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Chapter I

Introduction

Many phenomena in the real world can be described by infinite dimensional systems, for
instance; heat conduction, properties of elastic material, fluid dynamics, diffusion-reaction
processes, etc.. The variable that we are studying (temperature, displacement, concentration,
velocity, etc.) is usually referred to as the state. The space in which the state exists is called the
state space, and the equation that the state satisfies is called the state equation which may be one
of the following types: partial differential equation, functional differential equation,
integrodifferential equation, or abstract evolution equation. Stochastic differential equation is also
an infinite dimensional system.

It is well known that several classes of differential equations with memory effects can be
formulated as abstract semilinear evolution equation with a delay or retardation, i.e., the equation
evolved with time and the principal part of their differential operators are linear and other terms
are nonlinear with respect to a variable in a suitable function space and the unknown function
depends on a delay or historical effects. We sometimes call those evolution equations as a system
and want to study many properties of their solutions.

Most of the system concern with many types of solutions, for instance, classical solution,
weak solution, strong solution, mild solution, and others. So the meaning of solution should be
defined and the existence of the solution is a fundamental problem that we should answer before
we study other properties of the solution, e. g., uniqueness, continuous dependence on initial data,
stability, etc.

In the seventeenth century, Bernoulli studied the brachistochrone problem, and
subsequently initiated the classical calculus of variations. After three hundred years of evolution,
optimal control theory has been formulated as a generalized extension of the calculus of
variations.

A system can be controlled by supplying some control function or control policy to
achieve some purpose. We call the system the controlled system. Optimal control problem is to

find a control policy to minimize or maximize some objective functional subject to a dynamic



framework.
In this thesis, we consider semilinear integro-differential equations with time lags on a

Banach space X. The systems are

% x(t) + Ax(t) =f(x(t)) + _}rh(t —s)g(x(s))ds,t [0, T], (1)

X( t) = (p(t)’ te [—r,()],

and

Lx(0)+ Ax(0) = f(t,x(0) + }rh(t —$)g(s, x(s))ds, t [0, T], (12

x(t)=o(t),t €[-1,0].

We systematically study local existence, extension, global existence and regularity of mild
solutions. Continuous dependence on initial conditions of those mild solutions and existence
theorem for infinite delay system are investigated. The semigroup theory, especially analytic
semigroup and fractional powers of operator, and the contraction mapping theorem (or the
Banach fixed point theorem) are used to obtain our results (See Ahmed N. U. (1991), Pazy A.
(1983)). Existence of an optimal control and Bolza optimal control problem are studied. Some
examples are presented to complete our work.

Many authors studied semilinear evolution equations (See Li, X. and Yong, J. (1995),
Ahmed N. U. (1991), Amann, H. (1978)). Some study semilinear evolution equations with delay
(See Wu, J. (1996), Xiang, X., Kuang, H. (2000)). Ahmed, N. U. (1991) gives a result about
global existence and uniqueness of mild solutions for an integrodifferential equation (1.1). In his
results, uniform Lipschitz condition is too strong for discussion of global existence. We will show
that by using a weaker condition, locally Lipchitz condition is enough to guarantee local existence
of mild solutions, and by adding some growth conditions, global existence problem can be solved.
In Amann, H. (1978), he also study local and global existence of mild solutions for semilinear
evolution equations without delay effects. He use an infinitesimal generator A(t) depending on t.
We extend some results in his works to delay systems.

We consider existence problems in several kinds of situations (See assumption (A), (F1)-
(F6), (G1)-(G6), (H1)-(H2) in Chapter III) that are different from others. It is well known that a
priori estimate is a very important condition to prove extension theorem. A difficulty has been
occurred for giving a priori estimate, because Gronwall’ s inequality is without delay term, so it

cannot be directly used to derive the a priori estimate in our cases. So we derived a Gronwall’s



lemma with singularity and time lag that is suitable for our system. We use the Gronwall’s lemma
and nearly linear growth condition to obtain a priori estimate. In addition, we use the Moment
inequality under super linear growth condition to obtain a priori estimate for global existence
problem.

Regularity of mild solutions is also discussed by using technique of fractional power
operators. Continuous dependence of our system is investigated. Our method is easy to extend to
semilinear evolution equations with infinite delay.

Moreover, we use abstract results about existence of mild solutions to study the existence
of an optimal control for the controlled system corresponding to system (1.1). We consider the
Bolza controlled problem, that is to minimize the functional J, on the admissible control set U_,,
defined by

Jw) = [t x" (1), ut)) dt + y(x(T)),
I

where (is a function satisfying some properties, v is a nonnegative function. We show how
Balder’s theorem can be applied.

We give some examples that illustrate our abstract results. These examples show how to
apply our main results to semilinear parabolic controlled systems.

The thesis is organized as follows: Chapter II mainly introduces theoretical backgrounds
and provides the convenient references to the well known facts of differential equations on
Banach space. Chapter III deals with local existence and uniqueness of mild solutions, extension
theorem, global existence theorem, regularity of mild solutions, continuous dependence on initial
conditions, existence of mild solutions of a system with infinite delay. Chapter IV deals with
existence of an optimal control of Bolza problem . In chapter V, some examples are presented to

demonstrate the applicability of our abstract results. We conclude all results found in chapter VI.



Chapter 11

Preliminaries

In this chapter, we present some important definitions and theorems which are useful for

understanding the results that appear in the following chapters.

2.1 Semigroups

For Banach spaces X and Y, let L(X, Y) denote the class of all linear and bounded
operators from X into Y, and L(X) for L(X, X).
Definition 2.1.1. Let X be a Banach space. A one parameter family {T(t) | 0 <t < oo} of bounded
linear operators from X to X is a semigroup of bounded linear operators on X if
(1) T(0) =1, I is the identity operator on X.
(ii) T(t+s) = T(t)T(s), for every t, s > 0 (the semigroup property).
Definition 2.1.2. Let {T(t) | 0 <t < oo } be a semigroup on a Banach space X. The infinitesimal
generator , A, of this semigroup is defined by

Ax= lim L(T(t)x-x),
t—0+t

where x belongs to the domain of A or D(A) = { xeX | lim %( T(t)x - X) exists }.
t—0+

Definition 2.1.3. Let {T(t) | t > 0} be a semigroup on a Banach space X. T(t) is uniformly

continuous if  lim [|T(t) —I|| , = 0, or equivalently, lim ||T(s)— T(t)|| , = 0.
t—>0+ s>t

Theorem 2.1.4. A linear operator A is the infinitesimal generator of a uniformly continuous
semigroup if and only if A is a bounded linear operator.

Proof. See Pazy (1983), pp. 2.

Definition 2.1.5. A semigroup {T(t) | 0 < t < oo} of bounded linear operators on X is a strongly
continuous semigroup of bounded linear operators if

lim T(t)x =x, for every xeX.
t—>0+

A strongly continuous semigroup of bounded linear operators on X will be called a

semigroup of class C, or simply a C; semigroup.



Theorem 2.1.6. Let {T(t) | t > 0} be a C, semigroup. Then there exists constants ® >0 and M > 1
such that
T, < Me™",
for 0 <t <oo.
Proof. See Pazy (1983), pp. 4.
Corollary 2.1.7. If {T(t) | t >0} is a C, semigroup then for every x € X, t >T(t)x is a continuous
function from [0, o) into X.
Proof. See Pazy (1983), pp. 4.
Theorem 2.1.8. Let {T(t) | t >0} be a C, semigroup on X and let A be its infinitesimal generator.

Then

t+h
(a) Forx e X, lim % JT(s)x ds = T(t)x.
=0+
t
(b) Forx e X, [T(s)x ds € D(A) and
0

A( }T(S)X ds)=T({t)x — x.
0

(¢) Forx e D(A), T(t)x € D(A), and

% T(H)x = AT(t)x = T(t)Ax.
(d) Forx e D(A), T()x — T(s)x = }T(t)Ax dt= } AT(t)x dr.

Proof. See Pazy (1983), pp. 5.

Corollary 2.1.9. If A is the infinitesimal generator of a C, semigroup T(t) on X then D(A), the
domain of A, is dense in X and A is a closed linear operator.

Proof. See Pazy, A. (1983), pp. 5-6.

Theorem 2.1.10. Let T(t) and S(t) be C, semigroups of bounded linear operators on X with
infinitesimal generators A and B respectively. If A = B then T(t) = S(t), for t > 0. In other words,
a C, semigroup T(t), t > 0 is uniquely determined by its infinitesimal generator.

Proof. See Pazy (1983), pp. 6.

Theorem 2.1.11. Let A be the infinitesimal generator of a C, semigroup T(t) on X. If D(A") is the

e 0]
domain of A", then N D(A") is dense in X.
n=1

Proof. See Pazy (1983), pp. 6.



Theorem 2.1.12 (Hille-Yosida Theorem)

A linear (unbounded) operator A is the infinitesimal generator of a C; semigroup of
contractions T(t), t >0 if and only if
(i) A is closed and TA) =X.
(ii) The resolvent set p(A) of A contains [0, o) and for every A > 0,

RO Al < 1/ 1.
Proof. See Pazy (1983), pp. 8.
Corollary 2.1.13. A linear operator A is the infinitesimal generator of a C, semigroup T(t)
satisfying || T(t)]|, , < e® for all t >0 if and only if
(i) A is closed and TA) =X.
(ii) The resolvent set p(A) of A contains the ray { A | ImA =0, A> » } and for such A
IR Ay < 5

Theorem 2.1.14 A linear operator A with D(A) and R(A) in X is the infinitesimal generator of a
C, semigroup T(t), t> 0 on X satisfying ||T(t)||, < M for all t> 0 (for some M > 1) if and only if
(i) A is closed, % =X.
(i) p(A) (0, 0) and [[A"R™ (A, A) |,y M fordA>0,and neN= {0, 1,2, ...}.
Proof. See Ahmed(1991), pp. 44.
Theorem 2.1.15. Let A be a densely defined linear operator on a Banach space X satisfying the
following conditions:
(al) There exists a 0 <& < n/2 such that p(A) 325 ={Le R |larg A |< /2 +8 } U {0}.
(a2) There exists a constant M>0 such that || R(A; A)[|, , <M/A|, for Ak e 2\ {0},
Then A is the infinitesimal generator of a C, semigroup T(t), t >0 satisfying
(c1) ||T(t)||ux> <K, for t >0 and some constant K > 0.

(€2) T() = 5L [e™R(A;A)dA,
r

where I is a smooth curve in 25 running from oo e Vo wel for a fixed v e (n/2, m/2 + &) with
the integral converging in the uniform operator topology.

Proof. See Ahmed (1991), pp. 77.

Definition 2.1.16. A C, semigroup T(t), t >0 on a Banach space X is said to be differentiable if,

for each xeX, T(t)x is differentiable for all t > 0.



Remark 2.1.17. Note that T(t) is not expected to be differentiable at the origin since that would
require its generator to be a bounded operator.
Theorem 2.1.18. If T(t), t > 0 is a differentiable semigroup with A being its infinitesimal

generator then it is differentiable infinitely many times and, for each neN|,

n
(i) d—n T(H) = T”(t) = A"T(t) € L(X), for t >0.
dt
(i) T™ () = (AT(t/n))", for t > 0.
(ii1) T(n)(t) is uniformly continuous for t > 0.

Proof. See Ahmed (1991), pp. 74.

2.2 Analytic Semigroups

Definition 2.2.1. Let A= { z e R |6,<argz<6,,06,<0<8,} and suppose T(z)e L(X) for all

z € A. The family {T(z)| z € A} is called an analytic semigroup in A if it satisfies the following
properties:

(i) z > T(2) is analytic in A (in the sense of uniform operator topology, i. e., forall z € A ,

x"T(z)x is analytic in R, for all x e X ,x* € X" such that X]x< 1 and || x " ||X* <1, and

IT@l = sup | T(2)x [|x)-

lIx/I<1

(i) T(0)=Tand lim T(z)x =x, forall xe X .
z—0

zeA
(iii) T(z+z,) =T(z)T(z,), forallz,z, € A.

A semigroup T(t) will be called analytic if it is analytic in some sector A containing the
nonnegative real axis.
Theorem 2.2.2. Let A be the Infinitesimal generator of a uniformly bounded C, semigroup T(t),
t >0, with 0ep(A). Then the following statements are equivalent:
(a) T(t) can be extended to an analytic semigroup from the nonnegative real line to a sector
around it, given by As ={ z | Jarg z| <& } for some & > 0, and IT(2)]], x, is uniformly bounded on
every closed subsector Ag cAg,8'<d.
(b) There exists a constant C > 0 such that, for every ¢ > 0 and t# 0,

IR(o +it, Al (x, < C/lt|.
(c) There exists 0 <& < r/2, and M >1, such that p(A) 52 = {re R [larg | < n/2 + 8 }u{0}
| RO Al < M/, for % e 2\ {0}

(d) T(t) is differentiable for all t > 0 and there exists a constant M, > 0 such that



JAT(@)|,, < M,/ t) for t > 0.

Proof. See Ahmed (1991), pp. 82.

2.3 Fractional Powers of Closed Operators

Assumption (F). Let A be a densely defined closed linear operator with D(A) and R(A) in X for
which the resolvent set p(A) DX ={ A e R|0< o <Jargr| <7} UV, where V, is a
neighberhood of zero in R and
| RO Al < MAL +2]), for & e X (2.3.1)
Definition 2.3.1. Let A be the operator satisfying the assumption (F) and let o > 0. Define
AT =ﬁ£z‘“ (A—zl)ldz (2.3.2)

S, <9< 7, avoiding the

where the path C runs in the resolvent set of A from we P to ooe!
negative real axis and the origin and z~“ is taken to be positive for real positive values of z.
The integral (2.3.2) converges in the uniform topology for every o> 0 and thus defines a

bounded linear operator A™* . For 0 <a < 1 we can deform the path of integration C into the

upper and lower sides of the negative real axis and obtain

AT =sime [ (14 A)dt, 0<a< 1. (2.3.3)
0

Lemma 2.3.2. Suppose A satisfies the assumption (F) with 0 < ® < n/2 and let T(t), t > 0 be the

semigroup corresponding to the operator —A. Then for every 0 < o < 1 and x € X we have

0

Ax=rls [t*TT(t)x dt, (2.3.4)
0

where I'(a) is the gamma function at o .
Proof. See Ahmed (1991), pp. 91-92.

Remark 2.3.3. Defining A’ ’=Iand using the equations
A" =(1/T()) [t"'T(t)dt, (2.3.5)
0

and (2.3.4) one can verify that the equation (2.3.4) holds for all real numbers o >0 and not
merely for fractions.

Lemma 2.3.4. Fora, p20, A ¢ P = A * AP,

Proof. See Ahmed (1991), pp. 93.

Lemma 2.3.5. There exists a constant 0 < C < co such that || A lx)<C, forall0<a<1.

Proof. See Ahmed (1991), pp. 93.



Lemma 2.3.6. Forevery x € X, lim A “x=x.
a—0

Proof. See Ahmed (1991), pp. 94.

Remark 2.3.7. Under the assumption (F), it follows from the above results that S(t) = AL t>0
is itself a C semigroup in X.

Lemma 2.3.8. The operator A’ a, o >0, is one-to-one.

Proof. See Ahmed (1991), pp. 95.

Definition 2.3.9. Suppose that the operator A satisfies the assumption (F) with 0 < ® < /2, so
that —A is the infinitesimal generator of an analytic semigroup T(t), t > 0. For every o >0,

we define

A7 fora>0,
A% = (2.3.6)
I, fora=0.

Clearly by virtue of Lemma 2.3.8, this is a single valued map and its domain D(A®) equals the
range of A% i.e., D(AY)=R(A %), forall a>0.

Theorem 2.3.10. The operator A“, 0 < o < 1, as defined in definition 2.3.9, satisfies the following
properties

(i) A*is a closed operator with D(A® ) = R(A™*).

(i) 0<p <o implies D(A*) = D(AP).

(iii)) D(A*) =X, for every a >0.

(iv) If o, B are real then A*' Px = A APx | for x € D(A"), where y = max{ a, B, a+B }.

Proof. See Ahmed (1991), pp. 96.

