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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Fourier transform profilometry (FTP) is one of the optical methods for 

measuring three-dimensional (3- D) shape of objects (Takeda et al., 1982; Takeda and 

Mutoh, 1983). In the FTP method, Ronchi grating pattern is subsequently projected 

onto an object surface and a flat reference plane. Their deformed patterns are recorded 

by using a camera. The deformation gives modulation of the grating phase by height 

profiles. To reconstruct the object profile, this phase information is extracted from the 

fundamental spectrum of the deformed grating by using Fourier transformation. 

However, the existence of a zero-order spectral component corrupts the desired phase 

information of the fundamental spectrum. To solve this problem, this spectrum is 

filtered out by using a rectangular band-pass filter. Since the rectangular filter has a 

sharp frequency response, the 3-D height profile reconstructed by using the 

conventional FTP may suffer from ringing artifacts, as a result, fine details of the 

surface profile are degraded. This is an inherent limitation of the conventional FTP.  

The FTP technique has been applied to the 3-D reconstruction of object surfaces 

having fine and coarse topographies. In dermatology, the FTP has been used for 

monitoring facial skins after laser-based skin treatment (Lalos et al., 2015). The skin 

topography measurement system was implemented by using a digital single-lens reflex 
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(DSLR) camera with its built-in flash as a light illumination source of Ronchi grating. 

The whole optical system weighted 1500 g and measured 270 mm135 mm160 mm, 

making it convenient to be employed as a handheld device. The FTP technique was 

used to reconstruct 360  the surface boundary of the object specimen for fluorescence 

molecular tomography (FMT) measurement in biomedical fields (Shi et al., 2013). It is 

a fact that although the FMT is promising in vivo tool for detection and diagnosis of 

diseases, the FMT cannot provide a 3-D surface profile of the object specimen as a 

boundary constraint. Although other computed tomography technology is available 

(Guo et al., 2010), it cannot be easily combined with the FMT system due to space and 

time limitations. In this application, the FTP was firstly used to reconstruct 360  the 

surface profile of the object. This full angle surface reconstruction was obtained by 

taking multiple frames of grating deformed by the object rotated at different angles. 

After the FMT measurement, the FTP reconstructed surface boundary was 

superimposed over the fluorescence image. As a result, the depth information of 

fluorochrome distribution in the object tissue can be accurately determined. In fluid 

dynamics, the FTP has also been used for studying free-surface water wave phenomena, 

which are caused by interaction mechanism between the underlying near-surface flow 

and external environment (Cobelli et al., 2009). In this study, a white liquid dye 

containing highly concentrated titanium oxide pigment paste was added into the water 

in a plexiglass container in order to enhance water’s light diffusivity. The plane 

sinusoidal surface wave was generated by a paddle wave generator placed on one end 

of the container, while the vortex wave was created by a rotating disk placed at the 

bottom of the container. 
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In order to solve the inherent drawback of the FTP, high-frequency and zero-

order components of the Fourier spectra were eliminated by using a quasi-sine 

projection and π-phase shifting technique (Li et al., 1990). In this method, the quasi-

sine projection generated by defocusing a lens system removed high-frequency 

components, while the π-phase shifting removed the zero-order spectrum. However, 

although this technique can improve three times higher reconstructable slope, an error 

may occur due to an imperfect defocusing process. Therefore, the FTP technique was 

modified by employing the sinusoidal grating, instead of the quasi-sine projection 

(Yi and Huang, 1997). In this modified FTP, two sets of the grating images deformed 

by the object and the reference are required to eliminate the zero-order component. In 

the first set of the deformed images, the recordings are done by the grating pattern 

without the π-phase shifting. The π-phase shifted grating pattern is used for recording 

the second set of the deformed image. The zero-order spectrum is eliminated by 

subtracting the π-phase shifted the grating image from the one without the π-phase 

shifting. When the zero-order spectrum is removed, the modified method improves 

accuracy and measurement range. These improvements are traded-off for a slower 

response due to many grating projections. To overcome this problem, a windowed 

Fourier transform has been proposed (Kemao, 2004; Zhong and Weng, 2004). In this 

technique, the fundamental frequency information extracted by using a Gaussian-

windowed Fourier transform. However, due to a stationary nature of the Gaussian 

window, which provides fixed spatially and frequency resolutions in the space-

frequency domain, the frequency extraction cannot be optimized. Furthermore, the use 

of continuous wavelet transforms has been proposed to solve this problem. Unlike the 

windowed Fourier transform, the wavelet transform is a multi-resolution signal 
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representation, which excels in non-stationary signal analysis. Although the Morlet 

wavelet (Zhong and Weng, 2005), the first-order derivative of a Gaussian function 

(DOG) (Gdeisat et al., 2006) and the Mexican hat wavelet (Li, Su, and Chen, 2009) 

have been used for eliminating the fundamental spectrum, how effective the use of the 

wavelet filter to eliminate the zero-order spectrum has never been rigorously studied. 

Consequently, their 3-D surface reconstruction performances are not well known. 

 

1.2 Significance of the Study 

This thesis studies the effectiveness of the elimination of the zero-order 

spectrum by using the three wavelet filters. Since this effect is related to the surface 

reconstruction, the 3-D reconstruction of the surface of isosceles triangular prisms will 

be experimentally conducted. The reason for using the triangular prism is that its slope, 

which determines the maximum range of the reconstruction, can be easily calculated. 

The study is done by evaluating the effects of the center frequency and the passband of 

the filters on the shape reconstructions. As a result, the most effective wavelet filter for 

the 3-D surface reconstruction can be determined. 

