;lam) = (1) V26,180,-u (3.18)
(0,0|iF|T, T,) = \/§5T,05T,,o (3.19)
3.2 Nucleon-Antinucleon Wave Function

In the quark model, a baryon is composed of three quarks, with total wave function
antisymmetric. Since baryons must be colorless, the total wave functions should

take the form
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e I I A I

c
The spin-flavor part takes the form:
o 1 1@ 10 1\ 5P
r = 5 X ( ®—) ®3 >
V2 J=0,1 | \2 2 gy 2 1/2,8,
‘(1(2) 1(3)) 1(1) Flavor
= Q= ® = >
2 2 7 Jas 2 1/2,T,

For the harmonic oscillator interaction

one may write the spatial wave function in momentum space in the form

2
o o 1 AN
¥ (p1, P2, = Npgexp |—=a? | Z=—=
(p1p2P3) BXP[ 20 ( \/§ )J

1 (Bt
2 V6

where Np = 3%/3 a3 /7%? with a = 1/(v/6pw).

-eXp

(3.20)

(3.21)

(3.22)

Put the spin and spatial parts totether, one obtains the initial proton-antiproton

wave function as follows:

U s,.r1, (K1, k23 P, D2, P3; Pa, Ds, D)

Nz g - R -t ¢ — — —
= -—226(191 — Py — P2 — P3)0 (k2 — Ps — Ds — Do)
B 2-‘ 3 — - -t 2-
1 Py — P 1 5 (pa+ps—2p
ool (B2)] i (B
1, (Ps-Pe) 1, ( 5+P6"2p4>
exp |—=a exp |—-a° | ———
2 V2 2 V6

2

J34,J56

24

Kl @ 1 (3)> 1(1)} [(1 () 16y 1 (4)] >
- ®z ® = llz @7 ) ® -
2 2 Jaz 2 1/2 2 2 Jse 2 1/2

Spin

SS.



[ (1(2 (3)) . 1(1)} . [ <1<5> 1(6)) 1(4)} >F“‘W°’
it ) S ® - ® =
l Ja23 2 1/2 2 2 Js6 2 1/2

TT,
(3.23)

3.3 Meson Wave Function

In the quark-antiquark interaction of harmonic osciilator type, the momentum space

wave functions for s-wave and p-wave mesons are

2,(5) = Noexp(~30%7) \/—IS ,S,)

®,(F) = N,(bp)exp (—-—2- b2p2)
. Z C(51J,5,mJ,)|S, S.)Yim(D) (3.24)
S;,m

— —

where {7 is the relative momentum with 5 = (9, — 52), and N, = 2b3/2/x/4,
N, = 2(2/3)/263/2 |zt/* with b? = 1/(uw).

The root-mean-square radii for mesons and baryons are defined in terms of the
size parameters as follows:

For a s-wave meson

1/2 1
) = (e
1
= 3 -gb ~ 0.5 fm (3.25)

For a p-wave meson

1/2 1
" = (@],

1 /5
For the nucleon
R VIR
= a =~ 0.61fm (3.27)

In practice, a and b are fitted to the nucleon and meson sizes. Here we choose
o =3.1GeV~! and b = 4.1GeV~!
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3.4 NN Annihilation into two Mesons in the A2
Model

The transition amplitude for NN annihilation into two mesons in the A2 diagram,

see Fig. 3.1, is defined as
4 6
Tar = / [1 dd; [1 4@ Wiar, Oz Uy (3.28)
i=1 =1

where Way,ar, and Yy are the final two-meson and initial NN wave functions,

respectively. The operator Oy, is defined as

Onz = Aaad(§ —¢q'1)0(gy — 0'4)Vas (G Po) Vas CPy) Vo (O Py)
(3.29)

In order to evaluate the transition amplitude for certain initial and final states, we

expand the total transition amplitude 7’42 in partial waves

Tae = 3, 3 TiMESYIM(k)YI™ (p), (3.30)

JMLS jmls

where J(j), M(m), L(l), and S(s) denote the total angular momentum, its projec-
tion, the orbital angular momentum and total spin of the NN (M; Mz) system, Y/ M

and Y;?™ are the vector spherical harmonics

YIMKk) = ST(LS, My Mg|J, M) |S, Ms)Yiag, (k)

Ms
Yim®) = 3 (ls.mumyj,m)|s,m)Yim, (5) (3.31)

The partial wave transition amplitude for NN annihilation into two s-wave mesons

takes the form

TiMES(kp) = [ dpdkTaYid" (YZ" ()
= Z Z (LS’ MLMS)lJa M) <jam|ls7mlms)

Mg ms V)Y
Spatial Spin—Flavor ( 3 32)
’ LMy lmy,uvy* SMg,s1828ms, TT vy '
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with

and

1Spin-Flavor _ sr 1 1+p+v+
7SMs,slsz.s'm,.,,TT,.,,;w'y - (Ml‘M2I 3\/5(_1) # K

05,08,05,070F0F NN

=1

¢ e-&\", (et+d-24)"]
*€Xp {_"2‘ (_'—2 + (T)

-eXp < l((js—(j'§>2+(-————————:r’_Hiﬁ.—2@1 ’
2 |\ V2 V6 ]
V(@ + @+ G+ + G+ )

1 - - - - - - g
-0 (5 (1 +@+G)— (G + G+ Gs)] — k)

B 4 - 6 ~ ~
T = AaaNEN? [ TLddt T dGi dhdpYar, () Yien (9)
i=1

5 (3 + ) 6 (3 + @)
Vi@ — &) Yio (@ — &) Yo, (6 — )

(3.33)

First, we evaluate the spatial part of the transition amplitude in eq. 3.33. To

simplify the calculation, we make the foliowing transformation

where

G = Q1+ axQs + bik + by
@B = al@l - azéz + bIE + bop'

b2+ 202 ] [42 + 2q2] "
“w= [2(2b2+3a2)] S NP2
a? + 2 b2

b= e 27 T 2(20% + 3a?)

27
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M1 M2

A2

Fig. 3.1 Nucleon-antinucleon annihilation int> two mesons in (e A2 diagram.
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Due to the d-functions in eq. (3.33), most of the integrations can be easily

carried cut. One may cxpress T°P2%#! in the new coordinates {p, k, Q:, @,}

TSpal - = Ao NEN? |Det(A)[? / dQ1dQ, dkdp

1,
-eXp [—dAg (4p + = 3" 45 k)]

exp [ (0" +2a%)(Q% + QF)| Yiar, (k) Vi, (9)
21, (a Q1 — 0@ + bk + bzp)

2Ys, (1@ + 2@z + bk + byp)

Yy, (201G — (b1 + 28)F + (3b1 + 4b2)7)

(3.36)
where
‘2b2
dyg = —2 2
202 + 3a?
B2 + 242)3
| Det(4)] = - +20) (3.37)

a3(262 + 3a2)3/2

The integrations in eq. (3.36) can be carried out analytically by using the following

formulae

exp(—dAgﬁ /" = 47‘(‘2 ‘_4 7, ]y ZdAzkp)Yzlml( )Yl’m’(]::) (338)

U'=0m'=-~
Yi(aZ +b7) = azYi,() + by Yiu(9) (3.39)
/ dQY,Y,Y:, = 0 (3.40)

471'(2l3 =4 l)
'<l1l2, 00|l3,0> (lllz,m]_mzll;;, -—m3) (341)

200+ 1)(2l, + 1
/ QYhlelzmz lams = \l( )( 2 )

/ A Yy, Vigms Yigms Yigma
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= 2 2.

min(la+l,la+ls) \] 2L +1)(2+1)

I=max{[la—ly |, |la—ls]) = 4m (20 +1)
23+ 1)(2l4+1
\J ( 347{ (2)l(+41) ) <l112, 00”, O> (l]lg, m1m2|l, m)
'<l3l4, OOIZ, 0) <l3l4, m‘3m4|l, —m)(—l)“m (342)

| 49 Y Yiama Vi Viems Yigms

fo+i1]  llatla] o v (211+1\(2l
)(2ly + 1)
- S s 5 1

I={ly=l1| U=|lg~l3| m=—l m!=—V (20 +1)

r(2l + 1) 42l + 1)
-(l1lg, 00|1, 0) (l1l2, mymg|l, m)
“(l3l4, 00|1', 0)(l5ly, magmy|l', m')
«(lls, 00}’ 0){lls, mms|l', —m') (3.43)

J (23 + 1)(2ly + 1) J (2 + 1)(2s + 1)

An easy way to evaluate the spin-flavor part of the A2 transition amplitude is

1o first recouple the quark spins and flavors using the formulas

[(j1 ® J2) 2 @ (J3 ® Ja)ssa) s

= Y {(j1ds) s, (oda) sass IM|(J1d2) nia» (dsda) saes T M)
J13,J24

.I(jl ® j3)J13 ® (.72 ® j4)Jz4>J,M (3.44)

with

((j1j3)J13’ (j2j4)J24; ']M‘(jlj2)J12a (j3j4)J345 JM)

B Je Jie
= \/(2J12 +1)(2J3a +1)(2J13+1)(2Jos + 1) - js  Ja Jaa
Jis Ja J I

(3.45)
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The NN spin-flavor wave function may be rewritten as

1@ 10 ) 16) 16 1(4) Spin
oy, o el 01
J23 ' 1/2 “ Js6 2 1/2

SS,

INN)37s
1

P>

J34,J58

l(l 2 1 (3)) 1(1)] [(1 G 1 (e)> 14 Flavor
Al ®5 ® 3 ®il; ®; ® 5 ] >
2 2 Jn 2 i 2 2 Ve 2 g -