Theorem 2.3.11. Suppose A satisfies the assumption (F) so that —A is the infinitesimal generator

of an analytic semigroup. Then, for each a satisfying 0 < a. < 1, the operator A%is given by
o T al 1
Ax = (F1E) (j)r A(rl+A) xdr, (2.3.7)

for x eD(A).
Proof. See Ahmed (1991), pp. 97.
Theorem 2.3.12. Suppose —A is the infinitesimal generator of an analytic semigroup satisfying
the assumption (F). Then for 0 < o < 1 and for every ¢ > 0,

1A% < 1+ MIs™ | x|l +o%™ | Ax ], (2.3.8)
and further,

1A% [l <20+ M| x[IX® | Ax [I% (23.9)
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for x € D(A).
Proof. See Ahmed (1991), pp. 98.
Corollary 2.3.13. Let B be a closed operator with D(B) > D(A” ) for some o satisfying 0 < o < 1.
Then there exists a constant K, > 0 such that
Bl < K, 1A%, (23.10)
forx e D(Aa), and
IBx|l, < K,(1+M)[c” || x [, + 5% [JAX],], (2.3.11)
for x € D(A) and for every ¢ > 0.
Proof. See Ahmed (1991), pp. 99.
Theorem 2.3.14. Suppose B is a closed linear operator with D(B) > D(A) and there exists
constants K > 0 and o, > 0 such that, for some 0 <p <1 andevery 0 <o <g,,
IBx[ly < K[o™®lxlx +o' P [|Ax|,], (23.12)
for all x € D(A). Then D(B) DD(AQ) forp<ac<l.
Proof. See Ahmed (1991), pp. 100.
Remark 2.3.15. For an arbitrary o appearing in assumption (F), the operator A* , a0 <1/2 is the
generator of a C-semigroup while for 0 < o< m /2, '\ , 0 < a <1, is the generator of an
analytic semigroup.
Proof. See Ahmed (1991), pp. 101.
Theorem 2.3.16. Let -A be the infinitesimal generator of an analytic semigroup T(t), t >0 on X
and suppose 0 € p(A). Then the following results hold
(@) Tt)X cD(A%), fort>0 and all o >0.
(b) Forx e D(A%), T®) A*x = A® T(t )x, for all o >0.
(¢) Foreacht>0,A%*T(t)e L(X) and
AT, < Kot ™%e™", (2.3.13)
t > 0, for some constants K, >0,y >0.
(d) ForO<a<landx e D(A?),
ITOx —x ||y < Cot” | A*X |4 (2.3.14)
for some constant C, > 0.
Proof. See Ahmed (1991), pp. 101.
Theorem 2.3.17. (Moment Inequality)

For 0 < o <P <1, there exists a constant M, g such that
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1A% Xl < Mg (| APx 1) P ([l x[1x) =P, (23.15)
forallxe D(AB).
Proof. See Ahmed (1991), pp. 103.

2.4 Differential Equations on Banach Space

Let X be a Banach space, called the state space and Ae L(X) with D(A) and R(A) c X and

consider the differential equation on X given by

dx

=2 =Ax,t>0

dt — 2% (2.4.1)
x(0) =x,.

Definition 2.4.1. The Cauchy problem (2.4.1) is said to have a classical solution if for each given
X, € D(A) there exists a function x(t) =x(t, x,), t > 0 with values in X, satisfying the following
properties
(1) xis C(J0,0), X) ™ Cl((O, o), X); that is, x is once continuously differentiable

with% x(t)e C((0, ); X).
(i) % x(t) = Ax(t) for all t > 0, and
(i) x(0) = x,.

Clearly the condition (ii) also implies that x(t) € D(A) for all t > 0.

Theorem 2.4.2. Let A be a densely defined linear operator in X with p(A) #¢. Then the initial
value problem (2.4.1) has a unique classical solution x(t), which is continuously differentiable on
[0, o0), for every initial value x,€ D(A) if, and only if, A is the infinitesimal generator of a
C,semigroup T(t).
Proof. See Pazy (1983), pp. 102.
Theorem 2.4.3. If A is the infinitesimal generator of a differentiable semigroup on X then for
every X,€ X the initial value problem (2.4.1) has a unique classical solution.
Proof. See Pazy (1983), pp. 104.
Corollary 2.44. If A is the infinitesimal generator of an analytic semigroup then for every
X, € X, the initial value problem (2.4.1) has a unique classical solution.
Proof. See Pazy (1983), pp. 104.
Remark 2.4.5. If A is the infinitesimal generator of a C, semigroup which is not differentiable

then, in general, if x,& D(A), the initial value problem (2.4.1) does not have a classical solution.
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The function t > T(t)x, is then a “generalized solution” of the initial value problem (2.4.1) which
we will call a mild solution. There are many ways to define generalized solutions of the initial
value problem (2.4.1). All lead eventually to T(t)x,. One such way of defining a generalized
solution of (2.4.1) is the following: A continuous function x on [0, o0 ) is a generalized solution of
(2.4.1) if there are x € D(A) such that x, >x(0) as n — o and T(t)x, —>x(t) uniformly on
bounded intervals. It is obvious that the generalized solution thus defined is independent of the
sequence (x,), is unique and if x(0)eD(A) it gives the solution of (2.4.1). Clearly with this
definition of generalized solution, (2.4.1) has a generalized solution for every x,€X and this
generalized solution is T(t)x,.

Definition 2.4.6. If A is the infinitesimal generator of a C, semigroup T(t), t >0, on X then for
every x,€X, the function x(t) = T(t)x,, t >0 is called the mild solution of the initial value
problem (2.4.1).

Theorem 2.4.7. Let A be the generator of a C semigroup T(t), t >0, on X. Then

(i) For xe D(A"),ne <, T(x= Y (t*/kHAKx +}[(t-n)“'1 /(n —1)1TT()(A"x)dn
0<k<n-1 0

fort > 0.
(i1) On any finite interval every mild solution of the Cauchy problem (2.4.1) can beapproximated

to any degree of accuracy by a C*- function admitting the oo -series representation,

> @k rknaky,
0<k<w

for a suitablen € X.

Proof. See Ahmed (1991), pp. 150.

Nonhomogeneous Cauchy Problem

Consider the Cauchy problem,
{%—’5 — Ax+ (1), t >0, 042
x(0)=x,.
where x,eX and f € L ([0, o0 ); X).
Definition 2.4.8. (Classical Solution)
A function x : [0, a) > X is said to be a classical solution of the Cauchy problem (2.4.2) if
(i) xeC([0, a); X) N C'((0, a); X).
(i) x(t) e D(A) for t € (0, a).

(iii) x satisfies (2.4.2) on (0, a).
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Notation: For M>1 and we V, let G(M, ®) denote the class of infinitesimal generators of C,
semigroups {T(t) | t=0 } of bounded linear operators on X such that |T(t)[| , <M exp(®1),
t>0.

Lemma 2.4.9. If the operator AcG(M, ®) with {T(t) | t >0} being the corresponding semigroup
and if the Cauchy problem (2.4.2) has a classical solution x in the sense of definition 2.4.8, then x

is uniquely defined by
t
x(t) = T()xo + [T(t - s)f(s)ds, t>0. (2.4.3)
0

Proof. See Ahmed (1991), pp. 152.
Definition 2.4.10. (Mild Solution)

A function x € C(I, X), for any finite interval I =[O0, a], is said to be a mild solution of the
Cauchy problem (2.4.2) corresponding to the initial state x,€X and the input f € L (I, X) if x is
given by the expression (2.4.3) fort € 1.

Theorem 2.4.11. Consider the Cauchy problem (2.4.2) with x, € D(A) and f € L ([0, a]; X) N
C((0, a); X) and suppose that A € G(M, ®) with {T(t) | t > 0} being the corresponding semigroup,
and let

x(t) = T()x +z(t),t [0, a),

t
where z(t) = [ T(t - s)f(s)ds, t e [ =[0, a], be the associated mild solution. Then, in order that x be
0

a classical solution, it is necessary and sufficient that any one of the following conditions hold

(i) z € C'((0, a); X).

(i) z(t) € D(A) for t € (0, a) and Az(t) € C((0, a); X).

Proof. See Ahmed (1991), pp. 153.

Corollary 2.4.12 Suppose AcG(M, ®) with {T(t) |t >0} being the corresponding semigroup. If
f eCl([O, a]; X) and x,€D(A), then the Cauchy problem (2.4.2) has a unique (classical) solution.
Proof. See Ahmed (1991), pp. 155.

Corollary 2.4.13. Let AeG(M, ®) with {T(t) | t >0} being the corresponding semigroup. Then
for every x,eD(A) and feL ([0, a]; X) satisfying (a) f(t) € D(A) and (b) Af € L ([0, a]; X), the
Cauchy problem (2.4.2) has a unique (classical) solution.

Theorem 2.4.14. Let A € G(M, ®) with { T(t) |t >0 } being the corresponding semigroup and
feL,([0, a]; X) and x,eX. Then on any subinterval [0, b], b < a, the mild solution x of the initial

value problem (2.4.2) given by (2.4.3), is the uniform limit of classical solutions.
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Proof. See Ahmed (1991), pp. 155.
Let I be an interval. A function f : I— X is Hélder continuous with exponent 3, 0 <3 < 1

on | if there is a constant L such that

If(t) - f(s)|l, < Lft—s|®,
for s, tel. It is locally Hélder continuous if every tel has a neighberhood in which f is Hslder
continuous. We denote the family of all Hélder continuous functions with exponent3on I by
c? I; X).
Theorem 2.4.15. Let A be the infinitesimal generator of an analytic semigroup T(t) and
fe Lp([O, T]; X) with 1 <p < 0. If x is the mild solution of the problem (2.4.2) then x is Holder
continuous with exponent (p — 1)/p on [¢&, T], for everye > 0. If moreover x,€ D(A) then x is
Heélder continuous with the same exponent on [0, T].
Proof. See Pazy (1983), pp. 110.
Theorem 2.4.16. Let A be the infinitesimal generator of an analytic semigroupT(t).
Let feL ([0, T]; X) and assume that for every 0 <t < T, there is a St > () and a continuous real
valued function W (1) : [0, c0) —[0, ) such that

() - fls)lly < W(ts])

and

8¢
IWtT(T) dt < oo.
0

Then for every x,€ X the mild solution of (2.4.2) is a classical solution.

Proof. See Pazy (1983), pp. 111.

Corollary 2.4.17. Let A be the infinitesimal generator of an analytic semigroup T(t).

If f € L,([0, T]; X) is locally Hslder continuous on (0, T] then for every x,eX the initial value
problem (2.4.2) has a unique classical solution x.

Lemma 2.4.18. Let A be the infinitesimal generator of an analytic semigroup T(t) and let
t

f e CS([O, TL; X). If v,() = [T(t—s)(f(s)—f(t))ds then v,(t)eD(A) for 0<t<T and
0

Av,(1) € C* ([0, T]; X).

Proof. See Pazy (1983), pp. 113.

Theorem 2.4.19. Let A be the infinitesimal generator of an analytic semigroup T(t) and let
fe C* ([0, T]; X). If x is the solution of the initial value problem (2.4.2) on [0, T] then

(1) For every 6> 0, Axe CS([S,T];X) and ((11—),[(6 CS([S,T];X).



(i) If x,€D(A) then Ax and %—’; are continuous on [0, T].

(ii) If x, = 0 and f(0) = 0 then Ax, & & C*([5, T1; X).

Proof. See Pazy (1983), pp. 114.

Theorem 2.4.20. Let A be the infinitesimal generator of an analytic semigroup T(t) on X and let
0 € p(A). If f(s) is continuous, f(s) € D((-A) %), 0 <a<land ||(-A) ¢ f(s)|| is bounded, then for

every x,€ X the mild solution of (2.4.2) is a classical solution.

Proof. See Pazy (1983), pp 115.

Semilinear Evolution Equations

Consider the semilinear evolution equation

dx
=2+ Ax =1(t,x),t>0,
dt (tx) (2.4.4)
x(0) =x,,
on a Banach space X.
Definition 2.4.21. A function x € C(I, X), I =[0, a], is said to be a mild solution of (2.4.4) if x

satisfies the integral equation
t
x() = T(Ox,+ [T(t=$)f(s,x(s)) ds, tel. (2.4.5)
0

Theorem 2.4.22. Let —A be the infinitesimal generator of a C, semigroup on a Banach space X
and t > f(t,&) be a continuous X-valued function for each & e X, and suppose there exists a
positive constant K such that for all¢,n € X,

it &)~ fe )y < KJ[&-n . forallte L
Then, for every x, € X, the system (2.4.4) has a unique mild solution x € C(I, X). Furthermore,
X, X is Lipschitz continuous from X to C(I, X).
Proof. See Ahmed (1991), pp. 168.

Corollary 2.4.23. If A and f satisfy the assumptions of Theorem 2.4.22 and veC(I, X) then the

t
integral equation  x(t) = v(t) + [T(t—s)f(s,x(s))ds, tel, has a unique solution xeC(I, X).
0

Theorem 2.4.24. Let —A be the infinitesimal generator of a C, semigroup T(t), t=0 on X and
f:[0,00) x X — X continuous and locally Lipschitz in the sense that, for every r > 0 and t, > 0
there exists a constant K =K(t,, r) such that

|18, E)-ft, n) lly < KI[E-nlly
forallt € [0,t,]and&, neB, =1 {eX]|||{|[<r}.
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Then for every x,€ X, there exists at =t_ (x,) <oo such that the Cauchy problem (2.4.4) has a

unique mild solution xeC([0, t_); X). Further ift < oo then lim ||x(t)|[x =co.
>ty

2.5 Gronwall’s Lemma

Lemma 2.5.1. Let f, g : [t,, T, >V be continuous functions with g nondecreasing, and which,

for fixed ¢ > 0, satisfy the equality

t
ft) < g(t) + ¢ [f(s)ds, forall te [t, T,].
to

Then f(t) < g(t)ec(HO) forall t  [t,, T,].
Proof. See Zeidler (1984), pp. 82.
Lemma 2.5.2.
Let 0 <o <land suppose that geL (0, T) is nonnegative a. e.. If w € L (0, T) satisfies the

integral inequality

w(t)<g(t)+K }(t -1) *w(t)dr,
to

for almost all t € [0, T] and for some K > 0 then

w(t) <g(t)+K }(t 1) %my (K(t-1)"*)g(t) dr,

to
for almost all t € (0, T) where
0 k. k-1
_ [[(1-0)]™ & <
my (&)= kE I—F(k(l—a)) ,£eV,0 <a<l.

Proof. See Amann (1978).

Corollary 2.5.3. Suppose weL,(0, T) satisfies
t
w(t) <cot? +¢, [t=1)*w(r)dr,
0

for almost all t € (0, T), where c,, ¢, are nonnegative constants and 0 <a., § <1 then there exists a
constant C=C(a, ¢, T) such that
w(t) < ¢,C t_B, a.e.t € (0, 7).
Proof. See Amann(1978).
Lemma 2.5.4. (Abstract Gronwall’s Lemma)
Let A : X— X be a continuous linear positive operator on the ordered Banach space X with
spectral radius r(A) < 1. Let x,y, g € X. Thenx < g+ Ax and y = g + Ay always imply x<y.

Proof. See Zeidler (1984), pp. 281.
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t
Corollary 2.5.5. Let g, h, xeC([a, b]) with h >0 on [a, b]. Let H(t) = [ h(s)ds , it follows that if
0

x(t) < g(t) + }h(s)x(s)ds,
0

for all te[a, b],

then
t
x(t) < g(t) + [g(s)h(s)e" O HO) gs,
0

for all te[a, b].

In particular, if g is monotone increasing and h(s) = ¢ with ¢ > 0, then we obtain
x(t) < g(t) exp(c(t-a)),

for all t € [a, b].

Proof. See Zeidler (1984), pp. 282.

Lemma 2.5.6. (Gronwall’s Lemma with Time Lag)

Suppose x € C=C([-r, T]; X) satisfies the following inequality
t t
[x(®)[<a+b[[[x(s)[lds +c[[[x; lIc ds,t€[0,T],
0 0

X(t) = (P(t)a te [—I', O],

where @ € C and a, b, ¢ >0 are constants and || X J|.= sup | x(s +0)||x . Then
-r<60<0
(b+e)t

1x(®) [lx < (a+cTlollc e

Proof. See Xiang and Kuang (2000).