 

1.3 Research Objectives 

1.3.1 To study the effects of the center frequency and the width of the wavelet 

filter on the elimination of the zero-order spectrum. 

1.3.2 To compare 3-D shape reconstruction performances of the FTP by using 

wavelet filters. 
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1.4 Scope and Limitation of the Study 

1.4.1 The elimination of the zero-order spectrum and the reconstruction 

performances are experimentally studied. 

1.4.2 The Morlet, the DOG and the Mexican hat wavelets are employed for 

eliminating the zero-order spectrum. 

1.4.3 The test objects is isosceles prism with dimensions of 133.51 mm   

70.10 mm   42.71 mm. 

1.4.4 The reconstructed heights are compared with a direct contact 

measurement. 

 

1.5 Organization of the Thesis 

This thesis is organized as follows. In Chapter II, the principles of the FTP are 

reviewed. In Chapter III, the theory of wavelet transformation and its application to the 

filtering of the zero-order spectrum are discussed. In Chapter IV, experimental 

verifications of the FTP using the wavelet filtering are reported. Finally, the conclusion 

of this research work is presented in Chapter V. 

 



 

CHAPTER II 

FOURIER TRANSFORM PROFILOMETRY 

 

This chapter reviews the theory of the FTP required to understand the discussion 

in this thesis. The review starts with a discussion of an optical setup for implementing 

the FTP. An extraction of the modulated phase information in the spatial frequency 

domain using Fourier transformation is then presented.  

 

 

 

 

 

 

 

 

Figure 2.1 A crossed-optical geometry of the FTP. 

 

Figure 2.1 shows the geometry of an optical setup for implementing the 3-D 

FTP. It consists of two functional parts. The first part is the grating projection system, 

which is implemented by using an LCD projector. The second one is the detection 

system with a CCD camera used to capture the grating deformed by the object being 

studied. The implementation is based on a crossed optical axes setup, in which their 
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axes intersect in the reference plane R  with the distance 0l  from the entrance pupil of 

the camera. The optical axes form a projection angle   with the spatial separation .d  

The camera records the grating patterns deformed by the object and the screen 

given by 

1 0( , ) ( , ) ( , )cos[2 ( , )]g x y a x y ba x y f x x y = + +                     (2.1) 

and 

0 0 0( , ) ( , ) ( , )cos[2 ( , )]g x y r x y br x y f x x y = + + ,                   (2.2) 

respectively. Here, ( , )a x y  and ( , )r x y  are irradiances by non-uniform light reflection 

caused by the object and by the screen, respectively. b  is the modulation factor and 0f  

is the fundamental frequency of the grating, which is inversely proportional to the 

grating pitch 0p  measured at the reference plane R. ),( yx  is the phase distortion 

caused by the object, while ),(0 yx  is the phase of the screen. 

Figures 2.2(a) and (b) show the grating patterns deformed by the screen and the 

isosceles prism object, respectively. When the grating pattern is projected onto the 3-D 

surface, the grating pattern is deformed by the height profile. Owing to the angle formed 

by the camera and the projector, the deformed grating pattern has different frequency 

and intensity. The corresponding signals scanned at one row of the deformed gratings 

are shown in Figures 2.2(c) and (d), respectively. 

For the sake of simplicity of the discussion, Eq. (2.1) can be rewritten as 

*
1 1 0 1 0( , ) ( , ) ( , )exp[ 2 ] ( , )exp[ 2 ]g x y a x y c x y j f x c x y j f x = + + − ,              (2.3) 

and Eq. (2.2) 
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*
0 0 0 0 0( , ) ( , ) ( , )exp[ 2 ] ( , )exp[ 2 ]g x y r x y c x y j f x c x y j f x = + + − ,              (2.4) 

where 1( , ) 0.5 ( , )exp[ ( , )]c x y ba x y j x y=  and 0( , ) 0.5 ( , )exp[ ( , )]c x y br x y j x y= . 

 

 

 

 

 

 

 
                                   (a)                                                               (b) 

 

 

 

 

 

 

 

 

 
                                   (c)                                                               (d) 

Figure 2.2 Grating patterns deformed by (a) the screen and (b) the object. Their 

                    corresponding signals scanned at the line 100th from the patterns in (c) 

                    Figure 2.2(a) and (d) Figure  2.2(b), respectively. 

 

Fourier transform of a 1-D signal scanned from ),(1 yxg  and 0( , )g x y  are given by 

*

1 1 0 1 0( , ) ( , ) ( , ) ( , )x x x xG f y A f y C f f y C f f y= + − + + ,                       (2.5) 

*

0 0 0 0 0( , ) ( , ) ( , ) ( , )x x x xG f y R f y C f f y C f f y= + − + + ,                       (2.6) 
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where ( , )xA f y  and ( , )xR f y  describes the zero-order spectrum of non-uniform light 

reflection. 0( )xC f f , y−  and 0( )*
xC f f , y+  represent the fundamental frequencies 

which contain the phase information. As shown in Figure 2.3, they appear on the left 

and the right sides of the zero-order spectrum. Spectral distribution can be obtained 

from Eq. (2.1) and (2.2). 

 

 

 

 

 

 

 

 

 
                                    (a)                                                               (b) 

Figure 2.3 (a) Absolute values of the spectra 1( , )xG f y  and (b) 0 ( , )xG f y  of the 1D  

                   signals shown in Figures 2.2(c) and 2.2(d), respectively. 