2 X

3,556 g,’\ 7'1.7 gt?htsltﬂt

(o (14 5[ ) L () )
(@Gl G
{

I\’\Ir—l

1 1
J23Js6) Gt (22) hi; (J232) <J56 )2 T>

el () mn)
(1(2 1(5>i 1(3) } 10 1(4)>h>53

\2 2

i (1(2) ] (5)) (1(3) 1(6)) (1(1) 1@y >FIW 5.46)
S e | ®lz ®= ®(- ®= ) .
: P2 )00 P2 ) Y ),

- TT,

z

z

For the 3P, quark-antiquark operator, one has

i=j=1, and 4 =75 =0 (3.47)
hence
(D)5 (3] (2) o (31 )
= ((32)0 (33) 99| (33) 7 (35) #is)
= b0t 2T 1 (3.48)
and

(e ()7 . 32) 37
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11 1\ 1 1\ 1
= (U)o, (53) 4 T|(Js3) 55 (53) 5:7)

2 . 1/2 1/2 T
Or e —mme—r(~1)7+/ %! 3.4
The 205 =Y { 1/2 1/2 Jos } (3.49)

Finally, the NN spin-flavor wave function takes the form

— (2) (5) (3) (6) (1) (4) Flavor
s = ||t e ) et el o[t of
z 2 2 0 2 2 olo 2 2 vl o
- > F(T,S,9)

g=0,2

1@ 16 1@ 16 1 @y \ P
e oot o)
~ 9 51 ss,

with

F(T,S,g) = 1 1)T+7as+1 1/2 1/2 T
123=0,1 1/2 ]_/2 Jos

<<Jm ¢ )50md)3 1))
< ) \22") |22>J23’(22)J23’>

Note that the sum over g in eq. 3.50 takes values only 0 and 2. This stems from
the property of the 9j-symbol

(3.51)

/2 1/2 1 1/2 1/2 1
1/2 1/2 1 §=(=1)*"#2nt9 L 179 1/2 1 (3.52)
Jog Joz g Joz Jaz g

The spin wave function of the two-meson "inal state may be written as

‘ (1(1’) 1(2’)> (1(4’) 1(3’)) >

= ® ®lz ®:=

2 2 51 2 2 5.1 33,

- 11Y o, 11) (11)>
- S<( ) (22)5 Sl(z2 Sulg3) 95
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[(1(1’) 1(4')) (1(2’) 1(3’)> >
Ns @3 @l; &=z
2 2 5 2 2 sl s,

1/2 1/2 S,
= 25 +1025%+1) ¥ Jes+nes +ud 172 172 5
S/,Sll S[ S[[ S
'(1(1') 1(4’)> <1(2’) 1(3’)) >
s ®=z ®: ®z
2 2 Jg \2 2 Jsnlss,
Due to the dynamics of 3P, operator one has S” = 1, hence
(5 e3), 00 eF
e | ®c ®—) >
2 T2 )5 \2 T2 5,
o (1/ (4/ 9 (31)
ZG(&SI,SZ;S')I(l : (1 ®; )>
< 1/ 33,
G(51,52,5;8")
1/2 1/2 5
= V325 + )25+ 1)(25' +1){ 1/2 1/2 5,
s 1 S

(3.53)

(3.54)

(3.55)

Note in the above equations and also the following equations that 3;, S, S, stand for
the spin of the ith-meson, the total spin of the two-meson system and the projection

of the total spin, respectively.

Using the wave functions in egs. (3.50) and (3.54) and considering the opreation

properties of the 3Py operator, we can easily evaluate the spin part of the transition

amplitude. The main steps are as below:

33



T (S, S; 81, 52, S 1, v, 17 T)
e & an /10 1@ 1) 169
= ZG(S,ol,Sz;S’)«— ®3 ) ®(§ ®2 >
5 1

2 2

35,
( 1)l+atv+y

3\/— Osuzso u3608'y2’3" Z F(T, S,9)-

g=0,2

[(1(2) 1(5)) (1(3) 1(6)) } (1(1) 1(4)> >S”i”
Az oz ) ol ®z ®lz ®=
RN VIR N RN

( )1+u+u+’y

= S Y F(T, 8,9)G(51, 5, 5,5

9=0,2 3

> > 2

Mas,Msg Mg ,M14 Mg, My g
-(S’l, M114!M213IIS, SZ)<11, M25M36|gMg)(gS, M M14|SS )

<1<1') L @) <1(2') L @)
o - ® —_ — ® —
2 2 SI,M1I4I 2 2 1,Myrq

1@ 1 (5)> 18 1 (6)> 1M 1 (4)>
= ® = = ®= - ®=
2 2 1,Mas 2 2 1,M36 2 “ S,Mi4

_ %im\/@a + 125 +1)

O—/.l. 250 u340 v,2!8

1/2 1/2 5
1/2 1/2 8 38,10_ys.-5. (51,5, —7,7|5,5,)
S 1 8
- Y F(T,S,9) (9, u+v,S, — p—v|S, S,)(11, pv|g, p + v)
9=0,2
(3.56)
Here we have used
1) (@) 1) @n
<§ 5 ISI’Mllé’. 5 ® 5 >SM . = (SS’S" 6M1'4':M14
(0,0]01,J, M) = (=1)MV/2 83160, (3.57)
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‘We are now ready to write the spin-spatial part of the transition amplitude

Torn-Setel (] M, L, S; ', M, L, S'; k, p)
= Y Y (LS,L.S.|J, M)(J',M'|L'S'", LS.)

1,8 HibyY
.TSpatial(LLz, L’L’z, /LV’Y) TSpin(SSz, SiSéS,S;, TTza /-“/’Y)

23 Il/z 1/2 S
= \/25+1) (25 +1)(2S5+1)4 1/2 1/2 S,
s 1 g

9=0,2 Sz,S; (22140

(JIM'|L'S',M' - S,,5,)(51, S, = v,75", S;)
{gS,p+1,S, — pn—v|S, S.)(11, uv|g, p + V) Sptv—v,5, -5t
'TSpa.tial(L, L,=M-5, L,’ L; =M - S,Iza K, V77’)

where J(J'), M(M'), L(L'), and S(S’) stand respectively for the total angular mo-

mentum, its projection, total orbital angular momentum, total spin of the NN

(M, M) system.

Let consider the flavor part of the transition amplitude. We need first to couple

the two-meson final state to isospin eigenstates

109 1 (2’)> 1) 1(3'>>
—_ ® —_ — ® —_
2 2 Tl ,Tzl 2 2 T2;"Tzl

L@ 1@ 1@ @)
= Z (T',T"Tsz,le, T1z> <2 ® 5 ) ® (5 ® § ) >
TT! - /m Iyl o

= Y (T, T, T\T3, T1,, - T1.)
T

11 ,'/11) (11) ,>
'T§b<(§§>T ( >T"’T \22) T \32) T8 1

(1(1'> 1(4')) <1(z') 1(3’)) >
Az ®= ®(- ®=
2 2 ) \2 2 )il gy
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3 ’ !
—_ Z 1+T2+T TI TllTl -72’ le’ ___le> . 1/2 1/2 T
V2 T, T, 1/2

(1 1(4')> (1(2’) [(3')> >
Py lz ®2 3.59
2 T 2 2 o/ 1 ( )

Here we have set T = 0, and used

1/2 1/2 T, Ty
12 172 0 V=ong SN [ 1212 T (3.60)
L T T e+ | B To1y2 '
The flavor part of the A2 transition amplitude is derived as:
TFtaver (T, T, =01, T1,,T3, Tzz)
3 , 1/2 /
= L S ()T DT, Ty, Ty R V2T
V2 i T, T 1/2
1) 1(4' 1@ 1@)
<( ) ® (5 ®§ ) 02503602’3’
T ol 1!
|[<1(2) 10 o (1(3)® 1(6)) ] (10) 1(4)) >F"w‘”
—_ _ ® — ®_
| 2 )0 2“2 /., \2 2 )il
1/2 1/2 T
= 6(-1)" (T, Ty, 14,7, O) - (3.61
(-1) (1172, Thzy ~T1|T, 0) LT 12 (3.61)

where T and T, are respectively the total isospin spin and its projection of the initial
NN system. T; and T;, are the isospin and its projection of the ith meson of the
two-meson final state.

We have evaluated all parts of the transition amplitude of the process of NN
annihilation into two s-wave mesons in the A2 quark diagram. It is straightforward

to derive the transition amplitude of the A2 diagram

Spin—Spatial
JifA'fSLS(k p) = qu11,3‘7“,20311:»T2z;TTJ:‘I€;:L)Sp§;‘f;;n,s (3'62)
with
TR 8 = Y S (LS, MuMs)|J, M) (G, mlls, mum)
Mg,ms BiVyY
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TSl (LA Iy, pry) - TSP (S M, s1sysm, T, uvy)

= Ny Fyeda(38+30) . (3.63)
and

T = i%jL(z) [pFiAi+ p Fads + p* F3As]
+ i'u(x) [k Fads + K F5 As)
+ L7151 (z) [FeAs + Fr A7) p°k
+ " 11(2) [FsAs + FoAg) p°k
+ 7Y (z) [FroAso + Fiidu] pk?

+ 41 (z) [FraAiz + Fi3Aus) pk? (3.64)
r = —-id,upk
4 T 32 N3/
Nip = AggNIN?—— (_)
Ai = Ai(a, b)
F, = F(J,M,L,S;jm,l,s,s1,89;T) (3.65)

where J(j), M(m), L(l) and S(s are respectively the total anguiar momentum, its
projection, total orbital angular momentum and total spin of the initial NN state
(the final two-meson state). s; is the spin of the ith meson, and T the total isospin
of the system.