Chapter 111
Semilinear Integrodifferential Equations

and Analytic Semigroups

In this chapter, we study existence of mild solutions for a class of semilinear
integrodifferential equations with finite delay. We discuss this problem in several kinds of
situations. The theory of analytic semigroups, and the Banach contraction mapping theorem are
important tools to prove local existence and uniqueness of mild solutions. We impose an a priori
estimate condition to achieve extension of local mild solutions. A global existence theorem is
proved. We also study the regularity of mild solutions and continuous dependence. The existence
problem of mild solutions for a system with infinite delay is investigated.

Let x be a Banach space (over R or ©),and r>0,T>0,0<a <1 be given. Let L(X) denote the
Banach space of linear and bounded operators on X with the supremum norm. For an
infinitesimal generator —A of an analytic semigroup T(t), t >0, we can define a fractional power
operator A% and pa”) is the Banach space endowed with the graph norm defined by x| =
1A% + xl. x € D(A%). By the invertibility of A%, the graph norm|||-||| is equivalent to the norm
| x|l =Il A%x||x . Throughout this thesis, we denote by X, , the Banach space D(A“) equipped
with the norm ||-||, . Here are assumptions that are used to prove the existence of solutions and

other related properties.

Assumptions

(A) -ais the infinitesimal generator of an analytic semigroup T(t) on X satisfying IT
Ol <Mforall t=0, and 0 € pi-a).
(F1) The function f: X, — x is locally Lipschitz continuous in x € X, i. €., for each p > o there

exists a constant x,(p)>o such that
Ix) = )l < K (P, = Xlon

for all x,, x, €x4 such that |x |, < p and |xl, < p.
(G1) The function g : X, —> X is locally Lipschitz continuous in x € X,, i. ., for each p > o there

exists a constant k,(p)>o such that
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lgCx)) — g6l < Ky(PIX, %o
for all x,, X, € X¢ such that |x,]|o, < P and [[x,]lo, < P.
(F2) The function f: [0, T] X Xy — X satisfies
(i) f(®,x) is continuous on [0, T], for each x € Xg.
(ii) f(t, ®) is locally Lipschitz continuous on X, , for each t € [0, T}, i. e., for each te [0, T]and
each p > 0 there exists a constant K= K,(t, p) > 0 such that
1805, %)~ fGs. %,V < Kyl %, ~ %l
forall se[0,t]and all x,, x,e X, such that || x,||, <p., || X/4 <p-
(G2) The function g : [-1, T] X X — X satisfies
(i) g(®, x) is continuous on [-r, T], for each x € X.
(ii) g(t, ®) is locally Lipschitz continuous on X, for each t € [-r, T].
(F3) The function f: [0, T] X X, — X satisfies
(i) f(®,x)is measurable on [0, T], for each x € X;.
(ii) f(t, ®) is locally Lipschitz continuous on X, for each t € [0, T].
(iii) f maps every bounded set in [0, T] X X, to a bounded set in X.
(G3) The function g : [-r, T] X X — X satisfies
(i) g(®, x) is measurable on [-r, T], for each x € X.
(ii) g(t, ®) is locally Lipschitz continuous on X, for each t € [-r, T].
(iii) g maps every bounded set in [-r, T] X X, to a bounded set in X.
(F4) The function f: [0, T] X X, — X satisfies
(i) f(®,x) is locally Holder continuous on [0, T], for each x € X, i. €., for each x, € X, and
each te [0, T], there exists a neighberhood V < [0, T]x X, of (t, x,) and a constant L such
that
15, X) — f(s, ) [Ix SL|s, —s, |’
for all s,, s,€[0, t] such that (s,, x), (s,, x) € V, for some exponent v € (0, 1).
(ii) f(t, ®) is locally Lipschitz continuous on X, , for each t € [0, T].
(G4) The function g : [-r, T] X X — X satisfies
(i) g(®,x) is locally Holder continuous on [-r, T], for each x € X,

(ii) g(t, ®) is locally Lipschitz continuous on X, for each t & [-r, T].
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(F5) The function f : X, — X satisfies a growth condition, i. e., there exists a constant K, > 0

such that
TGOl < Ky (1+ [xllgy),
forallx € Xg.

(G5) The function g: X, — X satisfies a growth condition, i. e., there exists a constant K, > 0

such that
gl < Ky(1 + [,
forallx € Xg.

(F6) Suppose there exists a Banach space E with X OE OX and a constant 7\, S [l,é) such

that for every D > 0 there exists a constant ¢(0) > 0 such that
Il < (P + 1115,
for every x € X satisfying || x [, < P.

(G6) Suppose there exists a Banach space E with X, OE OX and a constant A € [1, %) such

that for every D > 0 there exists a constant d( p) > 0 such that
lgGOll, < dPX + (1115,

for every x € X, satisfying || x || < P.

(H1) h € L,([0, T +r]; L(X)).

(H2) h € L ([0, T + r]; L(X)), for 1 <p < 0.

3.1 Local Existence of Mild Solutions

We consider semilinear integrodifferential equations as follows:

dx | Ax(t) =f(x(t)) + }h(t —s)g(x(s))ds,t e (0, T],

dt (3.1.1)

x(t) = o(t), t €[-1,0].
Definition 3.1.1. A function x € C([-1, T]; Xg) M Cl((O, T); X) is called a classical solution of
the system (3.1.1) if it satisfies the system (3.1.1) with (p € C([-, 0]; X).
Definition 3.1.2. A function x € C([-r, a]; X), a€[0,T], is called a mild solution of the system

(3.1.1) if it satisfies the integral equation (3.1.2)
T(t)e(0) + }T(t —s)f(x(s))ds + }T(t -s)[ Th(s —0)g(x(0))do]ds,t €[0,a],
0 0 -r

o(t),t e[-1,0].

x(t) = (3.1.2)
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In the following we deal with the problem of local existence which is one of main parts of
our thesis. Analytic semigroups, locally Lipschitz condition, and the Banach contraction mapping
theorem are important tools to solve this problem. An a- priori estimate is a very important
condition to prove extension theorem. To obtain global existence of mild solutions, we impose a
nearly linear growth condition and a super linear growth condition. We consider existence
problems in several kinds of situations.

Let C=C([0, T]; X, ) denote the Banach space of all continuous X, -valued functions
defined on [0, T], with the supremum norm. For a fixed ¢eC([-1,0];X,), let

C, denote {x € C[x(0) =¢(0)}. ThenC, is a nonempty closed convex subset of C. We
T+r —

denote [||h(0)||(x) dO by h.
0

Lemma 3.1.3. Assume that (A), (F1), (G1), and (H1) hold. For any (). € C([-, 0]; X¢,), define a

mapping G on C,, by

(GX(®) = T(t)o(0) + }T(t —s)f(x(s))ds + }T(t —9)[ [ h(s - 0)2(X(6))d0s, t [0, T],
0 0 -

x(t),t [0, T],

o(t),t €[-1,0]. (3.1.3)

where xe C,, and X(t) ={

Then G :C(p - C(p.
Proof. Let x € C,. We show that Gx € C,, . Clearly, (Gx)(0) = ¢ (0).

First, we show that sup [[f(x(s))||y and sup |[g(X (s))||y are bounded, then we will show that
s€[0,T] se[-r,T]

Gx is continuous on [0, T].
By definition of X,Xis a continuous X, -valued function on [-r, T], then there exists a
constant p> 0 such that || X(s)||, < p, for all se[-r, T].

Since f'is locally Lipschitz on X, || x(s) ||, < p for all s€[0, T] and || ¢(0)||, < p then

sup Ifx(sDlly < sup || f(x(s)) — fx(0)) [ + [fx(0)]|
s€[0,T] se[0,T]

s Kl(P)£ sup IIX(S)—<P(0)||OLJ + PO

se€[0,T]

< K(p)(sup [[x(5)]lg +119(0)]o) +[RPO)I],

s€[0,T]

< 20Ky (p)+[f(9(0)[x = M. (3.1.4)
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Note that M depends only onpand ¢.

Since g is locally Lipschitz on X and || ¢(s) ||, < p for all s€ [-r, 0], then there exists a constant

K,(p) such that

18(0(s) — &(@(0)) [Ix < K2 (P) [[0(s) = @(0) [l »

18(x(s)) — g(x(0) Ix < K (p) [ x(s) = x(0) [[, -

Then  sup [lg(XG)l, < sup [lg(@(s))llx + sup [|g(x(s))llx

se[—r,T] -1<s<0 0<s<T

< sup (|| g(@(s)) — g(e(0)) [[x )+ [| g(0(0)) |Ix

—r<s<0

+ sup (|| g(x(s)) = g(x(0) [lx)+ [l g(x(0)) lIx

0<s<T

< Kz(p)( sup ||<p(S)—cp(O)Ila}llg((p(O))llx

—1<s<0

+K,(p) ( sup [|x(s) = (0) Haj+ [ECIO)IN

0<s<T

—1<s<0

< Kz(P)(( sup ||(p(S)lla)+||<p(0)llaJ+||g(<p(0))llx

+K,(p) (( sup [ x(s) [lo )+ [ ¢(0) IIOLJJr llgCe (0Dl

0<s<T
< 4pK,(p)+2/g(@0)] = N. (3.1.5)
Note that ﬁdepends onlyon p and ¢.
We now show that Gx is continuous on [0, T).

Lette[0, T) and let & be such that 0 < t<t+&<T. Then

[ (Gx)(t+E&)—(Gx)O ||

< I TE+E)PO) — TOPO) |

t+& t
I [T(t+E=9)f(x(s))ds — [T(t —s)f(x(s))ds ||,
0 0

t+§ s S
+| [ T(t+&-9)[ [h(s - 0)g(X(6))d0Jds — }T(t —s)[ [h(s — 0)g(X(0))d6Xds |,
0 -r 0 -

< (1) - DTOA”PO) [k

t t+&
I J(T(E+E =) = T(t=s)f(x(s)ds |l + [ T(t+E—s)f(x(s) [Ix ds
0 t

t S
+ | J(T(t+&—s) = T(t —s))[ [h(s — 0)g(X(6))dOlds ||,
0 -



t+& s
+ [ T(t+&—s)[ [h(s — 0)g(X(6))d6b] ||, ds
t

< J1(T(e) - DTOA%PO) |
HT(E) = D[ T(t - 9)f(x(s)ds ] [
0
t+

3
Ko [ (t+E=9)"" [f(x(s))[|x ds

t

HI(T(E) - D }T(t -s)| Th(s —6)g(X(8))d6ds |
0 -

23
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t+& s
tKo [ (t+E=8) " [[IIh(s —0) [l (x) [l &(X(0)) [|x dOXds

t
< 1TE) = DTOAYPO) |l

+ | (&) -nA“[ }T(t —8)f(x(s))ds 1,

0
o 1-a
+ K, M
1-a
t S
1 €)-pa“T[ T(t —s)[ [h(s — 0)g(x(0))dOds 1y,
0 -r
L I-a
+K,Nh .
1-a

Since ) € X4, TOA*P0) € x and T(t) is strongly continuous then |(1(§)-nTA“@O), —>0as & —>0".

Since f(x(s)) € X, T(t) : X — X, is strongly continuous and A%: X o —> Xthen

t +
Il r(&)-pA®l [ T(t —s)f(x(s))ds 1, —0 .
0

S
Since h(s-0) € L(X), g : X —> X and x(s) € X, then [h(s —0)g(X(0))d6 ex.

T

t S
Since 1(: x > X, then [T(t —s)[ [h(s — 0)g(X(0))d0}ds € X, .and so
0

T

t S
A% [T(t—s)[ [h(s — 0)g(X(8))d0lds € x. Since T is strongly continuous then
0

-TI

Ir(€)-nra” } T(t—s)[ }h(s - 0)g(X(0))d0lds 1, —>o0as & 0"
0 -

Hence |G+ &) - (Go®]q —> 0as & —0".
By a similar argument, it follows that || (Gx)(T — &) — (Gx)(T)||,—~>0as& - 0" .
Then Gx is continuous on [0, T].
Hence 6x € C,,. The proof is complete. []
Theorem 3.1.4. ( Local Existence Theorem ) Assume that (a), (F1), (G1), and #1) hold.
Let ¢ € c(+ 0l: x) and @(0) € X, for some 3 € (a,1]. Then there exists a positive number t, such
that the system (3.1.1) has a unique mild solution on [-r, t,].
Proof. Let t; € (0,T]. Set B={x e C, [[|x(t) - ¢(0) ||, <1, t [0, t;]}.

Define a mapping G on B by
Goo = T(t)e(0) + }T(t —s)f(x(s))ds + }T(t -s)[ ?h(s —-0)g(x(0))d06]ds,t€[0,t,],
0 0 -1

x(t),t€[0,t,],

o(t),t e[-r,0]. (3.1.6)

where xeB and X(t) = {
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We will show there exists a t, > 0 such that G maps B to B and G is a contraction mapping. Then by the
Contraction mapping theorem, G has a unique fixed point in B. This means that the system (3.1.1) has a unique
local mild solution.

Since §>a then Xg OX,.let ¢, be a constant such that || X [[, < ¢ [| X [|g, forallxe Xg.

Let p=1+c[|9(0) |-
As in Lemma 3.1.3, there exists M, ﬁ depending only on p and @ such that

sup [fix()]l, < M,
s€[0,T]

sup g, < N,
se[-1,T]

provided xeB. Let K;(p)and K, (p)be Lipschitz constants of f and g respectively. By the
properties 2.3.16 (c), (d) of analytic semigroups, since A%@(0)e XB_G, there exist
constants Cg_, >0and K, >0 such that
TGO - 0O o < Cp_o tP ™ | 0(0) |-
and
AT lLx) <Kot
for all t>o.

Set K -M +K,(p) +(N+ Kz(p))H.FixLE(O, 1).
-1

= s
Choose t,=min{1, T, [% (Cpop+ Kﬁf)j i

At first, we show that :B—B. Let x € B.
Then || x(t) |4 <1+ 9(0) [l <1+ ¢, [|9(0) [y =p., for all te[0, 1,1
By Lemma3.1.3,G:C, > C,.SoGxeC,.

Fort € [0,1,],

I(Gx)(®) — P0)|

< ITOP0) - POl + (}) | T(t—s)f(x(s)) |, ds
+ i I T(t=s) _Trh(s - 0)g(X(0))d0]]|,, ds
< Cpot? ™ [10(0) [lg +xa i(t =) " [ f(x(s)[x ds
+Kao (})(t —s)°‘[_}r||h(S —0) llLx) [l &(X(0)) [[x d6]ds

1-a T+r 1-a

— —_— t —_— t
< Cp ot [[0(0) [I5 +ka M T RN J1(0) [l (x) de)m
0
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1-a
1

IN

- — — -t
Cpat! ™ 9Ol e M + N by
_tl—(x
Cp oty 10(0) fIg + ks K -

—_—

-
B i
Chratl 100l 50 K £

IN

R

<L< 1.
Then G:B—>B.
Next we show that G is a contraction on B.

Let x,x, € B.

