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Massive neutrino is one of beyond the Standard model evidences. The
model with gauged lepton flavor is one of the models which can address massive
neutrino. In this model, three new species of fermion were introduced to cancel
gauge anomalies, i.e. Eg, £ and Ng. These new fermions lead to a see-saw
mechanism for neutrino mass generation. Yukawa couplings were promoted to
scalar fields (flavon fields), i.e. Vg and Vy. These flavon fields tranform under

SU(3) x SU(3)s.

Since only constraints from the current experimental data cannot determine
the lower bound on the lightest neutrino mass, partial wave unitary constraint
(PWUC) was added to rule it out. To obtain the viable neutrino spectrum, the
PWUC was applied on 2-2 scattering processes. Masses of gauge bosons were
bounded and they are inversely proportional to neutrino masses. Finally, the
lower bound on the lightest neutrino mass can be determined by the PWUC from
processes FiFi — AL AL and FiF* — AL* AL, Unfortunately, the PWUC cannot
give a meaningful constraint on mixing parameters.
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CHAPTER 1

INTRODUCTION

One of the elementary particles which has no charge, spin-1/2 and interacts
very weakly with other particles is called the neutrino. There are some undeter-
mined properties such as masses and mixing angles that particle physicists want
to find out. Neutrino can undergo a quantum phenomenon known as neutrino
oscillation® under which neutrino changes type. This phenomenon was confirmed
by the Super-Kamiokande (Super-K) in Japan (Fukuda et al., 1998) and the Sud-
bury Neutrino Observatory (SNO) in Canada (Ahmad et al., 2001). It implied
that neutrino must be a massive particle which is in contradiction with the Stan-
dard Model (SM) of particle physics. This is a direct evidence that the SM has to
be extended to accommodate a massive neutrino.

From present experimental data the mass of neutrino is very light, m, <
2 eV (Tanabashi et al., 2018), much lighter than other particles. There are models
that can generate light neutrino mass such as seesaw models which connect the
mass of the neutrino with the mass of a heavy new physics particle. There are
many realizations of seesaw models (Akhmedov, 2014), each of which depends on
additional new heavy particles: type I, II and III corresponding to heavy sterile
neutrinos', heavy SU(2),-triplet Higgs scalars and heavy triplet fermions, respec-
tively.

Another shortcoming of the SM is the lack of explanation of why there

*In 2015, Takaaki Kajita (Super-K) and Arthur B. McDonald (SNO) received the Noble Prize
in Physics for a discovery of neutrino oscillation.

fOne special type of neutrino in the extension of the SM which does not have the SM gauge
interactions.



are only three types of lepton flavor. The number of lepton flavors could be ex-
plained by Beyond the Standard Model (BSM) physics. In the SM, there is an
approximated SU(3), x SU(3), symmetry in the lepton sector which is broken
by the lepton Yukawa coupling. One could consider BSM scenario in which this
symmetry is exact, such as model with gauged lepton flavor symmetry (Alonso
et al., 2016). This model explains the number of flavors by equating it to the size
of the SU(3), x SU(3) , representation under which leptons transform. Three extra
fermion species were introduced to cancel gauge anomalies. In this model, one of
the extra fermion fields can be interpreted as a right-handed neutrino, which can
generate small neutrino mass via a seesaw mechanism.

In this work we will study neutrino properties in the framework of gauged
lepton flavor symmetry. A theoretical technique called partial wave unitarity con-
straint (PWUC) will be utilized to constrain the mass of flavor gauge bosons. This
is achieved by evaluating all possible flavor gauge boson scattering amplitudes.
PWUC implies that the amplitude cannot grow arbitrarily large; this places an
upper bound on the mass of flavor gauge boson which is inversely proportional to
the mass of neutrino.

Then we can evaluate the PWUC in a particular basis by scanning the
model parameter space for viable neutrino spectra. To investigate neutrino mixing,
the PWUC is obtained in another basis choice. This basis gives mixing parameters
encoded in gauge boson mass matrix. Then unitarity perturbative region will be
used to constrain a conservative bound of mixing parameter.

This thesis is organized as follows. In chapter I, we review the shortcomings
of the SM and how the model with gauged lepton flavor could address them. Then
we give an overview of the model in chapter II. It includes the transformation

properties, interactions and mass matrices of gauge bosons. These interactions lead



us to evaluate the longitudinal gauge boson scattering amplitudes at tree-level in
chapter III. In order to constrain neutrino properties, amplitudes and gauge boson
mass will be subjected to the partial wave unitarity constraint technique and we
will express them in chapter IV. Next, the results of scanning the model parameter
space for viable parameters such as neutrino spectrum and mixing angles will be
presented in chapter V and VI respectively. Finally, we conclude the thesis and

discuss our results in chapter VII.



CHAPTER 11

GAUGED LEPTON FLAVOR MODEL

This chapter presents the SU(3), x SU(3)g gauged lepton flavor model in
order to address shortcomings of the SM in the number of lepton families and
neutrino masses: Why is the fermion flavor structure the way it is? Why are there
three families of quarks and leptons? What is the mechanism behind very light
neutrinos? The structure of the model such as transformation properties of all
fields, their interactions and flavor gauge boson mass matrix are presented in this
chapter respectively.

In this model, lepton flavors are promoted to gauge symmetry. This leads
to lepton flavor gauge anomalies. These gauge anomalies can be canceled by intro-
ducing three extra fermions, £x, £ and Nr. Moreover, one of new fermions acts as
a right-handed neutrino which then generates a small neutrino mass. The Yukawa
couplings are promoted to scalar fields (flavon fields), Vg and Yy, which transform
under SU(3), x SU(3)r gauge transformation to preserve flavor symmetry. Their

transformation properties are listed in Table 2.1.

Table 2.1 Transformation properties under SU(2).,U(1)y,SU(3), and SU(3)g
of SM leptons, flavor-mirror fields, flavons and Higgs field.

SU2), Uy SU@B), SUB)g
L= (vp,er) 2 -1/2 3 1
en 1 1 1 3
Er 1 -1 3 1
&L 1 -1 1 3
Nr 1 0 3 1
Vi 1 0 3 3
YN 1 0 6 1
H 2 1/2 1 1




1. Interactions

The most general renormalizable Lagragian for SU(3), x SU(3)g gauge
symmetry (Alo, ) is
L= Y ope - 3 ST (FLE) + 3 DY DY)
v ! N (2.1)
+D,H'D"H + Ly, —V(H, Vg, In)
where 1 refers to all lepton species in Table 2.1. The indices I = [, ¥ represent
lepton indices and B = E, N label flavon indices. For scalar interactions, they are
hidden in the scalar potential which is relevant to flavor vevs after flavor symmetry
breaking. This potential has been studied by Alonso and his colleagues (Alonso
et al., 2012; Alonso et al., 2013a; Alonso et al., 2013b).
The part of the general renormalization Lagrangain relevant for this work
is
LD P+ > Tr(D YD V) + Lywk = V(H, Vg, Vn). (2.2)
B

The covariant derivatives of Ng, Vy, and Vg are
D Ng =(0, + iggAﬁ)NR,
D, YN =0,Yn — igl(Aﬁ)TyN — igzyNAfL, (2.3)
D,Ye =0,Y5 —igp AL Vp — igéyEAi-

Here, A! and A7 are in SU(3) structure of the form

8
{ — Lara
AL =N Alere,
a=1

(2.4)

8
E _ E,ara
AP =N ABere,
a=1



where T are the SU(3) generators defined as half of the Gell-Mann matrices,
T* = \*/2. They satisfy (T%)qs = (T*)%, and [T, T?] = if*T*,
Next, we will express the form of gauge boson masses from the gauge La-

grangian after flavor symmetry breaking.