It should be pointed out that the form of the transition amplitude in eq. (3.64)
holds not only for the final states with two s-wave mesons, but also for final states
with one s-wave and one p-wave mesons and with two p-wave mesons, and so on.
The coefficient A  are also general, depending only on the size parameters a and
b. However, the coefficients F; vary with different initial and final states. As an

axample, we show in Table 3.1 the coeficient F; for the process of NN annihilation

to two s-wave mesons;

37



3.5 Optical Potential of A2 Diagram

In order to supplement the elastic medium and long-ranged meson-exchange part
of the NN interaction with a short-ranged annihilation potential we have to work
out the optical potential as defined in the A2/A3 quark model. We start with the
definition of the NN Hilbert space as P-space, the Hilbert space of two and three
meson states as Q-space. The corresponding projection operators P and @ satisfy
the relations

PQ = 0, (3.66)
QP = 0, (3.67)
P+Q = 1L (3.68)

We define H and | ¢) as the Hamilton operator and the eigenfunction of the full
coupled channel system. Projecting onto the NN and mesonic subspaces we obtain

following coupled system of equations:

(E~PHP)P|4¢) = PHQQ|¥) (3.69)
(E-QHQ)Q|v) = QHPP|%) (3.70)

where E is the total energy eigenvalue. The effective one-body equation for the NN

system is derived from the above equations as

(E— PHP-PHQGQHP)P|y) = 0 (3.71)

with
G = _ 3.72
- T=GEG (3.72)

where G is the Greens function for the two and three meson intermediate states.
When neglecting the final state interaction between the mesons, the Greens function
will take the form

Oa
(a| G|B) = E—E;ﬂEi-i-is (3.73)

where E; is the energy of the ith meson.
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In eq. 3.71, the term PHP includes the kinetic energy and the elastic meson-
exchange potential of the NN system. The term PHQG QHP is the optical DG-
rential due to annihilation into two and three mesons. In our calculation, we treat
the meson kinematics relativistically and use Lorentz invariant phase space. The

potential due to the A2 diagram is obtained as

Var(k, &) = (F | PHQGQHP | k)
= S (K| PHQ|a)a| G|B)B| QHP|K)
af
= > Y YR YLKk
rt JIMSLL!
dpl dp2 TJmA{sLIS* T{“LA{sLS
5 Ed@rHME%E oA (3.74)

‘where the summation r, s runs over all possible two-meson states. In the partial
wave basis a of the NN system, where o = {LSJMT}, the optical potential takes

the form

I f‘;r:‘ls (ﬁ’ k,) Tﬁnls (ﬁa k)
Valk, ) Z/FEI E—E,—E,+ic (3.75)

b jmls

‘With the operator identity
1 1 '
FE-F_E+e = BB -p "OE-E-E) (37

where Pr stands for the principle value, the complex optical potential V,, can be

separated into a real and an imaginary part. For the imaginary part of the A2

potential we obtain immediately

ImVa(k,k’) = - E ZE Jmls(p(E) k’) Jlms(p(E)’k) (377)

rt jmls

with the momentum p related to the total energy E as

Jm2 + 5%+ m? + 5° (3.78)

where m, and m, are the masses of the final state mesons.
In practice, we include in the case of the A2 model contributions from all possible

two-meson annihilation channels, which are combinations of two s-wave (s) mesons
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or one s- and one p-wave (p) meson. The s and p mesons considered here are listed

as folows:

8) M,y 77, JFC =0+
5= Q@ = { N -
6(a0(980)), €(fo(1400)) JPC — g+
PC _ —
p = (QQ)i=1 B(b(1235)), H(h1(1170)) J"¢ =1% 350)

A1(01(1260)), D(f,(1285)) JPC = 1++
Ay(a5(1320)), f(f2(1270)) JFC = 2++

For NN scattering most of the two-meson channels considered in the A2 rmodel
are already opened. Therefore, when considering the finite widths of mesons, it has
little influence on the results for the potential. For the NN bound state problem,
however, fewer and fewer channels contribute to the imaginary potential as the
energy of the state decreases. Then a few meson channels dominantly determine
the behavior of the potential for this particular state. In a proper determination of
the annihilation potential, the finite meson widths have to be introduced into the

calculation. The optical potential of eq. 3.75 is rewritten as

Va(k,k,) = Z/ dm, dmtf(mﬁr‘tr)f(mt?rt)

TJmls(p’ kl) mls(p’ )

/\/m2+ \/—-t—p ]%sE \/;12+p ——\/mt+p +ie

where f(m,,[';) is the mass distribution of the meson r, with mass m, and width I',.

The explicit form of these mass distribution functions can be found, for example, in
Ref.[45].
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Bpy 1Sy | 2 | 15 | 15 | -18 | 45 | -18 | 10

B —1S | X2 | 3 | 39 |-18| 45 | -18

Bg, 1P| 4 |15 | <15 | 18 | -45 | 18

BG>'P | L | -2 | -39 18 | 45| 18
BD, 1P | =32 | 75 | 75 | 90 |-225| 90 | -54
BD, 1P| =3 | -15 |-195] 90 |-225| 90 | -18
Bp, 51Dy | ¥ | 75| 75 | 90 |-225| 90 | -20
Bp 31Dy | & | <15 [-195| 90 |-225] 90 | -40

BF, 51 Dy | =338 1175 | -175 | 210 | -525 | 210 | -130

BF, 1D, | L0 | 35 | 455 |-210 | 525 |-210 | 50

Fr Fs | Fg | Fyo | Fii | Fi2 | Fi3
Bp 1S, 10 8 8 0 0 -18 | -18
Bp, =15, 26 16 -8 0 0 -18 | -18
136, ! P 0 -18 | -18 | 10 10 8 8
8BS, =1 P 0 -18 | -18 2 26 16 -8
Bp, 1P| -54 -36 | -36 | 20 20 70 70
8Bp, 1P| -126 | -72 | 36 40 | -20 | 50 | 110
Bp, 51D, | -20 70 | -70 | 54 54 36 36
Bp, 41Dy | 20 -50 |[-i10{ 18 | 126 | 72 | -36
Bp 31D, | -130 | -80 | -80 | 56 56 | 154 | 154
$BF, 31Dy | 290 | 160 | -80 | -112| 56 | -98 | -266

Table 3.1: Coefficients F; in eq. (3.64) for NN annihilation into two s-wave

mesons. The notation of the quantum numbers in the initial and final states is
((2T+])(23+1)LJ —y25+1 lj:,])-
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Chapter 4

NN Atomic States

Replacing an electron orbiting around a nucleus in an atom with a heavier, nega-
tively charged particie has opened up new windows in nuclear and particle physics.
In the last three decades “muonic” [60] and “pionic” [61] atoms have been the focus
of much theoretical and experimental efforts at various “pion factories” (LAMPF,
PSI, TRIUMF). More recently the even heavier, negatively charged, antiproton p
has become available in sufficient numbers to probe the nucleus at much smaller
distances. Very low-energetic 7 can be "trapped” to form “antiprotonic atoms”.
These allow to study the interference of QED and QCD on the one hand, and the
strong interaction (QCD) in the form of the annihilation into mesons, with un-
precedented sensitivity, on the other hand. The siraplest antiprotonic atom is the
antiprotonic hydrogen atom known as “protonium”. The pp system can have quan-
tum numbers unavailable to the ete™ system and, therefore, is particularly suited
to study “exotic” (i.e. non-QQ) mesons. We employ here a powerful and well-
documented mathematical method (not previously applied to NN bound states),
known in atomic physics as Sturmian function approach. With this method NN
atomic states, arising from the interference of the long-ranged Coulomb interaction
with the short-ranged strong interaction of QCD, can reliably be evaluated. Unlike
the traditionally used Numerov method, the here employed Sturmian function ap-
proach can also be applied to non-local potentials (like the Bonn potential) and to

the atomic states with higher angular momenta.
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4.1 Brief History of NN Atoms

In recent years several experiments have been carried out at the low-energy antipro-
ton ring LEAR at CERN to study the properties of protonium. In these experiments
low epergetic antiprotons are captured into the Coulomb field of the proton via Auger
electron emission, after deceleration to a kinetic energy of a few eV {62]. In the case
of hydrogen, 7 are captured into orbits of nz ~ 40 and cascade rapidly to the 1s
and 2p levels (by X-ray emission), from which the Pp system annihilates mostly into
multi-meson final states (occasionally those multi-meson states are observed to be
correlated via 7 fy, 7 fo etc). The strong interaction shifts the Coulombic binding
energies of the 1s and 2p states and adds a finite width describing the annihilation
from this state. For a pp atom the purely Coulombic 1s Bohr radius is calculated to
be 57.6 fm with a binding energy of E}; = 12.49 keV. The electromagnetic energies
for the Lyman K,(2p —» 1s), Balmer L,{3d — 2p) and Faschen M, (4f — 3d) tran-
sitions have been calculated; they are 9.367, 1.735 and 0.607 keV, respectively. The
strong interaction splits the 1s state into 1Sy and 351, and the 2p state into 3Py, 3P,
'p; and 3P,. In principle, these energy levels can be determined by measuring the
emitted X-rays in the electromagnetic transitions. It is, however, extremely difficult
to measure such small energy splittings (less than 0.5 keV). Therefore, the first ex-
periments [63] delivered only spin-averaged data, since the experimental resolution
was not sufficient to separate the transitions to the 1S; and 38, levels. Recent mea-
surements [64] at LEAR yielded the first information on the spin dependence of the
1s protonium energy shift and width. Listed in Table 4.1 are the experimental data
over a decade, including the most recent results from LEAR.