 

In order to extract the desired phase ( )x, y , the fundamental spectrum is 

selected by using a rectangular filter. By taking an inverse Fourier transform of the 

filtered fundamental spectrum, a new signal can be obtained from the grating patterns 

deformed by the object and the screen as 

 1 0
ˆ ( , ) 0.5 ( , ) exp [2 ( , )]g x y ba x y j f x x y = +                       (2.7) 

and 

 0 0 0
ˆ ( , ) 0.5 ( , )exp [2 ( , )]g x y br x y j f x x y = + ,                    (2.8) 

respectively. A complex logarithm of their product 
*

1 0
ˆ ˆg g  gives 
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* 2
1 0

ˆ ˆlog[ ] log[0.25 ( , ) ( , )] ( , )g g b a x y r x y j x y = +  ,                (2.9) 

where 0( , ) ( , ) ( , )x y x y x y   = −  is the derived phase information. Since the phase 

calculated numerically by a computer has a range value from −  to  , the phase needs 

to be unwrapped (Takeda, Ina, and Kobayashi, 1982). The height distribution are 

mathematically related to the derived phase ( , )x y  by (Takeda and Mutoh., 1983) 

dfyx

yxl
yxh

0

0

2),(

),(
),(





−


=                                          (2.10) 

and the maximum reconstructed height is determined by 

0

max

( , )
<

3

lh x y

x d




.                                       (2.11) 

Since this is the maximum slope of the object profile that can be reconstructed by the 

conventional FTP, when the slope exceeds this limitation, the fundamental spectrum 

overlaps the zero-order and higher components, yielding wrong reconstruction. 

 



 

CHAPTER III 

WAVELET TRANSFORMATION 

 

In this chapter, the theory of wavelet transform is reviewed. Three analyzing 

wavelets that are Morlet, the first-order derivative of Gaussian function (DOG) and the 

Mexican hat functions are discussed. Transfer functions of the three wavelets are 

derived to define their center frequencies and passbands. 

 

3.1 Definition of wavelet transformation 

Wavelet is a wave-like oscillation function which has a short duration. It is 

capable of providing simultaneously time and frequency information. Therefore, the 

wavelet can be employed to analyze non-stationary signals. The wavelet transforms of 

a signal pattern ( )g x  is defined as (Watkins, 2012; Yan et al., 2009) 

*1
( , ) ( )g

x
W s w g x dx

ss






−

− 
=  

 
 ,                                   (3.1) 

where ( )w x  is the continuous function in both space and frequency domains called the 

mother wavelet and   stands for the complex conjugate.   is the window shifting 

factor, while s  is the scale factor. 

The DOG wavelet generated from a Gaussian function ( )2 2exp ( ) 2G x = −  is 

defined as (Gdeisat, Burton, and Lalor, 2006) 

2

1 2 2 2
1 1

( / )
( ) exp

2
G

x x s
w x

s  

 
= − − 

 
.                                      (3.2) 
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As for the Mexican hat wavelet, it is given by (Li, Su, and Chen, 2009) 

         
2 2

2 2 2 2 2 2
2 2 2

1 ( / )
( ) 1 exp

2
G

x x s
w x

s s  

   
= − − −   

   
,                         (3.3) 

while the Morlet wavelet is defined as (Zhong and Weng, 2005) 

2

2
3

( / )
( ) cos(2 )exp

2
M c

x x s
w x f

s




 
= − 

 
.                             (3.4) 

Here, cf  is the center frequency of Morlet wavelet. 2
1 , 2

2  and 2
3  are the variance of 

the wavelet functions in Eqs. (3.2), (3.3) and (3.4), respectively. Multiresolution 

analysis of the wavelet transform is done by changing the scale factor, yielding 

bandpass filters with different center frequencies and passbands. 

In the frequency domain, the transfer functions of the DOG, the Mexican hat 

and the Morlet wavelet can be expressed as 

2 2 2 2
1 1 1( ) 2 2 exp( 2 )G x x xW f f s f s    = − ,                            (3.5) 

2
2 2 2 2 2 2

2 2( ) 4 2 exp( 2 )G x x xW f f s f s    = − ,                         (3.6) 

and 

2

2 2
3

3

2
2

( ) 2 exp
2 2

c
x

M x

f
f s

s s
W f


 




   
 −  

   = −
  
   
   

,                  (3.7) 

respectively. The center frequency of the wavelet filters can be determined from these 

transfer functions by setting their first derivatives equal to zero. Consequently, the 

center frequency of the DOG wavelet is equal to 

1

1

1

2
cf

s 
= ,                                                  (3.8) 
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while Mexican hat wavelet gives 

2

2

1

2
cf

s 
= .                                               (3.9) 

In the case of the Morlet wavelet, it’s center frequency is 

3
c

c

f
f

s
= .                                                     (3.10) 

Figure 3.1(a) shows plots of the wavelet signals for the scale 1s = . The solid, 

the dash-dot and the dash lines represent )(1 xwG , )(2 xwG  and )(xwM , respectively. 

The corresponding transfer functions of the three wavelets are shown in Figure 3.1(b). 

They are plotted at the same center frequencies 1 2 3 9 lp/mm.c c cf f f= = =  This 

frequency value is set by adjusting their variances to be 1 0 01775,. = 2 0.025 =  and 

3 0.07, =  respectively.  