Forte[o,t].since X, X,€B, || Xy ||l X5 [|o < p. We have

(Gx)(®) = (Gx,)(V) [l

< f|| T(t —s)(f(x;(s)) = f(x,(s))) ||, ds
0

t S
+ [l T(t=s)[ [h(s - 0)(g(X, (0)) — g(X, (0)))d6] |, ds
0 -

t
< Ko J(t=8) " [f(x1(s)) —f(x5(9)) [Ix ds
0
t S
+ Ko [(t=9)"*[[IIh(s = 0) [l x) 1 2(x1(0)) — g(x, (0)) [|x d6]ds
0 0
t
< Kk (J(t—5)"*ds) sup Ix6-x6l
0 se€[0,T]
S t
Ko KX [[[h(s = 0) Ly dO)([(t—s)""ds) sup IX;6)- Xy Gl
-r 0 se[0,T]
T+r tl—a
< Kak@HKPE [I[h(0) [l x) dO) =g s
0 -
_ tl—a
< K+ KDY D) —— [

1

A

< L, =%l
Hence G is a contraction on B. By the Contraction mapping theorem, G has a unique fixed point

x € B, that is
t t S
x® = G600 = T()e(0) + [ T(t —s)f(x(s))ds + [ T(t —s)[ [h(s — 0)g(X(0))dB]ds, t €[0, t, ].
0 0 -r
Therefore x is the unique mild solution of the system (3.1.1) on [-r, t ]. ]

Remark 3.1.5. By using strong continuity of the semigroup, we can prove the local existence of

mild solutions for the system (3.1.1) without assuming ¢@(0) € X B i. e., one can use
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I T(1)9(0) - 0(0) [l = T()A*0(0) — A%p(0) Ix — 0, as t—0.
Lemma 3.1.6. Assume (4), (F1), G1) and (1) hold. Suppose 0 <a<B<land ¢(0) e Xj.
If there exists a constant p > 0 such that if x(e) is a possible mild solution of the system (3.1.1) on
a subset [0, T' ] of [0, T] and satisfies the estimate

Ix() <P
for all te[0, T' ], then there exists a constant p* > (0 such that

Ix()llg=<p”,
forallte[0,T'].
Proof. If x(e) is a mild solution of the system (3.1.1) on a subset [0,T'] of [0, T]
and|| x(t)||,<p, for all te[0, T"]. Then, as in the proof of Lemma 3.1.3, there exists constants
M,N > (0 depending on p such that

sup [[f(x(s))[Ix<M,
s€[0,T']

sup |lg(X(s))[[x<N.
se[-1,T']

Then

t t S
IOl g < I T(O(0) [l + gllT(t—s)f(x(s))IIB ds + (y)nT(t—s)[Jh(s—@g(i(e»de]nB ds
t
<Ml o(0) ||+ Kg (I)(t—s)‘ﬁ 1£(x(s))|x ds

t S
+ K [(t=5)P[[Ih(s = 0) [l (x|l (X(0)) [|x dO]ds
0 -

- 17[3
<M p(0) lg + KyMI-

+ Kg ﬁ% =p",

for all te [0, T"]. The proof is complete. []
Theorem 3.1.7. (Extension Theorem) Assume (A), (F1), (G1) and (1) hold.

Letg e C([-1,0]; X, ) and ¢(0) € X, for some B (o, 1].

Suppose the following a priori estimate holds for the system (3.1.1):

(AP) There exists a constant p> 0 such that if x(-) is a possible mild solution of the system (3.1.1)
on a subset [-r, T" ] of [-r, T], then x|, < p, for all te[-r, T" ].

Then the system (3.1.1) has a unique global mild solution on [-r, T].

Proof. By using Lemma 3.1.6, there exists a constant p” such that ||x(t)|| p < p”, forallte[0,T'],

whenever x is a mild solution, by the a priori estimate.

By Theorem 3.1.4, a local mild solution x, of the system (3.1.1) exists on [0, t,].
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Then [jx,(D]| g < p*,forallte[r,t] Set p;=1+p".
We must show that x, can be extended to be mild solution of the system (3.1.1) on [-r, T].
Givend >0, setB, = {ye C([t;, T]; X)) | y(t;) =x(t;),[[ y() —x (t;) lo <Lt e[ty t; + 8]}

Then By, is a nonempty closed convex subset of C([t;,T];X, ).

Y(t)at e[tlatl + 8]:

Define a mapping G on B, as follows: For any y€ B, , define y(t) :{ ().t e[1,t;]
X1 ,te|- 1,1 [,

and let

(Gy)(O = Tt~ t)x,(t) + [T(t—t; ~$)F(y(s)ds
t

t S
+ [T(t—t; —s)[ [h(s — 0)g(¥(0))dO]ds, te[t, t,+3]. (3.1.7)
1 -1
By the same argument as in Theorem 3.1.4, there exists a constant 4 > 0 such that

t
Ly + Ay =f(y(®) + [h(t=s)g(y(s)ds,te[t;,t, +3],

yO=x (1), tel-r,t;],

(3.1.8)

L
KoK, P
pa )|

has a unique mild solution x, on [t,, t+8], provided 8 = mini1, T, (%(Cﬁ_apl +

where Le(0, 1) is fixed and K=M + Kl(p1)+(ﬁ+K2(pl))H. It is obvious that & is only

dependent on py, i. e.,d depends only on p.

X (1) if te[-rt,],
Let o0 1 (1) 1. el-rt]
Xz(t) if te[tl,tl +8]

Must show that z is the unique mild solution of the system (3.1.1) on[r.t, + O 1.

Let wbe any mild solution of the system (3.1.1) on [-r, t, + 5 ]. We show that w=z on [-r, t,+3 ].
On [-1, 0], it is obvious that w = z.

For t € [0,1,, since X, is the unique mild solution on [0, t,] then w(t) = x,(t). By definition of z,
z(t) =x,(t) on [0, t,]. Hence w=z on [0, t ].

Fort € [1,,1, + 81, since X, is the unique mild solution on [t,, t, +3 ] then w(t) = x,(t).

By definition of z, z(t) =x,(t) on [t,, t,+ 5 ]. Hence w=z on [t , t,+ 5 ].

1271
Then - is the unique mild solution of the system (3.1.1) on [+, 1, + 8 1.
By a repeated process, since d depends only on p we can extend z to [t,+9,,+2 1. By the same

argument, we can obtain intervals for existence of mild solutions with equal length d,
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It, t+01, [t+ O, +201, ..t O, t+n+1) O] S0 that TE[+nJ, t+n+1)d ], for some n. Hence the system
(3.1.1) has a unique global mild solution on [-r, T]. [

We can use main idea of Theorem 3.1.4 to explain local existence of mild solutions for the
following system that is more complicated than the system (3.1.1).

Consider the semilinear evolution system

%—’t‘ +Ax(t) =f(t, x(t) + fh(t —s)g(s, x(s))ds, t [0, T],

(3.1.9)
x(t) = o(t),t €[-1,0].

Similarly, we can define classical and mild solutions to the system (3.1.9). Theorem 3.1.4 and

Theorem 3.1.7 are easily extended to the following.

Theorem 3.1.8. Assume that (a), (F3), (G3), and 1) hold. Let ¢ € c(-r, 0}; Xy and ¢(0) € X B> for

some [ €(a,1]. Then the system (3.1.9) has a unique local mild solution.

Proof. We define a mapping gon C,, by

(Gx)(t) = T(t) p(0) + }T(t —s)f(s,x(s))ds + }T(t -9s)[ ?h(s —0)g(0,Xx(0))dd]ds, te[0, T],
0 0 r

where xe C, and X is defined as in Lemma 3.1.3. (3.1.10)
Must show that G: C, > C,,.

Letx € C,, . we show that (Gx)(t) e X, for all te [0, T].

By (F3) and continuity of x on [0, T], f(e, x(e)) is measurable on [0, T]. Since x is continuous on
[0,T1, {(s,x(s)) | s € [0, T]} iS @ bounded set in [0, T] X X,. Since fmaps a bounded set in

[0, T] X X, to a bounded set in x, there exists a constant M >0 such that sup [fs, xs)ly < M.
s€[0,T]

Hence f(e, x(®))is measurable and bounded on [0, T], therefore it is integrable on [0, T].
t
Since f (e, x(#)) is integrable, f(s, x(s)) € X and T(t) : X — X, then [T(t —s)f(s,x(s))dse X, .
0
By a similar argument, g(e,X(®))is also measurable and bounded on [-r, T]. So it is

S
integrable on [-r, T]. Since her (o, T+; Lx) then [h(s —0)g(6,X(0))d6 ex for all S €0, TI.

T

t S
Since T(t) : X —> X, then [T(t—s)[ [h(s —6)g(0,X(0))d0]ds € X, for all « € [0. 11. This
0

T

shows that each term on the right side of (3.1.10) is in X .

Thus (Gx)(t) e X, for all t € [0, T]. Clearly, (Gx)(0) = ¢(0) .
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Arguing as in Lemma 3.1.3, one sees that Gx is continuous on [0, T]. Hence Gx e C(P' Therefore G
:Cy > C,. Arguing as in Theorem 3.1.4, one shows that there exists t, € (0,T]and a closed
subset B of C such that G : B—B is a contraction. By the Contraction mapping theorem, the

system (3.1.9) has a unique mild solution xe B. []
Theorem 3.1.9. Assume that (4), (F2), G2), and 1) hold. Let ¢ € c(+ 01: X») and ¢(0) € X, for
some B € (o, 1]. Then there exists a t, =t, (¢) > 0 such that the mild solution of the system (3.1.9)
exists and unique on [-r, t,].

Proof. Define a mapping G as in (3.1.10). A similar process as in Theorem 3.1.4 yields a unique
local mild solution x on [-r, t,] for some t; =t;(¢)> 0. []
Theorem 3.1.10. Assume that (A), (F3), (G3), and (H1) hold. Let @ € c(, 0J; X,) and ¢(0) € Xﬁ , for
some B IS (OL, 1]. Suppose a priori estimate holds for the system (3.1.9), i. e., there exists a constant P> 0 such
that if x (+) is a possible mild solution of the system (3.1.9) on a subset [-r, T’ ] of [-r, T], the estimate ||x(t)||,
< p holds forall te [, T" ], then the system (3.1.9) has a unique global mild solution on [-r, T].

Proof. By Theorem 3.1.8, the system (3.1.9) has a local mild solution x. Apply a priori estimate and a similar
process as in Theorem 3.1.4 and the extension theorem, the system (3.1.9) has a unique global mild solution on
[-r, TI. O

Theorem 3.1.11. Assume that (A), (F2), (G2), and (H1) hold. Let ¢ € c(—, 0]; Xy and @(0) € XB , for
some P € (a,1]. Suppose a priori estimate holds for the system (3.1.9), i. e., there exists a constantp” > 0
such that if x (+) is a possible mild solution of the system (3.1.9) on a subset [-, T'] of [-r, T], the estimate
IX®)]la < p* holds for all t € [, T' ], then the system (3.1.9) has a unique global mild solution on [-r, T].
Proof. By Theorem 3.1.9, the system (3.1.9) has a local mild solution x. Apply a priori estimate and a similar

process as in Theorem 3.1.4 and the extension theorem, the system (3.1.9) has a unique global mild solution on

[-r, T]. []

3.2 A Priori Estimate and Global Existence of Mild Solutions

Lemma 3.2.1. (Gronwall’s Lemma with Singularity and Time Lag)

Let C =c(0, T' ]; X, and x € c satisfies the following inequality
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t t
Olle <a+b [(t—=8)"* || X(s) |l ds + c[(t—8) " | X4 |lc ds.te[0,T"], (3.2.1)
0 0

where a, b, ¢ >0 are constants and |x .= sup [x&)l,. Then there exits a constant m, >0 (independent of
0<E<s

a) such that
Ix®lle. < M,a,

foralltefo, T'].

t t
Proof. Define vio=[(t —$) ™ || X4 [lc ds = [0 || x_g |lc d6.
0 0

We show that v(-) is monotonously increasing on [0, T" 1.

Leto< <t <T' Then

t] t
Vi) -V = JO7 [[xy g llc dO— [07% [|x, g [Ic dO
0 0

t 2
= 107Xy llc —l1x 50 lc)dO =[O [Ix(, ¢ llc 6.
0 t

Since -0 <t,-6,v(t,) — v(t,) <0, hence v is monotonously increasing on [0, T" ].

Since v is increasing on [0, T' ] and || x(s) ||, <|| X ||c » we have

ke = sup [x&lla
0<E<t

§ _ 5 _
< sup frn[(E=8) " [[X(8)lly ds e J(E=5)"" X[l ds]
0<g<t 0 0

£
< osup Lt [(E=8)"" [ X4 [|c ds?
0<g<t 0

< sup fa+e,vi©I<a+ e, V.
0<E<t

t
So Ikl <a+e [(t —8) % || x, lc ds. By Gronwall’s lemma (Corollary 2.5.3), there exists a
0

constant M, >0 (independent of a) such that |x/. <Ma, for all te[0,T" ].
Since [x0l¢ < fIx/l then |x©], < M,a, for all te[0, T" ]. Then the proof is complete. ]

By virtue of the Gronwall’s lemma with singularity and time lag, together with linear
growth condition, we can prove the following global existence theorem without assuming a priori
estimate.

Theorem 3.2.2. (Global Existence Theorem) Assume that (a), (F1), (F5), (G1), (G5) and 1) hold. Let ¢
€ O+, 0); X and @(0) € Xg, for some B e(a,1]. Then the system (3.1.1) has a unique global

mild solution on [-r, T].
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Proof. We show a priori estimate holds, i. e., there exists a constant p>osuch that if x (*) is a mild

solution of the system (3.1.1) on a subset [-r, T' ], T' €[0, T], it follows that

forallt e[

Ix®lle<p,

-+, T']

Suppose X(+) is a mild solution of the system (3.1.1) on a subset [-r, T" ] of [-r, T].

Fort €0,

on[0,T"],

T'], since x(t) is a mild solution of the system (3.1.1) and satisfies the equation (3.1.2)

by using assumption (F5) and (G5), it follows that

t
xOle < ITOQOo+ [|] T(t —s)f(x(s)) ||, ds
0

t S
+ gll T(t—s)[ [h(s - E)g(x(€)dE] |, ds

t
< MIQOo+ Ko [(t=5)" || f(x(s)) [Ix ds
0

IA

Ko }(t -8)[ }II h(s = &)g(x(8)) [Ix d&lds
0 -

IA

MIQO)q + Ko }(t =) % (K (1+]1x(5) [l ))ds
0

+Ka }(t -9)7[ Tllh(S =9 llLxy Ko (A+[[x(E) [ ))dE]ds
0 -T

IA

t
MIQPO)lo + KoK, [(t—s) " ds
0

t
+ KoK, I(t_s)_a H X(S)H(l ds
0

t T
+KaK, (g (t=s)"*ds)(JIID(T = &) | (x) dE)

t S
Kok, J(t=8) [ [[Ih(s = E) | x) [ x(E) |, dE]ds

0
rl-a _ rl-a
M| P(0)[|q, + KoK, T +KeK, h T
I-a 1—a
t
+KaK, [(t=8)"" || x(s) ]l ds

0
t 0 S
+Kk, [(t=8)"*[[I1h(s = &) [l x) @& ll, dE+ [[Ih(s = &) [ () [ X(E) [l dE]ds
0 -r 0

Tll—(x _ rl—a
< M| o(0) [l +KoK, +KoK, h
1-a 1-a

t 0
+KoK, (I)[ [IIh(s = &) lLx) [l @@ o, dEN(t—5)"*ds

+ ek, [(E—8)™ | x(8)]l, ds
0

t S
KoK, (I)(t—S)_“gllh(S—Z;)llL(X) dg sup [|x(8)|l, ds

0<E<s
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T!l—(x _ mrl-a
< M| 9(0) ||y KoK, +KgK, h
1-a 1-a

F ek, J(E—9)% [[x(5) [ ds
0

— N—o
“Kek, Wl @lle-r01:x0) "1

_t
+ KoK, h_‘. (t - S)_a sup || X(&) ||a ds
0

0<E&<s
¢ -a ‘ -a
< b J(t=8)"" 1x(8)[lo ds e [(t=9)"" [ xg]lc ds,
0 0

11— T N—o

where a = M || ¢(0) ||, +KaK, T +KeK, h|| (PHC([—r,O];Xa) oD =KaK.C =Kok, h . and C =

-a
C([0,T"1; X, ). By Gronwall’s lemma with singularity and time lag, there exists a constant m, >0

(independent of a) such that

Ix0lle <M, a,
forall te[0,T"].
On [-r, 0], [[X®ll ¢, = [ 9(8) loe < [ @llc-r.01x4) - Let p =max {Ma,|[ ¢ lc—r.01x4) ) -
Then

KOl < p.
forallt e [+, T'].
By Theorem 3.1.4, the system (3.1.1) has a local mild solution x, combining the extension
theorem and the a priori estimate, the mild solution x can be extended to [-r, T]. []

