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ABSTRACT: Various scarch directions have been applied to find a minimizer in an unconstrained
ninimization problem, such as steepest descent direction, MNewton direction, quasi-Newion
Jirections, conjugate gradient dircction, coordinate directions, etc. In the present investigation, some
of these directions ere linearly combined to produce a hybrid search direction for solving an
unconstraized minimization problem. Special characters of these directions in the hybrid direction
could iead to an improvement of the convergence speed and reduction in the number of function
evaluations in the iteration process. MNumerical tests on the bybrid directions are performed on the
standard test problems (Moré 1981), i particular those with variable dimensions. Comparisons are
also made between numerical results obtained from the methods using single dircctions and hybrid
directions. It has been found that the hybric divection method shows significant reduction in the
pumber of iterations and flrction evaiuations.

REYWCORDS: unconstrained minimization, quasi-Newton, copjugate gradient, stecpest descent,
hyorid directions

1. INTRODUCTION ;
Solving unconstrained ninimization problems have been continuously devetoped. The problems are
of interest theoretically and importance for applications. Some well-known and classical methods
are the steepest descent metbed, Newton method, conjugate gradient method and the quasi-Newton
meihods.  Some other methods such as optimization biseclion {(OPTBIS) method for imprecisc
function and gradient values (Vrahatis {996) and a dimension réducing (DROPT) optimization
method (Grapsa 1996) have also been developed. One common task that most of the methods shars
is how 1o obtain tke suitable search direction. A widely-used framework for solving uncenstrained
minimization problems is the line scarch procedure which requires a descent search direction and a
suitably-determined scaler or swep length along the search direction im each iteration. The search
directions are such as the stespesi descent, Mewton direction, quasi-Newton, conjugate gradient
directions. The criteria for cetermining a siep length are such as the Armijo’s rule, backiracking
technique (Dennis 1983), Wolfe conditions and strong Wolfe conditions. In the present
investigation, the line scarch framework is used by investigating the performances of various search
directions such as the steepest descent, Newton, quasi-Newton anc conjugate gradient directions.
These directions are also lnearly combined lo produce a hybrid direction and the line search is
performed along this hybrid direction with the mentioned criteria for determining the step lengih.
The idcas of searching for a minimizer along the hybrid dircczon ere motivated by the expanding
subspace preperty based on the conjugate gradicnt meihod for minimizing a convex quadratic

function, as described in Luerberger, 1954.
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. BYERID DIRZCTION METECD

Consider the unconstrained minimization problem
2@, o)
where f s twies continuously differentiable on R". The hybrid direction methed for solving (3 Vs
based on minimization of f cver a lirear variety X+, where Jx, is the current estimate of
minimizer of S and ¥, is the subspace spanned by a set of Iinearly insependent search directions at
X,y Aot ynd, € K™k <n. With the line search framework, the new estimate denoted by X, is of
the form,
=X, ;:{.Vk . {32}
where v, is a vector in Vyand A s a step length along v, determined by the crireria such o
Armijo’s yule or backtracking techoique. Suppose that eacly of o, d 00 d,, 15 8 descent ditection
then 50 is 4 linear combination
Ve —a(‘,d dad o and, - (3.3)
for any positive scalars &, ¢, ..., ¢, . The theoreiical considsration related. to the minimization of f
over «, 4V, s based on the case where flisa convex quadratic function (Sirisathienwaithana 2002),

The conszduatmu in the quadratic cade is u(lendud to sidve (3.1) by a local appraximation of f inthe
form

SO~ flx )+ VS (x ”(x—-x)% (-2 Y V2 flx )x - x,). (3.4)

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) upadi(: is used here o approximate the Hsssiaa in
(3.4). The search directiont in {3.2) is called the lybrid dircction as it is taken from a Inear
combination of the existing directions. The hybrid directions are of the foilowing forms,

(= (19" +yd%% 3 =00.1,...1 (3.5)
2y v=pd™ 2 d¥P y=001,.,1 (3.6)
3y v=d® + "™+ ¥, and (3.9
(D v=d® 2 (1= PdT 4 pd®, y=00.1.1 (3.8)
where 7, d ™ and ™% denote the steepest descent, conjugate gradient based on the Polak-Ribiere

choice of scalar as discussed in Mocedal 1999 and the BFGS quasi-Newton directions, respectively.

Hybrid Direction Algorithm

Given7: R™ > K, £ & C*, astaiting point x, & B, and ro/, &> 0. Atiteration, j=0,1,2,....

Step A, Generate the search directions, ¢y ,d) ,...,dL,;

e : - ; g ,

Sten B, Take a linear combination, v/ = crdf] + aldf’ b diL.

Step L. Check the descent property of v/ I V(% Y v < 0 go to Ktes ., if not, restart with the
steepest cescent direetion, v/ =V (x,}.

Siep . Perfomm the line search from x along v/ to obtain the admissible scalur A, and set the new
e e v — K /
eslimate as X, =X, ﬂulv :

Step K. Test the admigsibility ofx ;1T !;\Zﬁj’(x’m)fl < &and !le'-*l X, || < tol stop, clse go 1o Step A
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L

3, R

=t

by

~he choices of directions used in the implementation in Swep A. ate o] =d%,d/ =dj:'R and
. ;24
i = a,}w?(;s and the linear comhbinations used in Step B, are as described in (3.5)-(3.8). The line

saacch routings for determining the step length implemented here for comparison are used here the
wolfe.and strong Wolfe conditions as given in Algorithms 3.2 and 3.3 pp. 59-60 (Nocedal 1999). The
packtracicing tochniques are taken from Numericel Recipes in FORTRAN 77: The Ast of Scientific
Coraputing (Press 1986-1992). The Armijo™s line search s coded as given in Algorithm 1, in Vrahatis,
2000. The test problems are taien from the standasd st problems for unconstrained minimization
(Moré 1981). The computer codes ere in FORTRAN 20 and implemented on a FORTRAM
powerStation 4.0 at the computer lavoratory, School of Mathematics, Suranaree University of
Technofogy, Some numerical results of the performance of the hybrid directions (3.5)-(3.8) are showr,
in Tables 1 - 4, with v, IT and FE denoting the dimension of the test probiem, total number of
iterations and total number.of function evaluations; respectively.