2. Flavor gauge lepton mass

All masses of sixteen gauge bosons are produced after flavor symmetry

breaking where the flavor gauge Lagrangian becomes

16
1 A1 .
Lgauge D) 5 E Tr (FJVF;L > + 5 E X” (Mi)abxb%‘ _ g gr Tr (A}ILJZ]>’

I=0,E a,b=1 I=LE
(2.5)
where
X = {Aﬁj17 7A287A571a"' 7A578}‘ (26)
The lepton currents are
[Jzz]ij =LAML + 8_1{27#5;.% + /\TIJ%VNNA
(2.7)

[JZE] ij :éﬁfy“eg% + 5%7“‘92’
and the mass matrix of the flavor gauge bosons is in block diagonal form

Mg My
M = o (2.8)
MEZ MEE7



where
(ME)ay = g2 | Tx (Vp{T%, T"WVL) + Tr (DA T, T3 ) + T (VAT T}y )
+2Tr (y}VTaTyNTb + y}vT”TyNT“)} :
(Mig)as = (M )oa = ~29095 Tr (T"VET" V)

(MEp)as = g3 Tr (VT T"} V)
(2.9)

Since Yy > Vg, Af;’“ are approximately the heaviest heavy flavor gauge

bosons. Then the mass matrix is approximately diagonal by domination of (My)ap,

(M) = g7 | Tx (VoA TV ) + Tx (VAT 7T}y
(2.10)

2 Tr (VLTI + VLT TINT ) |
Next, we will show how this gauge boson mass is related to the neutrino

mass. To identify lepton mass, the Yukawa interactions relevant to the fermion

mass are

Lyup =\plpHER + MEg_LGR + NeELYVEER
(2.11)

. AN —
+)\1/£LHNR + TNN}%))NNR + h.c..

After both electroweak and flavor symmetries are broken spontaneously by



background of the scalars

H = ! !
V2 v+ h
(2.12)
Ve =(Ve) + o5/V2,
Yn =(Vn) + on/V2,
the mass matrices for the charged and neutral leptons are
0 )\Ev/ﬂ 1 0 )\Vv/ﬁ
+ h.c., = +h.c., (2.13)

ne Ae(Vi) 2 \00/v2 An ()

where each entry is a 3 by 3 matrix. Both mass matrices are in a typical see-saw
form. Taking (Vg) > v, ug and (Yy) > v, we find the mass matrices for the light

leptons, my(,, and the heavy leptons, Mgy, satisfy

Mg ~Xe(Ve), miMg ~ Agugv/V/2, and
(2.14)

My ~An(N),  muMy ~ X20?/2.

To directly study the neutrino mass, we work in the basis where (Yy) is

diagonal, we deduce

2

ASU v v )
(Vn) _2)\Nd1ag < ) ,

) )
My, My, My,

(2.15)

AEIE ) ( v v v )
~CERE g (2 2 L)y,
<yE> \/ﬁ)\g 1ag me’ m, m,

where U and V are heavy lepton mixing matrices. Without loss of generality, we
take m,, < m,, < m,,. Thus Ni(N3) is the heaviest (lightest) heavy neutrino.
Notice that (Vg) and (Yx) cannot be simultaneously diagonalized. Thus,

there are two choices of basis which can address on gauge boson mass in (2.10).



First, (V) is selected to be diagonal. This choice produces two heavy lepton
mixing matrices, U and V', to (Vg). The second basis choice is diagonal Y and
then the well-known light lepton mixing matrix, the PMNS matrix, will be encoded
in Vn.

The mass matrix of the A%* gauge boson in the limit (Vg) > ( Q&) is

M}, = : (2.16)
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: o A2
where matrix elements in unit of g7 (5 %.—)* are
v3

My = (z + y)Qa
My = (z — y)Qa
My = (z +1)%,
Mss = (x — 1),
Mes = (y +1)°,
(2.17)
Mz = (y—1)%, N

Mss = 2($2 + 92)7

Mggz (x2+y2+4),

Wl N

Msg = %(m —y)(z +y),

Mgz = —=(z — y)(x +y),

Sl

and © = my, /my,, Y =y, /My, .
Notice that the third and eighth components are not in mass eigenstates.

In order to handle them, we write their elements into a 2 X 2 matrix

My M.
V2 e (2.18)

Mgz Msgs
and diagonalize it by mixing flavor eigenstates. Let
Al Co —Sa Al

= , (2.19)
2,8 L,
A 5S¢ Ca AMJr



then substitute it into term of flavor gauge boson mass, Aﬁ’“,

where

and

0, ¢ 2 K
(o )

_ _ 72 K
- (Af;’ Aﬁ’+> Mi )

A£,3

A€,8

w

( ¢ ot Cq Sa M33 M38 Ca —Sa
= A 7_A I
12 ©

—Sa Cqo M83 Mgg Sa Ca

l,—

ALt

“w

+ +
. Mz Mg

Mg Mg
Mgﬁ% :MggCi B 2M835aca o't MggSi
M;é :Mggci — MggSaCa + MggSaCa — MggSi
Mg% :MggCi — M338,¢o + Mggsaco — MggSi

+ 2 2
M88 :Mggca T 2M838aca 51 MggSa

1 24+ y? =2
Sa =4/ =+ ,
2 4/t 4yt -2y — a2 -2+ 1

1 x?+y?—2
Co =4[] = — .
2 4\/x4+y4—x2y2—x2—y2+1

AL-

0+
Au

11

(2.20)

(2.21)

(2.22)

(2.23)
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Finally, the Af;“ mass matrix gives pairwise eigenvalues,
M3, = M2, + dzy = 2% + % + 2y,

Mi4:Mis+4$:x2+2x+1,

(2.24)
Mjs = Mir +4y = y* + 2y + 1,
- 4
Mii = 5 ($2 + y2 41 :l:\/x4+y4—x2y2—x2—y2+1) ,
where Aﬁi are mass eigenstates in the unit of 49/\12%: 2‘3 with
v3
0— 03
A I R . (2.25)
0,4 o £,8
A, Sq Co A

Now, we have related the masses of flavor gauge bosons to three neutrino
masses. In the next chapter, we will calculate the scattering amplitude for various

processes where gauge boson masses will be involved.



CHAPTER III

SCATTERING AMPLITUDES

In this chapter we will evaluate the scattering amplitudes which potentially
can grow with center of mass energy. There are five processes at tree-level: F'F? —
FIFi A AN — ADPALY A A o AD A RS o ADCAYY and FIFT —
AL* ALY We will start by listing all ingredients for calculating Feynman diagrams.
Then, we will examine which scattering amplitudes are able to constrain neutrino
mass by partial wave unitary technique. Note that all interactions and couplings
come from the Lagrangain of the model with gauged lepton flavor.

Ingredients for scattering amplitudes:

The simplest calculation assumes that two incoming(outgoing) particles are

identical. We can write 4-momenta of the particles as
b1 = (\/5/27 07 Oap)v
P2 = (\/5/27 07 07 _p)7
(3.1)

P3s = (\/E/Qap\/ 1- 932707]795)7

P4 = (\/5/27 —pv 1- 1'2,0, —pill'),

where o = cos(6). We take p1, pa (ps3, p4) to be momenta of the incoming (outgoing)
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particles. Mandelsalam’s variable are given by
S :(p1 —|—p2)2 = (2\/5)2 =4s = Egm,

t=(p1 — p3)2 = —2272@ — 1), (3:2)

u=(p1 —pa)? = =2p°(x + 1),
where FE.,, is the center of mass energy.
For processes F'F' — FIFJ and FIF" — AY* AL, there are two incoming
fermions. Their spin properties should be considered as well. By solving Dirac

equation, there are four independent spinor bases

1 O \/12+:E —\/21—17
& = NNSES &= ;&= (3:3)
0 1 11—z vV 1+J?
2 2

Typically, the forms of the spinor are

\/P1 - o VP1:0G1
u(p1) = uy = , v(p) =vr = )
VD106 —/p1-0&
VP2 0G2 VP2 0G2
u(pa) =g = v(p2) = vy = )
VP20 —/D2 - 02
(3.4)
\/P30G3 /D3 - 03
u(ps) = ug = v(p3) = v = )
VD3 - 083 —/D3 - 0&3
/P4 084 /P4 0G4
u(py) = uy = v(ps) = v4 = )

VPs 0y

—VP1 -0

where ¢ is Pauli matrix. The general fermion spinors are



Uy =

U =

us =

Ug =

Sl

Sl

wlS
+
3

vl
|
S

e}

VIt L +p
V1—=x ﬁ—l—p

VIt /% —p

Vi—=x %—p

VT2 L +p
VITa\/ £ +p
VT =2/ % —p

15
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T
Vs Vs
5 =P —\/ 5 TP
0 0
v = 5 v = )
Vs Vs
—\/5 TP 5 —D
0 0
T
0 0
Vs s
\/g —P - —3 %ﬂLp
Uy = ) Vo = )
0 0
Vs Vs
—\/ 5 TP 5 =D
(3.6)
T
Vit ‘/75— -1+ \/7§+p
1 v1i—xz \/75_ - 1 | —vli—-=x ‘/Tngp
V3 = —= 3 V3 = —= )
V2 —V1+z ‘/7§+p V2 \/1+x\/‘/7g—p
—V1—-x \/754—]:) \/1—:1:\/\/75—19
T

VT= % - VI—oy € +p
1 | VIEay L ald! —m\/ﬁ
VUV eRfE ey | R emaE |
—VTFa L+ VIFz£—p

where +/s is center of mass energy and u(p;) is defined as u(p;)7°. u;(v;) is an in-

coming fermion(anti-fermion) with momentum p;. u,;(v;) is outgoing fermion(anti-

fermion) with momentum p;.