 

 

 

 

 

 

 

 
(a)                                                           (b) 

Figure 3.1 (a) The wavelet signals 1( )Gw x , 2 ( )Gw x  and ( )Mw x  for the scale 1=s  and  

                  (b) their corresponding transfer functions. 
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In this study, the filter passband is defined as the width where the amplitude 

transfer function falls to 2e−  times the maximum value. In the case of the DOG wavelet, 

the passband is given by 

1

1

0.40607
GW

s
 = .                                           (3.11) 

The passband of the Mexican hat and the Morlet wavelets are found to be 

2

2

0.42619
GW

s
 =                                             (3.12) 

and 

3

2
MW

s 
 = ,                                             (3.13) 

respectively. It can be understood from Eqs. (3.8) - (3.13) that when the scale factor s  

is high, the filter has a low center frequency and narrow passband than the filter with a 

low scale. 

It is obvious that the three wavelets have different responses in the space and 

the spectrum domains. Figure 3.1(b) reveals that firstly, besides having the broadest 

passband, the DOG wavelet starts linearly from the zero frequency. This low transition 

band may affect its effectiveness in the background elimination. Secondly, the Mexican 

hat wavelet has also broad passband with a quadratic response in both transition bands. 

Thirdly, in comparison with the others, the Morlet wavelet has a symmetrical transfer 

response and localized passband that is independent upon the center frequency. 
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3.2 Wavelet filtering in the FTP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Diagram of flowchart in the FTP processing by using the wavelet filter. 

 

Figure 3.2 shows a diagram of a flowchart to use wavelet filters in the FTP. 

First, the grating pattern images of the screen and the object are recorded. The 1D cross-

sectional signals of the gratings deformed by the screen and the object are digitally 

scanned, yielding 1g  and 0g  of Eqs. (2.1) and (2.2), respectively. The two signals and 

the analyzing wavelet are then Fourier transformed, giving 1( )xG f , 0 ( )xG f  and 

Record the grating 

patterns deformed by the 

screen and the object 

Scan the deformed grating 

patterns to obtain 1D 

signal patterns  

Fourier transformations of the 

two signals  to 

produce , respectively 

Generate the analyzing 

wavelet signal  

Fourier transform of the 

wavelet signal to obtain  

Filtering process  and  

3D reconstructions 

Phase extractions 

Inverse Fourier transforms of  and  
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( )xW f . The filtering of the fundamental spectra is done by multiplying 1( )xG f , 

0 ( )xG f  by ( )xW f , respectively.  

Figure 3.3 illustrates the filtering process of 1( )xG f  by the Morlet wavelet 

( )M xW f . After the inverse Fourier transformation of the product, the desired phase 

extraction and the height reconstruction are performed by using the same step of the 

conventional FTP (Takeda and Mutoh., 1983). 

 

 

 

 

 

 

 

 

Figure 3.3 The fundamental spectrum filtering 1( )xG f  by the Morlet wavelet filter 

                   ( )M xW f . 

 

  

 

 

 



 

CHAPTER IV 

EXPERIMENTAL VERIFICATIONS 

 

This chapter presents the experimental verifications of the FTP using the 

wavelet filters with the isosceles prisms as test objects. The effects of the center 

frequency and passband of the wavelet filter on the 3D shape reconstruction will be 

studied with respect to the pitch of the projected grating and the projection angle. In 

order to assess quantitatively the reconstruction performance, the FTP results are 

compared with those of the direct contact method. 

 

4.1 Experimental Setup 

 

 

 

 

 

 

 

 

 

Figure 4.1 A schematic diagram of the FTP. 
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Figure 4.1 shows the schematic diagram of the optical setup for conducting this 

study. The grating pattern digitally generated by a computer system was projected onto 

the screen by using an LCD projector with a distance 0l = 1050 mm away. The projected 

grating pattern on the screen was recorded by using a CCD camera whose axis makes 

the angle   with respect to the projector axis. Two angles of projection in this study 

were 4° and 28° Consequently, the maximum measurable shape at these two angles was 

0.62. After saving the recorded grating patterns, the desired phase information was 

numerically extracted for the shape reconstructions. The instrumentations used in this 

study are listed as follows: 

 

 

 

 

 

 

 

Figure 4.2 Isosceles prism with a slope of 0.64. 

4.1.1  LCD projector (Toshiba, TLP-X2000) with resolution 1024768 pixels. 

4.1.2  CCD camera (Hamamatsu, C5948) with resolution 640 480  pixels and 

sensor area 8.3 mm 6.3 mm . 

4.1.3  Camera lens (AF Nikkor, f = 50 mm, /1.4f D). 

4.1.4  Digital height gauge (Moore and Wright, MW 190-30DBL), resolution 

0.01 mm. 

133.51 mm 

42.71 mm 

70.10 mm 
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4.1.5  An isosceles prism object is shown in Figure 4.2 with the dimension of 

133.51 mm   70.1 mm   42.71 mm and the slope 0.64. 

4.1.6  MATLAB software version 2017a and Mathematica 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 An optical setup of the FTP. 

 

4.2 Calibration of the wavelet filters 

The effectiveness of the wavelet filters for eliminating the zero-order spectrum 

was experimentally studied by using the optical setup shown in Figure 4.3. The 

sinusoidal gratings with the pitches 0p of 4.84 mm and 3.24 mm were subsequently 

projected onto the screen at the two angles. The deformed grating images 0 ( , )g x y  were 

saved into tiff format. Figures 4.4(a) and (b) show the grating pattern with the pitch of 

Screen 
Object 

CCD 

camera 

LCD 

projector 
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4.84 mm deformed by the screen at the projection angle 4 =  and its fundamental 

spectrum, respectively. In this study, the peak of the fundamental spectrum was used to 

determine the center frequency of the corresponding wavelet filters. 