Theoretical interest in the properties of protonium arose long before the first
experiments were performed. Bryan and Phillips [67) first studied the scattering
lengths of the pp annihilation at rest in their model of NN interaction. From the
scattering lengths, the energy shifts and widths of NN atoms can be derived via
Truemans’ formula [68]. Later, the energy shift and width of protonium states were
investigated by other groups using the either original Truemans’ formula [69, 70] or
an improved Truemans’ approach [71], or a WKB approximation [72] or an iteration

technique which, however, neglected the 7n component [73]. More accurate studies
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ALy, (keV) I (keV) Refs.
-0.50+ 0.30 < 1.0 Ahmad et al. (1985) [63]
-0.70+ 0.15 1.60+ 0.40 Ziegler et al. (1988) [63]
-0.75+ 0.06 0.90+ 0.18 Baker et al. (1988) [63]
-0.73+ 0.05 1.13£ 0.09 Van Eijk et al. (1988) [63]
-0.62+ 0.10 1.13+ 0.17 Bacher et al. (1989) [63]
-0.73+ 0.02 1.12x= 0.06 Heitliner et al. (1993) [64]
-0.85% 0.04( 3SDy) | 0.77+ 0.15 (3SDy)
-0.440+ 0.075 (1S) 1.20+ 0.25 (1S) M. Augsburger (1999) [65]
-0.785 0.035 (3SDy) | 0.940+ 0.080 (3SD,)
AE;,(meV) Ty, (meV) Refs.
- 45+ 10 Bacher et al. (1989) [63]
- 32+ 10 Bacher et al. (1989) [63]
- 34+ 2.9 K. Heitliner et al. (1993) [64]
- 30.8+ 3.0 M. Augsburger et al. (1999) [65]
139 + 28 (3Py) 120 + 25 (3Py) D. Gotta et al. (1999) [66]
; 38 £ 9 (3R, 1P, 3Py)

Table 4.1: Experimental A E;, I';, A E, and I, for NN atoms

of the protonium properties were carried out in the matrix Numerov algorithm [74,
75]. All these theoretical predictions for the energy shifts and widths of protonium
states are consistent with available experimental data. In order to quantitatively
evaluate the photon and pion emission in the reaction of protonium decay to NN
deep bound states, Dover et al. [76] explictly worked out the wave function of the
NN 18, and 39; atomic states in the Numerov approach. In their calculation,
the coupling of the *D; and 35, states is neglected. Using the numerical method
developed in Ref. [75], they recalculate, in a later work {77], the wave functions of
NN atomic states with the tensor coupling included. However, the wave function

of NN atomic states for non-local NN potentials has not yet been evaluated in an
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accurate numerical method which takes into account the two length scales involved,
the Pp and Tin compenent coupling and the tensor coupling of the nuclear force. In
the present work, we solve the Schrodinger equation for NN bound states employing
a properly adapted numerical method. The method accounts for both the strong
short range nuclear potential (local and non-local) and the long range Coulomb
force and provides directly the wave function of the protonium system and of the
NN deep bound states with complex eigenvalues E = Ep — if. Details of this
method can be found below, in section 3.

The protonium states also provide a new tool for meson spectroscopy, which is
still an active field exhibiting many open questions. The physics of mesons is far from
complete although the quark model has been remarkably successful in understanding
and classifying most of the experimentally well-established mesons as Q@ bound
states. However, in recent years there has been a variety of experiments, for example
N scattering, NN annihilation, J/¥ decay and e*e™ annihilation, which suggest
the existence of new mesons which do not fit into the usual QQ multiplets of flavor
SU(Ny). These new meson states might be glueballs ggg, hybrids QQg or four
quark-antiquark sz)—? states as well as more “conventional” resonances such as NN
bound states and meson-meson molecules. Recent reviews, concerning the status of
non-QQ states, are found in Ref. [78].

4.2 The Schrédinger Equation for NN Atomic States

A correct treatment of NN atomic states must include the coupling of the proton-
antiproton (pp) and neutron-antineutron (7n) configurations. We define the Hilbert
spaces of proton-antiproton and neutron-antineutron as P, and P, spaces, respec-
tively. The Hilbert space of two- and three-meson channels is defined as Q space.

The corresponding projection operators Py, P, and Q satisfy the relation:

P+P+Q =1, (4.1)
PP, = PP, =0, (4.2)
PQ = QP, =0, (4.3)
PQ = QP, = 0. (4.4)
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The Hamilton operator of the full coupled-channel problem is given by H with the

corresponding wave function |¢) defined in the complete Hilbert space. Analogous

to the procedure of Chapter 3, we eliminate the two- and three-meson channels

resulting in the coupled set of equations for the pp and fin wave function:

(E"PlHPI)PII'w) = P1

HQGQHP, P, | ¢)
+ PHPP|v)+ PHQGQHP,P, | 9)

(E-PRHP)P,|v) = PBHQGQHP P |v)

+ PHP P |yY)+ RHQGQHP P; | ¢)

(4.5)

(4.6)

where F is the energy eigenvalue and G is the Greens function for two- and three-

meson intermediate states, defined as:

G =

1
E-QHQ

The interaction terms in eq.4.5 and eq.4.6 are given as:

Pall ==
BHP,
PlHPz =

where

Vﬁn—b?{n
Hj

(13

Hy

Vip—bip

‘/ﬁp—bin‘

HOP+VC+VFP-+TJP7
H[1)1+Vin—bﬁn7
Pﬂ!le = ‘/Fp—)?fn)

(4.7)

(4.8)
(4.9)
(4.10)

(4.11)
(4.12)
(4.13)
(4.14)

(4.15)

where V, is the Coulomb interaction, V° and V! are the potentials due to meson-

exchange for the isospin I = 0 and 1 NN states, respectively. The mass of the

proton and neutron are denoted as m, and my,.
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P,HQ G QH P; are the optical potentials W;; for NN annihilation into two and
three mesons given in the isospin basis as:.
W’ﬁp—éfp = PlHQGQHPl
= PHQGQHP,
1
= 3 (W + w1y, (4.16)

14/’p'p--)?fn = PlHQGQHP2
= PBHQGQHP
1
= W -w), (4.17)

where W and W1 are the annihilation potentials for isospin I = 0 and 1 NN states
in the A2 and A3 model, respectively.
As an example, we give the final equation for spin-triplet NN states in the

{J,L,S} basis as
H, H v U5
i Pl=F | 7 (4.18)
II21 H22 \I’ﬁ'n ‘Ilﬁn

with
2 L L Ly Ly Ly Ly L; L2 Ly Ly
Hl P/2:U+Vc1 1+Vip—'5p+wip—v5p VFP-*5P+WFP-»FP
1 — .
rig Ly Ly Ly 2 /L2 L L2 L2 Lz L2
vipﬂ'ip_"wip—'ﬁp P/2M+VC2 2+Vip—b§p+Wﬁp—*5p
Ly L LiL 7Ly L L L
H ‘/ﬁpl—) lﬂn + W"ipl-)lﬂn V;;'pl—-) %ﬁn + W;_apl—)z'ﬁn
12 =
Ly L Ly L Ly L Lo L
‘/Epz—b ITl'n + W'ﬁpz—)l'ﬁ'n V;sz-i ":'in + Wi)'pz-)zﬁn
Ly L Ly L Ly L LyL
H ‘/;'ipl—v sz'n + Wipl—bl’iin ‘/ipz—) 171'7; + W5p2—9 lﬁn
21 = LiL LiL LaL Lol
‘/ipl—b '%n + W"p'pl-»zﬁn ‘/';7112—0 ?it'n + Wﬁpz—bz?i'n
2 Ly Iy Ly Ly i1 L2 L1 Ly
H . P/2u+25m+vip—>§p+wip—'5p Vip—+§p+WFp—+5p
22 — Lo L Lo L 2 Lo L Lo L
2 L1 2Ly 2 Lg 2 L2
Vx'm—*'ip—i_wip—ﬁp P/2”+26m+v:ip—+'ﬁp+wﬁp-+5p
and
Ly
ph V2=
pp _ nn \
‘IIZ—JP = Ly ) \I’ﬁn = \IIL2 s (419/
\Ilpr nn
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where § m = mp, —myp, p=m,/2, Vo = —afr, Ly = J—1, Ly = J+1, J is the total

angular momentum and E, = E — 2m,, the binding energy of NN atomic states.

4.3 Complete set of Sturmian functions

In principle, one could solve Eq. (4.18) through expanding the NN wave functions
U3, and ¥y, in any complete set of orthonormal functions. The complete set of
harmonic oscillator wave functions is widely applied to bound state problems since
they have analytical forms both in coordinate and momentum spaces. Bound state
problems with only the strong interaction or only the Coulomb force can be well
solved in the regime of harmonic oscillator wave functions, by choosing the oscillator
length being of order 1 fm or 100 fm, respectively. Detailed investigations [79],
however, have shown that the harmonic oscillator wave function approach fails to
describe NN atomic states which are dominated by the long-ranged Coulomb force
and influenced by the short-ranged strong interaction. The reason is that two very
different oscillator lengths are involved to describe the NN deep bound state and
the atomic state.