To relate all variables in the energy form, we will translate them in term of
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center of mass energy, For example in F'F* — [J[J we substitute

p=fS—ms
t=— <§ —2m3)(1 — z) (3.7)

w=—(5—2m})(1+a)

where my is an incoming fermion mass and x = cos 6.

1. F'F'— FIFJ

In this model flavor gauge bosons interact with the extra fermions. One
of the three extra fermions is of interest in this work because it has the same
properties as the right-handed neutrino. Due to gauge freedom, we can choose to
calculate in unitary gauge. We will focus on the amplitudes where gauge bosons
are being exchanged. Gauge invariance ensures that high energy behavior of the
full amplitude obeys unitarity.

Due to the SU(3), flavor stucture, we have 8 gauge bosons together with
SU(3) flavor group generator 7. These gauge bosons can interact with fermions
and anti-fermions. Thus all possible processes are Ii[; — I1 13 and ELE1 — Sééf%.
However, this work focuses only on the light neutrinos. So the process F'F! —
FJ [ represents the light neutrino scatterings where i and j are flavor indices.

s-channel:
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5 5
: o may2ni Vot v (pitp)t o 1—97
ZMA‘;:S—Channel _( Zng,]) UQ’YM 2 uls — Mi( m— Mi )ug v 9 UZU
—1 1—7° 1—7°
o a\2 — 0 — 0
MAg:s—channcl - - (QZTU) m (U27 B U1U3’}/ 5 v4
— Yo =7
—037! w iy =5y
i Yo — 7
ot S
=i o3 Y osial =
—UyY Uy usy 9 1),
(z + D)(Vs + /s — 4m3)?
MA‘;:s—channel =, (gll-z—g‘)2 2 )
(3.8)
t-channel:
Fi FY

AZ,C

o




M e
1Vl Aa:t-channel =\ —G1dL;;) Uo7 Uy
Y J 2 t— ME‘
@:t-channel — — g v
AZ't h 1 gl 1] t— Mi r}/ 2

—i 1_'75 i i 1—9°
_Uﬂl 5 u{“:ﬁl f

2
5
—1 Y | —i Y ]
— Ty w) Y 5 V]
i 3 Vi3 8
U3y u Y i),
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, @+ D5+ /s — 4m5)*

MA?:t-channel = - (glj-;?)

u-channel:

AE,C

AM3Z +2(1 = z)(s — 4m3))

v (pl _p3)u —i ®
(g“ - M2 )u3 v U’{’
A
viﬂ?)ivg _27 ujl
(3.9)
Fi
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5 5
: a2 o v (i—p)t o 1—17
ZMA?:u—channel :(_Zglj;j) 'UQP}/M 9 /Uij’)u_ ME}( " — ME} ) 4 v 2 'LL{,
a2 1 ot —7 ]710_75J
MA‘;:u—Channel = - (ng;J) Mi (UQIV Uuzy 92 Uy
1 .
iy — - vjiay — ]
1 .
Ty vy ]
) . 75
7 viud'y’ —5—uy),
M =—( Ta)2(m_1)(\/§+ \/$_4m?6>2
Af:u-channel — g ij 4]\/[3‘ T 2(1 n x)(s — 477],30) .
(3.10)

la 44,a £b Al,b

This process has identical incoming (outgoing) gauge bosons with momenta
ki, ko (p1,p2)and mass M,(M,. We focus on the longitudinal component of both
gauge bosons. Thus, these gauge bosons are in longitudinal polarization states
under condition €, - p; = 0. Note that this process is a simple choice of flavor
interaction and adequate for our perturbative constraint.

For process A" AY* — AYP A" there are four polarization vectors in lon-

gitudinal mode which satisfy €(p;) - p; = 0,



21

€1 :MAa( % 5 9 )7
1 S
€2 M (pi, 0,0, 7),
(3.11)
1 NG ST
— 1—22).0 XY=
€3 MAb( fr 2( x)a D) )7
1 NG sz
= — Y2 (1 —2%),0, — X5,
€4 MAb(pfa 2( .T), s 9 )

First, let consider the amplitude with gauge boson exchange in the s-
channel, where Ai’c is the intermediate gauge boson. The vertex factor is fiac* fove
which vanishes by commutation of their group generators. Therefore we do not
have the s-channel for A7*A%* — A% A%,

Now, let’s carefully consider the amplitude in t- and u- channel. Obviously,
their vertex factors do not vanish. Note that there are eight flavor gauge bosons
and their flavor interactions are encoded in structure constant.

t-channel:

AK.,a AZ,b

AZ,C

l,a £,b
Aﬂf Aﬂf
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. _ * *
Z'A/lAi’czt-channel = ’/‘EkZ:VEPI:QEPQwB

(=igaf™) (9 (ks = p1) + k1) + 9 (p1 = (k1 = p1))*

+ g™ (—k1 — pl)/\>

i 1
F— M2 (9/\p - W(lﬁ — 1) p2 — k2)p>

c Cc

(—igaf™) (9"‘3(162 + ) + ¢ (=p2 — (p2 — k2))”
+ 9" (2~ ko) — 2)?),

. * *
MAZL'Ctt—channel = CkpChovCpabpy

(—igaf®)? (9““(k1 + 1) + g*M (k1 — 2p1)" + g™ (p1 — 2k‘1)°‘)

s 1
—T <9Ap — gtk —p1) (P2 — kz)p>

c Cc

(gl/ﬁ(k;Q = p2)p r gﬁp(kg = 2]92)” —+ gp”(pg 7 2/{32)5)
(3.12)

u-channel:
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l,a b
A A

L

. o * *
ZMA%C:u-channel - eklvﬂek%l’eph(lep%ﬁ

(—igaf™) (9" (ks + p2) + 9™ (=p2 + (k1 — p2))*

+ g (—(ky = p2) — k1))

, _iM2 (9/\p - ]\iﬂ (kv — p2)*(p1 — kz)p)
(—iga f™) (g ks +p1)” + 9 (=p1 = (pr— k2))"
+ g™ (ks s k).

