S2-015

Redetermination of Triethyl Phosphine Sulfide: A Commensurately Modulated Structure

Weenawan Somphon^a, Kenneth J Haller^a and A David Rae^b

- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000. Thailand.
- ^b Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia.

The preliminary work of the structure of triethyl phosphine sulfide, $SP(C_2H_3)_7$ was done by Merrssche, M, V, & Leonard, A. (1959). The parent structure has space group P6-mc with 1:1 disorder across the mirror plane (Fig. 1). There are two molecules per cell situated on C_1 screw related sites at 1/3, 2/3, C_2 and 2/3, 1/3, C_3 +1/2. They considered removal of the disorder by reducing the symmetry to C_3 - C_4 -destroying the C_4 -screw operations. Both of their models suffer from high anisotropic atomic displacement parameters in the C_4 -axis direction.

Data for the compound were recollected on a Kappa CCD area detector diffractometer. Synthetic hkn: n=0.1.2 precession photographs show weak reflections that double the a and b axes (Fig 2), leading to a $Ccm2_1$ orthorhombic space group with $a_p = 2a_p + b_p$, $b_p = b_p$, $c_p = c_p$ with four molecules per cell. It is possible to explain modulation of four molecules per cell in $Ccm2_1$: the primitive orthorhombic subgroups of $Ccm2_1$ are $Pna2_1$. $Pva2_2$. $Pnm2_1$ and $Pcm2_2$. Inspection of the synthetic precession photographs shows the n glide absence condition holds (0kT,k'+l'=2n+1) whereas the ciglide (0kT,l'=2n+1) and a glide (h'0l',h'=2n+1) absence conditions do not.

Taking account of the anisotropic displacement parameters described in the original determination, we first try to explain the extra reflections using space group *Pnm2*—with 3-fold twinning restoring the original hexagonal diffraction symmetry. This mode keeps the disordering of the ethyl chains but allows displacement of the molecules in the x and z directions. A further modulation is the partial ordering of the ethyl groups with molecules at sites separated by 0 or 1/2 in z which occurs for the *Pna2*—subgroup. The coexistence of the *Pnm2*, and *Pna2*—modes produces a local symmetry of *Pn* which with o-fold twinning also gives the observed hexagonal diffraction symmetry.

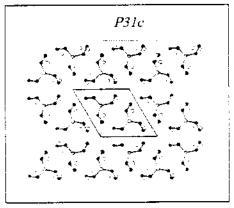
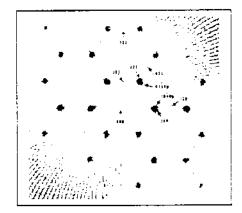



Figure. 1. The 1:1 disorder of $SP(C_2H_5)_3$ of the hexagonal space group P3/c (\bullet and \circ represent the two orientations).

Figure. 2. Synthetic precession hk! photographs that appear to double the a and b axes.

Keywords: Crystailography, Commensurate modulation structure, Modulated structure. Refinement problem

References

- 1. Meerssche MV & Leonard A (1959) Acta Cryst 12, 1053-4.
- 2. Rae AD (2000) RAELS00, Australian National University, Canberra, Australia.