The Sturmian function method was first used in atomic physics to evaluate the
binding energy and wave function of atoms [80, 81]. It was pointed out that the
method is much more powerful than the approach using harmonic oscillator and
hydrogen wave functions. Subsequently, the method was applied to various physical
problems such as electromagnetic collisions {82], binding energies of nuclei [83, 84]
and bound and resonant states in specia) potentials [85, 86]. The Sturmian functions
are very similar to the hydrogen wave functions, and are, therefore, also named
Coulomb-Sturmian functions. In coordinate space the Sturmians Sy(r), which are

used in the present work, satisfy the second order differential equation [82]

2 I(l+1) 2b(n+l4+1) ,
(W D B ED ) suln =o. (4.20)
By solving Eq. (4.20), one finds
18 )i+t 2041
Sn(r) = [ +2l+1)'J (2br)*texp(—br)L; " (20r) , (4.21)
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where L2+1(z) are associated Laguerre polynomials defined as

LE(®) = (-1 (L ()] (1.22)
that is
Lt (@) = m;o (=1)" (n— n(;!(;fi B!m)!m! " (4.23)

The Sturmians are orthogonal and form a complete set with respect to the weight
function 1/r, which follows from the corresponding 1/r potential term in Eq. (4.20),

[ S35 o
0 r T r

Thus radial functions Rj(r) can be expanded in the complete set of the Sturmian
functions Sp(r),

~ S
R(r) =Y am ;(r). (4.25)

The Sturmian functions can be defined in momentum space as

Sam(P) = Sn ()Ylmmp"ﬁp)
/ dr dS2 Sy (r)Yim (6, ¢)e= P (4.26)

I

(21 )3/2

One can derive the momentum form analytically

243 (n + 1+ 1)l (11)2] 2
b(n+20+1)!

(p/b) s ((@/B)2 =1
[(p/)* + 1]“’10"+ ((p/b)"'+ 1) (4.27)

where C?(z) are the Gegenbauer polynomials. It is very convenient to have such a

Su(p) = [

complete set to study interactions in momentum space.

Inserting Eq. (4.25) into Eq. (4.18) does not lead to a diagonal form on the right
hand side of Eq. (4.18) unlike the case of the harmonic oscillator wave functions.
The matrices on both sides of Eq. (4.18) must be simultaneously diagonalized.
Note that the Sturmians have analytical form [82] in momentum space. One is

allowed to deal with strong interactions in momentum space with the complete set

49



of the Sturmians as easily as with the set of the harmonic oscillator wave functions.
The matrix elements of the Coulomb interaction as well as the kinetic term can be
evaluated analytically according to Eq. (4.20) and Eq. (4.24).

Because almost all bound-state hydrogentic wave functions are close to zero en-
ergy, the innermost zeros of the functions are insensitive to the principle quantum
number. This accounts for that the bound hydrogen functions do not form a com-
plete set; the continuum is needed to analyze the region between the origin and
the limiting first zero. Unlike hydrogen functions, the first node of the Sturmian
functions continues to move closer to the origin with increasing the principle num-
ber n. This is the key point why a short-ranged nuclear force can easily be taken
into account for NN atomic state problem by using complete sets of the Sturmian
functions.

The parameter b is the length scale entering the Sturmian functions in eqgs. (4.20)
and (4.21), in the same way as the corresponding parameter enters the harmonic
oscillator functions. For NN deep bound states one should use 1/b of order 1
fm while the atomic states without strong interactions require 1/b of order 102 fm.
However, for protonium accounting for both the strong interaction and the Coulomb
force, one must use a 1/b between the two values used for the above cases. Using
a complete basis of, for example, 200 Sturmian functions (100 for the L = J -1
wave, and another 100 for the L = J + 1) with 1/b =5 — 500 fm, one can precisely
reproduce the analytical 1s and 2p wave functions of the NN system subject to
only the Coulomb interaction. Using the same basis with 1/b = 0.1 — 30 fm, the
wave functions of NN deep bound states can be precisely evaluated. The NN deep
bound states can be evaluated in the complete set of the harmonic oscillator wave
functions, and also in the complete set of Sturmian functions with a more suitable
length parameter, for example 1/b = 1 fm. From the above investigation, a length
parameter 1/b around 20 fm is suitable for the protonium problem.

We have compared our numerical method with the traditionally used method,
namely the Numerov approach [75], applied to the NN atomic problem in for ex-
ample the Kohno-Weise potential. The binding energies and widths presented in
Ref. [75] for the states 1o, 3P, *S1 and *SD; are well reproduced in the Sturmian

function approach. Wave functions for these states are also compared in the two
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approaches. It is found that at short distance the outputs in the two approaches are
quite consistent, and that the discrepancies between the wave functions evaluated
in the two methods become more and more obvious as the relative distance between
nucleon and antinucleon increases, especially the imaginary part of the 1S, and 35,
wave functions.

Finally, it should be pointed out that the Numerov method can not be applied to
a non-local potential, for example the Bonn potential which is giver in momentum
space, and it is not easy to handle atomic states with higher angular momentum
[87], for example the state 3PF,. Therefore it is essential to use a precise numerical
method, applied not only to local but also to non-local potentials, to handle the
NN atomic state problem from a more general point of view. In principle, there is
no limit to the accuracy in the evaluation of the NN atomic states in the Sturmian
function approach. One is allowed to use larger and larger complete bases of the
Sturmian functions until the theoretical results converge.! And the NN atomic

states with higher angular momenta can be easily handled in the approach.

4.4 Energy Shifts and Widths of NN Atomic States

Eq.4.18 is solved numerically by expanding ¥z, and ¥, in a complete set of Stur-
mian functions. Theoretical predictions for energy shifts and widths of NN atomic
states are presented in Table 4.2 for two models:

Model A: The elastic part is taken from the Paris potential[27, 28, 29] with a

short range regularization according to

Y GiVin(r) >
VWN(T) = | (4.28)
i GiVin(ro) <m0
The annihilation part is the optical potential due to the A2 and A3 quark models.

Model B: Here we apply the energy dependent meson-exchange potential OBEPT
(one-boson exchange energy-dependent potential)[26] of the Bonn group with the

1There is no CPU problem, most university computers are capable enough.
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modified nucleon-meson coupling constants g2/4r = 10 and g2/4w = 5 (see Ref.
[79] for a detailed discussion). No short range regularization is applied, in con-
sistency with the claim of the Bonn group that meson exchange should be taken
seriously even for small separation distance of the NN system. The annihilation
part is described by the microscopic A2 and A3 models. The short range cut-off ry
in Model A and the effective strength parameters A4 and A43 for the processes of
nucleon-antinucleon annihilation into two and three mesons are fitted to the NN
scattering cross sections[47]. The cutoff rq is chosen as ro = 0.8 fin, whick closes
to the annihilation radius as deduced from the convolution of the baryon number
distribution in the NN system[88].

It is found that Model A yields the correct width I'y;, with a somewhat small
value for the energy shift A Ey;. Model B fares better in obtaining a reasonable

value for A E;,, however underestimates the corresponding width.

Model A Model B Date [65]
160 |38, -%Dy | 1Sy |38 -2 Dy 15, 88, - Dy
A Ey5(keV) | 0.37 -0.70 -0.38 -0.60 -0.4404 0.075 | -0.785+ 0.035
[y5(keV) | 0.47 1.38 0.21 0.49 1.204% 0.25 0.946+ 0.080

Table 4.2: The energy shifts and widths of 1s NN atomic states.

In model A, the energy shifts A E;, mainly stem from the m-exchange potential.
The w-contribution of the meson-exchange potential evaluated for a pure pp state
gives[23]

15 V(r) = =3Vy(r) (4.29)
35 V(r) = V() (4.30)
"D, Vr) = V,(r)—2Vp(r) (4.31)

where the positive quantities V,(r) and Vz(r) are the spin-spin and tensor compo-

nents of the m-exchange potential. For the evaluaticn we used

70) = ~—5 (INN(I =0))+ NN =1)). (4.32)

52



Based on the previous equations, we can qualitatively predict the signs of the energy
shifts of the various 1s states. The 1Sy protonium state will shift down with respect
to the pure Coulomb state, while the pure %S; state is shifted upward. Including
tensor force mixing the 3SD; state will move down a little compared to the pure

38, state. Above arguments are in agreement with the results of model A:

AE(*Sy) = 037 keV (4.33)
AE(S) = -096 keV (4.34)
AE(S, -* D)) = —0.70 keV (4.35)

A more complete analysis of level shifts in the protonium states based on the
use of the Paris potential (as our model A) is in line with our arguments that the
m-exchange is the dominant component. In the case of model B (using the Bonn
potential) where the energy shift A F(1S,) is negative, hence we have a repulsive
effect, no such simple analysis can be made.

For comparison, we present here also the theoretical results of the energy shift
and width of the NN atomic states in the potential Paris98(89]. It is clear that the
predictions of Paris98 are much more reasonable than our models A and B. Paris98
is a phenomelogical NN potential, it fits to the existent NN data the best. Paris98
was worked out in 1997, based on the Paris NN potential and the Paris94 NN

potential[90].