_ * *
MA%c:u-channel - Eklvﬂek%l’eplyaep%ﬁ

(—igaf™)* (9" (ks + p2)* + 97 by = 202)" + g (p2 — 201)°)

1 1
w— M2 <9>\p - W(kl —p2)(p1 — k«‘2)p>
(9”a(k2 +p1)? + g% (ko — 2p1)” + g™ (1 — 2k2>a)'

(3.13)
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Note that their scalar products will be shown in Appendix B.

la 4¢0,b La 2£,b
3. ALeAlt  Alegl

ta 40b Ga 40b . .
For process A}*A;” — A7 A}”, there are four polarization vectors in lon-

gitudinal mode which satisfy €(p;) - p; = 0,

1
— i70707E )
€1 Mo (p 1)
— (00,0, By)
62_MAb pi, YU, U, Lg),
(3.14)
1
€3 :MA (pfa 07 E3 V (]- - x2)7 ng]f),
1
€4 :M_(pf7 0,—Esv (1 = $2>, —E4$);
Ab
and 4-momenta are
b1 :(Eh 07 Ovpi)a
P2 :(E27 07 07 _pz)>
(3.15)

D3 :(E?npf \% g :EQ,O,pfil?),

P =(Byy —=psv 1= 22,0, —pyz),
where E} = p} + M7, E3 = p? + Mg, E3 = p} + M7 and E} = p3 + M.
For amplitude in t-channel of this process, we will calculate all products
in the same way we did for A7*A%* — A% A% t_channel amplitude. In contrary
to A7*AY — ALY AP this process does not have amplitude in u-channel but has

nonvanishing s-channel one.
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s-channel:
. _ * *
ZMA%CIS—Channel = CkrpChav€piaCpsp

(—igaf®) (gw(kl ko) + E)Y 4 g (ke — (k1 + Eo))

v A i A 1 A
Fg(h k) 3 (07 - gt R e+ )
(—igaf™) (9% (=p1 + p2)’ + 9%(=p2 — (o1 + p2))°
+9"((p1 + p2) +p1)5>,

. * *
MA%CIS—channel = CkipChov€piaCpyp

(—igAf“bCf(g’M(%l + ko)” + gV (—k1 — 2ka)" + ¢ (— k1 + k/‘Q)A)

1 1
p— (9” — kit k2)* (1 +P2)p>

C

(gaﬁ(pz —p1)” + ¢ (—=p1 — 2p2)* + ¢™(2p1 + pz)ﬁ).
(3.16)

Note that their scalar products will be shown in Appendix C.

i T la 4la
4. F'F'— A A;

In this process, there are two incoming fermions with flavor ¢ and two
outgoing flavor gauge bosons with flavor a. The vertex of gauge boson interaction
depends on structure constant, % as
N

=g (g””(k —p)+97(p— ) +9%(q— k‘)”)-
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For the s-channel with gauge boson exchange, structure constant is zero as
shown in Appendix A. Therefore, it does not have gauge boson exchange in this

sector. There are only diagrams in t- and u-channels for fermion exchange.

t-channel:
la
Fi Ay
Y

_B l.a

F? Au
. . —i(Yu(p1 — p3 +m; : "
ZMf:t—channel ZUQ(—lQM#Ta)Q (7#( tl_ m3 )) (_ZQK’YVT )63PRu17

9eT")*

Mf:t-channel _(75_—”31)2%6452%(])1 — D3+ mi)%ESPRU1

_ (9T *)2(V's — 4m2 + /3)
805 (1~ ) (M5 4 = /) — m?)

<\/§( —2m;(v/s — z\/s — 4M?3)

+iv1— a2 /s — 4mfc(x\/§ — /58— 4M/2;))

M2 (dmy — 20V — 224 /s — 4M§,)>.

u-channel:
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. la
F" A#
Y
_ . la
Fi A/1

—i(7u(P1 —pa + mz’))(

—inga)’Yu€4PRU1,
U —m;

ZM f:u-channel = ( _Z.QZTQ)EQ"Y'M €3
(9T%)?

2

Mf:u—channel - @27u€4PR7;L(p1 — P4t mi)’YVE:gPRUl

_ (g/T%)?(\/s = 4m? + \/s) (Z\/g(m
4Mi< —2(xz +1)M3 — 2mi(o + 1) + 2m] + sz + s)

\/3 — 4mfc(\/s — 4M?Z% + V/sz) + 2im;(z4/s — 4AM3 + \/s)
PV (dim + 20T — 2245 — 4M3)>.

(3.18)

i D ta 40.b
5. I'F7 — A A7

This process is a more general case with a different incoming and outgoing

particles. Their 4-momenta and polarization vectors are
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b1 :(Eh 07 O»])i)>

P2 :(E27 07 07 _p2)7
(3.19)

D3 :(E?npf \% 1— x2a07pfx)a

D4 :(E47 —P5V 1-— %2, 07 _pfx)v
where B = p} + M?, E3 = p; + M7, E3 = p} + M? and E} = p? + M. Thus
incoming momentum, outgoing momentum and Mandelslam’s variables in term of

energy are

M + (M2 — 5)2 — 2M2(M? + 5)

? J

Di = 2\/5 )

MY+ (M — 5)? — 2MZ (M} + s)
pPr = 2\/5 )

M2+ (ME — $)2 = 2m2(M? + s)
4s

t:M§+M3—2\/M3+

M?+ :

\/ M2 4 (M2 — 5) = 2m2(M2 + s)
¢ 4s

1
+%\/Mg (M2 = s)2 — 2M2(M2 + s)\/]\/[;‘ + (M2 5)2 — 2M2(M? + s),

ME+ (ME —s)? = 2m2(ME + s)
4s

u=M§+Mf—2\/M5+

2 2 2
\/M2 N M} + (M7 — 5)? = 2mZ(M? + s)
‘ 4s

1
o L (MP — 8)? —2M2(M? + s)\/Mi4 + (M7 — 5)? = 2M?(M? + s)x.
(3.20)

We will calculate amplitudes in both t-and u-channel following the same

products as in F'F' — A% A" amplitudes.



CHAPTER 1V

PARTIAL WAVE UNITARITY CONSTRAINT

This chapter discusses the application of partial wave unitarity constraint
(PWUC) on our tree level amplitudes. It implies that the sum of all amplitudes
cannot grow arbitrarily large with the energy. The idea of unitarity was originated
from the assumption that the probability must be conserved. To apply this unitary
bound, the scattering amplitude will be decomposed into partial wave eigenbases.
The coefficient of each eigenmode must be consistent with the unitary condition.

For the simplest process of this theoretical bound (Schwartz, 2014), consider
a 2 — 2 elastic scattering in the center-of-mass frame: A(p;) + B(p2) — A(ps) +

B(p4). The total cross-section is

1
327 B2

cm

Ototal (AB =4 AB) =

/dcosew(e)|2. (4.1)

Then, the amplitude can be written in terms of partial waves which are related to
Legendre polynomials P;(cos 6),
M(0) =167 _ a;(2j + 1) P;(cos0). (4.2)
=0

By using the orthogonality of Legendre polynomials

1
/1 P;(cos 0) Py(cosf)dcos = ﬁ@'k, (4.3)
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together with the optical theorem,*

ImM(AB — AB)|o=0 > 2En|Pi|0tota(AB — AB), (4.4)
one gets
S 200 <~ -
> (25 + 1)Im(a;) > E' | > (25 + 1)y (4.5)
j=0 “m =0

This inequality gives an upper bound on each coefficient |a;|. For any complex
number z, the magnitude of z should not be less than the imaginary part of z. It
gives us |a;| > Im(a;) or the lower bound of |a;|. To clearly understand these two
conditions, let’s assume this scattering in the high energy limit, E., > ma, mp
or [p] = $Ep,. Then we get Im(a;) = |a;|* and it implies the boundary of |a;| as
shown in Figure 4.1. This can be translated to bounds on component of a;:

(4.6)

1
;] <1, 0 <Im(a;<1 and [Re(a;)| < 3.

Im(a;)

L L Re(a;
-05 0.0 05 (@)

Figure 4.1 Boundary of a; for AB — AB process at high energy limit.

These bounds constrain the behavior of elastic scattering, AB — AB, in the

high energy limit. As an application of partial wave unitarity constraint Lee, Quigg

*This theory showed the relationship between the scattering amplitude and experimental quan-
tities, i.e. cross-section and decay rate, then it can imply that ImM < | M|?
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and Thacker (LQT) derived the bounds on the Higgs boson mass. There, they con-
sidered six different scattering amplitudes involving the electroweak gauge bosons
and the Higgs boson such as W, W, — W} W,, HZ, — HZ;, and HH —
W, W, (Lee et al., 1977). The amplitudes at high energy were decomposed in
partial waves which were then subjected to unitarity. Since the amplitude is pro-
portional to Higgs boson mass, unitarity allows one the extract the upper bound
on Higgs boson mass.

The same idea can be applied to BSM models. Generically there will be ad-
ditional contributions to the gauge boson scattering amplitude and a partial wave
unitarity bound will be applied on all amplitudes. First, we evaluate amplitudes
at high energy limit. After we sum all diagrams, the part of amplitude which
grows with energy will be canceled by gauge invariance and renormalizability of
the model. Therefore, only the part of amplitude at order O(s”) will be employed

in this perturbative bound.