 

 

 

 

 

                                   (a)                                                                    (b) 

Figure 4.4 (a) Image of the grating pattern with the pitch 0p = 4.84 mm deformed by 

                   the screen and (b) its fundamental spectrum. 

 

Table 4.1 Center frequencies of the grating pattern deformed by the screen with respect 

                 to the projection angles 4 = and 28 . 

 Center frequency cf  (lp/mm) 

Angle  ( )  0
p =4.84 mm 

0
p =3.24 mm 

4 3.916 5.798 

28 3.464 5.120 

 

 

 



21 

 

Table 4.1 summarizes the center frequencies of the deformed gratings with the 

different pitches 0 4.84 and 3.24 mmp =  at different angles of projection 4 = and 

28 . It is clear that for the same grating pitch, the bigger projection angle causes the 

lower the center frequency. 

 

4.2.1 The effect of the center frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Effects of the scale factor s  on the center frequency of the Morlet wavelet 

                   filter. 

 

In this study, the center frequency of the mother wavelet filters was set to be 

equal to the center frequency of the deformed grating to be analyzed, while the scale 
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factor s  was set to be unity. According to the multiresolution property of the wavelet 

transform, the scale factor can be finely adjusted in order to have an accurate center 

frequency. 

Figure 4.5 shows the effects of the scale factor on the center frequency of the 

Morlet wavelet filter. The dash-dotted line represents the spectrum of the grating pattern 

with the pitch 0p = 4.84 mm, which was deformed by the isosceles object at the angle 

4 . =  The center frequency of the mother wavelet was cf = 3.916 lp/mm. The solid 

line represents the transfer functions of the wavelet filter with the scale 1s =  and the 

variance 3 = 0.20. The dashed line is for the transfer function with the scale 0.8s =  

and the variance 3 = 0.25, while the dotted line is for the scale 1.2s =  and the variance 

3 = 0.17. In order to study the effect of the center frequency, the passband of the three 

filters are set to be equal. According to Eq. (3.11), this is achieved by defining different 

variance value for each wavelet filter. The center frequency of filters will be lowered 

when the scale becomes higher. 

Figure 4.6 shows the effect of the center frequency on the shape reconstruction 

of the prism. It is obvious that when the center frequency of the wavelet filter is lower 

than that of the fundamental spectrum, high-frequency components of the fundamental 

spectrum are discarded and high-frequency components of the zero-order spectrum are 

included by the wavelet filter. As a result the reconstructed peak is distorted and the 

two sides have a curved surface. The left vertex is rounded, while the right one 

fluctuates. In the case of higher center frequency, the reconstructed shape is also 

degraded. This is caused by the fact that unwanted high-frequency components greater 

than that of the fundamental spectrum are included by the wavelet filter, while low-
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frequency components of the fundamental spectrum are discarded. This causes 

fluctuations of the left vertex and smoothing on the right one. Thus, only when the 

center frequency of the filter matches to that of the fundamental spectrum that is the 

scale factor s =1, the 3-D shape reconstruction can be optimized. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Reconstructed prism profiles by using the Morlet wavelet filters with the 

                   center frequency defined in Figure 4.5. 

 

4.2.2 The effect of the filter passband 

Figures 4.7 shows the effects of varying the variance 3  on the passband of 

Morlet wavelet for the scale s =1. The dotted, the solid and the dashed lines represent 

the filter passbands with MW = 4.90 lp/mm, 3.18 lp/mm and 2.36 lp/mm 
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corresponding to the variances of 3 = 0.13, 0.20 and 0.27, respectively. The dash-

dotted line represents the same spectrum of the deformed grating pattern shown in 

Figure 4.5. According to Eq. (3.13), the passband becomes narrow when the variance 

3  has a large value. The effects of the passband on the shape reconstructions can be 

seen in Figure 4.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Effects of the variance 3  on the Morlet wavelet filter passband ( ).M xW f  

 

When the passband of the Morlet wavelet filter is either broader or narrower 

than the fundamental spectrum undesired, low and high-frequency components of the 

grating deformed by the object are included in the reconstruction process. 

Consequently, the wrong reconstruction is obtained such as the degradations of the 
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peak, the vertex and the side surfaces are high. Since the spectral width of the 

fundamental spectrum cannot be exactly defined, the filter passband and its center 

frequency are very important factors for the 3-D shape reconstruction. Note that in the 

case of the DOG and the Mexican hat wavelets, the filter passband depends on the 

center frequency of the filter. When the center frequency is low, the filter passband is 

narrow. While it is broad when the center frequency is high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Reconstructed prism profiles by using the Morlet wavelet filters with the 

                   passband defined in Figure 4.7. 
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4.3 Experimental results 

4.3.1 Shape reconstructions of the prism object 

4.3.1.1   Small projection angle 

 

 

 

 

 

 

 

                                   (a)                                                                  (b) 

 

 

 

 

 

 

 

                                   (c)                                                                  (d) 

Figure 4.9 Grating patterns deformed by the prism object in situation that the projected 

                  gratings have of the pitch of (a) 4.84 mm and (b) 3.24 mm at the angle 

                  4 . =  Intensities scanned at the 240th row of (c) Figure (a) and (d) Figure 

                  (b), respectively. 