We consider another type of global existence problem. Now we will deal with super linear

growth conditions. The following theorem shows that an a priori estimate for the o - norm of
solution can be obtained, provided the function f and g satisfy a super linear growth condition and
we know an a priori estimate in some weaker norm.
Theorem 3.2.3. Assume that (a), (F1), (F6), (G1), (G6) and (H1) hold.
Let @ € o 0} Xo) and @(0) € Xg, for some P e(ho,l], suppose, there exists a constant

p > 0 such that if x(e)is a possible mild solution of the system (3.1.1) on a subset [-r, T' ] of [-r, T1,

then
Ix(®)le<p.
forallt €[-r, T’ ]. Then there exists a constant p* > (0 such that
*
[x(®)lesp .

for all te[-r, T ], hence the system (3.1.1) has a unique global mild solution on [-r, T].
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Proof. Since Ae [l,é) thena <Aa< B<1. Lety=Aa.The embedding relation
Xpg "X, "X, "E "X,

is true.
Let p> 0. Supposex(e)is a mild solution of the system (3.1.1) on [-r,T'] with
Ix(®)|g<p, te[-r,T']. This means

t t S
T(0)@(0) + [ T(t = s)f (x(s))ds + [ T(t - s)[ [ h(t — s)g(x(0))d0]ds, t [0, T'],

0 0

x(t) = -r
o(t), te[-1,0],
and
x(®) [g<p,
forall te[-r,T"].
By the “ moment inequality”, there exists a constant M, , such that
Al
X(8)lla < Moy (X)) ™ XK
forse[-r,T'].
In addition, since E O X and X3 O X, , it follows that

Ix()IlG <M, XS LI

SNGslIxG)I g IxE)IES
forse[-r,T'].
Lette[0,T']. Then

Xl 5

IA

t
T +(I)||T(t—S)f(X(S))H;3 ds

t S
FJIIT(t —s)[ [ h(s - 0)g(X(0))d6] | ds
0 —r
= I] + Iz + 13,
where X is defined as in Lemma 3.1.3.
Since 9(0) € X3 then

L < AP T(©@0)]x = [TMOAP @(0)[|x < Mllo(0)]]; -
Since | x(t)||g<pfor all te[0,T"], by (F6) and Theorem 2.3.16 (c), there exists
constants K g and

c(p) > 0 such that
t

L < Kg 0f(t—S)*ﬁ[C(p)(lJFIIX(S)IIQ)]dS

t

< Kpep) Jt-9)Pds +Kpe(p) [(t-5) T x(s)]] ds

t

11—

< Kyep) T_B Ky e(p) J(t=5) T (NG [XE)p l1x6) [ )ds
1-B '

< Kpeo) g +Kpe@NGpp"™ =9 )l ds

Similarly, by (G6) we have a constantd(p) > 0 such that
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I

IA

t 0 t s
(I) I T(t—s)[ [h(s — 6)g((6))db]|g ds + (I) [ T(t - S)[(I) h(s - 0)g(x(6))d6]||5 ds

T

t 0
< Kﬁga—sfﬁ[f||h(s—e>HL(X)||g<cp<e)>HX do]ds

+ Ky d(p) [(t=9)[ T llh(s = 0)loo(l +[|x (0)]] )d0]ds

t S

Ky + Ky de) J(t=9) [ T [InGs = 0)luoo(l +[1x (O)]1%)d0Tds

t S

IN

INA

K, + Ky dp) [(t=9) P ( [ (s - 0)llLcxd0)ds

t S

+ Ky d(p) [(t=9) [ [In(s = O)llLco [ x(0) | dO Jds

t

INA

K, +Kg d(p) HOI (t—s)Pds
Ky dp) Ng [ (6= 9 PL [ IOl (1@ 1 x(0) 1) d01ds

t

Y -
Ko+ Kyp + Kgd(p)Naghp" ' [(t=9)7 sup [x(0)]5ds

0<6<s

IA

A= A -
< Kyt Ky, FKpd@)Nogghp' ! J(t—3) 7 xicds,

_ 11
where K ,> 0 is a constant depending only on ¢,K; ;= Ky d(p) h Ff_—B , and C = (][0,

T X,)-
Then

t t

Ix@)lp<a+b [(¢=9) P IxE)]pds +e [(¢-9) P [xcds,

/1B
1-B

where a = MJlo(0)[| 5 + K c(p) + Ko+ Ky, b= Kye(p)Njg ™™, ¢ = Ky d(p)
N ?.ZB h pk o
By the Gronwall’s Lemma with singularity and time lag (Lemma 3.2.1), there exists a
constant M; > 0 such that

x(Dll g < Mia.

Then [[x(t)]| , < ciMia, for all te[0,T"]. Set p” = max{ciMia, || @ lc(-r01x,) ) -

Thus || x(t)||,<p", for all te[-r,T"].

By assumptions and Theorem 3.1.4, the system (3.1.1) has a unique local mild solution
x. Combining the extension theorem and the a priori estimate x can be extended to [-r,
T]. 0

3.3 Regularity of Mild Solutions
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In the following we discuss the regularity of mild solutions. We study the
connection between mild solution and classical solution. It can be seen that under some
stronger assumptions, the mild solution is a classical one.

Theorem 3.3.1. (Regularity) Assume that (A), (F4), (G4), and (H2) hold. Let ¢ € C
([-1, 0]; Xo) and ¢(0) e X, for some Be(a,1]. If a mild solution x of the system

(3.1.9) exists on [-r, T], then
x € C([-r, T]; Xo) M Cl((O, T); X), hence it is a classical solution.
Proof. Suppose the system (3.1.9) has a mild solution x € C([-1, T]; X,,). Then

T(t)o(0) + }T(t — $)f(s, x(s))ds + fT(t —$)[ [ (s — B)g(6, x(6))d0]ds, t [0, T,
0 0 T

x(t) = _
o(t),t [-1,0].
(3.3.1)
Define
© T(H)A%p(0) + }A“T(t —s)f(s,x(s))ds + }A“T(t -s)[ ?h(s —0)g(0,x(0))d0]ds,t €[0,T],
y = 0 0 -

A%(t),t e [-1,0]. (3.3.2)
It is easy to see that ye C([-r, T]; X)
We prove that y is locally Holder continuous on (0, T].

Firstly, we show that t # f(t, A~ y(t)) is continuous on [0, T].
Since f is locally Holder continuous in te [0, T], locally Lipschitz in xe X ,and ye C([-

r, T]; X) then for each te[0,T], for a fixed p >0 there exists constants ve(0,1), L > 0
and K;= K, (t,p) > 0 such that
1f(t, A y(0) — (s, A" y(s))lIx
< [Iftt, A™y(D) — (s, A™*y(O)llx +[[f(s, A™y(1) — (s, A™y(s))lIx
< Llft=sI" + Ky [A™y(0) - A y($)]la
< Lfit—slI" + Ky [ly(®) - y(s)llx
Then t # f(t, A™*y(t)) is continuous on [0, T]. Therefore it is bounded on [0, T].
Then there exists a constant N; such that [[f(t, A~ y(t))||[x < Ny, for te[0, T].
By the same argument as f, t # g(t, A~*y(t)) is continuous on [, T].
Then there exists a constant N, such that ||g(t, A~ y(t))|[x £ Ny, for te[-r, T].
By the continuity of t # g(t, A™*y(t)) on [-r, T] and h € L,([0, T + r]; L(X)), we have
}h(t —s)g(s, A %y(s))ds € Ly([0, T + r]; X).

T

Thirdly, let te (0, T). Choose 0 < §< 1 such that (t —§,t + %) < (0, T].
Letsy, s2e (t—%,t+%). Suppose s; <s; and let & =s; —s;. Then 0 <¢<1 and

[y(s1+&) = y(sn)llx
< |[T(s1 +&) A%(0) — T(s1) A%p(0)][x

+ | SIFT(SI +E-0)A*f(0,A %y(0))dO — Sle(sl —0)A*f(6, A" "y(0))do ||x
0 0

s1+E 0

[ T(s; +E-0)A"[Jh(0 - 1)g(t, A" y(1))dr]dO
0 -1



S 0
— 1G5, — )AL [h(0 - D)g(r, A y(1)dTIdO |1x
0

—-T

< I(T(E) - DT(sDA%p(0)Ix

+ SﬁII(T(i)—I)A“T(Sl —0)f(6,A™"y(0))]Ix dO
0

s1+E
£ T IAYT(s, + & 0)(0, A y(0)) Ix dO

+ T T@ - DATGs,
0

51

T

0
—0)[ [h(6—1)g(r,A™y(1))dr]||x dO

s1+& 0
+ T AT (s, — )L Th( - Dg(r. A% y(0)de] Iy dO

S| -r

= I] +12+I3+I4+15.
Choose y<(0, 1-a ), by Theorem 2.3.16 (c), (d), we have

I(T(&) = DT(s1) A% (0)Ix
C, EIATT(s)A ¢ (0)]]x,

I

<

<

<

<

C, &K, s [[A%(0)||x

C, K, s loO)l« €" = M

By a similar argument, we have

I,

We have
I

Similarly,
I4

Similarly,

Is

<

<

IA

IA

IN

IA

IA

187

51
C, & JIA®T(s; —0)f (6, A™"y(0)) [[x dO
0

8]
C, NiKg & [(s,-0)*""do
0

T 1-(o+7)

C, NiK V—
e €T

M, &Y.

s1+€
KoNi | (s1+<§—6)_°‘d9
s]

— KOLNI

1-a

EJ]—(X S

KoNp ¢y _
et

S| T
Cy Koy & Na [(s1=0)7d0 || h(T =5)]Iyx, ds
0

T

Hv
l—yg

C, KuN;

M,E" .

T
KaN2 (JI[h(T -s) ILx) ds)

T

$1+&

(s, +£-0)do
51

M,E.
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_&1—(1
< KgNzh
1-a
_ g’“/
< KgN;h =2—
-y

= Msg'.
Then |ly(s; +&) — y(s1)||x £ (M+Ma+M;3+MgtMs)EY =LEY .
Hence y is locally Holder continuous in te(0, T). The continuity of y at the end point
also holds in a similar way. Therefore y is locally Holder continuous in te (0, T].
Locally Holder continuity of t # f(t, A"* y(t) on [0, T] can be shown easily by
using the following

f(s1, A% y(s1)) — fls2, A *y(s2))llx < Li(lsi — o + | A% y(s1) = A y(2)]la)

< Li(lsi— 52l + [ly(s1) — y(s2)lx)
< L1(|S] — Sz|el + L2|Sl — Sz| y)
< Lals; —so| ™,
n =min{0;, v}, L, L, and L; are constants.

t
To show t — [h(t—s)g(s, A" *y(s))ds is locally Holder continuous in te (0, T].

Since g is locally Holder continuous in te[-r, T] and y is locally Hélder continuous in t
€(0, T], for any te (0, T], there is a 8> 0 such that g and y are Holder continuous in V
=(t-6,t+ 8)c (0, T]. So there are constants 6,, y, €(0, 1) and L4, Ls > 0 such that
for any /7, /> in V, say /1< /,

0 ly
| [h(Z) —s)g(s, A™y(s))ds — [ h(£; —s)g(s, A" y(s))ds||x

1+ {p+r

=1 [ h@eglt, -z A™y(l, —2)dz— | h(2)g((; -2)g(ly -z, A" y(, —2))dz||x
0 0

(1+1

< T h@(ly -z, A™y(l —2) - gLy —z, A7 y(l, —2)))dz [|x
0

ly+r o
+ [ h@gll, -z, A™%y(l, —2z))dz|[|x

(1+r

ks 02 Lo+ L /p4r
< [ [h@llueo(Lafly = 6o~ + Ls [ £, = £, [ )dz+ No[ [ |Ih(z)[Pdz]” ( | 19dz)
0

{1+t {1+t

Q=

T+r 0 loy+1 1 1
<( [Ih@) Ly dz) Lol — Lo >+ Ls [, £, [2)+ No[ T [[h(2)|Pdz] P |£; - £ ¢
0 L1+r

T+r

1
o T+r 1 1
< ([ 1@ x) d2)" (] 19dz) @ (Lelfy — £o] ™ ) + NoK [y - £5] 9
0 0

< Kzlfl — €2| b ,
where K is a constant, n=min{02,y, }, k =min{n ,é} =min{02, y,,(p— 1)/p},
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By Corollary 2.4.17, since —A generates an analytic semigroup T(t), t # f(t, A *y(t) is
t
locally ~ Holder continuous in te [0, T] and t — [h(t —s)g(s, A %y(s))ds is locally H6

-T

lder continuous in te (0, T], the system

(d/dtyw(t) + Aw(t) =f(t, A" %y(t)) + }h(t —s)g(s,A"%y(s))ds, t [0, T],

w(t) =o(t),t e[-r1,0].
(3.3.3)
has a unique classical solution we C([-r, T]; X, )N C'((0,T), X).
Rearrange form of w, we obtain
t t S
w(t) = TO@(0) + [T(t—s)f(s, A""y(s))ds + [T(t—s)[ [h(s —6)g(, A" y(0))d0]ds
0 0

T

T(t)p(0) + }T(t —s)f(s,x(s))ds + }T(t -s)[ Th(s —0)g(0,x(0))d0]ds
0 0

T

x(t), t € [0, T].
Then x € C'((0, T); X). Hence x € C([-1, T]; Xo) N C'((0, T); X) is a classical solution
of thesystem (3.1.9).
U
Corollary 3.3.2. Assume that (A1), (F4), (F5), (G4), (G5) and (H2) hold.
Let ¢ € C([-1, 0]; Xo) and ¢(0) € Xg, for somep e (o, 1]. Then the system (3.1.9) has a
unique classical solution.
Proof. Since[0,T + r] is a bounded domain then (H2) implies (H1). By assumptions, the
system (3.1.9) has a local mild solution x. Applying the growth condition (F5) and
(G5), by Theorem 3.2.2 x can be extended to [0, T]. By Theorem 3.3.1, the solution xe
C'((0, T); X,)). Hence x is the unique classical solution of the system (3.1.9).
0

We give a remark here in order to show locally Holder continuity of mild
solutions of the system (3.1.1).
Remark 3.3.3. The mapping G in Lemma 3.1.3, mapsC,, into C*([0, T]; X,) for some

0 €(0, 1), provided that ¢(0) € Xp for some f such that 0 <a < < 1.
Proof. Let ¢(0) € X, 0 <a<B<1.
Recall that C,, = {x € C([0, T]; X, ) | x(0) = ¢(0)} .

Letx € C,. We show that Gx e Ce([O, T]; Xq) for some 6 € (0, 1).
Let0<t<t+ & <Tand0< & <1. Then
1(Gx)(t+ &) = (GX)(D)]] o

< IT(t+ &) 9(0) = T(OP(0)||o
+| tf T(t + & —s)f (x(s))ds — (})T(t —s)f (x(s))ds ||o

t+§ s s
| [ T(t+E&—s)[ [h(s —0)g(X(0))d0]ds — } T(t —s)[ [h(s — 0)g(X(6))d0]ds |[a
0 - 0 -

=11+12+I3.
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Since p(0) € X5 = D(AP*A%), then A%p(0)e D(AP*)= Xp_q - By using Theorem 2.3.16
(¢),(d), and the same procedures in Theorem 3.3.1, one can estimate each I;’s by a
constant multiple of £P~*. This shows that Gx is Holder continuous in [0,T] with
exponentO=p-ae (0, 1). O

3.4 Continuous Dependence

Theorem 3.4.1. Assume that the hypotheses of Theorem 3.2.2 are satisfied. For any p

> 0, if x and y are mild solutions of the system (3.1.1) on [-r, T] corresponding to ¢,
and @y, respectively, then there exists a constant K(p) > 0 such that

Ix = yll C([-1,T]:Xg) <K(P)Io1 = o2l cr, 01; Xo)»
provided ¢, ¢, € C([-1,0];X,,) With[| ¢, [lc(—r.01:x,) <P and @3 lle—r,01:x, ) SP -
Proof. First, we show that any mild solution z of the system (3.1.1) on [-r, T]
corresponding to ¢ € C([-, 0]; Xa) with ||¢[|c(, 01, x,) < p, satisfies the estimate
”ZHC([—r,T];Xa) <p,

where p” is a constant depending only on p.
Proceeding as in the proof of Theorem 3.2.2, it is easy to verify that there exists a
constant p,> 0 such that

Izl <p1,
for te[0, T].
Set p*=max{p;,p }. We have [1z]| ¢, 1y.x,) < p.
Thus in particular, |[x]| ¢ 11x,) < P > and lyll cq_r1ixg) S P -
Next we show that there exists a constant K(p) > 0 such that
Ix =yl C([-r,T]:Xg) <K(p)llo1 = @alegr, o X

Fort € [-r, 0], it is easy to see that

1x(1) = yOIl , < (@1 = P2)(D)lloe < @1 = P2flc(r, 01: X )-
Fort € [0, T], we have

X(®) = yOlla < [[TO@1 = 02)(O)]]a

+ T =9)(fx(s) ~ Fy()lluds

t S

+ Of IT(t—s)[ rf h(s — 6)(g(x(0)) — g(y(0)))d6]||ods
= I] + Iz + I3.