1. FF'— FIFI

s-channel:

1 /s — 4m?2)?
Mg s-channel = — (QZTQ)Q(:C POy ) : (4.7)
¢:s-channe iJ 4(8 _ Mi)

At hight energy, s — oo,

MA?:s—channel‘O(so) = (glﬂ?)z(x + 1)7 <48)

where = cos#.

t-channel:



r+1 s s — 4m?2)?
o DS o

MA‘;:t—channel - (gl

At hight energy, s — oo,

22(7 + 1).

MA?:t—channel|O(so) = - (ngz(D -1

u-channel:

(@ = D5+ s — 4my?

ij) 4M3+2(1_x)(3—4m?)).

MA‘;:u-channel - (ngZ)

At hight energy, s — oo,

2(x —1)

a2
) r+1

MA‘[}:u-channel|(9(so) :(ng‘ij

Sum of all channels:

p2° 4+ 2% =9z —1
2 +1

MAg:sum‘O(s()) o | (ng‘ijl)

AM3 +2(1 +2)(s — 4m3)
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(4.10)

(4.11)

(4.12)

(4.13)

To get the bound on flavor gauge boson mass which is inversely proportional to

the light lepton mass, this gauge boson mass must be encoded in the amplitude.

Unfortunately, this amplitude at high energy does not depend on the mass of

flavor gauge boson. So this amplitude cannot give the constraint on the light

lepton mass.

la 44,a £b 1£,b
2. AbeAbe A4l

This process is more complex than previous processes because their ampli-

tudes depend on a gauge boson mass, M., and we do not have information about

how large it can be.
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The amplitude in t-channel is

1

Me .

(4.14)

In high energy limit s — oo, there is a problem that ¢t ~ £(1 — cosf) has a

2
singularity at forward direction (6 ~ 0).

Since M, can be arbitrary large, it also leads to a divergence of the ampli-
tude at high energy. To deal with such infinity, we rewrite gauge boson mass as

M? = es so that

1

. 4.15
t —e€s ( )

M ~

The reason we can assume M? — es is that a gauge boson mass should be finite
when energy grows up. To regulate the scale of gauge boson mass, € was introduced
to cut off an increasing of the energy s. Hence, ¢ should be a small value and
dimensionless.

t-channel:

Mansatz: t-channel — ekl,,uekg,ue;;l,ae;;zﬁ
(—Z'L(JAJMI)C)2 (9“a(7€1 + pl))\ + ga)\(kl —2p)" + 9/\”(291 - 2k1)“>

(g/\p - Mif(kl =) Np2 = kz)p)

<9Vﬁ(/f2 + p2)” + g% (ky — 2p2)” + g™ (p2 — 21?2)6)'
(4.16)

u-channel:
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_ * *
Mansatz: u-channel — €k1,p6k2,u€pha€p27[j

(—igaf®)’ (9"’6(’?1 +p2)* + g7 (k1 — 2pa)* + g™ (p2 — 2k1)5>
< Ap_i(k _ )A( _k)p>

g A2 p2) 1 2

(gm(ké + 1)’ + 9% (ks — 2p1)" + g™ (p1 — 2k2)a>-

(4.17)

sum of all channels:

MansatZ' t-channel MansatZ' u-channel
Maum = n , (4.18)
t—e€s U — €S

Next, Mandelslam’s variable ¢ and u can be written in term of gauge boson masses

and the center of energy into the amplitude:

1= -5 ) 15y (1- SE) (- 5E)

s s
(4.19)
s s 4M?2 4M?
= -5 - ) = 54 (-1 (- 4F)
“ (2 (M. + My) 2 s s
The amplitude at high energy, s — oo, is
Msum ~ O(S(]) + O(Sl). (420)

Due to the gauge invarience, the term in O(s) will be canceled if we exactly sum
all possible channels including SM gauge boson channels. Now, consider the order

5" part of the amplitude
Meum ~ O(s°). (4.21)

We apply PWUC on this sum of amplitudes by doing partial integration = = cosf
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in range [—1, 1]. We get

/_11 Mgum dz ~ O(log(e)). (4.22)

Obviously, this term makes amplitude diverge when € is small. To handle with

infinity part, we subtract this term O(log(¢)) directly from amplitude,
1
M= / Mgum dz — O(log(e)). (4.23)
-1

Then we take the limit ¢ — 0 to get a physical amplitude. Consequently the
amplitude of AY*AY* — A%’ A% without divergence term is

M2 M2 M? M?
cut off mass o abc\2 a b a b
Maa—>bb |€—>0 _(gAf ) Mb2M62 Ty M(%MCQ + 10Ml)2 + 2@

(4.24)

M2 M, M, M?
_“foy g EEEg D el b
M2 °M, "M, M2

However, there is another way to handle with divergence. Since the for-
ward(backward) direction in t-(u-)channel leads to the divergence of the ampli-
tude at high energy limit. To avoid this singularity, we can cut off the integration
boundary near the pole such as integrate over cos # in range [—1,1—¢] or [—1+¢€, 1]
where € is arbitrary small number. This is briefly explained as follows.

The amplitude in t-channel at high energy limit is

1

T (4.25)

M t-channel ™~

where © = cosf. We take the integral in range [—1,1 — €] to decompose it into

partial wave mode,

1—e
/ M _chamnel dz ~ O(log(€)). (4.26)
—1
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Next, we subtract the divergence term out similarly with previous technique,
1—e
M = / Mt—channel dr — O(log(e)) (427)
-1

Then, we take the limit ¢ — 0 on M so that we get the amplitude in t-channel
without the divergence term. For u-channel, we also handle it with the same
method where the cut off boundary is [—1 + ¢, 1].

Finally, the amplitude of A%aAi’a — A%bA%b by this cut off boundary tech-
nique becomes

1

M cut off boundary __ abc\2

aa—aa <4Ma7 - M(f (4M62 + Mc2 (10g(65536) - 44))
+2M 2 M, M? (log(16) — 16) — 4 M2 (M} + MZM?(2 + log(16)) — 3M})
+8M My MZ(AM; + M7 (log(4) — 4)) + 2M, (2M} + 6 M, M

+2MEM?*(log(16) — 5) — M?(log(256) — 2)

—4MP M2 log(4) + MyM® 10g(256))> .
(4.28)

la 4L0,b la 4L,b

This amplitude is a more general case where the incoming(outgoing) gauge
bosons are in different flavors. However, the divergence from forward(backward)
direction still appear in this process. To handle with the singularity, we also apply
the cut off boundary technique in both s- and t-channel.

The amplitude of A%GA%I’ — A%aA%b is
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1
A8M2MEM?

MZZL‘ff, boundary :(gAfabc>2 (48M§’Mb + 84M5M?

—2MA My (24ME — 122M?) + 24 M3 M7 M?

+4M? My(—12M; + MEM? (52 — 410g(4096))

+3M4 (log(256) — 12)) (4.29)
—3M,MZ?(36 M} + 4M7M?(log(16) — 8) + 4M?*log(4))

+ M, (48 MP — 68 M, M? + 6 M M2 (log(256) — 12)
—3McS(41og(64) — 20))).

I nl} la qla
4. F'F'— A] A}

t-channel:

At high energy (s — 00):

(9¢T5)
M .t channel :W( — 2myx (2 + 1)/s + 2miv1 — 22,

(M2 - MEY ) (@ - 1)@)

2

(9:13) —
Mf:t—channel|(9(so) :m <2mi 1—a%24 (QM(? - ME)(I’ - 1) vV1-— ZE2> .
(4.30)

u-channel:
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At high energy (s — 00):

(9:T5)?
Mf:u—channel :WM <2mk:(:(x + 1)\/5 + Qmiwl _ ZEQ,

(M2 — M2+ )1+ 2)V1— x2>

T%)?
Mf:u—channel|(9(so) M (Qmi\/l —x? - (2M3 — Mf)(l +z)V1— 132).