 

Figure 4.9 shows the grating patterns deformed by the prism object at the angle 

projection 4 . =  In Figure 4.9(a), the projected grating pattern has the pitch 
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0 4.84 mmp = , while the pitch in Figure 4.9(b) is 3.24 mm. The corresponding 1-D 

cross-sectional intensities scanned at the 240th row are shown in Figures 4.12(c) and 

(d), respectively. It can be observed that the grating pattern incident on the left side of 

the prism is elongated, while the one on the right side is compressed. The intensity on 

the prism left side is lower than the right side. This is because of the difference of the 

optical path length from the camera to the two prism sides. The longer the path length, 

the lower the light intensity due to the broader area. It is clear also that the higher the 

grating frequency, the lower the intensity of the deformed grating. 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.10 Filtering of the fundamental spectrum of the grating pattern ( 0p =4.84 mm) 

                    deformed by the prism at the angle 4 = via 1( ),G xW f  2 ( ) G xW f and 

                    ( ).M xW f  
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        Digital height gauge 

         

Figure 4.10 illustrates the fundamental spectrum filtering for the background 

elimination and the surface reconstruction by using the wavelet filters in the situation 

that the projected grating has the pitch 0p =4.84 mm. The dashed, the dotted, and the 

solid lines represent the filters 1( ),G xW f  2 ( )G xW f  and ( ),M xW f  respectively. They 

have the same center frequency of 3.916 lp/mm, while their passbands are 9.90 lp/mm, 

7.48 lp/mm and 2.65 lp/mm, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Reconstructed of prism profiles from the deformed grating ( 0p =4.84 mm) 

                    at the angle 4 =  via 1 2( ),  ( )G x G xW f W f  and ( )M xW f . 

 

Figure 4.11 shows the prism profiles reconstructed by using the three wavelet 

filters compared with the direct contact measurement. The dashed, the dotted and the 
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solid lines represent the reconstructions by using 1( ),G xW f  2 ( )G xW f  and ( ),M xW f  

respectively. The results show that although the reconstructed peak has the wrong 

height, the Morlet wavelet ( )M xW f  can reconstruct the prism and the reference plane 

surfaces smoother than the others. This is because its narrow passband discards high-

frequency components of the prism.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Filtering of the fundamental spectrum of the grating pattern ( 0p =3.24 mm)  

                    deformed by the prism at the angle 4 =  via 1( ),G xW f  2 ( )G xW f  and 

                    ( ).M xW f  
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Figure 4.13 Reconstructed prism profiles from the deformed grating ( 0p =3.24 mm) at 

                    the angle 4 =  via 1 2( ),  ( )G x G xW f W f and ( ).M xW f  

 

The effective filtering of the fundamental spectrum by using the wavelet filters 

in the situation that the projected grating has the pitch 0p =3.24 mm is illustrated in 

Figure 4.12. The dashed, the dotted and the solid lines represent the 1( )G xW f , 2 ( )G xW f  

and ( )M xW f  having the passbands of 15.04 lp/mm, 10.93 lp/mm and 3.54 lp/mm, 

respectively. According to Table 4.1, the center frequency of the fundamental 

frequency is 5.798 lp/mm. Therefore, the separation of the fundamental and the zero-

order spectra is bigger than that of Figure 4.10. Since the center frequency of the 

wavelet filters must be equal to that of the fundamental spectrum, their passbands 
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broaden. The result of filtering higher components of the zero-order spectrum corrupts 

the fundamental spectrum. 

Figure 4.13 shows the prism profiles reconstructed by using the three wavelet 

filters compared with the direct contact method. It is apparent that when the 

fundamental and the zero-order spectra are well separated, the two sides of the prism 

can be smoothly reconstructed. However, since the broader passbands of the filters 

1( )G xW f  and 2 ( )G xW f  include high-frequency components of the zero-order spectrum, 

the right surfaces around the vertex and the base could not be correctly reconstructed. 

 

 

 

 

 

 

 

Figure 4.14 The ideal reconstruction of height differences.  

 

In order to compare the reconstruction performances of the three wavelets, the 

differences between the heights measured by the direct contact method and the wavelet-

based FTPs are calculated. Figure 4.14 shows a distribution of ideal height differences 

represented by the circle symbols for all points of measurement. In this error-free height 

reconstruction, the relation between the height difference in the y-axis and the position 

in the x-axis can be mathematically expressed by using a linear equation y = 0 

represented by the dashed line. This is valid because the height difference is equal to 
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zero. In the case of non error-free reconstructions, the relationship is given by y = ax+b, 

where a represents the distribution of the height differences and b corresponds to the 

average value of the differences for a is much smaller than unity. The linear equation 

of the height difference distribution can be calculated by using the linear regression 

(Douglas et al., 2012).  

2

1 1

( )( ) ( ) ,
n n

i i i

i i

a x x y y x x
= =

= − − −                                (4.1) 

where ix  is ith the position of the difference in the x-axis, x  is the mean of ix . iy  is the 

value of the ith difference in the y-axis and y  is the mean of .iy  The value of the factor 

a may be zero, positive or negative. When the factor a is equal to zero, the prism 

reconstruction has symmetrical height differences with respect to the peak position. The 

positive a means the height differences on the left side of the reconstructed prism profile 

has a lower value than those on the right side. In the case of the negative value, the right 

differences are higher than those on the left side. This implies that the smaller the factor 

a and b, the better the height profile reconstruction. 

Figures 15(a), (b) and (c) show comparisons of the height differences shown in 

Figures 4.11 and 4.13 by using the wavelet filters 1( ),G xW f  2 ( )G xW f  and ( )M xW f  for 

different center frequencies, respectively. In general, the wavelet filters having the high 

center frequencies have lower reconstruction performance than those with the lower 

ones. This is because although the spectral separation between the zero-order and the 

fundamental spectra is wider, the corresponding filter passband becomes broader. 