150 38D, 3P
AE(eV) I'(eV) AE(eV) | T(eV) | AE(meV) [ I'(meV)
Paris98 -766 484 -680 663 62 114
Data[65, 66] | -440+ 75 | 1200k 250 | -785:+ 35 | 940+ 80 | 139 £ 28 | 120 = 25

4.5 Summary and Discussions

[n this work we have evaluated NN atomic bound states as based on a microscop-

ically derived NN interaction in the Sturmian function method. The medium and
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long ranged elastic part of the NN interaction resulted from meson-exchange, ob-
tained by G-parity transformation of a realistic meson-exchange NN potential. To
reflect the uncertainties in the meson-exchange part, we applied different versions as
zgiven by the Bonn and Paris groups. In describing the short ranged annihilation part
of the NN interaction, we used & nonrelativistic quark model, which naturally takes
into account the multitude of mesonic annihilation channels, while at the same time
possessing only a small number of fit parameters, i.e. the corresponding strength
parameters of the respective two- and three-meson transitions. Here we used a quark
model, where the annihilation mechanism is determined by planar quark line dia-
zrams (denoted as A2 and A3), while the respective Q@ interaction is described by
the nonperturbative 3Py dynamics. The basis for the use of this particular model is
founded in the analysis of two- and three-meson production data for NN annihila-
tion at rest and in flight. A phenomenological approach has been adopted, in which
the dominant annihilation topology (rearrangement versus creation/destruction of
QQ pairs) and the spin-flavor dependence of the effective Q@ creation/destruction
operator (3P, versus one gluon 35, color {8} vertex) has been determined. NN
annihilation leads to a rich ensemble of final states, whose relative branching ratios
provide constraints on dynamical models. The observed branching ratios display a
significant dependence on L, the relative orbital angular momentum of the NN sys-
tem, indicating a dynamical content which goes beyond simple statistical models.
These Dynamical Selection Rules (DSR) provide key signatures for the underly-
ing annihilation mechanism. Different annihilation topologies linked with a specific
QQ operators lead to distinct predictions of DSR in the various models. Compari-
son with experiment then allows to rule cut certain models. The phenomenological
analysis indicates that the A2 and A3 models are the dominant processes in NN an-
nihilation into mesons. The nonlocal, state- and energy-dependent potential arising
from the A2 and A3 transition processes consists of an imaginary part, describing
the annihilation flux into mesonic final states, and a dispersive real part, which
in general is attractive. In setting up the absolute contribution of the short ranged
annihilation potential, as determined by the respective two- and three-meson transi-
tion strength constants A4z and Ags, we fitted these parameters to the experimental

NN scattering cross sections. Thus, all the predictions for the NN atomic bound
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state sector are parameter free.

NN atoms are states where the Coulomb interaction between proton and an-
tiproton is the dominant component. The presence of the strong interaction, induc-
ing dramatic short-ranged distortions in the pure pp wave function, leads to a shift
in the energy levels and an additional width due to annihilation. The theoretical
predictions for the spin-averaged binding energies and widths of NN atomic states
are agreeable with the experimental data, where at this level no definite preference
for a particular model can be made. When considering more detailed obseevables,
such as the binding energy of the 1.9, atomic NN state, differences are sizable, which
can be traced to the different versions of the meson-exchange potential (Paris versus
Bonn) used. From the predictions for the width of the 1S, atomic state we find that
the contribution from the A2 and A3 processes to the imaginary part of the optical
potential in this particular partial wave is somewhat too small. To elucidate this
point in more detail one should look at particular two-meson production branching
ratios in NN annihilation from the atom, where specific isospin components of the
atomic wave function can be explicitly tested.

The Sturmian function approach is first introduced to evaluate the NN atomic
states in this work. The method is much more powerful, accurate and much easier
o use than all other methods in history. It can be applied to solve the NN bound
state problem for local and non-local potentials, accounting for both the strong short
range nuclear interaction and the long range Coulomb force and provides directly the

wave function of protonium and NN deep bound states with complex eigenvalues.
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Chapter 5

Electron-Position annihilation into

Nucleon-Antinucleon Pairs

Experimental data on the reaction ete™ -+ in from the FENICE collaboration [91]
and the earlier data on the reaction ete™ — pp [92] and also the data on the time-
reversed reaction pp — ete” [93] indicate in Fig. 5.1 that o(ete™ — 7in)/o(ete” —
Dp) > 1 at energies around the threshold E.,, ~ 2 GeV. Averaging over the available
data on both the direct and time-reversed reactions, one finds

o(ete™ — Pp)

- +0.16
ey 0.66+0:16, 5.1)

That the ratio is less than one is quite puzzling.

In a naive perturbative description of e*e™ annihilation into baryons the virtual
time-like photon first decays into a gq pair, then the gg pair is dressed by two addi-
tional quark-antiquark pairs excited out of the vacuum to form a baryon pairs. The
dressing process does not distinguish between u and d quarks at high momentum
transfers in the description of perturbative QCD since gluon couplings are flavor
blind. In the conventional perturbative picture, theorefore, the only difference be-
tween the proton and neutron productions comes from the different electric charges
of the primary gq pairs. One expects to get

g(e*e” — 7p)
o(ete” — 7in)

>1 (5.2)
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at large momentum transfers if it is true that the u contribution dominates in the
proton and the d in the neutron.

The total perturbative cross section 0, in the center-of-mass system is obtained
by superposing the amplitudes with different flavor quarks in the primary Gg pair

and squaring,
2
olete” = NN) x

> QA7 ()

qeN

(5.3)

where @, is the charge of quarks and AY(s) denotes the amplitude at s = E%,, for
making the baryon N with a given primary flavor quark ¢. These amplitudes are

determined by the baryon wave functions. In the simplest case that
AP = AN = Af = A7, (5.4)

one gets
o(ete™ — Dp)
o(ete~ — mn)

=15 (5.5)

In this work we study the reactions in a nonperturbative quark model, consider-
ing both one-step process (the primary gq pair is produced by the virtual photon and
dressed by two additional quark-antiquark pairs to form a baryon pair) and two-step
process (the primary gq pair forms first a meson, then the the meson decays into
a baryon pair). Here below we first work out the wave functions of the final state
nucleon and antinucleon and the intermediate mesons. Those wave functions are

essential for our calculations.

5.1 Nucleon and Meson Wave Functions

In the quark model, a baryon is composed of three quarks, with total wave function
antisymmetric. Since baryons must be colorless, the total wave functions should

take the form

e=[TT 1, L]z @



The spin-flavor part:

1 1@ 10 1(1) | Spin
R -5 % |3es) e5 )
\/i J23=0,1 2 2 Jas 2 1/2,5,
(1(2) 1(3)\ 1(1) >Flavor
s o= ) ® = (5.6)
2 2 4 Jag 2 1/2,T,

The spatial wave function in momentum space:

o . . 1 - — 2
U(p1, P2, P3) = Npexp [—— a (22\/_103 J
.

exp [—%a (q “f/é 25) J (5.7)

for the harmonics oscillator interaction
1
Vir) = 5 pw?r? (5.8)
where Np = 3%/3 a3 /7%? with a = 1/(v6uw).

The initial proton-antiproton wave function:

Vs s, (K1, Ez;ﬁlaﬁz,ﬁs;ﬁ«ﬁs,ﬁe)
N2 —t -t e - -
= —*5(’“1 — P2 — P3)6(kg — g — Ps — Pe)

'- —_ l— 1 e Y 2q 2]
€xp —-1—a2 (p2 pa) exp |—=a® (?2+————1)

2 V2
exp —~la2 A exp —la2 <~————————‘5+—‘6‘2_‘4 :
2\ V2 /] ]2 V6 ]

5 r (1(2) 1(3)) 1(1)'] [ (1(5) 1(6)) 1(4)] >s'°i"
- 9: | ®- | oflz ez ® -
l 2 72 )2 L, e T2 T

J34,J56

[ ( 1@ 1 <3>> 1 (1)} [(1 ® 1 (6)> 1 (4)} >F‘”°‘
> ®- ® - el ©= ® -
2 2 J23 2 1/2 2 2 Jse 2 12! pr,

L
In the quark-antiquark interaction of harmonic oscillator type, the momentum

space wave functions for 35S and 2D vector mesons are as follows:
1 1@

15 i
®,(5) = N, exp (—-2-b2p2) (4 — 5b%p? + bt 2) [5 ® ]
1
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140 13

2,(7) = Naexp (~5 5°5°) (m)* (1 — 1" [(.2_ ®; ) @YZ@)] (5.10)

where 7 is the relative momentum with §'= (51 — p),

and N, = (R%)l/zs Ndz(%)m

5.2 Two-Step Process Dominant

'The effective strength parameter X in the 3P, vertex
Vi = A (=D (0,015 (0,01 o* LEN.(5: — 57) 6(5: + D) (5.11)
“w

may vary largely from one reaction to another since it accounts for various effects
in a reaction. In our case the A in the one-step process might be very much differ
from that in the two-step process. Therefore, to investigate whether the one-step
process or the two-step process is dominant, we will carry out the following studies
step by step: (1) determine the length parameter b for the p meson by the reaction
of p — ete™; (2) determine the effective strength parameter A in the 3P, vertex for

the process p — w7 ~; (3) study the reaction ete™ — 77~

5.2.1 The Length Parameter b

We study here the electromagnetic decay process p — ete~, shown in Fig. 5.2.