Obviously, I; < MJ|(@1 — 92)(0)|]o-
By using (F1) and (G1), one can verify that
t

I

IN

KaKi (p7) J (=)™ [1x(5) = ¥($)uds.

t S

I

IA

KKz (0] (=9 [ ] lIn(s - 0)lloolx(®) — (6 |ud0lds
0

t

< KaKa(p) ] (=9 [ ] (s = 0)llollo1(0) — pa(0)]d01ds
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t N

+KaKa (p) ] (t=9) [ ] IG5 — 0)L00lx(0) ~ y(0)]ud0]ds

0 t
< KaKl(p*)(OSSl:STir-‘. (s = ©)llLeodO)( J (t—5)™ ds) sup (91 -0
SO S t
+KaKa (P sup (s = )llLood®)( [ (t-)™ sup [x(6) = y(O)a
d0)ds
< KK T o1~ ol o %,

t
T KaKa (p)h T (t=9)7 %o~y cds.
Then, for te[0, T],
[x(®) —yOll. < Mil(@1 — 92)(0)]|a

* — Tl—(l
+ KaKi(p )b 7= [lo1 — Pallegr. 01 x,)

t

FKaKa(p) [ (1=5)™ [x(5) = y(6)lluds

t
+ KocKZ(p*) h OI (t=9)"" [Ixs = ysll ¢ ds.
By using the Gronwall’s lemma with singularity and time lag, we get
IX(®) = yOlla < Mi(p)lo1 — @alle-r. 03 x,»
Tl-o
o

for all te[0, T], and Mi(p’ ) = M+ KK (p ) h

Choose K(p") = max{M;(p"), 1}. Then
I(®) = YOlla. < K91 = Palle-r 0%, -

for all t*e [-r, T].
Since p depends on p then

Ix - vl C(-r.TXg) < Kller - @llegs o X))

0
Corollary 3.4.2. Assume that the hypotheses of Theorem 3.2.2 are satisfied.
Let @9 € C([-1, 0]; Xo) and X, be the corresponding mild solution of the system
(3.1.1). Then for any & > 0 there exists a 6 = 8(g) > 0 such that
lIxp — Xaoo|| C-1.T1Xy) <&

provided that || — @ollc(-r, 01; x,) < 0, X 18 the mild solution on [-r, T] corresponding to
oe  C( 0]; Xo). *
Proof. Since x,, € C([-1, T]; Xo) then there exists a constant p > 0 such that

||X<p0H C-rTXg) S P*-
Let € > 0 be given. If ¢ € B(¢o; 1) then ||¢||cr, xS 1+ llpollc-r, nxyS1+tp= p.
By Theorem 3.4.1, there exists a constant K(p) > 0 such that

1Xo = Xooll c—r,T1:x4) < KPP — Pollc(-r, 01: x -
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€
K(p)
Let ¢ € B(qo; 6). Then ¢ € B(po; 1). And

X — tioH C([-1,TI:Xg) < KOP)llo = @ollegr, o Xo)

Choose 6 = min{l, } which is positive.

< K(p)d
A E —
< K(p )(@ ) = €.
0
Theorem 3.4.3. Assume that hypotheses of Theorem 3.2.2 are satisfied. For any p > 0,
if x, y are mild solutions of the system (3.1.1) on [-r, T] corresponding to h; and h,,
respectively, then there exists a constant L(p) > 0 such that
Ix =yl C-rTIXg) = L(p)|/h; — h2HL1([0, T +1]; LX)
provided hy, hoe Li([0, T+r]; L(X)) with |'h, Ly o, T+riLex) <P and| h, Ly qo,T+rLx) SP -
Proof. Firstly, we show that if z is a mild solution of the system (3.1.1) on [-r, T] and z
corresponds to h € Ly([0, T + r]; L(X)) with [[h[|lL o, T+ r; Lx)) < p, then z satisfies the
inequality
IZllcqr T x) < P s
for a constant p_ > 0 depending on p. In fact as in the proof of Theorem 3.2.2, it follows

that for te [0, T], by the Gronwall’s lemma with singularity and time lag, there exists a
constant M; > 0 such that

* ()] < M,
forall t € [0, T]. Set p- = max{Mi, |@llc—rop:x,) ;- We have
Zllcr T x) < P s
Next, we show that there exists a constant L(p) > 0 such that
[1X = Ylleqr T x) < L(P)Ih1 = hallL, o, T+ r1; Lex)-

Fort € [, 0], [x(t) — y(Ollo = [l@(t) — @(V)]|« = O.
Fort € [0, T],

() = y®lla < TIT(t = 9)(Ex(8)) ~ fy($))lodls

+ Of ITt—s)[ rf {hi(s — 0)g(x(0)) — ha(s — 0)g(y(0))} dO]||uds
= I +1.
Since f is locally Lipschitz in xe X, || x(t)||,<p”and || y(t)||,<p", te[-r, T] then there

exists a constant K, (p*)> 0 such that
t

b€ KaKi(p) [ (=9 X(9) - y(©)lluds.

By a similar argument, there exists a constant K, (p*)> 0 such that
t S

Lo< Ko l(t=9) [ [llh(s-0)e(x() - 2(v(®))x do]ds
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t S

+K J(t=9)7 [T (hi(s — 6) — ha(s — 0))2(y(6))[xd0]ds
T t
Ko Ka(p)(sup [ [lhu(s = 0)lleood0) [ (t=5)™ sup [x(6) - y(O)] , ds]

s€[0,T] T 0<06<s
t S

+KaKa [(t=9) [ [ lhi(s =) = ha(s = 0) (1 + [x(0)])d0}ds

t

Ko K2(p*)Hl OI (t—s)"" [Xs—ysllcds

str

l-a
+KaKog—Csup [ [|(h ~ha)(O)]|Lod0) (1 +p7)

O 0<s<T
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1-a

IA

K K,L
1-a

(1+ p")llhy = holle, go. 7+ 11 Lixy
‘
R (97 Iyl ds
Then
() —y®lla < a(p)lh _chHLI([O’ T+ 1 LX)
#() J (197 1x9)- Y5

t
o) (97 - yileds,

Tl—U.
I-a

wherea(p”) = Ko Ko (1 +p), b(p) = KKi(p"), o(p) = Ku Ka(p) ;.

By the Gronwall’s lemma with singularity and time lag and p”as depends on p, there exists a
constant M; > 0 such that
%) —y®)ll. < Mia(p)h; - holle, qo, T+ r; Lex)
= L(pIh, - hyllL,qo, 7+ Lexy-

for all t € [0, T], where L(p) = Ma(p’) = M;a(p). hence this inequality holds for te [-r, T].
Therefore

X = Yl oerix,) < TP, —hylleqo, 7+ 1 vy (]
Corollary 3.4.4. Assume that hypotheses of Theorem 3.2.2 are satisfied.

Let hoeLl([O, T + r]; L(X)) and X, be the mild solution of the system (3.1.1) corresponding to
0
hO' Then for any € > 0 there exists a d=08(€) > 0 such that

1 Xn = Xng leqorTixg) < &>

provided that [[h —hg I o, T+r);Lcx)) < O where Xy is the mild solution of the system (3.1.1)
corresponding to h. That is, the operator H :Ll([O, T + 1r]; LX) > C([-1, T; Xa)’ defined by
H(h) = Xp is continuous.

Proof. Let £ > 0. Since h,eL,([0, T +r]; L(X)) then|[ hg || o, T+r}; L(x)) <P for a constant p > 0.
By Theorem 3.4.3 we get that || Xy, [lc(—r,13;x,) < p" for a constant px> 0. Ifh L ([0, T +rl;
L(X)) and H h- ho ||L1 ([0, T+1]; L(X)) < 1, it follows that

|0 |y o, Loy < 1% 1ol qo, mersLxop < 1P = P-
By Theorem 3.4.3 again, there exists a constant L( p) > 0 such that

X0 = Xpg loqerTixg) S LI =ho llL o, T L) -

Choose 8 =min{l,—&—}.

L(p)
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Leth e B(h0 ;9). Thenh e B(h0 :1), and

1xn = Xpg logerTixg) S LA =hg [l qo, +r): Lex)
< L(p)d
SL({))( i J — & O
L(p)

Corollary 3.4.5. Assume that hypotheses of Theorem 3.2.2 are satisfied.
If xe C([-1,T];X,,)is a mild solution of the system (3.1.1) on [0, T] with ¢ € C([-T, 0]; Xa)
and h € L, ([0, T + r]; L(X)), define G( @, h) = x. Then the operator
G : C([-r, O; Xa)x L, ([0, T +r]; L(X)) > C([-r,T]; X)) is continuous.
Proof. Let (¢, ) be a sequence in C([-, 0]; Xa) such that ¢, — ¢ in C([-r, 0]; Xa). Let ( hn) be
a sequence in Ll([O, T + r]; L(X)) such that hn —> hin L ([0, T +r]; L(X)).
For each n, let X be a mild solution of the system (3.1.1) corresponding to ¢, and hn .
Without loss of generality, we can assume that [|@|lcq_ro1x,)> 90 lloq-r01:x,)and
Iy [ o,+r;x)) < P1 » for a constant p; > 0.
There exists a constantp, > 0 such that || X, [[¢(—r,13;x,) S P2 - Setp=maxip;,p, .
By Theorem 3.4.1 and Theorem 3.4.3, there are constants K(p) and L(p) such that

1%y = Xlleq-r1x) S KP) 100 —@llcr 0 x,) T LM My =hllL, qo, T4rLx) -
Since ¢, > ¢ and h — h then X —>Xin C([-r, T X) -

So G is continuous on C([-r, 0]; Xa)xL 1([0, T + r]; L(X)). The proof is complete. []

3.5 A Semilinear System with Infinite Delay
Consider the following semilinear integrodifferential equation with infinite delay

% x(t) + Ax(t) = £(t, x(t)) + _Lh(t —5)g(s,x(s))ds, t €[0, T], (3.5.1)

x(t) = @(t), t € (—0,0].
Let BC((— oo, T7; Xa) denote the Banach space of all bounded continuous X, — valued functions
defined on (- oo, T], with the sup-norm. For a fixed ¢ €BC((-»,0];X,), let C,denote
{xe C([0,T];X) [ x(0) = 9(0) }. Then C,, is a nonempty closed convex subset of C([0, T]; X, ) .
We investigate the existence problem to the system (3.5.1). To obtain local existence of

mild solutions, we impose the following assumptions.

Assumptions

(G7) The function g : (—o, T] x X — X satisfies
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(i) g(e, x) is measurable on (- oo, T], for each x € X
(ii) g(t, ) is locally Lipschitz continuous in X, forallt € (— oo, T], i. e., for any t € (— o0, T] and
any p > 0, there exists a constant Kz(t, p) > 0 such that
1868, %) — g(s, %) [lx < K(t, Pl %, =%, [ 5
for all se (o, t] and x,, x, € X, such that |x,|| , < p and ||x,|| , < p.
(iii) g maps every bounded set in (— o0, T] x X, to abounded set in X.
(H3)h e L, ([0, «0); L(X)).
Definition 3.5.1. A function x € C((-,a]; X, ),a€(0,T], is called a mild solution of the system

(3.5.1) if it satisfies the integral equation

T(t)e(0) + }T(t —s)f(s,x(s))ds + }T(t -s)[ }h(s —0)g(0,x(0))d0]ds,t €[0,a],
0 0 —0 (352)

x(t) =
o(t),t € (—0,0].
Theorem 3.5.2. Assume that (A), (F3), (F5), (G5), (G7), (H3) hold. Let ¢ € BC((— o, 0]; Xa)

and ¢(0) € Xg, for some Be(a,1]. Then the system (3.5.1) has a unique mild solution x €
C((~0, TEX,).

Proof. Let ¢ € BC((— o, 0]; Xa). Define an operator G onC , by

(Gx)(t) =T(t) (0) + }T(t —9)f(s,x(s))ds + }T(t —9)[ [h(s—0)g(6,%(6))d0)ds, t[0, T],
0 0

—00

x(t),t [0, T],
o(t),t € (—0,0].

By a similar argument as in Lemma 3.1.3, one can show that G : C, = C,,.

where X(t) ={ (3.5.3)

As in the proof of Theorem 3.1.4, there exists a positive number t, depending only on¢, and a
nonempty closed convex set B subset of C, defined by B = {EeC,, [[|&(t) - 0(0)[|, <1, te[O,
t;]} such that G : B— B is a contraction.
By the Contraction mapping theorem, G has a unique fixed point x in B.
As in Theorem 3.2.2, applying the growth condition (F5) and (G5) and Lemma 3.1.6, one shows
that if y is a mild solution of the system (3.5.1) on a subset (— oo, T'], it follows that there exists a
constant p> 0 such that

Iyl < p,
forany te (—o,T"].
By using this a priori estimate, one can obtain interval of existence with equal lengthd> 0, [t,,

t,+61 [t, +8,t,+28], ..., [t,+nd,t,+(n+1)3],...,s0that T € [t,+nd, t,+(n+1)5] for an
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n € IN,d depends only on p. Hence the system (3.5.1) has a unique global mild solution on

(=, T]. L]



Chapter IV

Optimal Control

In this chapter, we study existence of a control for a controlled system with finite delay.
Existence of optimal control for a more general controlled system is investigated. We also study

Bolza optimal control problem.

4.1 A Controlled System with Finite Delay

Consider the controlled system with finite delay:

% x(t) + Ax(t) = £(t, x(t)) + frh(t —$)g(s,x(s))ds + Bu(t), @.1.1)

X(t) = (P(t)at € [—I',O].
We intend to use main results in the chapter I1I; especially Theorem 3.2.3, and apply to the
controlled system (4.1.1) corresponding to the system (3.1.9). Here we impose some assumptions

that are suitable to guarantee the existence of mild solutions of the controlled system (4.1.1).

Assumptions

(A1) X is a separable reflexive Banach space. -A is the infinitesimal generator of an analytic
semigroup T(t), t > 0 on the Banach space X.
(B) E is areflexive Banach space which the controls u take their values and B € L(L,(I, E),
L,(1, X)), where I =[0, T].
Definition 4.1.1. For any u € L(I, E) and any ¢ € C([-1,0]; X, ), if there exists a constant ty =

to(u, @) >0 and x € C([-1, to]; X,,) such that

T(t)p(0) + }T(t —s)f(s,x(s))ds + }T(t -s)[ Th(s —0)g(6,x(0))d0]ds
0 0

-T

x(t) = + }T(t —$)Bu(s)ds, t €[0, t, ], (4.1.2)
0

o(t), t €[-1,0].

then the system (4.1.1) is called mildly solvable with respect to u on [-r, to], and x € C([-1, to];

X,) 1s said to be an a—mild solution with respect to u on [-1, to].
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Theorem 4.1.2. Suppose the assumptions (A1), (B), (F2), (F6), (G2), (G6) and (H1) hold.
Letu € Ly, E), p > ﬁ, ¢ e C([-1,0];X,,) and ¢(0) € Xg, for somef € (a,1]. Then the

system (4.1.1) is mildly solvable on [-r, T] with respect to u, and the a—mild solution is unique.