T2M2(z 4+ 1)
(4.31)
Sum of all channels:
2
T (4.32)

I ay2 Myt
Miamliow =0 T5)" A=

Next, we decompose this amplitude into a partial wave mode by taking a

partial integration in range [—1, 1] following the method of PWUC. We obtain

1 2
AT
Mmoo @ dz = (g/T7)? M’g . (4.33)
-1 A
i £ La sLb
5. F'F) — AAj
t-channel:
At high energy (s — 00):
(QZ)QT%TISJ'
:t-channel — . 4 4 1 — a2
M £t channel 4MaMb(x—1)( mrx/s + dmyV x
+(2M2 4 2ME — M2 — M2 + 2s)(z — 1)V/1 — x2>,
(4.34)
(90)* T TRV 1 — a?
:t-channe == : M2 M2 4 2
Mf.t h 1|O(80) 4MaMb(.Z'— 1) < it J + 4my,

+(z — 1)(2M2 + 2M2) — (M2 + Mf)).

u-channel:
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At high energy (s — 00):

(96)2E%T£j
4MaMb(£l§' —1

Mf:u-channel =

] <4mkx\/§ +4mpV1 — 22

—(2M2 + 2M7 — M2 — M2+ 2s)(x + 1)V — x2>,

(4.35)
(QE)QE%TISJ' 1—a? 2
Mf:u—channel|(9(so) - 4MaMb($ T 1) ( my
—(2M? + 2M? — M? — Mf)).
Sum of all channels:
2a b Qmix
Mf:sum|(9(so) :(gf) CTZ]{T (436)

MO M1 — 22

Agaub, We decompose this amplitude into a partial wave mode by taking

a partial integration in range [—1, 1] following the method of PWUC and obtain

1 2
/ Mf:sum|((9)so x dr = (gg)zTiaTb mkﬂ- (4.37)
—1

Finally, these two processes of fermion exchange can be used to constrain
neutrino mass.

Unitarity bound

After amplitudes are decomposed into partial wave mode, they must satisfy
unitary bound as described earlier. The general amplitude can be written in partial

wave mode as

M(0) = 16#50: a;j(2j + 1)Pj(cos ). (4.38)

=0

For simplicity, mode j = 0 is selected,

M(0) = 16magPy(cos ), (4.39)
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where Py(z) =1, and

1 1
- [ 2 4.40
W %r ), 2™ (4.40)

After implementing partial wave unitarity constraint, [Re(a;)| < 3, we got

(4.41)

or M, < 8m,

where 2M, = f_ll Mdzx is real. Therefore the amplitudes in partial wave mode

with perturbative constraint satisfy

Mcut off mass §87T,

aa—bb

Mcut off boundary §87T7 (442)

aa—>bb

lel;:o:i boundary §87T

Nevertheless, the amplitudes for FIF' — A" ALY and FIFi — A" ALY can

be decomposed in j = 1 mode of partial wave,

1
167(2ay) :/ M(0) cos Od(cos ),
~1
(4.43)
1]l
- 167
where Pj(x) = x and 2M; = fle(Q) cosfd(cos @) is real. They also satisfy

a1

IRe(a;)| <1, so we got

v MLT
(9:T5)* 3 < 8, (4.44)
and
. mim
(gg)QTi,ﬁT,fj2 M: i < 8. (4.45)

Finally, we obtained the bounds on amplitude in partial wave mode in

each process. Next chapter, we will combine these theoretical constraints with



experimental data to constrain a lower bound on neutrino spectrum.
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CHAPTER V

NEUTRINO SPECTRUM

In this chapter we employ a choice of basis where (Vy) is diagonal. We
use the convention m,, < m,, < m,, for the ordering of neutrino masses in this
work for both the normal and the inverted hierarchy. In order to obtain a lower
bound on the lightest neutrino mass, we have to know what constraints on neutrino
masses in recent experiments are. Then we will combine constraints from neutrino
data and theoretical constraint which we had calculated in the previous chapter.
Finally, we will present a plot of the ratio of neutrino masses and translate it to
the lower bound on the lightest neutrino mass. Moreover, we can reverse our result
to determine other SM neutrino masses.

First, we list the latest neutrino information from experiments in table 5.1.
We want to emphasize that this work uses a special convention for the ordering
of neutrino mass. For instance, m,, (m,,) was labeled to be the lightest(heaviest)
neutrino mass in both normal and inverted hierarchy. This is in contrast with a
global convention, where m,, is the lightest neutrino mass in the normal hierarchy

and m,, is the lightest for the inverted hierarchy as shown in figure 5.1.

Table 5.1 Current neutrino data from neutrino oscillation.

Parameter best-fit 30
m2. — m,z/1 (NH)[lO_3 eV] 2.56 2.45-2.69

v3
m2, —m? (NH) [107° ¢V]  7.37  6.93-7.96
m2 —m? (IH)[1073 V] 254  2.42-2.66

m? —m? (IH)[107° V]  7.37  6.93-7.96

In addition, there are constraints from the cosmic microwave background
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Figure 5.1 Comparison between global convention and this work convention

and baryonic acoustic ocillation (Tanabashi et al., 2018),

> m,, €017 &V 95%CL.. (5.1)

This equation (5.1) explains that the sum of all light neutrino masses is lower than
0.17 eV. Obviously, these information show that only experimental data cannot
determine the lower bound of the lightest neutrino mass, m,,. In order to com-
plete this bound, we have to combine it with theoretical constraint from previous
chapter.

Since the amplitude in equation (4.42) depends on the flavor gauge group
structure constant, we have to calculate all possible flavor interactions and then
examine the most effective process on neutrino mass and mixing bound. The
number of total calculated amplitudes is 8x8 = 64.

For the result, the process AY*A%* — ALY A% and A%°AY — AleAb?
involve divergence in the forward direction. Since there is an ambiguity in how

the singularity is removed (see (4.24) and (4.28)), we will not use them in our
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Figure 5.2 The region of pertabative unitary bound on neutrino spectrum when
(Vy) is diagonal.
numerical analysis.

The processes FIF" — AY*AY and FIF7 — AY ALY give us the constraint
on neutrino masses as shown in figure 5.2. In order to investigate the lowest bound
on the lightest neutrino, we follow these steps:

1. Pick up values of neutrino mass from current neutrino data in table 5.1
and equation (5.1).

For the normal hierarchy m,, < m,, < m,,, the range of the selected

values are
m2 —m? € [2.45,2.69] x 1073,

2

m,, _
m2 (1 — m;) € [2.45,2.69] x 107, (5.2)
V3
2 -3 -3
2. 1 2.45 x 1
m”le[l— 69 x 10 1_ 5 x 10 ],

Y

2 2
mVs ml/s
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and
m;, —m., € [6.93,7.96] x 107°,

vo

2 2
2 mr/ mV -5
m”S(m?,: - m?;) € [6.93,7.96] x 107, (5.3)

mZ, m. 693 x107° mZ  7.96x 107°
+ +
m2 [mQ m?2 ) m? m2
v3 v3 V3 V3 v3

where m,, € [v/2.69 x 1073,0.17].

For the inverted hierarchy m,, < m,, < m,,, the range of the selected

]

values are

m;, —m. € [2.42,2.66] x 107°,

2

my o
m;, (1 — m;) € [2.42,2.66] x 107, (5.4)
V3
m? 2.66 x 1073 2.42 x 1073
gl €l— 5 , 1 — 5 ],
TTLV3 mVS my3

m? —m?2 € [6.93,7.96] x 1077,

V3 Vo
2 m?,z _5
m,, (1 — 3 ) € [6.93,7.96] x 107, (5.5)
V3
m?2 7.96 x 107° 6.93 x 107
= el — 5 1A 5 1,
m2, m2, m2,

where m,, € [v/2.66 x 1073,0.17].

2. Scan of values of neutrino masses under cosmological and partial wave

unitarity constraint

My, My,
My (— +
m

vy My

+1) <017 oV, (5.6)

and

M < 8. (5.7)
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By following above steps, the result of neutrino spectra in both hierarchies is shown

in figure 5.3

0.8f

0.2}

0.0, - | . i ‘ 1
0.0 0.2 0.4 0.6 0.8 1.0
m,, | my,

Figure 5.3 Viable neutrino spectra for normal hierarchy (red). Region compatible
with perturbative unitarity is shown in green.

Notice that there is no viable neutrino spectra for inverted hierarchy in
figure 5.3. The reason is that the perturbative unitarity region is not large enough
to accommodate the inverted hierarchy mass ratio. Therefore there is only the red
region for normal hierarchy.