—y

p2 e+

N

Fig. 5.2 The vector meson p decays into an electron-position pair.
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The transition amplitude of the process may be written in general

M = (e*e”|Tlqg){qq|V) (5.12)

where |V) is the wave function of a vector meson, and (e*e~|T|qq) the transition

amplitude of the quark-antiquark to electron-position. We have

|V> = wspatialwcoloa"‘/)flavorwspin (513)
with
1

color = — 7= q 5.14

Vit = ~l0)ol0)s (5.14)
10 1@

=5 ®5 5.1

"bfla.vor [2 ® 5 :lnz ( 5)
1M 1(2)]

in = |5 5 5.16

wsmn [2 ® 2 JSSZ ( )

and the spatial part ¥spetiar depending on the momenta p) and p2 only. S and I are
respectively the spin and isospin of the vector meson. In the center-of-mass system,
that is, 5y + 72 = 0 and § = (P1 + P2)/2 , we have Pgpatiar = ¥(P), obeying the

following relations:

4@ = | ,;;ﬁ,ze"ﬁfw(ﬁ)
¥(P) = / (2 )3/2 PTG ()
[ Ealo@P = [ Epl(@N =1 (5.17)

The matrix elements of (qg|V') are derived as follows:

(@Y yeoter = <q1a<a|a—1\/§|q>ﬁw>ﬂ=3¢—§

1,0/, 7]t ® 1@\ 11
ll; e3 ,I_C(iil’tqt""[")

<q_q|v>flavor = |:<§tq \—tﬁ
(1) 2)
]]L ®l > =C’(115’mqmq >(518)
88,

2
2 2 22

1
(35

@Vpin = [(5t0
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where C(j1, j2J, m1,mgem) are the Clebsch-Gordon coefficients, and ¢, (t) and m,
(myg) are respectively the isospin and spin projections of quark (antiquark).
The transition amplitude for the process ¢qg — ete™ could be evaluated in the

standard method developed in the electrodynamics. We have

Tg—ete- = (eTe”|T|qq)
. 1 1/2
= e.e(2m)*6™) (py + p2 — ps — pa) (27)5 (SE E:E.-E +)
ggqire= e
—_— _1—
e (P3, e~ )" Ve(Pa, me+)_s—vq(P2» Mg) Y g (P1,™y) (5.19)

where s = (p; + p2)?, and e, is the charge of quark. The transition amplitude for
the decay process V' — ete™ is thus derived as

S 5 Y [ dEnd 9@ + m)wh, )

i mgmg tqt—

1 11 11
—\/—§C (221 t t 1 > C ('2'55, mqmaSz) Tqa—-»e'*‘e" (520)

where the sum over 7 is to take into account all the possible quark colors, and the
delta function 6@ (p1 + p=) implies that we work in the rest-meson frame.

The decay width of the process V — ete™ is defined as
r= / Ppsd®p AT (5.21)

with
1 2
S8EGEgE- Ee+ ) (2m)6 |M]
(5.22)

I = (27)%® (55 + p4)6(E1 + Bz — E3 + Ey) (

Due to the delta functions (p3 + p4)6(E; + E3 — E3 + Ey), one can easily carry out

the integrations and obtain

p .
o Mf3 / QT (5.23)

where py is the momentum of the final electron, My the mass of the initial meson,

and the integration is over the angles of the final electron.
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In the small quark momentum p approximation, one gets

_ 16matQ?

T —~
M2

|6(0)? (5.24)

where Q? is the squared sum of the charges of the quarks in the meson, ¢(0) is the
amplitude of the meson wave function at origin in the coordinate space. Q% = 1/2
for p, 1/18 for w and 1/9 for ¢.

In the harmonic oscillator interaction, the spatial part of the wave functions of

the lightest mesons (like 7, p, w and ¢) takes the form

1 2,.2
¢(r) = (—bg;rjg/qe—b /2 (5.25)
hence
1

Substitute the ¢(0) with the Q2 for p together into eq. (5.24), we get the final result
for the decay width of the process p — ete™

8a?

- = 27
Dosete /b M,? (5.27)

Input M, = 0.77 GeV, a = 1/137 and the experimental value 6.85 keV for the

[piete—, We get
b~ 4.0 GeV™! (5.28)

Now we have the length parameter b.

5.2.2 p— wtn” Process

We study here the reaction p — 7~ shown in Fig. 5.3 in order to determine the

effective strength parameter X in the Py vertex

Vij = A S (=1)M# (0,0(5(0, OfF; 03 15 Y1,.(8: — )8 (Bi + Pj) (5.29)
U
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The transition amplitude of the reaction of one meson decay into two meson in the

3P, model is defined as

T = (f|Visl3) (5.30)

where |¢) and |f) are respectively the initial and final states. For simplicity, we
consider here only the S-wave mesons, that is, all the mesons involved have orbital
angular momentum equal to 0. The initial state is simply the one meson wave

function, taking the form
: 1® 1@ 1 1@
) = N <_ib2f~ - 2) - - - -
|4) exp { —5 071 P2) 5 ©3 3 ®3 . (5.31)

We have the spin s; = 1 and the isospin t; = 1 for the p mesom, and the isospin
projection ¢, = G for p°. Here we have employed the harmonic oscillator interaction

between quark and antiquark.

-
A

7

Yo,

B s&

Fig. 5.3 The vector meson p decays into 7*7~ in the 3Py quark model.
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We must couple the wave functions of the two final mesons to form the final

state | f). For two S-wave imesons we have

) = NiNoewp (=38 - 5?) exp (2 855 — 12)°)

(113 1@)] 1® 16 ]
3 ©3 ®l2 ®3 } J
L= - s1,m) 82,M2 spamy
(113 1@ P@) 1@] } 5.32)
- ®= ®lz ®¢ 5.32
i LZ 2 dty,mt] t.2 2 ta2,mt} tymt!

The transition amplitude may be expressed in the form

T = TcolorTflavorﬂpinTspatial (533)
with
Totor = = (a0l @l (asls @oly—relan)lae)
color = \/§ qsli CI41,\/§ qsl5 QGJ‘/-:;QI kld2)k
1
= ——=0it0;k0;i
3\/:; kCUjkCij
1
= —= 5.34
7 (5.34)
18 1@ <ﬂ® 16 ] 10 1@
Tflavor = T ®3z ®{z; ®3 F iy ® 5
2 2 tl,mt’ 2 2 tz,mt’z tr,mt! 2 2 ti,mt

- (e (Dan) o

® <%(5) ® 1(6)

1) 2)
ot P 0),

~

_1/10) o 1(4)
spin —[<2 ®2 s1,m1 sz,mszmf

= —/2C(simy, 1y, Sfmf)<(%%) s;, ( )1 Sim; ( )sl, (—; ;sfmf>

(5.36)

Mh—l

where the factor <(2 2) «Q, (%%) B; JJ| (-21-%) o, (%%) G JJZ> is related to the Wigner
9j-symbol as in Chapter 3. Note that we have rewritten ¢; and ¢; as ¢ and mt and

mt’ as t, due to the isospin conservation.

65



Unlike the color, flavor and spin wave functions, the spatial wave functions of
mesons depend on the interactions between quark and antiquarks. Here in our
calculation we employ the harmonic oscillator interaction, and the the transition

amplitude is derived as

Topatial = / [1 Ppid(Br — P2)8(52 — Pe) Yy (e — P5)6(Ps + Ps)S(Br + )
0(Ps + Py — k)NlNZN exp ‘\—‘8‘ b2 (P — 54)2)

1 — - 1 — —
-exp (—g b (s — ps)z) exp (~— b5 — P2)2>
2 2 b2
= NlNzN/d P1 €Xp {"‘b (P1 — “k) D) J [2kyp(k) +2P1Y1“(pl)]
— NyN;N(4n) (-k\ v (B exp |- k2 / ¢?dg exp [—§b2q2] (5.37)
3 / 1/]4 . 12 2 2 ).

Note here that we have worked in the center-of-mass system and assigned the out-
going mesons the momentum k.

Using the two body phase factor

dQ = ﬂfﬁ’fdnk (5.38)
VS

one can derive the decay width for one meson to two mesons

/ A% |T? (5.39)

In the rest frame of p meson for the reaction p° — n*7~, we have /s = M, = 0.77
GeV, Ey = Ey = Vk? + M, with M, = 0.14 GeV. We suppose, for simplicity, that
the p and m mesons have the same length parameter b, that is

b2 3/4
N=N=N,= («) (5.40)

Let b = 4.0 GeV~! as determined in the previous section, and take the experimental
value T = 0.15 GeV for the decay width of p° — n+7~, one finds that the effective

strength parameter A is predicted as

A~ 16 (5.41)
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5.2.3 e et to 777t reaction

The reaction e"e™ — 7~ may result from the processes:

(1) The e~e* pair annihilates into a virtual time-like photon, the virtual photon
decays into a gq pair, the gq pair is dressed by an additional quark-antiquark pair
pumped out of the vacuum to form a meson pair, as shown in Fig. 5.4a. The

transition amplitude might be expresses formally as
= (r"7 |V (*Po)[ga)(@alTle*e™) (5.42)

where (gq|T|ete™) is simply the transition amplitude of e"e™ to & primary quark
pair while (=7 *|V(3F;)|gg denotes the amplitude of the process of a Gq pair to a
n~nt pair. V(3P) is the effective vertex for creation and destruction of a quark-
antiquark pair in the nonrelativistic quark model 3F.

(2) The e~e* pair annihilates into a virtual time-like photon, the virtual photon
decays into a gq pair, the gq pair first form a vector meson, then the vector meson
decay into a meson pair. We refer the first process as one step reaction and the
second two step reaction, as shown in Fig. 5.4b. The transition amplitude of the

two step process take formally the form
Ty = (x~ 7 [V (CPo) o) {pGlo){olgq) (qa| Tle*e™) (5.43)

where {p|gq) is simplify the wave function of the intermediate meson p°, (p|G|p)
the Green function describing the propagation of the intermediate meson, and
(=t |V(3Ry)|p) the transition amplitude of p° annihilation into the 7~ 7% pair.