Consequently, the spectral leaking from the zero-order spectrum and the unwanted 

high-frequency components corrupt the fundamental spectrum. In the case of the DOG 

wavelet, the passband is the broadest, therefore, its reconstruction performance is the 
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lowest. The Mexican hat can reconstruct the sharpest prism peak among others. In 

contrast, although its peak reconstruction has a high error, the Morlet wavelet has the 

lowest average of the height differences, regardless of the center frequency values. 

 

 

 

 

 

 

 

 

(a)                                                                 (b) 

 

 

 

 

 

 

                                                                      (c) 

Figure 4.15 Comparisons of the height differences of the reconstructed prism at the  

                     angle  = 4 for different center frequencies of (a) 1( ),G xW f  (b) 2 ( )G xW f   

                     and (c) ( ),M xW f  respectively. 

 

Table 4.2 summaries the reconstructed performance of the three wavelets at the 

small projection angle as a function of the center frequency. The wavelet DOG and the 

Mexican hat are good in the reconstruction of the prism peak due to the broad 
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passbands, while the Morlet wavelet has the lowest error because it could reconstruct 

the vertex and the prism side better than the others. 

 

4.3.1.2  Large projection angle 

 

 

 

 

 

 

                                   (a)                                                                   (b) 

 

 

 

 

 

 

 

                                    (c)                                                                  (d) 

Figure 4.16 Grating patterns deformed by the prism object in situation that the 

                       projected gratings have the pitch of (a) 4.84 mm and (b) 3.24 mm at the 

                       angle 28 . =  Intensities scanned at the 240th row of (c) Figure (a) and 

                       (d) Figure (b), respectively. 

 

 



35 

 

N
o
rm

al
iz

ed
 

 a
n
d
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Filtering of the fundamental spectrum of the grating pattern ( 0p =4.84 mm) 

                    deformed by the prism at the angle 28 =  by using 1( ),G xW f  2 ( )G xW f  

                    and ( ).M xW f  

 

Figures 4.16(a) and (b) show the grating patterns 0p =4.84 mm and 3.24 mm, 

deformed by the prism at the projection angle 28 , =  respectively. Their 1-D cross-

sectional intensities scanned at the 240th row are plotted in Figures 4.16(c) and (d), 

respectively. In comparison with Figure 4.9, it is clear that the pitch of the deformed 

grating pattern on the left and the right sides are obviously different, because of the 

significant difference between the optical path lengths from the projector to the two 

sides of the prism object. Therefore, the fundamental spectrum of the deformed grating 
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        Digital height gauge 

         

pattern is broader than that caused by the smaller projection angle. Consequently, its 

center frequency becomes lower.  

This can be observed from Figure 4.17, which illustrates the spectrum filtering 

by the three wavelet filters. In this figure, the projected grating had the pitch 0p = 4.84 

mm. Each filter is represented by the same type of line described in Figure 4.9. The 

passbands of 1( ),G xW f  2 ( )G xW f  and ( )M xW f  are 8.83 lp/mm, 6.56 lp/mm and 4.55 

lp/mm, respectively, with the same center frequency of 3.464 lp/mm. Since the center 

frequency of the wavelet filters reduces their corresponding passbands become narrow. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Reconstructed prism profiles from the deformed grating ( 0p =4.84 mm) at 

                    the angle 28 =  via 1 2( ),  ( )G x G xW f W f and ( ).M xW f  
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Figure 4.19 Filtering of the fundamental spectrum of the grating pattern ( 0p =3.24 mm) 

                    deformed by the prism at the angle 28 =  by using 1( ),G xW f  2 ( )G xW f  

                    and ( ).M xW f  

 

Figure 4.18 shows the reconstructed prism profiles from the deformed grating 

pattern 0p =4.84 mm at the projection angle 28 =  by using the wavelet filters. The 

dashed, the dotted and the solid lines represent the filters 1 2( ),  ( )G x G xW f W f and 

( )M xW f  having the passbands of 8.83 lp/mm, 6.56 lp/mm and 4.55 lp/mm. Owing to 

the low center frequency, most high-frequency components of the fundamental 

spectrum are discarded and more unwanted zero-order spectrum components are 

included in the filtering. As a results the prism profiles reconstructed by using the three 
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filters have asymmetrical shape, curved side surface, non-zero base and wrong peak 

heights. 

Figure 4.19 shows the filtering of the fundamental of the grating pattern  

( 0p =3.24 mm) deformed by the prism at the angle 28 =  by using the three wavelet 

filters. The dashed, the dotted and the solid lines represent the 1( ),G xW f  2 ( )G xW f  and 

( ),M xW f  whose passbands are 13.10 lp/mm, 9.69 lp/mm and 5.31 lp/mm, respectively. 

They have the same center frequency of 5.120 lp/mm. Since the fundamental spectrum 

has a high center frequency, broadening of its spectral width may be less affected by 

the zero-order spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Reconstructed prism profiles from the deformed grating ( 0p =3.24 mm) at  

                     the angle 28 =  via 1 2( ),  ( )G x G xW f W f and ( ).M xW f  
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Figure 4.20 shows the reconstructed prism profiles by using the wavelet filters. 

The surfaces of the left and right sides prism are smooth and their reconstructed heights 

are in better agreement with the direct contact measurement. However, the base near 

the two vertices and the peak height cannot be correctly reconstructed. These may be 

caused by the fact that the wavelets 1( )G xW f  and 2 ( )G xW f  include not only the zero-

order spectrum components, but also the unwanted high-frequency components. 