Proof. By using corollary 2.4.23 and Theorem 3.2.3, it is sufficient to prove that

t
v(t) = [ T(t —s)Bu(s)ds is continuous on [0, T].
0

Suppose 0<t, <t,<T. Then

t t
| v(t) —v(t) |4 < |l jZT(t2 —s)Bu(s)ds — le(tl —s)Bu(s)ds||,,
0 0

IA

TIIT(ts =)= T(t; —)IBu(s) o ds+ [ T(t> —)Bu(s)]l, ds
0 t

IA

t t
T (T(ts = t) = DT(t, —)Bu(s) [l ds+ Ky, [(ts —5)" || Bu(s) Ix ds
0 t]

= I,+1,
Since o <B <1, by using Theorem 2.3.16(c),(d) and Hslder’s inequality, it follows that

pa i
[ <Cp gty —t)) e HBuHLp(I,X)‘

(tr—t)l-a
L < Ko g 1Bl ax)-

These inequalities yield that v is continuous on [0, T]. []
We will now study a system that is more general than system (4.1.1). We investigate the
existence of mild solutions of the controlled system. We impose some assumptions that is

sufficient to guarantee existence of mild solutions.

Assumptions

(A2) The function f': [0, T] x X, x E — X satisfies

(1) f(-, x, u) is continuous on [0,T], for each x € X, and eachu € E.

(i1) f(t, -, -) is continuous on X, x E, fora. e. t € [0, T].

(iii) f{(t, -, u) is locally Lipschitz continous on X, for a. e. t € [0, T] and each
uekE,ie,fora.e.t e [0, T]and any p > 0 there exists a constant K;(t, p, u) > 0 such that

I8, x1, ) — (s, 2, W) < Ku(t, p, w)[|x1 — Xaf[oss

for all s€[0,t]and |[x4]|o < p and |[Xo||o < p.

(A3) The function g : [0, T] x X, x E — X satisfies

(i) g(-, x, u) is continuous on [0, T], for each x € X, and eachu € E.
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(i1) g(t, -, -) is continuous on X, x E, fora. e.t € [0, T].

(ii1) g(t, -, u) is locally Lipschitz continous on X, fora.e.t € [0, T]and eachu € E, i. e.,
for a. e. tin [0, T], for each u in E and any p > 0 there exists a constant K,(p, u) > 0 such
that

llg(s, x1, u) = g(s, x2, v)||x < Ki(p, w)[[x1 = Xal|a,

forall s€[0, t] and | x, [l <pand || x, [lo <p.
(H) h e Ly([0, T]; L(X)).

We consider the following controlled system

% x(t) + Ax(t) =f(t,x(t),u(t)) + ih(t —s)g(s,x(s),u(s))ds, t [0, T], 41.4)
x(0) =xy,

where u € U,q ( = the admissible control set a nonempty closed convex bounded subset of
Ly(L, E)).
Definition 4.1.3. For every u € Ly(I, E), if there exists a ty = ty(u) > 0 and x € C([0, t;]; Xq)

such that

x(t) = T()x, + }T(t —s)f(s,x(s),u(s))ds
0

£ T(t = $)[] h(s — 0)2(6, x(0), u(0))d0]ds, 0< t< T, 4.1.5)
0 0

then the system (4.1.4) is called mildly solvable with respect to u on [0, t,] and x € C([0, to]; Xq)
is said to be an o—mild solution with respect to u.
Theorem 4.1.4. Assume that assumptions (A1), (A2), (A3) and (H) hold. Then for each u € Uy
and each X € XB for some 3 € (o, 1], there exists a constant t, = t,(u) > 0 such that the controlled
system (4.1.4) is mildly solvable on [0, to] with respect to u, and the a—mild solution is unique.
Proof. Letu € U,_,. Since u is fixed, define

£ (t, %) = f(t, x, u(v),

g (t,x)=g(t, x, u(v),
forte[0, Tl and xe X, .
We show that f and g satisfy (F2) and (G2), respectively.
Since f(e, x,u(e)) and g(e, x,u(e)) are continuous on [0, T] for each xe X, and each ue
LP(I, E), then f (e, x)and g (e, x) are continuous on [0, T].
Similarly, since f(t,®, u(t)) and g(t, e, u(t)) are locally Lipschitz on X, then T (t,e) and g(t, @)

are locally Lipschitz on X, . Thus f and g satisfy (F2) and (G2), respectively.
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Since u is fixed, by Theorem 3.1.8, there exists a constant t;= t,(x,, u) > 0 such that the system
(4.1.4) has a unique mild solution on [0, t,]. Therefore the system (4.1.4) is mildly solvable on

[0, t,]. []

4.2 Existence of Optimal Controls

In the following we consider a Bolza optimal control problem for the controlled system
(4.1.1). Under the assumptions of Theorem 4.1.2, for each fixed u € L,(I, E), the system (4.1.1)
is mildly solvable on I = [0, T].

Let U,q be the admissible control subset of Ly(I, E). We consider the Bolza problem (P), i. .,
(P) : Find u® € Uy such that J(u®) < J(u), for all u € U,y, where
Jw) = Jotx"(0),ut)dt + y(x" (1)),
I

where x" denotes the mild solution of system (4.1.1) corresponding to the control u € Uy, and
vy : X, — V is a nonnegative continuous function.
{u, x"} is called an admissible state-control pair, or simply admissible pair. For the existence of a
solution of the Bolza problem (P) we shall introduce the following assumptions:
(U) U = L(LLE), B € L(L, (I, E), Ly(I, X)), 1 <p <o, and B is strongly continuous.
(L) The function /: I x X, x E >V U {0} is Borel measurable satisfying the following
conditions:
1. 4(t, -, -) is sequentially lower semicontinuous on X, x E for almost all t € 1.
2. U(t, %, ) isconvex on E for each x € X, and almostallt € I.
3. There exists constants b >0, ¢ > 0 and ¢ € L(I, V) such that
00t %, ) 2 (1) +bl| x [l ¢l u | £
foralltel.
(y) The function y : X, — V is continuous and nonnegative.
We refer to a remarkable result about strong-weak lower semicontinuity of a functional,
Balder gives this result in his paper (See Balder, E. J. (1987)). The result is
Theorem 4.2.1. (Balder’s Theorem)
Let (X,||®]|) be a separable Banach space, and (V,|®|) a separable reflexive Banach space,
whose dual is denoted by V'. Let £: Ix X x V — (—o0,+00] be a given measurable function.

The following three conditions
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[(t,e,®) is sequentially l.s.c.on XxV p-a.e.,
£(t,x,8) is convex on V for every xe X L -a.e.,
there exist M > 0 and ¢ € L,(V) such that
2(t,x,v) = o(t) - M(|[x|| + [v|]) forallxe X,veVpua.e.,
are sufficient for sequential strong-weak lower semicontinuity of I,on L;(X)xL;(V).
Moreover, they are also necessary, provided that I, (;, \_/) < + oo for some X € L,(X), ve L,(V),
where I,: L (X)xL (V)—[-o0, + o] is the associated integral functional defined by
I, (x, v)= [if(t,x(t), v(t))udt .
Proof. See Balder, E. J. (1987), pp. 1399-1404.
We now present the main theorem for the Bolza problem.
Theorem 4.2.2. Suppose the assumptions (A1), (B), (F2), (G2), (F6), (G6), (H1), (U), (L) and
(y) hold. Let @ e C([-1,0]; X, ) and ¢(0) € Xg, for some Be(a,1]. Then the Bolza problem
(P) has a solution, i. e., there exists an admissible state-control pair {u°, x°} such that

JW) = [o(t,x°(0),u’ (t))dt + y(x°(T)) <J(u), forall u € Uy
1

Proof: If inf {J(u) | u € U,} = +oo, there is nothing to prove.
Assume that inf{J(u) |u € Uy} =m < o
By (L)-3, there exists constants b >0, ¢ >0 and ¢ € L(I, V) such that
£(t, x, 1) 2 ¢(t) + blIx[|o + cllul| § -
Then
Jw= [t x(0),u(t)dt +y(x"(T))
[

> [odt+b[lIx(0)]ly dt+cfllu®|[f dt+ w(x" (T))
I I I

>

> —o0

b

wheren > 0 is a constant. Hence m > —m > —o.
By the definition of infimum, there exists a minimizing sequence {u"} of J, i. e., J(u") — m as
n — oo, By the assumption (L)-3 again, we have
0t x,u") 2 () + blxlo + clu| -
Then
Juh) = {¢(t)dt+b{|| x() g dt+0{||u(t)|\% dt+ y(x"(T)).

So
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m - [¢()dt - b x(D) [l dt-w(x*(T)) zcfu”| Lp(LE) "
I I

Therefore || u" HLP(I’ gy < m,/c for all n, for a constant m, independent of n.

This shows that {u"} is contained in a bounded subset of the reflexive Banach space L,(I, E). So
{u" } has a subsequence relabeled as {u"} and there is an element u® € U,q such that u" —*—
u® in L,(I, E). Let {xn} c C([-r, T]; X) denote the corresponding sequence of solutions for the

integral equation

x" (1) =T(t)p(0) + }T(t —s)Bu" (s)ds + }T(t —s)f(s, x" (s))ds
0 0

+ ]‘T(t —$)[[h(s - 0)e(6, x" (8))d0]ds, t [0, T},
0

T

x"(t)=o(t), t e[-1,0].

Since [|u" HLp(I,E) is bounded, by a similar argument to obtaining an a priori estimate as in
Theorem 3.2.3, there exists a constant p > 0 such that
n
H X ||C([O’T];X0t) < P, foralln = 0, 1, 2,

where x_ denotes the solution corresponding to u°, that is,

x°(t) =T(t)p(0) + }T(t —s)Bu’(s)ds
0

+ fT(t —$)f(s,x°(5))ds + ]‘T(t —$)[ [h(s - 0)e(6, x" (8))d0]ds, t [0, T],
0 0

T

x°(t) = o(t), t €[-1,0].

By assumptions (F2) and (G2), for each t in [0, T], there exists positive constants K, (t,p),

K, (t, p) such that
[[£(s, x"(s)) — (s, x°(S)| < Ki(t, p)IX"(s) = x°(8)llo> s € [0, ],
and
1g(6, x"(0)) — (6, x°(0))[| < Ka(t, p)[[X"(0) — x°(0)[|, O € [, t].
Hence

IX"() = x°Oll« < || Oj T(t - s)B(u"(s) — u°(s))ds
+ 6[ T(t — s)[f(s, x"(s)) — (s, x°(s))]ds

+ J 1= o)t s - a0, x'0) - g0, x°0))a07s
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< K, J (t-s) "% |Bu"(s) — Bu®(s)||xds

F KK (6 p)J(E-9) [ x"(s) = x*(5) | ds
0

t S
# KK () (=9 [0 =0) 1 x, 401 sup [[x7(©)=x" @) ds
0 - <0<s

< K, =

aq IBU' = BuCll a.x)

F KKt p) [(E—5)" [ x"(8)~ x°(5) |, ds
0

t
£ K Ko(t, B ) () %I — x2 fods.
0

By Gronwall’s lemma with singularity and time lag, ||xn(t) — x°(t)]]« < M|Bu" — BUOHLp(I, X)»

l-aq . .
where M = K, Fl;_aqq is a constant, independent of n.

Since B is strongly continuous, we have |[Bu" — Bu°|\Lp(1, x) ——>0 as n — oo. This implies
X" = x| —— 0 in C([-1, T]; Xo).
The assumption (L) implies the assumption of Balder’s theorem. Hence by the Balder’s result,

(u, x) > [2(t,x"(t),u(t))dt is sequential strong-weak lower semicontinuous on L (I, E)x L,(I,
I

X). Then J is weakly lower semicontinuous on Ly(I, E). By (L)-3, since J > — oo, J attains its

minimum at u® € U,. Therefore the Bolza optimal control Problem (P) has a solution.

[]



Chapter V

Applications

In this chapter, we present some examples that illustrate our abstract results. These
examples deal with controll problems subject to a class of semilinear evolution equations with
delay. We apply Theorem 4.1.2 and Theorem 4.2.2 to prove the existence of an optimal control.

The first part of this chapter is about basic concepts of Sobolev spaces, strongly elliptic
operators and related results. The second part consists of our examples that we introduce

constructively to show how our abstract results can be applied.

5.1 Terminology

In the following we use y = (y,, y,, ..., y,) to be a variable point in the n-dimensional
Euclidean space V. For any two such points y = Y ¥y --» y) and z = (z,, z,, ..., z,) We set
2
y-z=Xlyiz;and |y = y-y.
An n-tuple of nonnegative integers o =(ct;,0,,...,0,)is called a multi-index and we

define

n
|a|=Zaa

i=1

and

y O =yilya? eyat fory = (v, vor -y,
Denoting D, = 0/0yy and D= (D,, D,, ..., D,) we have

D =D¥DJ2...pYn = 0% o%n
oyy! Oy3?  Oyan

Let Qbe a fixed domain in V" with boundary and closure Q. Assume thatoQ is
sufficiently smooth, e. g.,0Q is of the class C" for some suitable k> 0, this means that for each
point y € 0Q there is a ball B with center at y such that 9Q M B can be represented in the form
V=0, -0y Yips Yiups ---» y,) for some i, and @is a k-times continuously differentiable function.

For a nonnegative integer m, we denote by C"(Q) (resp. Cm(ﬁ)) the set of all m-times
continuously differentiable real-valued or complex-valued functions in Q (resp.ﬁ), by Cy (Q)
the subspace of C"(Q) consisting of those functions which have compact support in Q.

Forxe C"(Q)and 1<p <o, we define
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P
% Mgy, = (I X[ D*x [P dyJ : (5.1.1)
Q |o|<m
Also forp=2andu, ve C"(Q), we define
(u,v), = | XD*uD%vdy. (5.1.2)
Qlaj<m

Let ég’ (Q) be the subset of C"(Q) consisting of those functions x for which Xl , < -
We define W () and WP (Q) to be the completions in the norm || e llm,p OF égl () and
C{' (Q), respectively. The spaces W " "(Q) consists of functions x e L (€2) whose derivatives
D%x in the sense of distributions, of order|a.| < mare in L (Q), and W(;n P(Q)is the closure of
Cy(Q)in W"'(Q).

It is well known that W ™ "(Q) and Wén’p (Q) are Banach spaces with the usual norm
| ®[,p -Then W "P(Q) is separable, uniformly convex and hence reflexive. Let

H"(Q)=W"*(Q), HJ'(Q) = W (Q).

The spaces H" (©2) and H{' (QQ) are Hilbert spaces with the scalar product (-,-) given by (5.1.2).
The following imbedding theorem describes various relations among the above spaces.
Theorem 5.1.1. (Sobolev) The following relations among wW™(Q), C"(Q), and L’ (©) hold:
(W™ (Q)cW™(Q)if1<r< p, and the imbedding is continuous;

QW™ (Q)c Wj’p(Q) if 1<r,p<o0,jand m are integers such that 0 < j<m and

J

1o1,d
T n

» — <%, and the imbedding is compact;

np
(3) W™(Q)c L™ (Q) if mp < n and there exists a constant ¢, such that

np =
’n—mp

@W™(Q)cC k (ﬁ) if0<k<m- % , and there exists a constant ¢, such that

||X||0 <y [1X [lmyp» for xe W™ (Q);

sup{|D*x(y)|; | o] Sk,yeﬁ} <c,|[x]] forxeW™ (Q);

m, p?
(5) (Poincaré Inequality) There exists a constant ¢ = ¢ () such that

infi g || X +k|lg < e(Q)]| Vx|l , for xe Hy (Q).
Since 0Q is smooth, Cg (Q)is dense in WP (Q)and L,(Q), W, P(Q) is dense in L,(Q).

From Sobolev’s imbedding theorem, we have that the imbeddings

Cg () Wi (@) =L, ().



56

For any ¢ =k + 1> 0, where k is a nonnegative integer andn (0, 1),C° (5) denotes the
Banach space consisting of those functions belonging to ck (5) whose derivatives D%x of order
| o |=k satisfy a uniform Holder condition with exponent 1. The norm in this space is defined as
+ X [D%x],,,

laf=k

IR = IIxl

%) ck@)
with

_ [L(y)—v(2)]
[U]n - Supy,zeQ,y;éz |y—z\‘1 .