Since values of neutrino spectra in figure 5.3 are given in terms of the ratio
between two different light neutrino mass, to evaluate the lower bound of the
lightest neutrino mass m,,, we will multiply it by m,,. Thus, the result of lower
bound on neutrino spectrum is m,, > 6.11 x 10~* eV for the normal hierarchy.

From the lower bound on m,,, we can deduce the lower bound on the other
two neutrino masses by using neutrino mass squared differences from table 5.1,
as shown in figure 5.4. Figure 5.4 shows how does the lightest neutrino mass is

related to the other neutrino masses. If a lower bound on the lightest neutrino
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mass m,, is identified, the lower bounds on m,, and m,, will be determined.

2

T Mo — 1 mZ,

7.37 x 1075
_4 2
m,,z
2.56 x 1073 — 254 x 1073 —
2
—— mvz
7.37 x 1075
2 2
— T My, — T My,

NH IH
[ (611 x 1074)?=3.73 x 105 | Cannot identify

Figure 5.4 Scale of neutrino mass squared differences in normal and inverted
hierarchy.

However, notice that the bound on neutrino mass comes from a (Yy) diago-
nal basis choice. There is also a choice of diagonal (Vg). We will next work in this
basis where neutrino mixing is apparent. In the next chapter, we will go back to
our Lagrangian and indicate how lepton mixing matrix appear in an interaction.

Then we will employ a PWUC to constrain neutrino mixing angles.



CHAPTER VI

NEUTRINO MIXING

In this chapter we discuss how to obtain a conservative bound of neutrino
mixing parameter. Since (Vg) and ()Yy) can not be diagonalized simultaneously,
lepton mixing angles are only encoded in (Jy) when we choose basis of diagonal
(Vg). Thus, a suitable basis choice for studying neutrino mixing constraint is the
one where (Vp) is diagonal.

In order to study mixing parameter, the relevant interactions in the La-
grangian are the Yukawa interactions. For this gauged lepton flavor model, it has

three extra fermions. Their Yukawa interactions are

__ _ - ) . AV
ﬁyuk:)\EELH(C:R—|—MEgLeR—F)\ggLyEER—'—)\VgLHNR‘FTN I%yNNR—i—h.C., (61)

where H = iooH* with hypercharge —1 /2. After both electroweak and flavor

symmetries are broken spontaneously by background of the scalars

T i
:% v+ h ’
(6.2)
Ve = () + ¢6/V2,
yNE<M1>+¢N/\/§7

the Yukawa interaction becomes
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1 0 _ _
Lyuk =Ap (VL eL> 7 Er + pefrer + Ae€(Ve)Er
v+ h

(6.3)
1 _ 0 AN
+)\Vﬁ vy, ey, | 102 NR"—? R(yN>NR+h.C.,
v+ h
ABU__ AU

Z_UrNg + /\NN <yN>NR + h.c..
(6.4)

Lyuk D —=€r + pp€ren + N (Vu)lr + —=
V2 V2
The lepton masses can be written as in (2.13). Assuming (Vg) > v, ug

and (Yy) > v, the Lagrangian of the light lepton mass is given by

‘Clight mass 2 amleR + vpmyvr, (65)

where m,;(m,) is a light electron(neutrino) mass.

Since e; and vy are in electroweak doublets, they transform equivalently
under the orthogonal matrix. To obtain a diagonalized mass matrix, an orthogonal
matrix is selected to rotate the flavor basis. In case that light electron mass is

diagonalized by V., the electroweak doublet transform as

v
gL = )
€L
(6.6)
. Vevr VeV WV Vevy i UpninsPr
VL gL = = = = s
Vier Vier er, er,

where Upyns = VEV, " is the Pontecorvo-Maki- Nakagawa-Sakata (PMNS) matrix.

This matrix contains the 3 angle parameters: 6,5, 623 and 6,3, together with a CP-
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violating phase or Dirac phase and two Majorana phases: §, as; and ag;. The

PMNS matrix can be written as

0

C12C13 S$12C13 S13€
i5 iS5 . j921 ;931
UpMns = | —s19C23 — C12523513€"  ClaCaz — 512503513€° sogcis | diag(l,e 2 e 2)
- s . is
512523 — C12€23513€ C12523 — 512€23513€ C23C13
(6.7)

where s;; = sin6;;, ¢;; = cos0;; and Upnng is the unitary matrix which satisfies
UbansUpnins = 1.
The Lagrangian of light lepton mass after light charged lepton mass was

diagonalized is

X A A ~ T A A~
Liight mass 2 €L1€r + VL Upyng Upmns?r, (6.8)

where 7y = Veme, Vil (m, = Vim,, V1) is the diagonal light electron(neutrino)
mass and the mass eigenstate transforms as
e =Vier,
(6.9)
v, =Vivp,
where V£ (V}) is an orthogonal matrix for rotating the flavor basis er(vr) to the
mass basis ér (7).
For simplicity, we ignore effect from CP-violating phase and Majorana
phases. Since the heavy lepton mass is inversely proportional to the light lep-
ton mass in the gauged lepton flavor model such as My ~ m,;! ~ ( X). The

other basis choice is

- AEUE . ( vV v )
~ d _——, — 6.10
<yE> \/5)\5 1ag 3 ) ( )
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and

2
AU v

~ N . v
(In) =~ 1 Upnnsdiag < ) ) ) UI];MNS' (6.11)

2N My, Myy My,

This basis choice leads to the encoding of the mixing parameters in the gauge
boson mass
A~ a ~ -i- A~ -'- a ~
(ME)ay == g7 [ Tr (VAT T4 + Tx (DT T, 70T} 0iy )
(6.12)
+2Tr (yNTTaTyNTb + yANTTbTyANTaﬂ :
In previous chapter, the gauge boson mass matrix appears in scattering

amplitudes. Thus, these mixing parameters can also be encoded in amplitudes.

1. Constraint on neutrino mixing parameter

In order to constrain neutrino mixing parameters which are encoded in
Upnns, we ignore the Dirac phase and Majorana phase for simplicity. Only sin 6ag,
sin 15 and sin 63 are studied in this work. By varying these three mixing angles,
sin fb3 is the most sensitive parameter with unitary constraint. It is not so sur-
prising because sin f»3 is the largest value in table 6.1 compared with another two
angles. Therefore, we fix sinf;5 and sin ;3 then scan the sin 63 for both normal
and inverted hierarchies.

Figure 6.1 shows grid chart of scanning mixing parameter sinfy3 at each
order pair of (sinf;3,sinf3). Red dots are a position of scanned sin f3. Arrows
show how we step the value of sin 6, and sin 63 in range 3o.

In figure 6.2, blue region was constrained in the mixing parameter scan.
Unfortunately, it cannot constrain sinfy3 in normal hierarchy because all viable
neutrino spectrum is in perturbative region. It means that the effect of neutrino

mixing parameter does not give additional constraint from our perturbative region
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Table 6.1 The best-fit(d+10) of three neutrino oscillation from the present experi-
ment neutrino data(Patrignani et al., 2016) and sin 6,3 [NH/IH] from propagating
errors (Tanabashi et al., 2018).

Parameter best-fit(+10)
Am3, [10~°eV?] 7.37 £0.17
Am§1(23)[10_3ev2] 2.56+0.04(2.5440.04)
sin? 01,[NH/TH] 0.297+0.017
sin? 03[ NH] 0.42540.039
sin® 63 NH] 0.0215+0.0025
sin? 6,3[TH] 0.021640.0026
sin 03 [NH] 0.65240.030
sin 03 [IH] 0.768+0.027
—30/2 —0 —-050 0 050 o 30/2
SRR R 39/2
i i o
0.50
sin 612 0
—0.50
f f ~o
® o — é 6 —30/2
Sin 013

Figure 6.1 Grid chart for scanning mixing parameter when red dots stand for
(sin 923)@' at (Siﬂ 913)i, (SiIl elz)j.

in both hierarchies.
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my,Im,,

Figure 6.2 Result from scanning mixing parameters in range 20. Blue region is
the perturbative region. Red line is viable neutrino spectrum for normal hierarchy.