Table 1 shows that as the dimension of the variably dimensioned function gets higher, the hybrid
dgirections {1 =33 ™ + 33 % with backiracking technique give significant reduction of IT and FE
comparing with the performances based on the single directions, d*’,d™and 47 | The hybrid
direction ¥d™F + 4% also gives batrer performences, similarly for &% + (1—1)d™ +yd ¥
Table 2 also shows the better performance of the hybrid.directions for the penalty function [

Table 1. Results for the Variably Dimensicned Function

Backiracking  Strong Woelfe  Wolfe Armijo

Directions n ¥
! It/ FB IT/FE 11/ FB IT/VE
7] 2 07955 T 9in 2271016 3271755
B2 - 20/ 9558 9/836 2271114 32/1759
BEGS - 26 /918 1211220 1341055 287902
(1) ¢1-7 PR= ¥ BFGS 0.5 o/ 459 97570 137682 3372010
: 0.3 121596 97662 137670 3871973
(2) ¥ Pr+ BEGS 0.2 12/598 01662 137670 3871973
0.4 97459 G/ 670 137682 3872010
(3) SDH+PR+BFGS - 137663 97844 22/ 37 32/ 1790
(3) SD+(1.% )PRY ¥ BFGS 0.4 71363 97636 137704 3812084
08 9/470 9/ 838 4572246 28/ 1567
3D 64 - 13/ 1154 1L 1834 2712371 3873495
PR - 137 1454 11/ 1834 27/ 2371 38/ 3495
BFGS - 32/2178 1312901 18/2838 A412575
(1} (1-7 PR+ 7. HEGS 0.6 117972 1271239 1371189 44 / 3950
0.3 1271045 1271228 1371147 ad /3907
() ¥ PR+ BFGS 0.2 1341117 12/ 1223 131177 4413907
0.4 117973 171239 1371189 4473950
(3) SDHPRABFGH - 107912 1171894 2702397 39/3532
{4) SD+(1- ¥ PRy ¥ BFGS c.) 117991 /1393 2512230 397366
.2 10/ 826 1371685 2171890 4173784
SD 23 - 2173248 /2949 2073171 4116657
BFG3 . 3474583 1776272 14/ 5110 56/ 1565
(1y {I- 7 PR+ ¥ BFCGS 0.2 13/ 2049 t1/2617 1672632 4777587
(2) ¥ PR+ BIGS 0.3 1271920 1172617 1672632 £777557
(3) SDPRHEFGS - 1271949 912957 20/ 3190 4176697
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Table 2, Resulls for the Penally Foncifon 1
i?!-aék’tfa{:-}-&—ng Strong Wolte Wo.fe Artniio
Directions n ¥ _ -
_ IT/FE IT/VE It/ F8 IT/FE
D 128 - civexye dhveige diverge divergd
PR - diverge 124 F 67037 diverge diverge
BFGS - 171722952 116 753541 327435434 121715887
() (4= PR+ BAGS 09 3873087 2375908 7577254 5547455
{2) » PR+ BFGS 0.5 43/5793 711214 4577065 &27150
(2} SD+PR+BFGS 44/ 5966 1194 43626 WS F7092 33 /7968
(4) SD<(I-y JPR+ ¥ BFGS 0.9 B474395 31/ 1885t 5778266 551754

Table 2 also shows that when the steepast descent of the conjugdrd direction is implemenited alone,
divergence occurs; but whén it is combiried with the BFGS direction; the hybrid directions give mn
better results in all cases. Tabled 3 shows the numerical results for the penalty fundtion I1.

numerical resulis show the simifar situation as in Table 2 That, is, wher: the con_]ug;}m directip
impleinented alone, the dw#‘rgﬂnw occurs; but when it is combined with BFGS dirtction; the rasull

hybrid directions {1y and (2) give vinch better fesults with the backtracking routine,

Table 3. Resnlts for the Penalty Funeton 11

Backtracking  Swong Wolle  Wolle Arnijo
DPleections no¥ )
It/ FE IT/FE IT/FE [T/ FE
5D e - Civerge diverpe diverge ‘diverge
PR # - diverge [58 /8066 divérpe 776 1 170749
BFGS _ - 1237 1 21445 248 1 134us TI0/25227 127 1237
(1) (1- PR+ ¥ BFGS 0.9 28175098 - 439721137 499/ 10098 214 14242
() ¥ PR+ BEGS 0.5 45/ 863 742/ 25780 [45% /21422 44179513
(3} SDHPRIBFGS - 29237155363 23IRI/PATI8 diverje 673 715351
(&} SDH{i- ¥ PR+ ¥ BFGS 2] tivarge 1187/ 54348 divirge B571933

The hybad divections are worsg Than the single direction in the case of thé Brown badly sca
funclion. The numerical resuits obtained here show the promising (rond of the hybrid directions
speding up-the process in locating a rainimizer of the objsctive function over a linear variety
serve as a basis for further theorctienl investization.
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