 

 

 

 

 

 

 

                                   (a)                                                                 (b) 

 

 

 

 

 

 

                                                                      (c) 

Figure 4.21 Comparisons of the height differences of the reconstructed prism at the 

                     angle  = 28 for different center frequencies of (a) 1( ),G xW f  (b) 2 ( )G xW f  

                     and (c) ( ),M xW f  respectively. 
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Figures 4.21(a), (b) and (c) show the height differences produced by the FTP 

reconstructions at the big projection angle using the three wavelets with different center 

frequencies. It is clear that the average of the height differences is higher than that 

obtained by the small angle. This is because the big projection angle broadens the 

fundamental spectrum. When the center frequency of the deformed grating is low, the 

broaden fundamental spectrum overlaps with the zero-order spectrum. The summary of 

the reconstruction performance of the three wavelet filters is presented in Table 4.3. 

Regardless of the shapes of the peak, the vertex and the prism side, it is apparent that 

the Morlet wavelet has the lowest average of the height differences. 

In summary, the experimental results show that the wavelet filters can be used 

for the FTP reconstruction from the deformed grating patterns with a small pitch that 

are recorded at the small projection angle. When the spectral leak from the zero-order 

and the unwanted high-frequency spectra are included in the prism shape 

reconstructions, the right and the left vertices fluctuates, respectively. These spectral 

inclusions produce also curved prism sides. The DOG wavelet has the poorest 

performance on the prism shape reconstructions, while the Mexican hat wavelet is good 

in the peak reconstruction. This is because, unlike the DOG wavelet which has a linear 

response in the low transition band, the Mexican hat has broad passband with a 

quadratic response in both transition bands. Finally, owing to its well localized 

passband and independency upon the center frequency, the Morlet wavelet has the 

lowest errors in the height measurements among other. 

 

  



 

Table 4.2 Reconstruction performances of the three wavelet filters at the small projection angle. 

 = 4 

Grating Peak Vertices Sides Average of Errors 

cf  1( )G xW f  2 ( )G xW f  ( )M xW f  1( )G xW f  2 ( )G xW f  ( )M xW f  1( )G xW f  2 ( )G xW f  ( )M xW f  1( )G xW f  2 ( )G xW f  ( )M xW f  

Low Rounded Rounded Rounded Fluctuate Fluctuate Rounded Curved Curved 
Less 

curved 
Small Small Smallest 

High 
Less 

rounded 
Sharp Rounded Fluctuate Fluctuate Rounded Curved Curved 

Less 

curved 
Small Small Smaller 

 

Table 4.3 Reconstruction performances of the three wavelet filters at the big projection angle. 

 = 28 

Grating Peak Vertices Sides Average of Errors 

cf  1( )G xW f  2 ( )G xW f  ( )M xW f  1( )G xW f  2 ( )G xW f  ( )M xW f  1( )G xW f  2 ( )G xW f  ( )M xW f  1( )G xW f  2 ( )G xW f  ( )M xW f  

Low Distorted Distorted Distorted Fluctuate Fluctuate Rounded Curved Curved 
Less 

curved 
Small Small Smallest 

High Distorted Distorted Distorted 
Less 

fluctuate 

Less 

fluctuate 
Rounded 

Less 

curved 

Less 

curved 

Less 

curved 
Small Small Smaller 
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CHAPTER V 

CONCLUSIONS 

 

The 3-D shape reconstructions using the wavelet-based FTP have been 

experimentally studied. In the study, the isosceles prism was used as the object, while 

the DOG, the Mexican hat and the Morlet wavelet filters were used to extract the phase 

information from the fundamental spectrum by eliminating the unwanted background 

of the deformed grating patterns. The study took into account the effects of the grating 

pitch and the projection angle. 

To study the reconstruction performance of the wavelet-based FTP, the transfer 

function of the three wavelets were mathematically derived. The derivation results 

reveal that firstly, the passband of the mother wavelets is determined by the signal width 

of the variance in the space domain. Secondly, unlike the DOG and the Mexican hat 

wavelets, the center frequency and the passband of the Morlet wavelet are independent 

to each other. Thirdly, the Morlet wavelet has the most-localized passband, while that 

of the DOG wavelet is the broadest. Fourthly, the low transition band of the DOG 

wavelet has a linear frequency response. Hence, the effect of the spectral leak from the 

zero-order spectrum is the strongest. Furthermore, the spectral width of the fundamental 

spectrum is not only dependent upon the object height but also on the projection angle 

such that the bigger the projection angle, the broader the fundamental spectrum and the 

lower the center frequency. For this reason, the transfer function of the wavelet filter is 
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designed by defining its center frequency to be equal to the center frequency and the 

grating patterns deformed by the screen. 

 The experimental reconstructions of the isosceles prism object show that the 

wavelet filters can be used for the FTP reconstruction from the deformed grating 

patterns, provided that the fundamental and the zero-order spectra are separated. To 

satisfy these conditions the grating pitch must be small and the deformed grating 

patterns are generated at the small projection angle. The Mexican hat wavelet can 

reconstruct sharp prism peak, while the Morlet wavelet has the lowest average error in 

the height measurements. The reasons for these are that the Mexican hat wavelet has a 

broad passband with a quadratic response in both transition bands. In the case of the 

Morlet wavelet, it has well localized passband, which can be independently defined 

without affecting its center frequency. 
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