Based on the works in previous sections for the reactions p® — 7~7t+ and p® —
e~et, it is straightforward to work out the transition amplitude of the reaction e~e*t
to 7~7t in the two step model

5®
I; = / d3pp Tpomnt = E 7 Te-et—pp

— )

P
1
= Toon—n+ -E_-—_]W;Te_e-‘--’po (5.44)
The differential cross section might be written in the symbolic form
T 2
do l l dQ (5.45)
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where d@) is the Lorentz invariant phase factor
dQ = (2m)0(E} — E;)6(Pre+ + Pret )d3pps d¥pr-, (5.46)
and the incident flux F is for a general frame

F = |Up+ — Up-|

= 4\/(p,r+ “Pr-)?—mi_m2_ (5.47)

In the center-of-mass frame one can easily derive

dQ = (27r)£fz‘/_-fdnf (5.48)

where b = Iﬁe*‘l = Iﬁe"'a b= lﬁw"‘! = |[-):l|'_I’ and s = (Ee" + Ee+)2-

The total cross section of the reaction e”e* to 7~#* is finally derived

_ @mp; 2

%if_—fmz — 1) (5.50)

Note that only the P-wave contributes to the process since the spin of the interme-
diate meson p has spin 1. There is no free parameter since the length parameter
and the effective strength parameter have been nailed down respectively by the pro-
cesses p° — e~et and p® — ntn~. We present in Fig. 5.5 the prediction for the
cross section of the reaction e”e* to 7~ 7t in the model of the two step process. It
is found that there is no room for the one step process. The discrepancy between
the theoretical prediction and the experimental data [94] at higher energies could
be understood by considering the mixture of the p and w mesons.

One may conclude that the two step process is dominant over the one step

process.
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Fig. 5.4 The reaction ete™ — nt7~ in the one-step process (a), and the two-step
process (b).
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Fig. 5.5 Theoretical prediction (solid line) for the reaction ete™ — w¥7~ in the

3 Py model against the experimental data (circles).
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53 ee"to NN

It might be reasonable to suppose that for the e~e* — NN reaction the two step
process is dominant over the one step process, just like in the reaction of e~e* to
two mesons.

Here we study the two-step process in Fig. 5.6 that an e~e*t pair anuihilates
into a virtual time-like photon, and the photon decays into a gg pair, then the 7q
pair forms a virtual vector meson, finally the virtual vector meson is dressed by
two additional quark-antiquark pairs pumped out of the vacuum to form a baryon
pairs. The meson p(2150) with the quantum number I¢(J7C) = 1*(17~) is a good

candidate for such an intermediate state.

-
(2150)
©(2100) NN

Fig. 5.6 Electron-position annihilation into nucleon-antinucleon pairs in a two-step

process via intermediate vector meson states.
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The transition amplitude in such a two step process takes the form
T = (NNIVCR)VHVIGIV)(VIgq)(gq|Te*e™) (5.51)

Here (V|gq) is simplify the wave function of the intermediate vector meson which
can be both isospin I = 0 and 1 states, (V'|G|V) the Green function describing the
propagation of the intermediate vector meson, and (NN|V(3F,)|V) the transition
amplitude of the intermediate meson annihilation into a nucleon-antinucleon pair.
What one needs to evaluate is the transition amplitude (NN|V (3P)|V) since other
factors have been calculated in previous sections.

The transition amplitude of the reaction (NN

V(®P)|V) might be written in
the form

(NNIVER)IV) = (NN|VsVis|V)
= Y C(LJ,—8.,588.,1J.) - Meptor Myt Mupatiar  (5.52)
S

where the Clebsch-Gordon coefficient C(L J, — S.,5'S.,1J,) results from the spin-
orbital coupling of the intermediate meson having the orbital angular momentum
L = 0,2 and spin S’. The Vj; is defined as in eq. (5.29). Using the wave functions
defined in previous sections, one may derive for the color part
1 1 S | _
Meotor = 76'%'&-((11|z‘<<I2lj(%'kfﬁfﬂj%'@di'<q5|j'(<16|k'7§|Q7)a|q8)a

1
= W—?—)Gijkfi/j/k'5jj'5kk/5a5ai'

1
= -, (5.53

73 5.53)

for the spin-flavor part

10 1®
= (7]

N I ATt

58,

lr/1@ 1® 1@ (/1 16 1@
X |Ger ), 20 ) ol ez ), 05 ] )
2 J23,J56 | Je3 1/2 Jss 1/2

[ (1<2> 1(3)) 1(1)] [ (1(5) 1(6)) 1(4)} >F““°’
S ®= ® = ®llz ®= ® =
2 2 J23 2 1/2 2 2 Js6 2 1/2

Spin

S8,

TT:
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= 2) Y Culv,gu+v)C(gu+v,88.,858S,)

Joz 9

(iman (2)5 (D)3 013

< 55)1 (22)19 (2;) ‘]23’(11) Jas; >

(U2 925), (%%) 77 (J”-é) : (J23_> %;T>

((33)0 (33) 99| (33) 9 (33) 300) 554

and for the spatial part

Mot = [ TI &6 VigYiull = 5)6(& + &)Y(% ~ #)9OG - &)
V(7 — @)@ — §)8 (@ — )o@
(G +@+G—-E0O G+ g+ G+ k) (5.55)

where ¥, is the spatial wave function of the final NN state
—_ — 2 — — - 2
1 %-%\l 1 (612+(13—2(h
Uyy = exp|—=a exp |—=a® | ——%
o ° [ 2 ( V2 ) P12 \ V6

1, (6-&\ 1, (&% +d%— 2%\
exp[ 2a ( \/_2_> exp 2a G

and ¥,, the spatial wave function of the intermediate meson with

1 15
W,(§) = N,exp (—5 b2p2) (Z — 5b%p® + b4p2) (5.57)

Va(5) = Naexp (—5 87 09)? (§ - 9°) Yar. ) (559

In the above equations ¥, and ¥, are respectively for S-wave and D-wave mesons.
At the NN threshold, that is, k = 0, one may evaluate Mpasiq; analytically. For

the process with the intermeliate vector meson being S-wave, we obtain
Mapatiar = A*-4-(4m)-8- 6, (-1)"- N,N?
{50 [0 - 20074,8) + 148478, )
(4,0 [25(2,8) - 2024, 0) + 10176, 0)] ) (5:59)
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For the process with the intermediate vector meson being D-wave, we have

Mspatial =A% 16- (47T) -8 b2N8NI>2 I f(23 (1) ;f(6’ /8) - 4b2f(8>/6) (560)

with

_3 L
Vs ar

In the above equations o and 3 are constants making up of the length parameters

I C(10,10,20)C(1p, 1,2 4 + v) (5.61)

aandb

a = 2a?
B = 2b* + 6a’ (5.62)
The function f(n,u) is defined as
f(n,u) = /0 dz e (5.63)

We have now the transition amplitude of the process V — NN. The transition
amplitude of the reaction e~e* — NN is derived by inserting into eq. (5.51) all the
relevant parts which we have already in hands. Both the isospin 0 and 1 intermediate
vector mesons will contribute to the process e"et — NN. The ratio of the cross

sections of e"et — Pp to e"et — Tin take the form
olete = pp) |T(ete- = V(I =1) - NN)+T(ete” = V(I =0) — NN)|?

olete- —mn) |T(ete —» V(I =1) = NN) - T(ete — V(I =0) — NN)?
(5.64)

The above equation indicates that the ratio will be 1 if only the p(2150) is involved
as the the intermediate meson. There are clues [94, 95] of the existence of an w-like
meson lying in the energy region of NN threshold. The vector meson has isospin 0,
mass and width respectively around 2150 MeV and 240 MeV. The contribution of
the w(2150) should be included in our calculation.

The mesons p(2150) and w(2150) could be in the state 35S or 2D or the mixture of
the 3S and 2D states. It is found in our numerical calculation that the experimental

data prefer:
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(1) The w(2150) is in the 2D state;

(2) The p(2150) is the mixture of the 3S and 2D states.

In our calculation we take the values of the parameters A, B and X as predicted in
the previous sections and works by other groups, that is A = 3.0 GeV™!, B = 4.0
GeV™!, and A = 1.6. With the w(2150) in the 2D state and the p(2150) 25% in the
38 state and 75% in the 2D states, we derive

+ 0.65 nb

0.93 nb

olete” = pPp) =
olete” = 7mn) =
olete” — pp)

— ~ 0.70
o(ete™ — Tin)

(5.65)

The results are consistent with the experimental data.

1S p(770) | w(782)

25 | p(1450) | w(1420)

1D | p(1700) | w(1650)
3S or 2D | p(2150) | w(2100) ?

5.4 Discussions

It is interesting to have a look at the Particle Table [96] to check how the rho and
w mesons come in pairs. For each p meson except for p(2150), one always has one
w around with the similar mass, see Table 5.3. The work here strongly supports the

argument that there exist a w meson in the 13D, state with mass around 2100 MeV

and width around 300 MeV.
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Chapter 6
Looking Forward

It is honest to say that we have just performed researches in a small part of the
particle-antiparticle physics in this project. Considering the exist and coming ex-
perimental data and the successes of our researches in proton-antiproton bound
atomic states and electron-positron annihilation to nucleon-antinuclean pairs, we
would like to suggest that the following topics are quite promising:

(1) 77 and KK atomic states, probably also deep bound states;

(2) ee* annihilation at threshold energies into meson pairs and baryon pairs like
ar, KK, NN, AA, AA, LT, and so on;

(3) 7yy annihilation at threshold energies into meson pairs and baryon pairs like 7,
KK, NN, AA, AR, %, and so on.
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