For a bounded domain © in R" with a smooth boundary 6Q , we consider the differential
operator of order 2m,

A(ly,D)= Y a,(y)D* (5.1.3)

| < 2m
where the coefficients a (y)are sufficiently smooth complex-valued functions of y inQ. The

principal part A'(y,D) of A(y, D) is the operator
A'(y,D)= ¥ a,(y)D* (5.1.4)

|o|=2m
Definition 5.1.2. The operator A(y, D) is strongly elliptic if there exists a constant ¢ > 0 such that
Re(-1)" A’ (v,8) >¢[&™, (5.1.5)
forallye Qand EeR'.

For example the Laplacian operator A given by

- 0%x
Ax =) =,
iz10y7

— A is clearly strongly elliptic.
5.2 Optimal Control of a Semilinear System with Finite Delay

In the following, we give some examples of infinitesimal generator of analytic semigroup
in Exampleland the existence of an optimal control for a semilinear parabolic controlled system
with finite delay in Example2. It is important to know which differential operator can be the
infinitesimal generator of an analytic semigroup. We collect some important generators as

follows.

Example 1.

Let A(y,D)= > a,(y)D? be astrongly elliptic differential operator in Q.

|o<2m

With suitable boundary conditions, it can be the infinitesimal generator of an analytic semigroup

in some function spaces.
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The operator

A¥(y,D)x= Y (-D)D*(a,(y)x) (5.2.1)

lo<2m
is called the formal adjoint of A(y, D). From the definition of strong ellipticity it is clear that if
A(y, D) is strongly elliptic so is A*(y, D). The coefficients a (y)of A(y, D) are assumed to be
smooth enough, e. g.,a,(y) € o (5) or C” (5) .

Casel. X = L, (Q), for 1 <p<oo.

Define

2m, p

D(A) =W """ (Q) N WP (Q)
and
A x= Ay, D)x, for xe D(A). (5.2.2)
The domain D(A)) of A contains C{ () and is therefore dense in L, (€2). Then —-A_ is the
infinitesimal generator of an analytic semigroup T(t), t>0 in X (See Pazy, A. (1983)). Therefore
the fractional power operator Ag and the fractional power space X, can be defined.
Case2. X = L,(Q). Define

2m-1,1

D(A)={x|xeW Q)N WM (Q), Aly, D)xe L (Q) } (5.2.3)
where A(y, D)x is in the sense of distributions. For xe D(A ), A, is defined by

A x=A(y, D)x. (5.2.4)
—A, is the infinitesimal generator of an analytic semigroup on L, (€2) (See Pazy, A. (1983)).
Example 2. Let X=L,(Q).

We consider the following controlled problem.

t
% X(t, Y) + A(y’ D)X(ta Y) = f1 (ta Y, X(t, Y)’ Vx(t, Y)) + .[h(t - S)fZ (Sa Y, X(S, Y)’ VX(S’ Y))dS

T

+ [K(y,&)u(&, )dg, t e (0,T],
Q

X(t’ Y) = (P(t, Y), ye ﬁat € [_r,O],
x(t,y) =0,y €0Q,te[0,T], (5.2.5)

where Q — R" is a bounded open domain with sufficiently smooth boundary 6Q , A(y, D) is the
strongly elliptic operator defined as in case 1 of examplel, @€ ch? ([-r,0] x 5, R),i. e, o@is
once continuously differentiable on [-r, 0] and twice continuously differentiable in 5,
ueL,(Qx[0,T]), heL,([0,T +r],R)and K : QxQ —> R is of Hilbert-Schmid type, i.e., K is

a measurable function such that | [|K(y,&)|* dydg <.
Q0
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For eachueL,(Qx[0,T]), letBu(t)(y) = [K(y,&)u(&,t)ds. BeL(L,(I, X)) is continuous
Q

and compact, i. e., B is strongly continuous (See Yosida, K. (1980), pp 277; Renardy, M., Rogers,
R. C. (1993), pp. 262-263).

Suppose f, : [0, TIx Q x RxR"—R is continuous and there exists constants K, N,>0, a
constant A > 1 such that

g y.gon) < K(1+e +mi.
£y, & ) -, y.,8,.m,) < N(t=s|+]§, = E, [ +]n—n,D.

We now fix %< a<l, Ae (l,i) , we have the imbedding relation X, > C' (5) (See
Amann, H. (1978), pp. 16). Denote the injection by j,: X, C' (ﬁ) and define f : [0, T]x
Xy = Xby f{t, x)(y) = fi(t, y, jo (G, V(jg (X)) (). We have

”f(ta X)Hx = || f(ta X) ||L2(Q)

N [—

Q

= | [If(t, ) dy)

N |—

= | JI£1(t ¥, i (), Vig )W) dYJ
Q
1

. y . a2 g |2
S| TE A+ o W+ Vi )W) d}’j
0

1

. S . A2 2
=K1£I(I+IJG(X)(y)I +[Vj, (X)) ") dy)
Q

<Ky 0+ (1 ) dy |
= lg Jo Cl(ﬁ) y

2
SK{J(H& ||x||ﬁ)2dyJ
Q
1
<K ([dy)2(1+c* |x[5)
Q

Kl(jdy)%,ifck <1,
<Ki(+|x[5), Ki=4 ¢
K, (Jdy)2ct,if ¢ >1.
Q
So we have
I )l <Ki(+]]x][5) -

By a similar argument, we have
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||f(t, Xl) — i, Xz)Hx = ||f(t, Xl) — i, Xz)H Ly ()

1
= (JIf(tx () = f(t, x,)(y)[* dy) 2
Q
1
= (I, (4 Y, o (X)), Vig (X)) = £1 (6, Y, G (X2)(¥): Vig (x2)(¥) |7 dy)2
Q

1
S(I[le(|ja(xl)(Y)_joc(x2)(Y)|+|Vja(xl)(Y)_vja(X2)(Y) D? Jdy)?
Q

1
= Nyl 60 = Ja (52) I3, ) 49)°
Q

1
SN ([ (ellx; =%, [lg) 2 dy)2
Q

2
:Nlc(JdYJ X1 =X5 [lg
Q

<N1x) =% g -
Using a similar procedure to f,, if f, : [-r, T]x Q xVx V"V is continuous and satisfies:
£y, &) <Ko ([ €] +[Im"),
5y, &M~ 66y, &.m)l SNL (1€ =& [+ —M2 -
Then we can define g : [-r, T]x X, — X by g(t, x)(y) = £,(t, ¥, j o (X)(¥) , Vi, (X)(y) ) to have the
similar properties:
et 9l < K2 (1+ /x5,
et x) = gt %) < Na [l xg =5 lq

Now the problem (5.2.5) can be written as

%x(t) + A x(6) = F(t,x(1) + _}rh(t —$)g(s, x(s))ds + Bu(t), t € (0, T], (5.2.6)

X(t) = (P(t),t € [-r,O].
Theorem 5.2.1. Suppose the assumptions stated above hold. If there exists a constant p> 0 such

that the a priori estimate [|x(t <p holds, for any possible solution x of the system

I co.rpar)
(5.2.5), then the system (5.2.6) has a unique o - mild solution.

Proof. By using the a priori estimate and applying Theorem 4.1.2, the system (5.2.6) has a unique
o -mild solution. ]

Remark 5.2.2. If A= 1, by using a similar process as in the Global existence theorem (Theorem

3.2.2), Theorem 5.2.1 is still true without assuming the a priori estimate.
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We now consider the following cost functional:
T
Jw) = [t x" (1), u®)dt+ w(x*(T)),
0

where /£ : [0, T]xCl(ﬁ)xLz(Q) —> VU {+o},y:L,(Q) - Vis defined by
v(©)= JIEm) dy

0(t,x,u) = a® [[[x(y)]> +] Vx(y)[*1dy +b® [Ju(y)|* dy
Q Q

where a(-),b(:) e C([0, T]; [0, o)) with min b(t) =b > 0.
For each xe W2 (5),2 (t, x, u) = a(t)|x|| 12,2+ b(t)|[ul| iz(ﬁ)' By property of the norm and the
inequality,
lax; + (1 =a)xy) [IF2 =llax; I, =l A= a)x, Iy <=l =)l x; [l =11%5 [112)*

a [0, 1], it follows that £ (t,e, u) is convex in Cl(ﬁ) and /(t, x,®) is convex in Lz(ﬁ).
Since a and b are nonnegative and continuous on [0, T] and the norm is continuous, ¢ is
continuous on [0,T]x Cl(ﬁ) X L2(5) . Since /(t,e,®)is continuous and convex on
Cl(ﬁ)xLz(ﬁ), then (is weakly sequentially lower semicontinuous on Cl(ﬁ)xLz(ﬁ),
(See Zeidler, E. (1990)).Then / is sequentially lower semicontinuous on C! (5) x L, (5) .

Similar to the discussion in Theorem 5.2.1 and Remark 5.2.2, applying Theorem 4.2.2 we
have the existence of an optimal control as follows.

Theorem 5.2.3. Under the assumptions as in Theorem 5.2.1, there exists a u'e L,(Qx[0,T])

such that J(uo) <J(u),ue L, (QQx[0,T]).
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Conclusion

We summarize our works into four sections as follows:

6.1 Thesis Summary

In this thesis, we have studied o - mild solutions for a class of semilinear evolution
equations whose principal operator is the infinitesimal generator of an analytic semigroup in
Banach spaces. We obtained the local existence, global existence, continuous dependence and
regularity of mild solutions. A Bolza optimal control problem of a corresponding controlled
system can be solved. The application of our abstract results is illustrated by some examples.

We summarize our results:

Part 1. Local Existence, Extension and Global Existence

We obtained main theorems as follows:

Theorem 3.1.4. ( Local Existence Theorem ) Assume that (A), (F1), (Gl), and (H1) hold.
Let ¢ € C([-1, 0]; Xo) and ¢(0) € Xg, for some € (a,1]. Then there exists a positive number t,
such that the system (3.1.1) has a unique mild solution on [-r, t ].
Theorem 3.1.7. (Extension Theorem) Assume (A), (F1), (G1) and (H1) hold.
Letg € C([-1,0];X,, ) and ¢(0) € X, for some e (a,1]. Suppose a priori estimate holds for
the system (3.1.1), i. e.,

(AP) There exists a constant p> 0 such that if x(e)is a possible mild solution of the system
(3.1.1) on a subset [-r, T" ] of [-r, T], it follows that ||x(t)||o < p, for all te[-r, T"].
Then the system (3.1.1) has a unique global mild solution on [-r, T].
Theorem 3.2.2. (Global Existence Theorem) Assume that (A), (F1), (F5), (G1), (G5) and (H1)
hold. Let ¢ € C([-1, 0]; X,) and ¢(0) € X5, for some B (a,1]. Then the system (3.1.1) has a
unique global mild solution on [-r, T].
Theorem 3.2.3. Assume that (A), (F1), (F6), (G1), (G6) and (H1) hold.
Let ¢ € C([-, 0]; X,) and ¢(0) € X, for some f3 € (Ao, 1]. There exists a constant p >0 such
that if x(e)is a possible mild solution of the system (3.1.1) on a subset [-r, T'] of [-r, T], we

have
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Ix(® lg<p.
for all t €[-r, T']. Then there exists a constant p* > 0 such that
RO

for all te[-r, T' ], hence the system (3.1.1) has a unique global mild solution on [-r, T].
Part I1. Regularity and Continuous Dependence

Under the same assumptions we can prove that a mild solution is just a classical one. This
shows the connection between mild solution and classical solution.

Moreover, we have proved continuous dependence of the system (3.1.1). Some important
results of regularity and continuous dependence are as follows:
Theorem 3.3.1. (Regularity) Assume that (A), (F4), (G4), and (H2) hold. Let ¢ € C([-r, 0];
Xa)and @(0) € X, for some B € (a,1].If a mild solution x of the system (3.1.9) exists on [-r, T],
then x € C([-1, T]; X,) N C'((0, T); X), hence it is a classical solution.
Theorem 3.4.1. Assume that the hypotheses of Theorem 3.2.2 are satisfied. For any p > 0, if x
and y are mild solutions of the system (3.1.1) on [-r, T] corresponding to ¢ and @,, respectively,
then there exists a constant K(p) > 0 such that

X =Yl cqormixg) < KPP @oll c(r. 01 s
provided @, 9, € C([-1,0]; X, ) With[| @y [[c(—r,01:x,) S P and[| @3 [lc-r,01:x,) S P -
Theorem 3.4.3. Assume that hypotheses of Theorem 3.2.2 are satisfied. For any p > 0, if x, y are
mild solutions of the system (3.1.1) on [-r, T] corresponding to h; and h,, respectively, then there
exists a constant L(p) > 0 such that
lx =yl C([-1,T1:Xg) <L(p)|lhs — h2||L1([0, T+1]; LX)

provided hy, hy € Li([0, T+r]; L(X)) with |[hy (|, qo,r4r;xy < pand |l hy ([ o1y <P -

We extended the method of proving global existence to a system with infinite delay and
obtained a result as follows:
Theorem 3.5.2. Assume that (A), (F3), (F5), (G5), (G7), (H3) hold. Let ¢ € BC((— o, 0]; Xa)

and ,p(0)eXp, for some Pe(a,l]. Then the system (3.5.1) has a unique mild solution
x e C((—, T X,).

Part I1I. Existence of Optimal Controls
Existence problem of o - mild solutions of the controlled system (4.1.1) corresponding to

the system (3.1.1) can be solved. Existence problem of a more general controlled system is also
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proved. Existence of an optimal control for a Bolza problem of the system (4.1.1) is presented by
using a Balder’s result. We obtained main results as follows:

Theorem 4.1.2. Under assumptions (A1), (B), (F2), (F6), (G2), (G6) and (H1).

Letu e LI, E), p> ﬁ, ¢ e C([-1,0]; X, ) and ¢(0) e X, for somePe(a,1]. Then the
system (4.1.1) is mildly solvable on [-r, T] with respect to u, and the o—mild solution is unique.
Theorem 4.1.4. Assume that assumptions (A1), (A2), (A3) and (H) hold. Then for each u € Uy
and each xo € X B for someP e(a,l], there exists a constant t, = to(u) > 0 such that the
controlled system (4.1.4) is mildly solvable on [0, to] with respect to u, and the o—mild solution
is unique.

Theorem 4.2.2. Under assumptions (A1), (B), (F2), (G2), (F6), (G6), (H1), (U), (L) and (y).
Let 9 € C([-1,0]; X, ) and ¢(0) € Xy, for somef3 € (a,1]. The special Bolza problem (P) has a
solution, i. e., there exists an admissible state-control pair {u°, x°} such that

JW) = [o(t,x° (1), u’ (1))dt + y(x°(T)) <J(u), forall u e U,q.
1

Part IV Applications
All results in this thesis can be applied to semilinear partial differential equations with
delay. Some examples concerning semilinear parabolic differential equations and the
corresponding Bolza optimal control problems have been presented.
We also found that
1. Analytic semigroup under fractional power space technique, locally Lipschitz
continuity of f and g, and integrability of the function h are important hypotheses for
obtaining local existence of mild solutions for the system (3.1.1) and (3.1.9).
2. The a priori estimate is a very important condition that is used to prove the extension of
local mild solutions.
3. Gronwall’s lemma with singularity and time lag is an important tool for obtaining on a
priori estimate and global existence. Moreover, the moment inequality under super
linear growth condition gives us a more general theorem of global existence of mild

solutions.

6.2 Limitations

1. The infinitesimal generator A we discussed is independent of't.

2. For the optimal control problem, the control part appears linearly in the control system.



3.

Necessary conditions for optimality have not been presented.

6.3 Suggestion for Further Work

1.

In the following are important topics that can be studied further.

Integrodifferential inclusion.

Necessary and sufficient condition for optimal controls.
System Identification.

Stochastic control problems corresponding to our system.

Corresponding relaxed controlled system.

Time optimal control problem and controllability of the systems.
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