CHAPTER VII

CONCLUSION AND DISSCUSSIONS

In this work, we study constraints on neutrino masses and mixings in the
SU(3), x SU(3)g model. We use two different bases for the flavon vev. In
order to bound neutrino masses, we choose the basis where (Vy) is diagonal.
To constrain neutrino mixing, on the other hand, we choose the basis where
(Vg) is diagonal. First we found that this gauged lepton flavor model gives
us the relationship between flavor gauge bosons masses and the light neutrino
masses. To connect it with the partial wave unitarity constraint, we have to
compute 2-2 scattering amplitudes at tree-level of five processes: F'F* — FIF7,
AL ALY 5 ADP ALY AL ALY s ADO ALY R ADC ALY and FIFT — ALC ALY,

Unfortunately, processes F'F" — FIiFi A A% — A AY and A% AV —
A%aA%b cannot give us a meaningful constraint. Only these two processes: F'F? —
AL AL and FIFT — ALY A% give us the perturbative unitary constraints. By
imposing unitarity constraint, we identify the viable neutrino mass spectra.

The result in chapter V was obtained by combining recent experimental
data on neutrino masses and partial wave unitary bound. We got the lower bound
on the lightest neutrino mass. It is greater than 6.11 x 10~* eV for normal hier-
archy. Moreover, we found that the inverted hierarchy case is incompatible with
this model. For the result involving mixing parameters in chapter VI, we cannot
constrain them in both hierarchies since the effect of mixing parameters do not
rule out the perturbative region enough as their conservative range can be.

In summary, our results came from only F'F* — A% A% and FIFI —



95

A%aA%b. It does not effective enough to claim on the bound of neutrino masses.
To improve this theoretical bound, we could study more special symmetry model
in the lepton sector to get more information about extra fermions or another gauge
bosons (Alonso et al., 2016). Furthermore, there are some specific models which
can also generate the neutrino mass known as seesaw-type LI and IIT (Xing and
Zhou, 2011) with different new physics particles. Lastly, we still look forward to an
unexpected data in neutrino experiments for supporting the extension of standard

model.
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APPENDIX A

STRUCTURE CONSTANTS

In flavor gauge symmetry SU(3),, There are eight generators. They are

3 x 3 matrices which called the Gell-mann matrices \%.

7o = Ly (A.1)

[Ta’ Tb] _u ifabCTc (AQ)
Since we have to diagonalize flavor mass matrix, Thus structure constants

should be calculated Traditional SU(3) generators can write in the term of new

generators

3 3/ 8/
T° = c 17 + 5,17,

(A.3)
T8 = —5,T% + coT%,
and the inverse relation is
T3 = ¢, T% — s,T°,
(A.4)
T = s,T% + ¢, T".
Then we use commutation relations [7%,T°] = if%T¢ to determine new

structure constants

For traditional structure constant f12 = 1, 3% = —f367 — %, 8 =



f678

¥3 and the commutations are

[Tl, TQ] — /L'f123T3 + Z'leSTS + if12cTc,
[T4, TS] — ,L'f453T3 + ,L'f458T8 + if45CTc,

[TG, T7] — ,L'f673T3 4 Z'f678T8 4 Z'f67CTC.

Therefore, new structure constants are

F28 s
F128 — g8
FUT 516 _ 246 _ g257 g7 g156 _ _ pd26 _

f345:_f435 — %Ca__sa

1
367 _ _ 637 __

[ =—f —5Ca

V3 1

FU8 o8 &l 4 S5

FOT8 — _ 768 ﬁ _13
2 Ca 27

_ps2r _ L
/ 2

61

(A.5)



APPENDIX B

ta 4l 0b Alb
ATA — ATAY

Scalar products: k;(p;) is an incoming(outgoing) gauge boson and ey, (¢,,)

is polarization of incoming(outgoing) gauge boson.

ky-ky =ky - ky = M?
S
lﬁ'kzzé—Mf
a2
1 p1 =M
S
191'172———Mb2
2
t M2+ M}
ki-pr ==k p2_—§ 9 :
w - M2+ M?
ki -ps==ky p1:—§ 5 "
€k " €k =€ky " €ky = €py " €py €pg sz__l
S
€k1'6k2 :2M3_
S
S TV 1
s 4M?2 4M?
Oy " 1 =Che 6”2:4MMb< S T
s 4 M2 4M?
k1 " Cp2 =6k 6pl:élMM;,( 1= s L= 5
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le
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t-channel:

64

— * *
MAZL’CZt—channel = ChpChovCpabpy g

_ ; abc)2
MA%C:t—Channel _(_ZgAf ) t— M2

(—igaf™)? (g““(kl +p1)* + g* (k1 — 2p1)* + g™ (p1 — %1)"‘)

1 1
YT <9Ap - W(kl —p1)(p2 — kz)p>

c Cc

(970 + o) + g7 (ks — 22)" + 9" (p2 — 26)°)

1

C

(% “€p, <(k?1 +p1) - (k2 +p2)ew, - €, + €, - (k2 — 2pa)eg, - (k1 + p1)

+ek, - (k1 +p1)ey, - (P2 — ka))
+ex, - (k1 — 2p1) (e;l (k2 +pa)en, - €, T € - 6 €k, - (K2 — 2p2)>
Ty by (P2 — 26))

+e,, - (p1— 2k1)<6k1 (ko + p2)er, - €, + ry - €p€ny - (K2 — 2192))

1
_W(E’“l "6 (b pu)(kr = p) 6 (k= pu)er, - (B — 2p1)

C

+ep, - (p1 — 2k1)ex, - (K —p1)> ((292 — ko) - (ko + p2)er, - €,

+er, - (P2 — K2)er, - (ky — 2p2) +€p, - €, (P2 — 2k2)>>
(B.3)
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u-channel:

— * *
MAgL’Ciu—channel = ChpChovCpabpy

(—igaf™)? (g“a(kl +p2)* + g* (k1 — 2p2)* + g™ (pa — 2k‘1)°‘>

1 1
S <9Ap - W(kl —p2)*(p1 — k’z)p>

C

(902 + 1) + g7l — 21)" + 9" (11 — 26)°)

1
— M2

c

MA%C:u—channel :(_igAfabc)Q u

(% C €, ((kl +p2) - (ko +p1)er, - €, + €ry - (k2 — 2p2)ey, - (k1 + p2)

+er, - (k1 +p2)ey, - (P11 — 2/<?2)>

+ex, - (k1 — 2p9) (6;;1 (k2 +pa)en, - €, T € - €hy v (K2 — 2p1)>
T 6y (b1 — 26))

+e,, - (P2 — 27@1)(% (ko + p1)er, - €, + €x, €5 €y - (Ko — 2p2)>

1 * *
75 (6 <Gkt o) = o), (ks = pr)ew, - (ky — 2p2)

+ep, - (P2 — 2k1)er, - (k1 — p2)) ((p1 — ko) - (ko +p1)er, - €,

+€, - (p1 — ka)er, - (k2 — 2p1) + €y - €5, (p1 — 2k2)>)
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Ca 46.b Ca 40
ATAT — ACAY

Scalar products: k;(p;) is an incoming(outgoing) gauge boson and ey, (¢,,)

is polarization of incoming(outgoing) gauge boson.
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s-channel:
S * *
MAZL’C:S—Channel = Ck1,uCh2,v a8
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+en, - €, 6y (2P +p2)) + €r, - (k1 — 2ky) <€k2 “(p2 —p1)ey, €,
ek €5, (=P1 = 2p2) + €k, - €5 6, (201 +p2)>
ek * Exy ((—/ﬁ + ko) - (p2 = p1)e,, - €5,
H(—Fk1 + k2) - €5, €p, % <(=P1 — 2p2) + (=K1 +K2) - €, €p, * -(2P1 —I—p2)>

1

_W (Ekz A (2k‘1 3H k)g)ékl . (kl + kQ) -+ €ky * (k’l + k’Q)le . (—]{1 - 2]{72)

C

+ep, - €py(—k1 + ko) - (ky + k2)) (e;;l €5 (p1+p2) - (p2— 1)

+ep, - (=p1 = 2p2)(p1 +p2) - €, + €, - (P1 + P2)E,, - (21 +p2)>>
(C.3)
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